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Section I.  
Introduction to translational modeling in oncology 
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Chapter 1 

Introduction and scope 
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1.1 Challenges in oncology drug development 

Significant advances have been made in the treatment of cancer in the past decades, with a shift 
away from cytotoxic drugs, towards more targeted therapies, immune-oncology drugs, cancer 
vaccines and cell-based treatments. Groundbreaking new therapies have been identified, with a 
myriad of potential combination therapies possible. Some 50 years since ‘the war on cancer’ was 
declared, these are enabling a different era in cancer treatment with declines in mortality and 
morbidity, less side effects and talk of chronic treatments [1]. Despite these advances, the 
success rate of oncology drug development remains the lowest among all the therapeutic areas 
[2] with an overall success rate of only 3.4%, mainly driven by failure in Phase 2 [2].  

There are multiple reasons why oncology drug discovery and development are so difficult. First, 
cancer is an exceptionally heterogeneous and adaptable disease, with massive variability 
between tumors and within a tumor. At the molecular level, it is likely that no two cancers are 
identical. In treating cancer, we are therefore treating a multitude of different diseases [1]. This 
is exacerbated by the fact that patients are entering trials heavily pre-treated with high potential 
for drug resistance. A ‘one size fit all’ approach will not work in cancer treatment.  Secondly, it is 
difficult to translate from preclinical data to the clinic to predict efficacy and toxicity [3]. Until 
recently, efficacy was assumed to be dose related and clinicians would push cancer drugs to the 
maximum tolerated dose (MTD) in clinical development, which was subsequently defined as the 
efficacious dose [3]. This assumption may have been possible for small molecule drugs but is 
much less appropriate for biotherapeutics. The trade-off between efficacy and toxicity has almost 
always been resolved in the clinic and remains a large source of drug failure.  

The workhorse preclinical model in oncology is the mouse xenograft model, which comprises 
subcutaneous implantation of a human cell line or tumor into immune compromised host mice 
[4]. The xenograft model represents extreme simplification of human cancer, as it does not 
account for complexities of tumor metastasis, host immunity, tumor heterogeneity, and the 
development of treatment resistance that is routinely observed in cancer patients [5]. However, 
the drug exposure response relationship derived from these models is useful for understanding 
efficacy and if accompanied by rigorous quantitative analysis such as mathematical modeling, 
can be used to translate from mouse to human to predict clinical anti-tumor response [6, 7]. 
Clinically translatable biomarkers are another useful tool likely to improve preclinical to clinical 
translation, and advances in experimental techniques has made these easier to measure. 
However, often the biomarkers need to be measured kinetically in tumor tissue, necessitating 
tumor biopsies from patients, which are still not common path. In vitro to in vivo correlation is 
thought to be poor, which means that in vitro assays are typically only used for drug screening. 
A rigorous unifying preclinical to clinical translational framework could facilitate oncology clinical 
development by better identifying translational strategies, patient selection criteria and 
appropriate biomarkers to measure [3]. 
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1.2 Biotherapeutic modalities used to treat cancer 

Large molecule biotherapeutics in oncology are enabling tumor targeting, activation and re-
targeting of the immune system to kill cancer cells, and stimulation of separate 
immunomodulatory pathways from one molecule. However, the versatility of these molecules 
brings with it an additional level of complexity, with intricate mechanisms of action and 
concentration response relationships that are non-intuitive and difficult to predict. In this thesis, 
different types of biotherapeutic drugs are discussed including monoclonal antibodies (mAbs), 
antibody drug conjugates (ADCs), T-cell engagers (TCEs) and other bispecific antibodies (bsAbs)- 
see Figure 1. mAbs have formed the backbone of many successful biotherapeutic modalities for 
the treatment of cancer. Monospecific mAbs have been used to target specific tumor receptors 
such as HER-2 and CD20 to inhibit signaling and/or trigger antibody dependent cellular toxicity 
(ADCC) [8]. This has resulted in first generation mAb drugs in oncology such as trastuzumab and 
rituximab. More recently, mAbs have been used to target immune checkpoint receptors such as 
CTLA4 and PD1 on T cells, releasing negative immune regulation of the tumor [9]. This has led to 
revolutionary new immunotherapy treatments including ipilimumab and pembrolizumab. 
Although undoubtedly a breakthrough in cancer treatment, immunotherapy still only works well 
in a minority of patients and for certain cancer types [9]. ADCs are a targeted therapy for cancer 
treatment, combining a specific mAb to a tumor antigen linked to a potent cytotoxic agent [10]. 
They make use of the specific binding properties of the antibody to deliver a cytotoxic payload to 
cancer cells for increased efficacy, whilst minimizing exposure of normal tissues. Brentuximab-
vedotin and ado-trastuzumab-emtansine are examples of ADCs on the market for oncology 
indications. T cell retargeting molecules are bispecific antibodies, or antibody fragments, that 
bind to CD3 on the surface of T cells and to a tumor associated antigen (TAA) on the tumor cell 
surface [11]. When both CD3 and the TAA are engaged, the proximity of the T cell and tumor cell 
results in the formation of an immune synapse, stimulation of the T cell and ‘redirection’ of 
cytotoxic activity against the tumor cells. Blinatumomab is a CD19 x CD3 bispecific T cell engager 
that has received regulatory approval. A second wave of bsAbs are emerging, with tumor 
selective recruitment and activation of T cells, or more powerful immunomodulation by targeting 
two distinct immunomodulatory pathways [12].  

 

Figure 1: Biotherapeutic drug modalities discussed in different sections of this thesis. 

 

https://www.cancerresearch.org/immunotherapy/cancer-types
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1.3 Mathematical modeling in oncology drug development 

To overcome the challenges in oncology drug discovery and development, and to deconvolve the 
complexities of novel biotherapeutic modalities, innovative approaches are needed. 
Mathematical modeling is a key tool which has been shown to increase efficiency and 
effectiveness in drug discovery and development and can be used to facilitate design, selection 
and preclinical to clinical translation of oncology therapies and to optimize clinical trials [13]. 
Mathematical modeling can be used to integrate data from disparate sources including literature, 
preclinical experimental data, and clinical data, to examine the relationships between a drug, the 
biological system, and the disease process. A quantitative framework is assembled which can 
provide mechanistic understanding of drug function, enabling optimal experimental design and 
faster data interpretation. The model framework can be used at early stages to aid in the 
identification of optimal drug properties for next generation molecules, including optimal target, 
epitopes, and drug format. Once a lead compound has been selected, the model can be used to 
translate from preclinical in vitro and in vivo studies to the clinic, to inform clinical study design 
including prediction of clinical starting dose, efficacious dose, and regimen. 

 

Figure 2: The continuum of mathematical models utilized in drug discovery and development. In this thesis PK, 
PK/PD and quantitative systems pharmacology models are used, depending on the questions asked and the 
objective of the modeling. Systems biology modeling was not in the scope of this thesis.  

1.4 Scope of this thesis 

The aim of this work was to investigate different ways in which mechanistic mathematical 
modeling and simulation can be used to help with quantitative decision making in oncology drug 
discovery and development.  Section I introduces the thesis and its scope. Section II focuses on 
modeling of mAbs, Section III on ADCs and Section IV on bispecific antibodies. Conclusions and 
further perspectives are discussed in Section V. 
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Different levels of mathematical modeling were used depending on the questions asked and are 
introduced in Chapter 1 (Figure 2). For example, a more statistical population-pharmacokinetic 
(pop-PK) modeling approach was used for analysis of a large mAb PK dataset with quantitation 
of variability (Chapter 2). Pharmacokinetic/ pharmacodynamic (PK/PD) modeling was used for 
data driven interpolation of in vitro and in vivo datasets with limited extrapolation (Chapters 3 & 
4). Quantitative systems pharmacology (QSP) modeling was used to answer more complex 
mechanistic questions, involving integration of data from disparate sources (literature, in vitro, 
in vivo and the clinic), linkage of drug pharmacology to biological systems and disease, and multi-
scale predictions (Chapters 4, 5, 6 & 7).  

The scope of this work extends from early drug discovery through to clinical trials, and includes 
use of modeling and simulation to influence: 

• Hypothesis testing 
• Interpretation of large datasets to simplify processes, and to avoid unnecessary in vivo 

studies 
• Establishment of in vitro to in vivo correlations 
• Preclinical to clinical translational strategies to predict PK and PD 
• Competitor differentiation, to ensure that therapeutically beneficial molecules are 

progressed to clinical studies 
• Prediction of optimal clinical doses and regimens  
• Precision medicine approaches, including identification of sensitive parameters impacting 

dose in patients, which could be used as clinical diagnostics and/or to select the optimal 
patient population. 

1.5 Outline of this thesis 

In Chapter 1, the challenges of oncology drug development are introduced, along with the 
increasingly diverse array of biotherapeutic modalities being developed to treat cancer. The role 
of mathematical modeling in the process is discussed. 

In Chapter 2, pop-PK modeling was used for a meta-analysis of the linear PK of mAbs across 
different species used in the pharmaceutical industry. This work indicated that linear PK of 
therapeutic mAbs can be considered a class property, with a typical set of parameters identified 
across species, with similar values to endogenous IgG. Strategies are presented for predicting 
linear PK of mAbs with less reliance on cynomolgus monkeys and use of smaller animal or in silico 
alternatives.  

In Chapter 3, in vitro to in vivo correlation (IVIVC) was established for ADCs using a PK/PD 
modeling approach. A comparable efficacy parameter, tumor static concentration (TSC), was 
derived for in vitro and in vivo experiments and a predictive correlation determined. The 
methodology established here could potentially be applied to all anti-cancer drugs (large and 
small molecules). This work has many applications including early triage of ADCs, prevention of 
unnecessary in vivo studies and saving of resources.  
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In Chapter 4, a PK/PD modeling approach was used for quantitative comparison of a new 
generation HER2 ADC (PF-06804103) with trastuzumab-DM1 (T-DM1), to ensure efficacy 
differentiation and as a rationale to pursue clinical development of PF-06804103. This included 
comparison of TSC values across a range of in vivo tumor models, representing different disease 
origins (breast, gastric and lung), clinical pathologies such as low-high HER2 expression and 
resistance to T-DM1. A mechanistic model was developed to describe non-linearity in T-DM1 PK 
in patients due to binding to shed HER2. A similar model was then used to predict clinical PK for 
PF-06804103. A translational strategy was proposed to predict clinical efficacy in patients. 

In Chapter 5, a translational QSP model for ADCs is presented, which was used for preclinical 
clinical translation of inotuzumab-ozogamicin, a CD22 targeting ADC for the treatment of B cell 
malignancies. The model predicted progression free survival responses for inotuzumab versus 
non-Hodgkin’s Lymphoma (NHL) that were comparable to observed clinical trial results, 
demonstrating its utility for predicting efficacy of ADCs. The model was also able to give useful 
mechanistic insight into optimal dosing regimens and sensitive parameters impacting outcome. 
This knowledge could be applied to optimize the design of ADCs in the discovery phase of 
research and/or for selection of predictive diagnostic in the clinic. 

In Chapter 6, a translational QSP model for T cell retargeting CD3 bsAbs is presented. This model 
predicts trimolecular complex formation between drug, T cell and tumor cells required to form 
an immune synapse, which triggers T cell activation and cytotoxicity. The model was used to 
characterize the PK/PD relationship in mouse tumor models and translated to the clinic to predict 
clinical efficacious dose. Notably, this model can also be applied at early stages to aid in CD3 bsAb 
design and candidate selection.  

In Chapter 7, as a means of a general conclusion to this investigation, mechanistic quantitative 
pharmacology strategies for the early clinical development of bispecific antibodies (bsAbs) in 
oncology is presented. This includes use of modeling to understand complexities of bsAbs, impact 
decision making and aid in clinical translation, trial design, and prediction of regimens and 
strategies to reduce dose limiting toxicities. BsAbs are an integral component of the current 
therapeutic research strategy in oncology and explorative preclinical and emerging clinical data 
indicate potential for enhanced efficacy and reduced systemic toxicity. The strategies discussed 
could be powerful tools to facilitate clinical success of bsAbs, while decreasing time required for 
non-clinical development.  
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2.1 Abstract 

The linear pharmacokinetics (PK) of therapeutic monoclonal antibodies (mAbs) can be considered 
a class property with values similar to endogenous IgG. Knowledge of these parameters across 
species could be used to avoid unnecessary in vivo PK studies and to enable early PK predictions 
and pharmacokinetic/pharmacodynamic (PK/PD) simulations. In this work, population-
pharmacokinetic (popPK) modeling was used to determine a single set of ‘typical’ popPK 
parameters describing the linear PK of mAbs in human, cynomolgus monkey and transgenic mice 
expressing the human neonatal Fc receptor (hFcRn Tg32), using a rich dataset of 27 mAbs. Non-
linear PK was excluded from the datasets and a 2-compartment model was applied to describe 
mAb disposition. Typical human popPK estimates compared well with data from comparator 
mAbs with linear PK in the clinic. Outliers with higher than typical clearance were found to have 
non-specific interactions in an AC-SINS self-association assay, offering a potential tool to screen 
out these mAbs at an early stage. Translational strategies were investigated for prediction of 
human linear PK of mAbs, including the use of (1) typical human popPK parameters and (2) 
allometric exponents from cynomolgus monkey and Tg32 mouse. Each method gave a good 
prediction of human PK with parameters predicted within 2-fold. These strategies offer 
alternative options to the use of cynomolgus monkeys for human PK predictions of linear mAbs, 
based on in silico methods (typical human popPK parameters) or using a rodent species (Tg32 
mouse) and call into question the value of completing extensive in vivo preclinical PK to inform 
linear mAb PK. 

2.2 Introduction 

Therapeutic antibodies have come of age as an important class of drugs with over 40 antibody- 
based therapies approved by the US FDA across multiple indications and many more in clinical 
trials [1]. Advances in antibody engineering have enabled rapid progress from the first generation 
of highly immunogenic murine and chimeric antibodies to better tolerated humanized and fully 
human mAbs. Recently, the variety of antibody-like modalities has evolved further to include Fc-
fusion proteins, antibody drug conjugates and bi-specific antibody products. In addition to their 
exquisite specificity and potency, mAbs are successful therapeutics due to their long 
pharmacokinetic (PK) half-life [2]. Low clearance of mAbs from the systemic circulation enables 
them to be administered less frequently than their peptide or small molecule counterparts, which 
is more convenient for the treatment of chronic diseases.  

The PK properties of mAbs are a function of their large size (150kDa), relative polarity, Fc-
receptor binding, and specific binding to target antigens. The primary elimination route for mAbs 
is cellular uptake followed by proteolytic degradation. There are two distinct catabolic pathways 
for mAbs [3]. The first is a non-specific, linear (first-order) clearance (CL) pathway mediated by 
fluid-phase pinocytosis or unspecific fluid-phase endocytosis [2].  This common pathway shared 
by endogenous IgG and therapeutic mAbs operates independently of the specific interaction 
between a mAb and its pharmacological target. This pathway is not easily saturated at 
therapeutic doses, and tends to result in linear CL. FcRn functions as a salvage receptor to protect 
IgG from rapid intracellular catabolism, and is responsible for the long half-life of endogenous 
IgG and exogenous IgG based therapeutic proteins [4]. 
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The second catabolic pathway is a non-linear (target mediated) CL pathway mediated by the 
specific interaction between the Fab region of the antibody and its pharmacological target. This 
pathway is often referred to as target mediated drug disposition (TMDD). Following binding of 
the mAb to its target on the cell surface, the mAb-antigen complex is internalized and then 
trafficked via the endosomes to the lysosomes where the complex is degraded. When the target 
binding is saturated, the relative importance of target binding to overall disposition is diminished 
and mAb is eliminated by first order process [2]. For mAbs exhibiting this pathway, disposition 
depends upon the concentration and distribution of the mAb, along with target receptor 
expression, internalization and turnover rates [5]. Certain mAbs to soluble targets can also 
undergo TMDD driven by binding of 2 or more mAbs to form multimeric complexes which are 
rapidly eliminated by phagocytosis. mAbs cleared primarily by TMDD will have dose dependent 
non-linear elimination. For these mAbs, PK is distinctly different from the catabolism of 
endogenous IgG, with higher CL and shorter half-life values at lower doses.  

The rate and extent of mAb distribution is very slow and depends upon extravasation in tissue, 
distribution within the particular tissue, and degradation. The convective CL of mAbs from the 
tissue is thought to be more efficient than the process of convective extravasation, thereby 
maintaining relatively low mAb concentrations in the interstitial fluid [6, 7]. As a result of this 
mAbs often have small apparent volumes of distribution [8, 9]. 

The ability to predict the PK of a drug prior to first in human studies is of utmost importance to 
reduce attrition in Phase 1. Preclinical testing of mAbs often occurs in a rodent species and non-
human primate (NHP) to understand efficacy and toxicity prior to human dosing. Cynomolgus 
monkey is the preferred strain of NHP for preclinical PK and toxicological studies due to a high 
genetic similarity with humans and therefore greater likelihood of target antigen sequence 
homology, comparable binding affinities for cynomolgus monkey vs human FcRn [10], and similar 
tissue cross reactivity profiles. Cynomolgus monkey is also the preferred species for predicting 
the PK of mAbs with linear CL in humans: several groups have reported the successful use of fixed 
allometric exponents to predict CL and volume of distribution of mAbs in human from data in 
cynomolgus monkey [11-14]. For mAbs which exhibit non-linear CL due to TMDD, scaling of PK is 
more challenging. In order to take into account the kinetics of mAb binding to its target a 
mechanistic TMDD model is required, with proper exploration of species differences in target 
expression and binding [5, 15-17]. 

In this study, the objective was to complete a comprehensive analysis of the linear PK of 
therapeutic mAbs using popPK methods. The dataset was composed of 27 Pfizer mAbs where PK 
had been generated in at least one of three species: human, cynomolgus monkeys and human 
FcRn Tg32 homozygous transgenic mice. Given that the linear, Fc-mediated elimination is a 
common pathway shared by both endogenous IgG and therapeutic IgG of mAbs, it was theorized 
that a single set of ‘typical’ linear PK parameters could be estimated for each species, describing 
the linear PK of all mAbs in the dataset. PopPK is an ideal technique to investigate this as it can 
separately estimate variability, including variability between mAbs, between individuals in a 
given mAb dataset and also random, non-specific error [18]. The resulting ‘typical’ linear PK 
parameter estimates could be used for designing PK/PD and toxicology studies, dose predictions 
and viability assessments. For tractable mAbs with linear PK in preclinical species it could forfeit 
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the requirement for allometric scaling for clinical PK predictions: instead, the typical PK 
parameters could be used as a substitute until clinical PK is obtained. In addition to cynomolgus 
monkey, we also studied the potential of a human FcRn Tg32 transgenic mouse model to predict 
linear PK of mAbs in human. The availability of a rodent model to accurately estimate human PK 
of mAbs, would enable earlier predictions before cynomolgus monkey data is routinely available. 
In addition to the single species analysis, a combined analysis was performed on the entire 
dataset of human, cynomolgus monkey and hFcRn Tg32 transgenic mice and used to estimate 
allometric coefficients between species. While our primary focus was to explore PK predictions 
utilizing a variety of species, we also investigated the value of an in vitro assay measuring self-
association in predicting the CL of mAbs in the dataset. The analysis herein provides robust 
strategies for predicting linear human PK of mAbs which could improve throughput for lead drug 
candidate selection, and potentially increase the overall success while decreasing the time for 
non-clinical development of mAbs.  

2.3 Results 

mAb PK dataset and selection of linear dose range 

 Properties of the mAbs included in this study are summarized in Table 1. Of the 27 mAbs 
analyzed, 12 were IgG1 and 15 were IgG2; 16 were specific for soluble ligand targets, 9 bound to 
membrane targets and 2 had both membrane and soluble targets; 16 of the mAbs were fully 
human, 10 were humanized and 1 was from a human phage display library. All of the mAbs had 
similar binding Kd values to FcRn and had wild type sequences for the FcRn binding region.  For 
18 of these mAbs there was clinical PK data available, for 23 mAbs there was cynomolgus monkey 
PK data and 11 mAbs had PK in hFcRn Tg32 transgenic mouse. As discussed in the materials and 
methods section, non-linear data was removed from the dataset to enable analysis of linear PK 
only. This was completed via a combination of visual inspection and application of an algorithm 
applied to a linear regression of dose and AUC to test for deviation of the slope from 1 (Figure 1). 
Following removal of non-linear data, the remaining linear dose range and number of dose levels 
included in the popPK analysis for each mAb are summarized in Table 1. 

 

Figure 1: (a) 2-compartment PK model and (b) algorithm to test for linearity of PK data 
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Table 1: Monoclonal antibodies in this study  

mAb 
number 

Ig 
type 

Human or 
Humanized  

Type of mAb 
target 

AC-
SINS  

Species Linear dose 
range  
(mg/kg)  

Dose levels 
excluded (mg/kg) 

Dose 
levels 
included  

mAb1 IgG2 Human membrane 
bound   

- C 2 None 1 

mAb2 IgG2 Humanized soluble    - C 10- 100 None 3 

mAb3 IgG2 Humanized soluble   
  

3 C, M 1-10, 5 None, None 2, 1 

mAb4 IgG2 Human membrane 
bound   

- C 1-10 0.01- 0.3 2 

mAb5 IgG2  Human membrane 
bound   

- H, C 1-15, 5-50 0.5, None 8, 2 

mAb6 IgG2 Human membrane 
bound   

- H 0.1-15 None 6 

mAb7 IgG2 Human membrane 
bound 

- H, C 0.2-20, 30-100 None, 3-5 8, 2 

mAb8 IgG1 Human membrane 
bound   

- C  3-30 0.3 2 

mAb9 IgG1 Humanized  soluble   - H, C 1.5-5, 1-10 0.5, None 2, 2 

mAb10 IgG2 Humanized soluble   - H, C 1-24, 1-100 0.3, 0.1 6, 3 

mAb11 IgG2 Human soluble   - C 1- 5 None 2 

mAb12 IgG1 Human soluble - H, C 5-600, 2 None 6, 1 

mAb13 IgG1  Synthetic soluble  - C 2 None 1 

mAb14 IgG2 Humanized soluble - H, C 1-18, 3-100 0.3, 0.1-0.3 6, 3 

mAb15 IgG2 Humanized soluble - H  1-6 None 3 

mAb16 IgG2 Humanized soluble       - H, C 0.1-10, 0.8- 16.5 0.01- 0.03, None 4, 3 

mAb17 IgG2  Humanized soluble - H, C 1-10, 10-200 0.1- 0.3, None 4, 3 

mAb18 IgG1 Human membrane 
bound    

24 H, C, M 30-120mg, 2-10, 
5 

None, None, None 3, 2, 1 

mAb19 IgG1 Human membrane 
bound     

17 H, C, M 1-8, 0.5-5, 5 0.5, None, None 4, 2, 1 

mAb20 IgG2 Human membrane 
bound & sol 

0 H, C, M 0.3-10, 1-100, 5 0.03- 0.1, None, 
None 

3, 3, 1 

mAb21 IgG1 Human membrane 
bound & sol 

6 H, C, M 10-800mg, 10-
100, 5 

1- 3mg, None, 
None 

4, 2, 1 

mAb22 IgG2 Human soluble    1 H, C, M 22-700mg, 0.5-5 7mg, None, None 6, 2 

mAb23 IgG1 Humanized soluble   0 H, C, M 3, 1-100, 5 None, None, None 1, 2, 1 

mAb24 IgG1 Humanized soluble    1 H, C, M 3, 1-100, 5 None, None, None 1, 2, 1 

mAb25 IgG1 Human soluble   10 H, C, M 0.3- 11.25, 50, 5 None, None, None 5, 1, 1 

mAb26 IgG1 Human membrane 
bound   

21 M 5 None 1 

mAb27 IgG1 Human soluble 2 M 5 None 1 

H: human, C: cynomolgus monkey, M: Tg32 mouse 

Population PK analysis across species  

The concentration versus time relationships in Tg32 mouse, cynomolgus monkey, and human 
mAb datasets were described using a 2-compartmental PK model (Figure 1) with inter-individual 
variability (IIV) on CL and volume of the central compartment (V1). Residual error was 
determined per compound and covariance was estimated between CL and V1. This model 
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adequately captured the PK of all compounds in each species. The PK data for the mAbs in each 
dataset could be described using a single set of popPK parameters. The parameter estimates for 
each species are shown in Table 2, with 95% confidence intervals. The popPK estimate of human 
CL (0.15 mL/h/kg (0.14-0.16)) was in the same range as the CL of endogenous IgG (0.125 
mL/h/kg).[19, 20] CL was lowest in humans (0.15 mL/h/kg (0.14-0.16)), followed by cynomolgus 
monkey (0.27 mL/h/kg (0.24-0.30)) and then Tg32 mouse (0.35 mL/h/kg (0.28- 0.41)). Population 
estimates of the volumes of distribution in the central (V1) and peripheral (V2) compartments 
were typically small and approximated plasma volume. The inter-compartmental clearance 
parameter, Q, varied the most across species and was estimated to be 0.27 mL/h/kg (0.25- 0.30) 
in human, 1.00 mL/h/kg (0.8-1.20) in cynomolgus monkey and 4.40 mL/h/kg (3.17- 5.62) in Tg32 
mouse. Inter-individual variability in V1 was low and moderate-high for CL, which may be 
expected from the methodology chosen in which PK parameters were estimated for all 
compounds combined, instead of estimating separate parameters for each compound. 
Covariance between CL and V1 was low, representing low correlation between the random 
effects on the parameter estimates. The relative standard error (RSE) was lower than 35% for all 
parameters representing low uncertainty in parameter estimation.  

Results from a jackknife analysis showed consistent estimation of PK parameters without 
significant influence from removal of one mAb from the dataset at a time. PK parameters from 
the jackknife analysis with 95% confidence intervals are shown in Supplementary Figure 1. 
Residual error per compound and diagnostic plots of observed concentration versus individual 
and population predictions in each species are included in Supplementary Tables 1 and 2 and 
Supplementary Figures 2 and 3. 

Distribution of clearance and volume of distribution of the central compartment 

The distribution of CL estimates and the individual estimates of CL (with IIV) for each mAb across 
species are shown in Figure 2. This plot shows a typical log normal distribution of individual CL 
estimates. In general CL is lowest in human, followed by cynomolgus monkey and then Tg32 
mouse. The distribution of population and individual estimates of V1 for each mAb across species 
are shown in Figure 3. The estimates of V1 are normally distributed in cynomolgus monkey and 
human and center on plasma volume (30- 50 mL/kg). Note, more variability was observed in 
individual estimates of V1 in Tg32 mouse compared with cynomolgus monkey or human. This 
may have been due to restricted time points in the initial phase of PK sample collection in Tg32 
mouse. 

Comparison of human population PK parameter estimates with population PK of literature 
mAbs 

In order to put the results into context, popPK parameters determined for the current mAb 
dataset were compared with therapeutic mAbs with linear CL in clinical studies. 5 fully human, 
humanized, or chimeric therapeutic mAbs were identified with linear CL in humans and 2-
compartment popPK analyses published in the literature. Population estimates of CL, Q, V1 and 
V2 for the Pfizer mAbs and bevacizumab, infliximab (2 different indications), pertuzumab, 
rituximab and trastuzumab in human are shown in Table 3. The parameter estimates reported 
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for the comparator clinical mAbs [19] are very close to the population parameter estimates 
generated from the analysis of 18 clinical mAbs described herein. An outlier was infliximab for 
ulcerative colitis, which had a reported mean CL of 0.24 mL/h/kg and Q of 4.25 mL/h /kg, which 
deviates significantly from the population CL estimates of 0.15 mL/h /kg (0.14- 0.16) and Q 
estimates of 0.27 mL/h /kg (0.25- 0.3), estimated in this analysis. Figure 4 shows the 
concentration versus time profiles for the median and 95% prediction interval with observed 
dose-normalized concentration-time data for the 18 clinical mAbs in this study and the 5 clinical 
therapeutic mAbs (bevacizumab, infliximab, pertuzumab, rituximab and trastuzumab).  

Table 2: Single species popPK parameter estimates for mAbs with linear CL 

  
 

Human (n=18) 
Cynomolgus  

Monkey (n=23) 
Tg32 hFcRn Transgenic 

Mouse (n=11) 
Parameter Unit Value 

(95%-CI) 
RSE (%) Value 

(95%-CI) 
RSE (%) Value 

(95%-CI) 
RSE (%) 

CL mL/h/kg 0.15 
(0.14-0.16) 

3.03 0.27 
(0.24-0.30) 

5.22 0.35 
(0.28-0.41) 

9.06 

V1 mL/kg 46.31 
(45.14-47.48) 

1.29 39.29 
(37.16-41.41) 

2.76 59.28 
(54.65-63.90) 

3.98 

Q mL/h/kg 0.27 
(0.25-0.30) 

5.12 1.00 
(0.80-1.20) 

10.33 4.40 
(3.17-5.62) 

14.24 

V2 mL/kg 31.47 
(28.63-34.31) 

4.60 27.56 
(24.83-30.29) 

5.05 60.54 
(52.80-68.29) 

6.53 

IIV CL - 0.48 
(0.43-0.53) 

5.29 0.38 
(0.31-0.46) 

9.48 0.41 
(0.29-0.53) 

15.34 

COV CL-V1 - 0.09 
(0.07-0.10) 

11.48 0.09 
(0.05-0.13) 

23.28 0.11 
(0.04-0.18) 

33.55 

IIV V1 - 0.09 
(0.08-0.11) 

6.66 0.10 
(0.07-0.13) 

14.90 0.12 
(0.07-0.18) 

23.91 

 
Table 3: Comparison of typical popPK parameter estimates in human with test set of clinical mAbs with linear PK 
 

  Human  Literature clinical mAbs 
Parameter Unit Value  

(95% CI) 
Bevacizumab Infliximab 

AS 
Infliximab 

UC 
Pertuzumab Rituximab Trastuzumab 

CL mL/h/kg 0.15 
(0.14 – 0.16) 

0.12 0.16 0.24 0.13 0.15 0.13 

V1 mL/kg 46.31 
(45.14 – 
47.48) 

38.0 43.7 47.0 39.1 42.6 42.1 

Q mL/h/kg 0.27 
(0.25 – 0.3) 

0.35 1.02 4.25 0.33 0.39 0.29 

V2 mL/kg 31.47 
(28.63 – 
34.31) 

39.4 42.0 59.0 30.9 52.0 68.4 

CL: clearance from the central compartment, V1: volume of the central compartment, Q: inter-compartment 
distribution clearance, V2: volume of the peripheral compartment. RSE (%): relative standard error, calculated as 
standard error of estimation / estimated value x 100%. 95% CI: 95% confidence interval calculated from the standard 
error. IIV: inter-individual variability. COV CL-V1: covariance between clearance and volume. Residual errors per 
compound for Table 2 are shown in Supplementary Table 1. AS: ankylosing spondylitis; UC: ulcerative colitis 
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Figure 2: Distribution of population and individual mAb estimates (with variability) of clearance (CL) in the combined 
human, cynomolgus monkey and hFcRn Tg32 mouse dataset 

 

 

Figure 3: Distribution of population and individual mAb estimates (with variability) of volume of distribution of the 
central compartment (V1) in the combined human, cynomolgus monkey and hFcRn Tg32 mouse dataset  
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Figure 4: Median, 5th and 95th percentiles of 200 bootstrap samples with the combined species PK model using the 
observed dose-normalized concentration (ng/mL) vs. time (hours) data for all the mAbs in this study. The red lines 
indicate the concentration vs. time profile of the 5 clinical therapeutic mAbs (bevacizumab, infliximab (for both 
ankylosing spondylitis and ulcerative colitis), pertuzumab, rituximab and trastuzumab). 

 

Figure 5: Clearance vs. AC-SINS score for a subset of 11 mAbs in the dataset in human, cynomolgus monkey and 
hFcRn Tg32 mouse. 
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Clearance outliers and correlation with non-specific interactions 

Four of the mAbs in the human dataset had CL values 2-fold higher than the population estimate 
of 0.15 mL/h/kg (0.14-0.16) (Table 5). In order to investigate possible non-specific (off-target) 
binding properties, a subset of the mAbs in the dataset (n=11) were studied using an in vitro 
affinity capture self-interaction nanoparticle spectroscopy (AC-SINS) assay. This assay assesses 
self-association, which is often coupled with other poor physicochemical characteristics, 
including non-specific interactions.  AC-SINS uses gold nanoparticles pre-coated with anti-human 
Fc polyclonal antibodies to capture test mAbs.  Self-interactions of immobilized mAbs lead to 
clustering of the gold nanoparticles, which is measured by a shift in absorbance due to changes 
in their optical properties [21]. The 11 mAbs studied had AC-SINS scores ranging from 0-24 (Table 
1). A plot of CL (mL/h/kg) vs. AC-SINS score for each species is shown in Figure 5. An increase in 
CL was observed with an increase in AC-SINS scores in all species. This data suggests that non-
specific interactions leading to off-target binding may result in faster clearance than predicted by 
the popPK estimates. 

Combined analysis and estimation of allometric exponents 

The Tg32 mouse and human datasets, cynomolgus monkey and human datasets and datasets 
from all three species were combined. 2-compartment human PK parameters were estimated in 
the combined datasets and allometric exponents to scale the PK parameters from preclinical 
species to human (Table 4).  The human popPK estimates of CL, Q, V1 and V2 in the combined 
datasets were similar to those estimated previously (Table 2). The estimated allometric exponent 
for scaling Tg32 mouse CL to human was 0.9 (0.88- 0.92), cynomolgus monkey CL to human was 
0.81 (0.77- 0.85) and all preclinical data CL to human was 0.89 (0.87- 0.91). Volumes of 
distribution from central and peripheral compartments in general scaled with an allometric 
exponent of approximately 1. Population estimates of the allometric exponent for Q were 
between 0.57 and 0.67 for Tg32 mouse, cynomolgus monkey and all species.  

Linear mAb human PK prediction strategies 

Different methods were applied to predict human PK of the mAbs in this dataset. Note, a 
limitation to this analysis is that there was no separate test dataset to validate the inter-species 
scaling.  

1. Use of ‘typical’ PK parameters for human 
Simulations of the popPK estimates of CL, Q, V1 and V2 estimated from the human dataset, 
compared with observed clinical PK profiles for the individual mAbs are shown in Figure 6. 
Root mean square errors (RMSEs) between observed and predicted data are shown in Table 
5. Only 4 out of 18 mAbs have RMSEs of >100%, indicating that the human popPK 
parameters can adequately predict PK for the majority of mAbs in the dataset. 

2. Use of allometric exponents estimated from Tg32 mouse or cynomolgus monkey 
For every mAb in the dataset with both Tg32 mouse data and human data (n=8), mouse 2- 
compartment PK parameters were scaled to human using the allometric exponents estimated 
for Tg32 mouse and presented in Table 4. This process was also completed for every mAb in 



25 
 

the dataset with both cynomolgus monkey and human data (n=16). Simulations of the scaled 
PK parameters of CL, Q, V1 and V2 estimated from the Tg32 mouse dataset, cynomolgus 
monkey dataset or the population values estimated from the human dataset, are compared 
with observed clinical PK for individual mAbs and are shown in Figure 7.  RMSEs between 
observed and predicted data are shown in Tables 6 and 7 for Tg32 mouse and cynomolgus 
monkey, respectively. In Table 8, RMSEs are compared across different prediction methods: 
use of human popPK parameters or allometric exponents estimated for Tg32 mouse or 
cynomolgus monkey. The best prediction method (determined by the lowest RMSE) is 
indicated for each mAb. 

Table 4: Combined species PK parameter estimates for mAbs with linear CL 

Combined Datasets Tg32 Mouse, Cyno  
and Human  

(n=27 mAbs) 

Cyno and Human 
(n=23 mAbs) 

Tg32 Mouse  
and Human 

(n=23 mAbs) 
Parameter Unit Value 

(95%-CI) 
RSE  
(%) 

Value 
(95%-CI) 

RSE  
(%) 

Value 
(95%-CI) 

RSE 
(%) 

CL mL/h/kg 0.16 
(0.15-0.16) 

2.86 0.15 
(0.14-0.16) 

2.90 0.15 
(0.14-0.16) 

2.97 

V1 mL/kg 45.19 
(44.08-46.31) 

1.26 45.89 
(44.75-47.03) 

1.27 46.41 
(45.26-47.56) 

1.26 

Q mL/h/kg 0.28 
(0.25-0.31) 

5.06 0.29 
(0.26-0.32) 

5.08 0.28 
(0.25-0.31) 

4.97 

V2 mL/kg 30.81 
(28.15-33.46) 

4.40 31.14 
(28.61-33.68) 

4.15 32.17 
(29.31-35.04) 

4.55 

CL: α - 0.89 
(0.87-0.91) 

1.16 0.81 
(0.77-0.85) 

2.22 0.90 
(0.88-0.92) 

1.24 

V1: β - 0.98 
(0.97-0.99) 

0.54 1.04 
(1.02-1.06) 

0.87 0.97 
(0.96-0.98) 

0.55 

Q: γ - 0.67 
(0.63-0.71) 

2.87 0.57 
(0.48-0.67) 

8.36 0.67 
(0.64-0.70) 

2.19 

V2: δ - 0.95 
(0.93-0.98) 

1.28 1.07 
(1.03-1.11) 

2.02 0.93 
(0.91-0.94) 

0.84 

IIV CL - 0.47 
(0.43-0.52) 

4.61 0.45 
(0.41-0.50) 

4.64 0.47 
(0.42-0.52) 

5.00 

COV CL-V1 - 0.08 
(0.06-0.10) 

11.25 0.08 
(0.06-0.10) 

10.82 0.08 
(0.07-0.10) 

10.83 

IIV V1 - 0.11 
(0.09-0.12) 

6.26 0.10 
(0.09-0.11) 

6.44 0.10 
(0.08-0.11) 

6.31 

CL: clearance from the central compartment, V1: volume of the central compartment, Q: inter-compartment 
distribution clearance, V2: volume of the peripheral compartment. %RSE: relative standard error, calculated as 
standard error of estimation / estimated value x 100% 95% CI: 95% confidence interval calculated from standard 
error. α, β, γ, and δ: allometric exponents estimated for CL, V1, Q and V2 respectively, to scale from the preclinical 
species to human using the equation:   

𝑌𝑌ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑌𝑌𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 ∗ �
𝐵𝐵𝐵𝐵ℎ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

𝐵𝐵𝐵𝐵𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠
�

𝛼𝛼,𝛽𝛽,𝛾𝛾 𝑜𝑜𝑝𝑝 𝛿𝛿

 

IIV: inter-individual variability. COV CL-V1: covariance between clearance and volume. Residual errors per 
compound are shown in Supplementary Table 2. For each combined dataset the total ’n’ includes n=18 mAbs with 
clinical data, n=23 mAbs with cyno data, and n=11 mAbs with Tg32 mouse data. 
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Figure 6: Predicted human PK profiles using ‘typical’ human popPK parameter estimates (dashed line), compared 
with observed (individual) dose normalized human PK data (symbols) and profiles from fitting human data for 
individual mAbs (blue line).  

 

Figure 7: Predicted human PK profiles using (a) allometric exponents estimated for Tg32 mouse (green line), (b) 
allometric exponents estimated for cynomolgus monkey (red line) and (c) ‘typical’ human popPK parameter 
estimates (dashed line). Simulated data are compared with observed (individual) dose normalized human PK data 
(symbols) and profiles from fitting human data for individual mAbs (blue line). 
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Table 5: Comparison of observed human PK parameters for individual mAbs with ‘typical’ human popPK parameter 
estimates. 

 CL (mL/h/kg) V1 (mL/kg) Q (mL/h/kg) V2 (mL/kg) %RMSE 
Human PopPK 0.15 46.31 0.27 31.47 - 

Observed Human PK 
mAb5 0.26 54.50 0.30 33.29 50.6 
mAb6 0.12 52.58 0.32 31.76 23.1 
mAb7 0.21 57.04 0.68 16.38 31.4 
mAb9 0.12 46.58 0.37 40.47 24.7 

mAb10 0.07 34.62 0.25 24.39 53.8 
mAb12 0.17 40.49 0.25 32.75 18.2 
mAb14 0.18 38.51 0.31 15.70 32.8 
mAb15 0.17 39.11 0.43 44.99 19.7 
mAb16 0.10 40.23 0.36 42.42 41.6 
mAb17 0.09 48.30 0.19 64.89 54.2 
mAb18 0.46 65.98 0.20 167.77 361.6 
mAb19 0.46 52.18 0.19 6.41 121.9 
mAb20 0.14 39.54 0.39 20.48 33.5 
mAb21 0.10 40.07 0.80 14.00 54.8 
mAb22 0.05 41.67 0.29 42.73 111.8 
mAb23 0.11 54.96 0.33 49.29 39.7 
mAb24 0.07 31.37 0.21 22.75 78.4 
mAb25 0.32 55.76 0.32 27.73 104.1 

Table 6: Comparison of observed human PK parameters for individual mAbs and predicted human pharmacokinetic 
parameters determined by allometric scaling from hFcRnTg32 mouse.  

mAb Number Human PK CL (mL/h/kg) V1 (mL/kg) Q (mL/h/kg) V2 (mL/kg) %RMSE 
mAb18 Observed 0.46 66.01 0.19 166.77 114.4 
mAb18 Predicted 0.45 37.34 0.51 56.69  

mAb19 Observed 0.46 52.19 0.18 5.98 47.4 
mAb19 Predicted 0.28 44.71 0.47 43.87  

mAb20 Observed 0.14 39.56 0.38 20.51 66.6 
mAb20 Predicted 0.14 57.46 0.61 36.56  

mAb21 Observed 0.1 40.57 0.74 13.33 60.9 
mAb21 Predicted 0.16 48.85 0.5 33.85  

mAb22 Observed 0.05 41.7 0.29 42.72 83.1 
mAb22 Predicted 0.1 51.2 0.8 42.49  

mAb23 Observed 0.11 54.92 0.33 49.14 137.6 
mAb23 Predicted 0.06 27.42 0.14 26.41  

mAb24 Observed 0.07 31.39 0.21 22.72 24.3 
mAb24 Predicted 0.08 24.93 0.22 28.29  

mAb25 Observed 0.32 55.83 0.32 27.63 47.7 
mAb25 Predicted 0.22 59.27 0.43 33.05  

CL: clearance from the central compartment, V1: volume of the central compartment, Q: inter-compartment 
distribution clearance, V2: volume of the peripheral compartment. %RMSE: percent root mean square error.  
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Table 7: Comparison of observed human PK parameters for individual mAbs and predicted human pharmacokinetic 
parameters determined by allometric scaling from cynomolgus monkey. 

mAb number Human PK CL (mL/h/kg) V1 (mL/kg) Q (mL/h/kg) V2 (mL/kg) %RMSE 
mAb5 Observed 0.26 54.51 0.3 32.97 143.5 
mAb5 Predicted 0.1 27.09 0.37 21.65 . 
mAb7 Observed 0.21 57.02 0.69 16.43 43.5 
mAb7 Predicted 0.28 58.88 0.83 70.31 . 
mAb9 Observed 0.12 46.58 0.37 40.43 20.9 
mAb9 Predicted 0.09 51.18 0.15 60.19 . 

mAb10 Observed 0.07 34.62 0.25 24.38 36.7 
mAb10 Predicted 0.11 46.63 0.17 27.36 . 
mAb12 Observed 0.17 40.49 0.25 32.75 78.4 
mAb12 Predicted 0.08 36.37 0.18 40.05 . 
mAb14 Observed 0.18 38.52 0.31 15.72 50 
mAb14 Predicted 0.29 40.93 0.34 18.56 . 
mAb16 Observed 0.1 40.23 0.36 42.43 23.7 
mAb16 Predicted 0.12 35.98 0.28 38.08 . 
mAb17 Observed 0.09 48.3 0.19 64.89 135.2 
mAb17 Predicted 0.07 38.09 0.44 13.91 . 
mAb18 Observed 0.46 65.98 0.2 167.69 40 
mAb18 Predicted 0.58 72.13 0.21 134.53 . 
mAb19 Observed 0.46 52.18 0.19 6.39 67.9 
mAb19 Predicted 0.26 56.93 0.02 15.17 . 
mab20 Observed 0.14 39.53 0.39 20.51 55 
mAb20 Predicted 0.1 42.3 0.3 33.58 . 
mAb21 Observed 0.1 40.07 0.8 14 61.3 
mAb21 Predicted 0.13 47.35 0.51 54.07 . 
mAb22 Observed 0.05 41.67 0.29 42.73 146.5 
mAb22 Predicted 0.26 54.23 0.57 61.06  

mAb23 Observed 0.11 54.96 0.33 49.28 46.7 
mAb23 Predicted 0.08 43.34 0.21 38.39 . 
mAb24 Observed 0.07 31.37 0.21 22.75 31.9 
mAb24 Predicted 0.08 35.94 0.14 28.98 . 
mAb25 Observed 0.32 55.76 0.32 27.73 237.2 
mAb25 Predicted 0.09 38.48 1.39 13.08 . 

CL: clearance from the central compartment, V1: volume of the central compartment, Q: inter-compartment 
distribution clearance, V2: volume of the peripheral compartment. %RMSE: percent root mean square error. 
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Table 8: Comparison of model prediction RMSE (%) across different methods: use of human PopPK parameters, 
allometric scaling from Tg32 mouse, and allometric scaling from cynomolgus monkey. The best prediction method 
(determined by lowest RMSE) is indicated for each mAb. 

Prediction method/ RMSE % 
mAb Number Human PopPK Tg32 mouse allometric scaling Cyno allometric scaling Best 

mAb5 50.6 . 143.5 Human 
mAb6 23.1 . . . 
mAb7 31.4 . 43.5 Human 
mAb8 . . . . 
mAb9 24.7 . 20.9 Cyno 

mAb10 53.8 . 36.7 Cyno 
mAb11 . . . . 
mAb12 18.2 . 78.4 Human 
mAb13 . . . . 
mAb14 32.8 . 50 Human 
mAb15 . . . . 
mAb16 41.6 . 23.7 Cyno 
mAb17 54.2 . 135.2 Human 
mAb18 361.6 114.4 40 Cyno 
mAb19 121.9 47.4 67.9 Tg32 
mAb20 33.5 66.6 55 Human 
mAb21 54.8 60.9 61.3 Human 
mAb22 111.8 83.1 146.5 Tg32 
mAb23 39.7 137.6 46.7 Human 
mAb24 78.4 24.3 31.9 Tg32 
mAb25 104.1 47.7 237.2 Tg32 

 

 
2.4 Discussion 

In this study we report a meta-analysis of the linear PK of mAbs across different species used in 
the pharmaceutical industry. Data on Pfizer mAbs were available from historical studies in human 
or cynomolgus monkey. In addition, for a subset of mAbs, PK data were available in transgenic 
mice expressing the human neonatal Fc receptor (Tg32 homozygous hFcRn mice). The hFcRn 
Tg32 mouse model was chosen over wild type (WT) mouse as mAb PK is often variable in WT 
mouse with poor predictability to human, which may be due to species differences in binding of 
human mAbs to mouse FcRn [22, 23]. Following cellular uptake of mAbs exhibiting linear CL, FcRn 
functions as a salvage receptor to protect IgG from rapid intracellular catabolism.  The hFcRn 
transgenic mouse (Jackson Laboratory) is null for the α chain mFcRn and contains 1 or 2 
transgenes of hFcRn, hemizygous or homozygous, respectively [24]. The homozygous Tg32 strain 
is used in this study with an hFcRn promoter. Avery et al. show that mAb CL in hFcRn homozygous 
mouse correlates with human PK (r2=0.83, r=0.91) better than NHP (r2=0.67, r=0,82) [23]. 
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Population PK analysis across species 
The long half-life of endogenous and exogenous IgG in conjunction with small volumes of 
distribution, results in the characteristic bi-exponential decline of mAb concentration-time 
profiles following IV administration. As such, a 2-compartmental PK model was shown to best 
describe the data. PopPK analysis is a useful tool that has been used for mAbs to quantify typical 
disposition characteristics and sources of variability within study populations [19, 25]. The 
advantage of popPK analysis is that it can be used to simultaneously evaluate PK data from all 
studies and individuals available. We made use of it in this analysis to create a dataset 
representing a range of mAbs with linear CL but differences in number of doses, subjects, data 
points and subject characteristics. A review of the literature performed by Dirks et al. showed 
that the popPK of different mAbs was similar despite differences in their pharmacological target 
and the fact that they were studied in different patient populations and disease states [19]. 
PopPK analysis is often used to study the inter-subject variability of mAb PK and to explore 
covariates of this variability. Body weight/ surface area are the most commonly identified 
covariates found to influence the PK of mAbs [9, 19, 26, 27]. The impact of other demographic 
factors including age, sex, ethnicity, body size, genetic polymorphisms, concomitant medications, 
immune status and multiple other patient specific details have also been considered [28]. In this 
analysis popPK was used to understand and quantify the variability in linear mAb PK. The inter-
individual variability represents both inter-mAb and inter-subject variability, as we sought to 
estimate a single set of PK parameters across mAbs.  
The popPK parameters estimated are presented in Table 2. These values represent typical 2-
compartment PK estimates for mAbs with linear elimination in human, cynomolgus monkey and 
Tg32 mouse. Knowledge of typical parameter estimates of linear mAb PK a priori can be very 
useful in understanding and optimizing the PK/PD of a therapeutic mAb. They can be used at 
early stages to simulate the behavior of a mAb with ‘typical’ PK and to inform project teams on 
the benefit of extending PK half-life by altering affinity to FcRn. In animal PK studies they can be 
used to inform initial parameter estimates for PK/PD modeling and for simulations to optimize in 
vivo study designs. The parameters can be used as part of a strategy to predict PK in the clinic (as 
will be discussed later in this article). They could also be used as informative priors for a Bayesian 
data analysis or to construct parameter uncertainty distributions for clinical trial simulations. 
 
Comparison of human population PK parameter estimates with population PK of literature 
mAbs 
In order to put the human popPK parameter estimates for our dataset into context, they were 
compared with population estimates for therapeutic mAbs reported to have linear PK in the 
scientific literature (Table 3). Five relevant mAbs were found including bevacizumab, pertuzumab 
and trastuzumab which are humanized mAbs and infliximab and rituximab which are chimeric 
mAbs. In addition, different popPK estimates were considered for infliximab in patients with 
ankylosing spondylitis (AS) and ulcerative colitis (UC).  
Estimates of V1 and V2 were similar for the 5 different mAbs and consistent with the population 
PK parameters estimated herein (Table 3). In a review of therapeutic mAb popPK parameters 
reported by Dirks and Meibohm [19], which included the 5 mAbs in Table 3, the estimate of V1 
was 3.1 (2.4- 5.5) L, which is equivalent to 44.3 (34.3- 78.6) mL/kg assuming a 70 kg body weight 
in human, and very similar to the popPK estimate of V1 in this report of 46.3 (45.1- 47.5) mL/kg. 
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The value of the volume of distribution at steady state (Vss) can be calculated from the sum of 
V1 and V2. The population estimates for V1 (46.3 mL/kg) and V2 (31.5 mL/kg) in this analysis 
result in a calculated Vss of 77.8 mL/kg or, 5.4 L assuming a 70 kg individual. Data from early IgG 
metabolism studies in humans [20] indicates that the mean serum IgG concentration and the 
total body IgG pool were 12 g/L and 1.06 g/kg respectively, which for a 70 kg person equates to 
a volume of distribution of 6.2 L for IgG. In summary, the estimates of both central and peripheral 
volumes in the analysis reported herein appear to be consistent with published popPK of 
therapeutic mAbs with linear PK [19]. In addition, calculated Vss is close to endogenous IgG.  
The values of CL for the 5 mAbs from the literature varied from 0.12- 0.24 mL/h/kg and were 
similar to the popPK estimate for CL (0.15 (0.14- 0.16) mL/h/kg). The CL of infliximab in UC 
patients (0.24 mL/h/kg) was out with the popPK range and also different to the CL of infliximab 
in AS patients (0.16 mL/h/kg). Variation in infliximab CL across patient populations could be due 
to a number of different factors. Elevated inflammatory status in UC could contribute to higher 
CL due to a higher whole body turnover rate and increased nonspecific proteolytic degradation 
rate [2, 29]. In addition, CL of infliximab has also been shown to be affected by concomitant 
medication as well as immunogenicity [29]. In the analysis by Dirks and Meibohm the population 
CL value for therapeutic mAbs ranged between 0.2-0.5 L/day (0.12- 0.3 mL/h/kg assuming a 70 
kg individual). This range encompasses the popPK estimate of CL reported here (0.15 mL/h/kg). 
In addition, assuming a volume of distribution of 6.2 L and an elimination half-life of 21 days for 
IgG (which doesn’t include IgG3) the CL of endogenous IgG is approx. 0.21L/day or 0.125 mL/h/kg 
[20].  
The population estimate of the inter-compartmental CL (Q) was in general consistent with the 5 
literature mAbs, again with exception of Infliximab for UC. The median Q estimated in the Dirks 
and Meibohm analysis was 0.79 L/day (0.47 mL/h/kg) [19]. Our value was slightly lower at 0.27 
(0.25-0.3) mL/h/kg, but both are consistent with slow transfer of mAbs between the central and 
peripheral compartments.  
 
Clearance outliers and correlation with non-specific interactions 
Closer inspection of the human analysis indicated that 12 of the 18 mAbs studied had individual 
CL values within 2-fold of the population estimate of CL (0.075- 0.3 mL/h/kg). Of the remaining 6 
mAbs, 3 had CL < 0.075 mL/h/kg (mAb10, mAb22 and mAb24) and 3 had CL >0.3 mL/h/kg (mAb18, 
mAb19 and mAb25). Unexpected high CL of mAbs is particularly undesirable as it can lead to an 
increased clinical dose requirement and may limit clinical utility. Higher CL of the mAbs in this 
dataset was not associated with an alteration in FcRn binding as all mAbs in this dataset had 
similar FcRn Kd values [23]. 
One potential mechanism that can contribute to faster than expected CL of mAbs is off-target 
binding [30]. The mechanism of this non-specificity has not been fully elucidated but could be in 
part due to hydrophobicity/ positive charged patches on mAbs [31]. To test this, an in vitro high 
throughput assay measuring non-specific binding was implemented and used to identify mAbs 
with increased risk of having fast CL in humans [32]. An affinity capture self-interaction 
nanoparticle spectroscopy, or AC-SINS, assay was used to screen 11 of the mAbs in the dataset. 
An AC-SINS score of >11 has been associated with high self-association [32]. The AC-SINS scores 
for the subset of mAbs tested from this dataset ranged from 0 to 24, with 3 mAbs exhibiting 
higher than typical CL having scores of 11-24. A correlation was observed with AC-SINS score and 
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mAb CL across all species (Figure 5).  This trend has been observed previously with a larger 
dataset of mAbs [32] and suggests that the AC-SINS assay is a useful screening tool to de-select 
mAbs that have the potential for fast clearance in humans.   
 
Predicting human PK 
Previous predictions of linear PK of mAbs in the clinic have been completed by single species 
scaling from cynomolgus monkey assuming allometric principles. Many examples of this type of 
scaling are available in the literature. The first comprehensive review of mAb CL prediction was 
completed by Ling et al. in 2009. Their study of 14 mAbs indicated that for mAbs with linear 
kinetics, CL in humans could be reasonably predicted from monkey data using simplified 
allometry with a fixed exponent. The optimal exponents were estimated to be 0.85 for soluble 
antigens and 0.9 for membrane based antigens [13]. In a similar analysis of 13 mAbs with linear 
CL, Deng et al. showed that simple allometric scaling of CL in cynomolgus monkey with an 
exponent of 0.85 provided a good estimate of human CL [11]. Dong et al. also concluded that 
single species monkey PK predicted human PK of mAbs with linear CL within 2.3 fold [12]. Oitate 
et al. demonstrated that both human CL and Vss could be predicted reasonably well from monkey 
data alone using simple allometry with exponents of 0.79 on CL for soluble target antigens and 
0.96 on CL for membrane target antigens [14]. The exponent for prediction of Vss was close to 1 
in each case. 
 In all examples cited, the allometric exponent for prediction of mAb CL is > 0.75, which is the 
standard exponent value used for interspecies scaling of small molecule drugs. This value was 
derived from the observation that basal metabolic rates and passive renal filtration could be 
scaled by body weight with an exponent of 0.75. This has been qualified by several groups in the 
interspecies scaling for prediction of small molecule drug CL [33, 34]. Given the mechanisms of 
CL of small molecules are governed by oxidative metabolism and renal CL, an exponent of 0.75 
makes sense. For mAbs, CL is driven by proteolysis and therefore allometric exponents may be 
more dependent on proteolytic rates across species.  
In this study, datasets of Tg32 mouse and human PK, cynomolgus monkey and human PK, and all 
three species PK were combined to estimate allometric exponents to scale preclinical data to 
human. The estimated allometric exponent for scaling Tg32 mouse CL to human was 0.90 (0.88- 
0.92), cynomolgus monkey CL to human was 0.81 (0.77- 0.85) and all preclinical data CL to human 
was 0.89 (0.87- 0.91). The exponents required to predict cynomolgus monkey data to human 
were in agreement with the literature examples. The hFcRn Tg32 mouse data was encouraging 
as it predicted well to human, and provides a potential species to replace cynomolgus monkey 
for human PK predictions of mAbs [23]. Volumes of distribution from central and peripheral 
compartments in general scaled with an allometric exponent of 1, similar to literature analyses. 
This was the first time that popPK methods had been used to estimate allometric exponents as a 
parameter within the model. This is a useful method as it facilitates separation of true parameter 
estimates from variability.  
Another benefit of this analysis was that the use of 2-compartmental PK models enabled 
prediction of human PK profiles as well as PK parameters. The human predicted profiles were 
compared with 2 -compartmental fits to the observed human data for each mAb and RMSEs were 
calculated between observed and predicted parameters to assess prediction accuracy. Two 
approaches were taken: first of all the popPK parameter estimates from the human analysis were 
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used to simulate a ‘typical’ human profile. This was compared with profiles generated for each 
of the 18 individual mAbs in human. This method gave good prediction accuracy, with 14/18 
mAbs with RMSEs <100%, indicating that the human popPK parameters were able to predict the 
human PK for the majority of mAbs in the dataset. This approach assumes that the CL 
mechanisms for these therapeutic mAbs are the same as each other and endogenous IgG i.e. 
non-specific linear catabolic CL. 3 out of the 4 mAbs with RMSEs greater than 100% had high AC-
SINS scores, indicating potential for rapid CL due to non-specific binding. The second approach 
was to predict human PK using allometric exponents determined from Tg32 mouse and 
cynomolgus monkey. For this approach, CL mechanisms need not be the same as each other or 
endogenous IgG but must be consistent across species. Again, this method gave a good prediction 
of human PK with RMSEs between observed and predicted data < 100% for 6/8 of the mAbs 
scaled from Tg32 mouse to human and 12/16 of the mAbs scaled from cynomolgus monkey to 
human. 
In summary, good prediction accuracy was obtained using human ‘typical’ popPK parameters as 
an estimate of human PK or via scaling using allometric exponents from Tg32 mouse or 
cynomolgus monkey (Table 8). All of these methods are simple and easy to use. The use of 
allometric exponents from cynomolgus monkey is a common approach to linear mAb PK 
prediction which is widely understood across the pharmaceutical industry. However, the use of 
human popPK parameters as a base case scenario is more statistically informed than the 
allometric scaling approach. This is because the human popPK analysis is informed by rigorous 
analysis of rich datasets- from both this study and also literature studies on the popPK of mAbs 
in human [19]. Single species scaling using allometric exponents requires preclinical PK on 
individual mAbs which is often only generated in low ‘n’ of 2-3 animals. Projection therefore relies 
on a small number of animals whose profile may be affected by assay specificities, inter-animal 
variability and immunogenicity, to name a few. The strategies presented herein call into question 
the value of completing extensive in vivo preclinical PK for mAbs with linear CL and encourage 
refinement of PK strategies consistent with 3Rs. The ‘3Rs’ refers to the reduction, refinement and 
replacement of animal use in research, testing and teaching [35]. This analysis provides 
alternatives to the use of cynomolgus monkey for PK prediction including allometric scaling from 
Tg32 mouse or use of human popPK parameters as a replacement to animal based methods. As 
such, it has the potential to reduce the numbers of cynomolgus monkey PK studies completed. 
Use of the AC-SINS assay can also be used to screen out mAbs with high CL due to non-specific 
binding/self-association.  
MAbs with non-linear PK due to target mediated CL mechanisms were not included in this 
analysis. Modeling of such data is routinely performed using a Michaelis-Menten (M-M) model 
with linear first order elimination complemented by a non-linear pathway described using Vmax 
and Km parameters. Alternatively, a more mechanistic TMDD model can be used which 
incorporates target properties. Previous work has shown that the TMDD approach is more 
reliable for human projections, as it can capture differences in target properties between species 
and disease populations [5, 15, 17]. Since both the M-M and TMDD models require 
parameterization of the linear CL pathway, the parameters presented herein are a useful guide. 
Such models have a tendency for over-parameterization, and prior knowledge of typical linear 
PK parameters across species reduces the need for their estimation.  
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In conclusion, the popPK analysis completed on 27 Pfizer mAbs in human, cynomolgus monkey 
or Tg32 mouse showed that a single set of typical linear PK parameters could be estimated across 
species. These parameters will be useful to inform initial parameters for PK/PD modeling and for 
simulations to optimize in vivo and first in human study designs. In addition, different 
translational strategies were investigated for prediction of human linear PK of mAbs. Use of 
‘typical’ human PK parameters gave good prediction accuracy for the majority of the mAbs in this 
study. Allometric exponents were estimated within the popPK model and also gave good 
predictions, from both Tg32 mouse or cynomolgus monkey to human. The strategies presented 
herein offer methods to predict linear human PK of mAbs with less reliance on cynomolgus 
monkey PK and use of smaller animal or in silico alternatives. 

 
2.5 Materials and Methods 

mAb PK dataset 
For this study a dataset was compiled consisting of in-house historical individual concentration 
versus time data following intravenous (IV) administration of 27 Pfizer mAbs in human, 
cynomolgus monkey or hFcRn Tg32 transgenic mice. All procedures performed in animals were 
in accordance with regulations and established guidelines and were reviewed and approved by 
Pfizer’s Institutional Animal Care and Use Committee. Research on human samples was 
conducted in accordance with all applicable Pfizer policies, including IRB/ IEC approval.  Data for 
18/ 27 mAbs was available in healthy human volunteers or patients and consisted of single dose 
IV PK, at multiple dose levels with n=3-24 individuals/ dose level. In cynomolgus monkey, single 
dose IV PK data was available for 23/ 27 mAbs, administered at 1-3 dose levels with n=2 monkeys/ 
dose. In hFcRn Tg32 transgenic mice, 11 /27 mAbs were administered as previously described 
[23] at a single IV dose of 3.5 mg/kg (1 mAb) or 5mg/kg (10 mAbs) with n=5-6 mice per mAb. For 
the marketed mAbs, popPK estimates were obtained from the literature [19]. 
 
Data inclusion and exclusion criteria: selection of linear dose range 
Non-linear data was removed from the datasets, where target mediated drug disposition or 
factors such as immunogenicity were contributing to the overall CL. First, a visual analysis of the 
data was performed to check for non-linearity, then an algorithm was applied to a linear 
regression of dose and AUC (Figure 1) to test for deviation of the slope from 1, and the dataset 
was reduced accordingly. For Tg32 mouse, all PK data was at doses ≥3.5 mg/kg and was included 
in the analysis. Table 1 provides details of the linear dose range, number of dose levels that were 
used in the popPK analysis and the non-linear dose levels removed. 
 
PK model  
mAb PK following IV administration was described by a 2-compartment disposition model with 
first-order elimination from the central compartment. The structural model was parameterized 
in terms of CL, central volume of distribution (V1), peripheral volume of distribution (V2) and 
inter-compartmental clearance (Q). Random effects were included as exponential terms 
reflecting log normal distributions of model parameters. The residual variability was 
implemented by proportional error model per compound. Goodness-of-fit was determined using 
the minimum value of the objective function defined as minus twice the log likelihood. For nested 
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models, a decrease of 3.84 points in the objective function (MVOF; corresponding to P < 0.01 in 
a chi-squared distribution) by adding an additional parameter was considered significant. The 
goodness-of-fit was also investigated by visual inspection of the plots of individual predictions 
and the diagnostic plots of (weighted) residuals.  
The PK model was applied to each species separately (single species PK analysis) or to a 
combination of two or three species together (combined species PK analysis). The combined 
species PK analysis used allometric scaling on all PK parameters by a scaling exponent based on 
bodyweight. For humans the available bodyweights were used, for cynomolgus monkey and 
hFcRn Tg32 transgenic mice a bodyweight of 3 kg and 0.02 kg, respectively was assumed.  

Computation  

Individual concentration-time data from all subjects for all mAbs were pooled into a single 
dataset for pop PK analysis using nonlinear mixed effect modeling with the NONMEM software 
system (Version 7.3, ICON Development Solutions) using ADVAN3 and subroutine 4 and PsN 
(version 4.6.0) [36] [37]. Gfortran version 4.6.0 was used as a compiler. Parameters were 
estimated using the first-order conditional estimation method with interaction between the two 
levels of stochastic effects (FOCEI). 

Model validation  
The robustness of the final combined species PK model was evaluated using resampling 
techniques of a bootstrap method. The bootstrap method involves repeated random sampling of 
subjects in the dataset. The original dataset is replaced to produce another dataset of the same 
size, but with a different combination of subjects and compounds. Resampling was repeated 200 
times. The obtained PK parameters from the bootstrap sets that produced successful 
minimization and convergence were used to simulate the concentration time profiles after a 
single dose of 1 mg/kg for a typical human subject of 70 kg.  
In the visual predictive check (VPC), the observation versus time profile was simulated 1000 times 
by means of Monte Carlo simulations. In a Monte Carlo simulation, random values are drawn 
from the distributions of the identified random effects. Subsequently, the median and 5 and 95 
percentiles of the dependent variables were calculated for each time and plotted together with 
the observations. A jackknife analysis was also completed with the combined species PK model 
to test robustness of model predictions. In this type of analysis one mAb is omitted from the total 
dataset at a time to test the influence of that mAb on the resulting predictions. 
 
AC-SINS 
The affinity capture self-interaction nanoparticle spectroscopy method was implemented as 
previously described [21, 32]. 
 
PK prediction methods 
To predict the human PK of mAbs in this dataset: 

1. Using ‘typical’ PK parameters for human 
Clinical data, available for 18 mAbs in the dataset, was fit individually using a 2 
compartment PK model as described previously. Individual values of CL, V1, Q and V2 
were determined for each mAb, and PK profiles were simulated using fitted parameters. 
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These were compared to simulated profiles using the human popPK values of CL, V1, Q 
and V2 and root mean square error (RMSE) values calculated using the following 
equation: 

 �
∑ �𝑥𝑥1,𝑝𝑝 − 𝑥𝑥2,𝑝𝑝�

2𝑢𝑢
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Where n= number of predictions, χ is predicted or observed value 
2. Using allometric exponents estimated from Tg32 mouse or cynomolgus monkey 

For every mAb in the dataset with both Tg32 mouse data and human data (n=8), or 
cynomolgus monkey and human data (n=16), preclinical species PK parameters were 
scaled to human using estimated allometric exponents (Table 4).  
First, the individual Tg32 mouse data for each mAb were fit to a 2-compartment PK model 
(n=8) as described previously. Individual mAb values of CL, V1, Q and V2 were then scaled 
to human using the estimated allometric exponents for Tg32 mouse presented in Table 
4. PK profiles were simulated using the scaled parameters. These were compared with 
the individual values of CL, V1, Q and V2 estimated for each individual mAb in human, 
described in section 1 above, and RMSEs calculated as before.  
This process was also completed for every mAb in the dataset with both cynomolgus 
monkey and human data (n=16).  
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Supplementary Material 

Supplementary Figure 1: PK parameters from jackknife analysis using the combined species PK model. Error bars 
show the 95% confidence intervals, omitting one mAb from the total dataset at a time. Gray areas represent 95% 
confidence intervals from the full model.  
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Supplementary Figure 2: Goodness of fit plots of the combined species PK model. The dashed blue line is the line 
of identity; the red solid line indicates a (Loess) smoother of the observations. GOF plots are paneled by species 
(1=human; 2= Cynomolgus monkey; 3= Tg32 hFcRn Mouse)  
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Supplementary Figure 3: Visual predictive plots (VPC) of the combined species PK model. The black circles 
represent the dose normalized concentrations and the blue line the observed median. The black line represents 
the predicted median, the dashed red lines represent the 5th and 95th percentiles of the observations. The gray 
area represents the 90% prediction interval. (A) human (B) Cynomolgus monkey; (C) Tg32 hFcRn Mouse. 
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Supplementary Table 1: Residual error (ε) per compound for the single species PopPK analysis  
 

 
Human (n=18) 

Cynomolgus  
Monkey (n=20) 

Tg32 hFcRn 
Mouse (n=11) 

Parameter Value 
(95%-CI) 

%RSE Value 
(95%-CI) 

%RSE Value 
(95%-CI) 

%RSE 

ε-mAb1    0.0343  
(0.0225-0.046) 

17.5   

ε-mAb2   0.018  
(0.0126-0.0233) 

15.1   

ε-mAb3   0.165  
(0.136-0.193) 

8.87 0.0207  
(0.0142-0.0271) 

15.9 

ε-mAb4   0.0236  
(0.00155-0.0457) 

47.7   

ε-mAb5 0.0734 
 (0.0615-0.0853) 

8.29 0.115  
(0.0497-0.18) 

28.9   

ε-mAb6 0.0561 
(0.0412-0.0711) 

13.6     

ε-mAb7 0.0708  
(0.0453-0.0962) 

18.3 0.085  
(-0.0172-0.187) 

61.4   

ε-mAb8   0.0214 ( 
0.00694-0.0359) 

34.5   

ε-mAb9 0.0482  
(0.0367-0.0597) 

12.2 0.0492  
(0.0183-0.08) 

32.0   

ε-mAb10 0.0213 
(0.00364-.0389) 

42.3 0.00617  
(0.00391-0.00844) 

18.7   

ε-mAb11   0.0179  
(0.00725-0.0285) 

30.3   

ε-mAb12 0.0670 
(0.0552-0.0788) 

8.98 0.00745  
(0.00366-0.0112) 

26.0   

ε-mAb13   0.172  
(0.128-0.216) 

13.1   

ε-mAb14 0.0776 
(0.0590-0.0962) 

12.2 0.167  
(0.0941-0.24) 

22.3   

ε-mAb15 0.0459 
 (0.0294-0.0624) 

18.3     

ε-mAb16 0.0453 
(0.0286-0.0619) 

18.8 0.00494  
(0.00358-0.0063) 

14.1   

ε-mAb17 0.0868 
(0.0693-0.104) 

10.3 0.231  
(-0.0875-0.549) 

70.4   

ε-mAb18 0.0716 
 (0.0212-0.122) 

36.0 0.138  
(0.107-0.168) 

11.3 0.0706  
(0.0384-0.103) 

23.3 

ε-mAb19 0.119  
(0.0971- 0.140)  

9.22 0.0288  
(0.0175-0.0401) 

20.1 0.0492  
(0.0157-0.0827) 

34.7 

ε-mAb20 0.0958  
(0.0681-0.123) 

14.7 0.0073  
(0.00462-0.00997) 

18.7 0.095  
(0.0201-0.17) 

40.3 

ε-mAb21 0.153 
(0.0383-0.267) 

38.2 0.0328  
(0.0219-0.0437) 

16.9 0.0778  
0.0245-0.131) 

34.9 

ε-mAb22 0.0219  
(0.0157-0.0281) 

14.4 0.0104  
(0.00843-0.0124) 

9.7 0.0309  
(0.0171-0.0446) 

22.7 

ε-mAb23 0.0376  
(0.0287-0.0466) 

12.2 0.0114  
(0.00638-0.0164) 

22.5 0.0554  
(0.0121-0.0987) 

39.8 
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ε-mAb24 0.0263  
(0.0114-0.0412) 

28.8 0.0362  
(0.0145-0.058) 

30.7 0.0446  
(0.0295-0.0596) 

17.2 

ε-mAb25 0.0284  
(0.0203-0.0365) 

14.6 0.0727  
(-0.00115-0.147) 

51.8 0.176 
 (0.127-0.226) 

14.4 

ε-mAb26     0.11  
(0.0978-0.122) 

5.68 

ε-mAb27     0.208  
(0.0344-0.382) 

42.6 

 (supplementary to Table 2).  

 

Supplementary Table 2: Residual error (ε) per compound for the combined species PopPK analysis 
(supplementary to Table 4). 

Combined 
Datasets 

Tg32 Mouse, Cyno  
and Human 

Cyno  
and Human 

Tg32 Mouse  
and Human 

Parameter 
 

Value 
(95%-CI) 

%RSE Value 
(95%-CI) 

%RSE Value 
(95%-CI) 

%RSE 

ε-mAb1  0.0295  
(0.0143-0.0448) 26.4 

0.0365  
(0.026-0.047) 

14.7 
 

  

ε-mAb2 0.017  
(0.0104-0.0237) 20 

0.0193  
(0.014-0.0247) 

14.2   

ε-mAb3 0.0714  
(0.0339-0.109) 26.8 

0.175  
(0.147-0.204) 

8.41 0.0209 (0.0141-
0.0278) 

16.6 

ε-mAb4 0.0387  
(-0.00215-0.0795) 53.9 

0.0207  
(0.00204-0.0393) 

46.0   

ε-mAb5 0.0839  
(0.0672-0.101) 10.2 

0.0768  
(0.0646-0.0889) 

8.07 0.0733  
(0.0613-0.0853) 8.33 

ε-mAb6 0.0559 
(0.041-0.0707) 13.5 

0.0563  
(0.0413-0.0713) 

13.6 0.0563  
(0.0413-0.0713) 13.6 

ε-mAb7 0.073  
(0.0387-0.107) 24 

0.0757  
(0.0412-0.11) 

23.2 0.0706  
(0.0453-0.0958) 18.3 

ε-mAb8 0.0406  
(0.0213-0.0599) 24.3 

0.018  
(0.0056-0.0304) 

35.2 
  

  

ε-mAb9 0.0457  
(0.0328-0.0586) 14.4 

0.0504  
(0.0359-0.0648) 14.6 

0.0481  
(0.0365-0.0597) 12.3 

ε-mAb10 
0.0199  

(0.0039-0.0359) 41 

0.0197 
(0.00369-0.0357) 41.5 

0.0219  
(0.00394-
0.0399) 41.8 

ε-mAb11 0.0199  
0.00384-0.0359) 41.2 

0.0182  
(0.00583-0.0305) 34.6 

  

ε-mAb12 0.0644  
(0.053-0.0758) 9.01 

0.0652  
(0.0536-0.0767) 9.02 

0.0661  
(0.0545-0.0776) 

8.96 
 

ε-mAb13 0.122 
 (0.0835-0.161) 16.2 

0.192  
(0.143-0.241) 13.0 

  

ε-mAb14 0.103  
(0.0767-0.129) 12.9 

0.0872  
(0.0683-0.106) 11.0 

0.078  
(0.0597-0.0963) 12 

ε-mAb15 0.0465  
(0.03-0.063) 18.1 

0.0455 
 (0.0289-0.0622) 18.7 

0.0456  
(0.0292-0.062) 18.4 

ε-mAb16 0.0375 (0.0233-
0.0518) 19.4 

0.0366 (0.0226-
0.0505) 19.5 

0.0455 (0.0289-
0.0621) 18.6 
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ε-mAb17 0.116  
(0.0663-0.166) 21.8 

0.105  
(0.0646-0.145) 19.6 

0.0852  
(0.0678-0.103) 10.4 

ε-mAb18 0.0803  
(0.0438-0.117) 23.2 

0.0882  
(0.046-0.13) 24.4 

0.0708  
(0.0275-0.114) 31.2 

ε-mAb19 0.1  
(0.0816-0.119) 9.55 

0.107  
(0.0836-0.13) 11.1 

0.105  
(0.0842-0.125) 9.99 

ε-mAb20 0.066  
(0.043-0.089) 17.8 

0.0582  
(0.0355-0.081) 19.9 

0.096  
(0.0675-0.124) 15.1 

ε-mAb21 0.127  
(0.044-0.209) 33.3 

0.137  
(0.0407-0.233) 35.8 

0.143  
(0.0465-0.239) 34.4 

ε-mAb22 0.0232  
(0.0176-0.0288) 12.3 

0.0211  
(0.0154-0.0268) 13.8 

0.0226  
(0.0168-0.0283) 13 

ε-mAb23 
0.0346  

0.0268-0.0424) 11.5 
0.0338  

(0.0259-0.0417) 11.9 

0.039 
 (0.0299-
0.0481) 11.9 

ε-mAb24 0.0326  
(0.019-0.0462) 21.3 

0.0291  
(0.0165-0.0416) 22 

0.0285  
(0.015-0.042) 24.1 

ε-mAb25 0.0449  
(0.0304-0.0595) 16.5 

0.0293  
(0.0211-0.0375) 14.3 

0.0422  
(0.0283-0.056) 16.8 

ε-mAb26 0.132 
(0.118-0.145) 5.42 

  0.113 
 (0.104-0.121) 3.64 
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Section III.  
Modeling of antibody drug conjugates 
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3.1  Abstract 

The objective of this manuscript was to establish in vitro–in vivo correlation (IVIVC) between the 
in vitro efficacy and in vivo efficacy of antibody drug conjugates (ADCs), using a PK/PD modeling 
approach. Nineteen different ADCs were used to develop IVIVC. In vitro efficacy of ADCs was 
evaluated using a kinetic cell cytotoxicity assay. The cytotoxicity data obtained from in vitro 
studies was characterized using a novel mathematical model, parameter estimates from which 
were used to derive an in vitro efficacy matrix for each ADC, termed as ‘in vitro tumor static 
concentration’ (TSCin vitro). TSCin vitro is a theoretical concentration at continuous exposure of 
which the number of cells will neither increase nor decrease, compared to the initial cell number 
in the experiment. The in vivo efficacy of ADCs was evaluated using tumor growth inhibition (TGI) 
studies performed on human tumor xenograft bearing mice. The TGI data obtained from in vivo 
studies was characterized using a PK/PD model, parameter estimates from which were used to 
derive an in vivo efficacy matrix for each ADC, termed as ‘in vivo tumor static concentration’ 
(TSCin vivo). TSCin vivo is a theoretical concentration if one were to maintain in the plasma of a tumor 
bearing mouse, the tumor volume will neither increase nor decrease compared to the initial 
tumor volume. Comparison of the TSCin vitro and TSCin vivo values from 19 ADCs provided a linear 
and positive IVIVC. The Spearman’s rank correlation coefficient for TSCin vitro and TSCin vivo was 
found to be 0.82. On average TSCin vivo was found to be ~ 27 times higher than TSCin vitro. The 
reasonable IVIVC for ADCs suggests that in vitro efficacy data was correctly able to differentiate 
ADCs for their in vivo efficacy. Thus, IVIVC can be used as a tool to triage ADC molecules in the 
discovery stage, thereby preventing unnecessary scaling-up of ADCs and waste of time and 
resources. An ability to predict the concentration of ADC that is efficacious in vivo using the in 
vitro data can also help in optimizing the experimental design of preclinical efficacy studies. As 
such, the novel PK/PD modeling method presented here to establish IVIVC for ADCs holds 
promise and should be evaluated further using diverse set of cell lines and anticancer agents. 

3.2  Introduction 

In vitro cytotoxicity assay and murine models of human tumor xenograft are the most widely 
used experimental systems in the discovery and preclinical development of oncology drugs. The 
routinely used in vitro cytotoxicity assays (usually performed in a 96-well plate format) not only 
provides a high throughput way to triage anticancer molecules in the discovery setting, but also 
provide a point estimate of a given molecule’s potency for the chosen cell line i.e. IC50 or IC90. 
The human tumor xenografts transplanted into immune-compromised mice are the regularly 
used preclinical animal models to evaluate the efficacy of novel anticancer agents in vivo. These 
animal models not only help triage molecules based on their integrated pharmacokinetics (PK) 
and potency profile, but also provide some quantification of a given molecule’s potency for 
inhibiting tumor growth in a given xenograft model (e.g. T/C ratio). Although both of these 
experimental approaches, i.e. in vitro cytotoxicity assay and murine tumor xenografts, are very 
informative in their own ways to help define a drug’s potency and efficacy; there are only a 
handful of reports which have integrated the information from these two systems to establish in 
vitro-in vivo correlation (IVIVC) for the efficacy of chemotherapeutic drugs. 
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One of the reasons for the lack of efforts in establishing IVIVC for anticancer drug efficacy may 
be the different efficacy matrix that both the in vitro and the in vivo systems provide. The results 
from in vitro cytotoxicity assays are processed to usually represent the efficacy of a drug in the 
form of ICx (i.e. the concentration of the drug that causes X% reduction in the cell viability of the 
treatment group compared to the control group), at a certain period of time after the start of the 
treatment. Whereas the results from the in vivo tumor growth inhibition (TGI) studies are usually 
processed to provide the efficacy of a drug in the form of either minimum efficacious dose (MED), 
area under the drug concentration-time curve (AUC) at MED, or T/C ratio. Thus, because of the 
different units used to express the efficacy, it would be very difficult to compare the efficacy 
parameters obtained from an in vitro experimental system to the ones obtained from an in vivo 
system. This manuscript strives to demonstrate the use of pharmacokinetic-pharmacodynamic 
(PK/PD) modeling approach to derive a comparable efficacy parameter from the in vitro and in 
vivo experimental systems, in order to help establish IVIVC for the efficacy of anticancer drugs, 
using antibody drug conjugates (ADCs) as model therapeutic agents. 

Here we have evaluated the in vitro cytotoxicity of 19 different ADCs using a kinetic cytotoxicity 
assay [1], where the viability of cancer cells was determined at multiple time points after 
incubation with various concentrations of ADCs. The viable cell number vs. time profile obtained 
from in vitro experiments was fitted by a semi-mechanistic PK/PD model to derive the secondary 
parameter for IVIVC, tumor static concentration (TSC). The TSC value derived from in vitro kinetic 
cytotoxicity assay (TSCin vitro) is a theoretical concentration of the drug in a cell culture well, at 
continuous exposure of which the number of viable cells in the well will neither increase nor 
decrease compared to the starting cell number. To enable in vivo PK/PD modeling, the PK of all 
19 ADCs that were tested in vitro, was determined in mice. A multiple dose TGI study was 
conducted for each of the 19 ADCs, in a murine human tumor xenograft model developed using 
the same cell line that was used for the in vitro cytotoxicity assay. The TGI data was modeled 
using a semi-mechanistic PK/PD model, and TSC was derived from the estimated parameters. The 
TSC value derived from TGI data (TSCin vivo) is the theoretical concentration of a drug if one were 
to maintain in the plasma of a tumor bearing mouse, the tumor volume will neither increase nor 
decrease compared to the initial tumor volume of the experiment. The TSCin vitro and TSCin vivo 

values derived for each ADC were correlated to help establish the IVIVC for the efficacy of ADCs. 

3.3  Methods 

In vitro kinetic cytotoxicity assay  

Her2 expressing N87 gastric carcinoma cells were seeded into 96-well cell culture plates for 24 
hours before the ADC treatment. Cells were treated with 10 different 3-fold serially diluted ADC 
concentrations in duplicate. Replicate plates of treated cells were incubated for 1, 2, 3, 6, and 8 
days to obtain time-course of drug effect. On the specified harvest day, 30 µl of Cell Titer Glo® 
One Solution Assay reagent (Promega Cat # G3581) was added to the cells and incubated for 0.5 
hours at room temperature while shaking and protecting from light. After incubation, the 
luminescence was measured on a Victor plate reader (Perkin Elmer, Waltham, MA). Relative cell 
viability was determined as percentage of untreated control. In a parallel set of plates, a linear 
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standard curve of N87 cell number vs. relative luminescence units (RLU) was generated to convert 
the RLU of experimental samples into cell number for kinetic analyses. 

Modeling the in vitro cytotoxicity data 

The viable cell number versus time profiles obtained from in vitro kinetic cytotoxicity assays was 
modeled using the semi-mechanistic PK/PD model displayed in Figure-1. The PD model used here 
is developed by combining the two widely used mathematical models for characterizing the 
efficacy of chemotherapeutic drugs, the signal distribution model developed by Lobo and 
Balthasar [1] and the cell distribution model developed by Simeoni et al. [2,3]. As described in 
Figure-1, the model assumes that the presence of drug in the cell culture well (Cin vitro) initiates a 
concentration dependent nonlinear killing signal (K1kill), which imparts its effect on cancer cells 
(K4kill) following a transduction delay characterized by TauS. In the absence of drug, the cells are 
allowed to grow exponentially (Kg) until they reach a plateau (CellMaximum). Once the growing 
cancer cells in the well responds to the killing signal (K4kill), a part of them is shuttled to the non-
growing cell compartments, from where the cells are destined to die following a transduction 
delay characterized by TauC. The model equations are provided below: 

𝑑𝑑𝑑𝑑1𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘

𝑑𝑑𝑑𝑑
=

1
𝑇𝑇𝑇𝑇𝑢𝑢𝑆𝑆

• �
𝑑𝑑𝑢𝑢𝑢𝑢𝑚𝑚_𝑝𝑝𝑢𝑢_𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜 • 𝐶𝐶𝑝𝑝𝑢𝑢_𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜

𝛾𝛾

𝐼𝐼𝐶𝐶50_𝑝𝑝𝑢𝑢_𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜
𝛾𝛾 + 𝐶𝐶𝑝𝑝𝑢𝑢_𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜

𝛾𝛾 − 𝑑𝑑1𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘�  ;  𝐼𝐼𝐶𝐶 = 0 
(1) 

 
𝑑𝑑𝑑𝑑2𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘

𝑑𝑑𝑑𝑑
=

1
𝑇𝑇𝑇𝑇𝑢𝑢𝑆𝑆

• (𝑑𝑑1𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑑𝑑2𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘) ;  𝐼𝐼𝐶𝐶 = 0 
(2) 

 
𝑑𝑑𝑑𝑑3𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘

𝑑𝑑𝑑𝑑
=

1
𝑇𝑇𝑇𝑇𝑢𝑢𝑆𝑆

• (𝑑𝑑2𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑑𝑑3𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘) ;  𝐼𝐼𝐶𝐶 = 0 
(3) 

 
𝑑𝑑𝑑𝑑4𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘

𝑑𝑑𝑑𝑑
=

1
𝑇𝑇𝑇𝑇𝑢𝑢𝑆𝑆

• (𝑑𝑑3𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘 − 𝑑𝑑4𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘) ;  𝐼𝐼𝐶𝐶 = 0 
(4) 

 
𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
= 𝑑𝑑𝐾𝐾 • �1 −

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇𝑜𝑜𝑝𝑝𝑢𝑢𝑘𝑘

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀𝑢𝑢𝑚𝑚𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢
� • 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑1 − 𝑑𝑑4𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘 • 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑1 ;  𝐼𝐼𝐶𝐶 = 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘  

(5) 

 
𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑2

𝑑𝑑𝑑𝑑
= 𝑑𝑑4𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘 • 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑1 −

1
𝑇𝑇𝑇𝑇𝑢𝑢𝐶𝐶

• 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑2 ;  𝐼𝐼𝐶𝐶 = 0 
(6) 

 
𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑3

𝑑𝑑𝑑𝑑
=

1
𝑇𝑇𝑇𝑇𝑢𝑢𝐶𝐶

• (𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑2 − 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑3) ;  𝐼𝐼𝐶𝐶 = 0 
(7) 

 
𝑑𝑑𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑4

𝑑𝑑𝑑𝑑
=

1
𝑇𝑇𝑇𝑇𝑢𝑢𝐶𝐶

• (𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑3 − 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑4) ;  𝐼𝐼𝐶𝐶 = 0 
(8) 

 
𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇𝑜𝑜𝑝𝑝𝑢𝑢𝑘𝑘 = 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑1 + 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑2 + 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑3 + 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑4 (9) 

 
Above, K1kill, K2kill, K3kill and K4kill are the killing signal compartments, and Cell1, Cell2, Cell3, and 
Cell4 are the cell number compartments. Kmax_in_vitro is the maximum rate at which the drug can 
kill the cells and IC50_in_vitro is the drug concentration at which the kill rate is half of the maximum. 
IC refers to initial conditions of the differential equations. 

The viable cell number versus time profiles generated for the control and all the concentration 
groups of a given ADC were fitted simultaneously by the model, using the naïve pool approach in 
the software Monolix® (v3.2, Paris, France - SAEM algorithm). For all the fittings the slope 
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coefficient γ was fixed to 1 and the residual error was described using the constant error model. 
The TSCin vitro value for each compound was calculated using the following equation, which is 
derived from the equation 5: 

𝑻𝑻𝑻𝑻𝑪𝑪𝒊𝒊𝒊𝒊 𝒗𝒗𝒊𝒊𝒗𝒗𝒗𝒗𝒗𝒗 =
𝑲𝑲𝑲𝑲 • 𝑰𝑰𝑪𝑪𝟓𝟓𝟓𝟓_𝒊𝒊𝒊𝒊_𝒗𝒗𝒊𝒊𝒗𝒗𝒗𝒗𝒗𝒗

𝑲𝑲𝒎𝒎𝒎𝒎𝒎𝒎_𝒊𝒊𝒊𝒊_𝒗𝒗𝒊𝒊𝒗𝒗𝒗𝒗𝒗𝒗 − 𝑲𝑲𝑲𝑲
 (10) 

 

 
Figure 1: A schematic diagram demonstrating the mathematical model used to characterize in vitro kinetic 
cytotoxicity data. Please refers to the ‘Modeling the In Vitro Cytotoxicity Data’ subsection in the ‘Methods’ section 
for more details about the symbols and structure of the model. 

 

Mouse PK of ADCs 

All procedures using mice were approved by the Pfizer Institutional Animal Care and Use 
Committees and conducted according to established Animal Use Protocols. Female athymic 
(nu/nu) mice, 6-8 weeks of age, were obtained from Charles River Laboratories (Wilmington, MA) 
and housed in the vivarium at Pfizer Inc, Pearl River, NY.  Mouse blood (10 µL) was collected 
serially from mice (n=3) for up to 336 h after a single 3 mg/kg dose of each ADC. Quantitation of 
the ADC concentrations in mouse plasma was achieved using ligand binding assays (ELISA or 
Gyros Immunoassay). In general, ADC was captured using a commercial polyclonal Anti-Human 
IgG (Fc specific) antibody, and the bound ADC was detected using a biotinylated polyclonal anti-
payload antibody (Pfizer, Inc.). The limit of quantitation (LOQ) for the ligand binding assays was 
80-100 ng/mL.  
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The plasma concentration vs. time profiles of each ADC in mouse was characterized using a two 
compartmental model with linear clearance from the central compartment. The model equations 
are provided below: 

𝑑𝑑𝑑𝑑1𝐴𝐴𝐴𝐴𝐶𝐶

𝑑𝑑𝑑𝑑
= −

𝐶𝐶𝐿𝐿𝐴𝐴𝐴𝐴𝐶𝐶

𝑉𝑉1𝐴𝐴𝐴𝐴𝐶𝐶
• 𝑑𝑑1𝐴𝐴𝐴𝐴𝐶𝐶 −

𝐶𝐶𝐿𝐿𝐷𝐷𝐴𝐴𝐴𝐴𝐶𝐶

𝑉𝑉1𝐴𝐴𝐴𝐴𝐶𝐶
• 𝑑𝑑1𝐴𝐴𝐴𝐴𝐶𝐶 +

𝐶𝐶𝐿𝐿𝐷𝐷𝐴𝐴𝐴𝐴𝐶𝐶

𝑉𝑉2𝐴𝐴𝐴𝐴𝐶𝐶
• 𝑑𝑑2𝐴𝐴𝐴𝐴𝐶𝐶 ; 𝐼𝐼𝐶𝐶 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑𝐴𝐴𝐴𝐴𝐶𝐶  

(11) 

𝑑𝑑𝑑𝑑2𝐴𝐴𝐴𝐴𝐶𝐶

𝑑𝑑𝑑𝑑
=

𝐶𝐶𝐿𝐿𝐷𝐷𝐴𝐴𝐴𝐴𝐶𝐶

𝑉𝑉1𝐴𝐴𝐴𝐴𝐶𝐶
• 𝑑𝑑1𝐴𝐴𝐴𝐴𝐶𝐶 −

𝐶𝐶𝐿𝐿𝐷𝐷𝐴𝐴𝐴𝐴𝐶𝐶

𝑉𝑉2𝐴𝐴𝐴𝐴𝐶𝐶
• 𝑑𝑑2𝐴𝐴𝐴𝐴𝐶𝐶; 𝐼𝐼𝐶𝐶 = 0 

(12) 

Above, X1ADC and X2ADC are the amount of ADC in the central and peripheral compartment. V1ADC 
and V2ADC are the ADC volumes of distribution in the central and peripheral compartment. CLADC 
is the clearance of ADC from the central compartment and CLDADC is the distributive clearance 
between the central and peripheral compartments (see Fig 2). The model was fitted to the data 
using the weighting scheme of 1/(Y^)2, by the software WinNonlin (version 5.2, Pharsight Corp., 
Mountain View, CA). Here Y^ refers to model predicted concentrations.  

TGI studies in mouse xenografts 

All procedures using mice were approved by the Pfizer Institutional Animal Care and Use 
Committees and conducted according to established Animal Use Protocols. Female athymic 
(nu/nu) mice, 6-8 weeks of age, were obtained from Charles River Laboratories (Wilmington, MA) 
and housed in the vivarium at Pfizer Inc, Pearl River, NY. Mice were injected subcutaneously with 
~7.5 million N87 (gastric cancer cell line) tumor cells in 50% matrigel and the tumor was allowed 
to grow. Once the tumor volume reached 200-400 mm3, animals were divided into 4 groups (6 
to 10 mice per group) for each ADC. Animals were intravenously administered with saline (vehicle 
group) or ADC at 1,3 and 10 mg/kg dose levels (treatment groups), at the dosing regimen of Q4d 
x 4 starting on Day 1 after the randomization. All ADCs were dosed based on antibody (mAb) 
content. Tumors were measured at least once a week up to at least 41 days after dosing. The 
tumor volume was calculated using the following formula: Tumor volume in mm3 = 0.5 x (tumor 
width2) × (tumor length) [4]. The LOQ for the tumor measurement was 40 mm3. 

Modeling the TGI Data 

The tumor volume vs. time data obtained from TGI studies was fitted using the PK/PD model 
displayed in Figure-2. As mentioned in the ‘Mouse PK of ADCs’ section, the plasma PK of ADC was 
characterized using the standard 2 compartment model with linear elimination from the central 
compartment. The PD effect of ADC was characterized using a semi-mechanistic (modified cell 
distribution) model, which we have published earlier [5,6]. Equations for the PD model are 
provided below: 

𝑑𝑑𝑉𝑉1
𝑑𝑑𝑑𝑑

=
𝑘𝑘𝑔𝑔𝐸𝐸𝑚𝑚𝑝𝑝𝑜𝑜𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘

• �1 − 𝑇𝑇𝑉𝑉
𝑉𝑉𝑀𝑀𝑢𝑢𝑚𝑚

� • 𝑉𝑉1

�1 + �
𝑘𝑘𝑔𝑔𝐸𝐸𝑚𝑚𝑝𝑝𝑜𝑜𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘

𝑘𝑘𝑔𝑔𝐿𝐿𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝
• 𝑇𝑇𝑉𝑉�

𝜓𝜓

�

1
𝜓𝜓�

−
𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘_𝑀𝑀𝑢𝑢𝑚𝑚 • 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶  

𝑑𝑑𝐶𝐶50 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶
• 𝑉𝑉1 ; 𝐼𝐼𝐶𝐶 = 𝑉𝑉𝐼𝐼𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘 

(13) 
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𝑑𝑑𝑉𝑉2
𝑑𝑑𝑑𝑑

=
𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘_𝑀𝑀𝑢𝑢𝑚𝑚 • 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶  

𝑑𝑑𝐶𝐶50 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶
• 𝑉𝑉1 −

𝑉𝑉2
𝑇𝑇𝑇𝑇𝑢𝑢

 ; 𝐼𝐼𝐶𝐶 = 0 (14) 

𝑑𝑑𝑉𝑉3
𝑑𝑑𝑑𝑑

=
(𝑉𝑉2 − 𝑉𝑉3)

𝑇𝑇𝑇𝑇𝑢𝑢
; 𝐼𝐼𝐶𝐶 = 0 (15) 

𝑑𝑑𝑉𝑉4
𝑑𝑑𝑑𝑑

=
(𝑉𝑉3 − 𝑉𝑉4)

𝑇𝑇𝑇𝑇𝑢𝑢
; 𝐼𝐼𝐶𝐶 = 0 (16) 

𝑇𝑇𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3 + 𝑉𝑉4 (17) 

Above, V1 is the growing tumor volume compartment whereas V2, V3, V4 are the non-growing 
tumor volume transit compartments. TV is the total tumor volume and Vinitial is the initial tumor 
volume. The tumor growth function is adapted from Simeoni et al. [2], where initially the tumor 
is allowed to grow according to an exponential growth rate kgExponential   that switches to the linear 
growth rate kgLinear based on the total tumor volume and switching coefficient ψ. In order to 
account for the plateau observed at higher tumor volumes, a saturation function was added to 
the tumor growth term used by Simeoni et al. CADC is the ADC concentration in the plasma, kkill_Max 
is the maximum rate at which the drug can kill the tumor, and KC50 is the drug concentration at 
which the kill rate is half of the maximum. The transit delay between the non-growing tumor 
compartments is described by Tau. 

 

Figure 2: The PK/PD model used to characterize the TGI data for ADCs. Please refers to the ‘Modeling the TGI Data’ 
subsection in the ‘Methods’ section for more details about the symbols and structure of the model. 

 

In order to fit the PK/PD model to TGI data generated for each ADC, a sequential parameter 
estimation method was followed, where the PK parameters were first estimated using the naïve 
pooling approach and then they were fixed to estimate the PD parameters using the population 
approach. This two-stage approach was preferred over the joint population PK/PD approach 
because the detailed information about the PK of ADC in each animal involved in the PD study 
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was not available. While estimating the PD parameters, initially the tumor growth parameters 
and inter-individual variability (IIV) for them were estimated from just the control group data. 
Subsequently, the IIV of the growth parameters and Vmax were fixed, followed by estimation of 
both the growth and drug effect parameters simultaneously using the software Monolix® (v3.2, 
Paris, France - SAEM algorithm). The residual error was characterized using additive, proportional 
or, additive + proportional error models. The quality of the model fittings was assessed by 
considering weighted residual plot, observations against individual predictions (iPRED) and 
population predictions (PRED) plots, AIC and BIC values, and confidence in the parameter 
estimates (i.e. CV%). 

The TSCin vivo value for each compound was calculated using the following equation, which is 
derived from the equation 13: 

𝑇𝑇𝑇𝑇𝐶𝐶𝑝𝑝𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  =  
𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸 •  𝑑𝑑𝐶𝐶50 •  �1 −  𝑉𝑉𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘

𝑉𝑉𝑢𝑢𝑢𝑢𝑚𝑚
�

𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘𝑀𝑀𝐸𝐸𝐸𝐸  •  �1 + �
𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸 

𝑘𝑘𝑔𝑔𝐿𝐿𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝 
 • 𝑉𝑉𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘�

𝜑𝜑

�

1
𝜑𝜑   

−  𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸 •  �1 −  𝑉𝑉𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘
𝑉𝑉𝑢𝑢𝑢𝑢𝑚𝑚

� 

 
(18) 

 

Equation 18 can be further simplified by considering whether �
𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸

𝑘𝑘𝑔𝑔𝐿𝐿𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿
• 𝑉𝑉𝐼𝐼𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘� is ≤1 or >1. If 

�
𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸

𝑘𝑘𝑔𝑔𝐿𝐿𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿
• 𝑉𝑉𝐼𝐼𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘� is ≤1 equation 18 reduces to: 

𝑇𝑇𝑇𝑇𝐶𝐶𝑝𝑝𝑢𝑢_𝑣𝑣𝑝𝑝𝑣𝑣𝑜𝑜 =
𝑘𝑘𝑔𝑔𝐸𝐸𝑚𝑚𝑝𝑝𝑜𝑜𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘

• 𝑑𝑑𝐶𝐶50

𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘_𝑀𝑀𝑢𝑢𝑚𝑚 − 𝑘𝑘𝑔𝑔𝐸𝐸𝑚𝑚𝑝𝑝𝑜𝑜𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘

 
 

(19) 

and if �
𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑣𝑣𝐸𝐸𝐸𝐸

𝑘𝑘𝑔𝑔𝐿𝐿𝑣𝑣𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿
• 𝑉𝑉𝐼𝐼𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘� is >1 equation 18 reduces to: 

𝑇𝑇𝑇𝑇𝐶𝐶𝑝𝑝𝑢𝑢_𝑣𝑣𝑝𝑝𝑣𝑣𝑜𝑜 =
𝑘𝑘𝑔𝑔𝐿𝐿𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝

• 𝑑𝑑𝐶𝐶50

𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘_𝑀𝑀𝑢𝑢𝑚𝑚 • 𝑉𝑉𝐼𝐼𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑢𝑢𝑘𝑘 − 𝑘𝑘𝑔𝑔𝐿𝐿𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝

 
(20) 

Please refer to Haddish-Berhane et al. [6] for detailed derivation of abovementioned simplified 
equations and for the discussion about pathophysiological meaning behind the simplifications. 

Establishing IVIVC using TSCin vitro and TSCin vivo 

The TSCin vitro and TSCin vivo values for each ADC was plotted on a scatter plot and observed for any 
trends or outliers. The data was analyzed to find out the relationship between TSCin vitro and TSCin 

vivo and, to determine the Spearman’s rank correlation coefficient, since it is a nonparametric 
statistical test that does not assume normal distribution for variables. The relationship between 
TSCin vitro and TSCin vivo was established by fitting the data to the power model, using the software 
WinNonlin (version 5.2, Pharsight Corp., Mountain View, CA): 

𝑇𝑇𝑇𝑇𝐶𝐶𝑝𝑝𝑢𝑢𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  = 𝐴𝐴 •  𝑇𝑇𝑇𝑇𝐶𝐶𝑝𝑝𝑢𝑢𝑣𝑣𝑣𝑣𝐸𝐸𝐿𝐿𝑣𝑣 
𝐵𝐵 
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3.4  Results 

In Vitro Kinetic Cytotoxicity Assay 

A representative in vitro ‘cell number vs. time’ profile obtained at various concentrations of one 
of the 19 ADCs (i.e. trastuzumab-DM1 or T-DM1) is displayed in Figure-3A. As shown in the Figure-
3A for T-DM1, for most of the ADCs tested, it was observed that the effect of the ADC on cell 
viability started after a delay of ~1 day. For most of the ADCs the concentration-effect profile was 
very steep, and the range of concentrations between which the effect of the ADC varied from 
almost no effect to the maximum effect was very narrow. For example, as shown in the Figure-
3A, at the concentration of 0.46 nM the effect of T-DM1 on cell viability was as low as the control 
group, whereas at the concentration of 4.12 nM the effect was as high as 1000 nM. It was also 
observed that it took as many as 6 days before the efficacious concentrations of ADC were able 
to kill most of the cancer cells in the well, suggesting a gradual and not sudden rate of cell death 
after exposure to ADC’s killing signal. Apart from one of the ADCs, all the ADCs were able to kill 
the cancer cells in the well at the concentration range tested. 

Modeling the In Vitro Cytotoxicity Data 

Figure-3B shows a representative model fitting of the in vitro ‘viable cell number vs. time’ data 
generated using T-DM1, in the form of ‘model predicted cell number vs. observed cell number’ 
plot. Representative parameter estimates from the model fitting shown in Figure-3B are provided 
in the Table-1. The model did a reasonably good job in fitting the data for most of the ADCs, 
except for one ADC that did not show any killing. Table-3 provides the calculated (using equation 
10) TSCin vitro values for the 19 ADCs tested. For the ADC that did not show any killing, the TSC 
value was assumed to be greater than the highest concentration tested i.e. 1000 nM.     

 

Table 1: Parameter estimates obtained from fitting the model shown in Figure-1 to the in vitro ‘viable cell number 
versus time’ data generated following T-DM1 treatment. 

Parameter Estimate % RSE Unit 

𝑑𝑑𝐾𝐾 1.05 4 Day-1 

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑀𝑀𝑢𝑢𝑚𝑚𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢  25300 4 Unit less 

𝑇𝑇𝑇𝑇𝑢𝑢𝐶𝐶  0.199 43 Day 

𝑇𝑇𝑇𝑇𝑢𝑢𝑆𝑆 0.302 9 Day 

𝑑𝑑𝑢𝑢𝑢𝑢𝑚𝑚_𝑝𝑝𝑢𝑢_𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜 1.62 3 Day-1 

𝐼𝐼𝐶𝐶50_𝑝𝑝𝑢𝑢_𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝𝑜𝑜
𝛾𝛾  3.04 8 nM 

𝛾𝛾 1 Fixed Unitless 

TSCin vitro 5.6 Derived nM 

 



55 
 

 
Figure 3: (A) The figure displays ‘viable cell number vs. time’ profiles generated after incubating different 
concentrations of Trastuzumab-DM1 with N87 cells. (B) The quality of model fitting to the data displayed in the panel 
A is demonstrated as a plot of ‘Model predicted cell number vs. Observed cell number’.    
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Figure 4: (A) The TGI data obtained after administration of different doses of Trastuzumab-DM1 into N87 xenografts 
bearing mice. (B) The quality of PK/PD model fitting to the TGI data displayed in panel a is demonstrated as a plot of 
‘Individual model predicted tumor volume versus observed tumor volume’. (C) The visual predictive check (VPC) for 
model fitting of T-DM1 TGI data. The symbols represent observed data and the shaded region represent 90% 
confidence interval 
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Modeling the Data from TGI Studies in Mouse Xenografts  

Figure-4A shows representative tumor volume vs. time profiles obtained from the TGI study 
conducted in N87 xenografts using one of the ADCs, T-DM1. As demonstrated in the figure for T-
DM1, all the ADCs showed a dose dependent response profile. Figure-4B displays the ‘observed 
tumor volume vs. individual predicted tumor volume’ profile obtained from the model fitting of 
the data presented in Figure-4A. Parameter estimates from the model fitting of T-DM1 TGI data 
are provided in Table-2. As evident from the Figure-4B and Table-2, the model did a reasonably 
good job in fitting the TGI data for T-DM1. The model also performed well for the characterization 
of TGI data for all the other ADCs tested (data not shown). The TSCin vivo values calculated for T-
DM1 and other ADCs, using equations 19 or 20, are reported in Table-3. 

Table 2: Parameter estimates obtained from fitting the model shown in Figure-2 to the TGI data generated in N87 
xenografts following T-DM1 treatment. 

Parameter Estimate %RSE Unit 

𝑘𝑘𝑔𝑔𝐸𝐸𝑚𝑚𝑝𝑝𝑜𝑜𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑘𝑘
 0.0732 11 Day-1 

𝑘𝑘𝑔𝑔𝐿𝐿𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝
 37.9 17 mm3 ●Day-1 

𝑉𝑉𝑀𝑀𝑢𝑢𝑚𝑚  4.22E+03 18 mm3 

𝑇𝑇𝑇𝑇𝑢𝑢 1.36 16 Day 

𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘_𝑀𝑀𝑢𝑢𝑚𝑚  0.405 38 Day-1 

𝑑𝑑𝐶𝐶50 131 48 µg/mL 

𝜓𝜓 20 Fixed Unit less 

TSCin vivo 28.9 Derived µg/mL 

IIV_𝑘𝑘𝑔𝑔𝐸𝐸𝑚𝑚𝑝𝑝𝑜𝑜𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑘𝑘
 0.47 38 Unitless 

IIV_𝑘𝑘𝑔𝑔𝐿𝐿𝑝𝑝𝑢𝑢𝑝𝑝𝑢𝑢𝑝𝑝
 0.781 27 Unitless 

IIV: interindividual variability 

Establishing IVIVC using TSCin vitro and TSCin vivo 

Figure-5 depicts the plot generated to correlate TSCin vitro and TSCin vivo, which shows a linear trend 
between the two variables. The Spearman’s rank correlation coefficient between TSCin vitro and 

TSCin vivo was found to be 0.82. The ADC that did not show any killing in the in vitro assay (gray 
symbol in the figure) was considered outlier for building the IVIVC. When this outlier was included 
for analysis the Spearman’s rank correlation coefficient was found to be 0.85.  Fitting of the 
power model to the data (excluding the outlier) that demonstrates a linear and positive 
relationship between TSCin vitro and TSCin vivo provided the slope value of 26.8 (CV%=15.2) and an 
exponent of 0.83 (CV%=9.82); with the weighted correlation coefficient (R2) value of 0.81.  
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Table 3: TSCin vitro and TSCin vivo values derived for each ADC to establish IVIVC. 

ADC ID TSCin vitro, nM (%RSE) TSCin vivo, nM (% RSE) 

ADC1 0.23 (9.01) 7.18 (19.5) 

ADC2 0.51 (9.31) 11.0 (21.2) 

ADC3 0.61 (9.54) 32.7 (11.6) 

ADC4 0.62 (9.45) 92.2 (12.3) 

ADC5 0.66 (21.2) 14.2 (37.1) 

ADC6 0.93 (17.2) 33.5 (34.1) 

ADC7 1.12 (12.5) 43.3 (23.1) 

ADC8 1.45 (9.66) 41.3 (24.2) 

ADC9 2.18 (9.17) 47.9 (57.1) 

ADC10 2.56 (20.7) 525 (97) 

ADC11 3.10 (17.3) 1160 (63.2) 

ADC12 4.08 (15.2) 83.3 (12.1) 

ADC13 4.69 (14.1) 135 (144) 

ADC14 (Trastuzumab-DM1) 5.60 (16.3) 193 (65.5) 

ADC15 12.13 (19) 256 (112) 

ADC16 15.26 (11.1) 840 (119) 

ADC17 26.25 (29) 441 (71.2) 

ADC18 29.64 (19.9) 296 (52.3) 

ADC19 > 1000 (NA) 1138 (64.7) 
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Figure 5: The figure demonstrates the positive linear relationship observed between TSCin vitro and TSCin vivo, which 
was used to generate the IVIVC. The gray circle highlights the ADC that was an outlier. 

 

3.5  Discussion 
 

IVIVC is generally defined as a predictive mathematical relationship between an in vitro property 
of the drug and an in vivo response. It is a very routinely sought after and used methodology in 
the drug discovery and development programs at pharmaceutical industries (e.g. IVIVC between 
in vitro dissolution and the in vivo absorption rate of a drug from the dosage form). In oncology 
drug discovery and development programs, scientists have been trying to establish IVIVC 
between the in vitro sensitivity/resistance of a chemotherapeutic drug and it’s in vivo response 
(preclinical/clinical) [7-10].  However, the majority of these IVIVC studies have based their 
conclusions on the observation of trends rather than the use of quantitative methods, and most 
studies have used dichotomous definitions (responsive vs. resistant) of in vitro or in vivo 
(preclinical/clinical) activity based on largely invalidated cutoff values of efficacy measures 
[7,10,8,9]. As such, most of the IVIVCs developed for oncology drugs are non-predictive, and 
overall correlation rates are reported as % of true positive, true negative, false positive, and false 
negative correlations.  

Here we have used mathematical PK/PD modeling to derive a predicative IVIVC between the in 
vitro and in vivo efficacy of ADCs, which are novel anticancer agents. The success or failure of an 
effort to establish IVIVC for oncology drugs depend on the quality of experimental models, 
protocols, and endpoints used to generate the data. Consequently, for our IVIVC study we have 
conduct a detailed kinetic in vitro and in vivo experiments and have integrated all the available 
data using mathematical modeling. In the past, a large number of the reported IVIVC are 
generated using clonogenic in vitro assays that use colorimetric endpoints (e.g. MTT) to infer the 
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in vitro potency of anticancer drugs (e.g. IC50), and TGI studies in murine xenograft models of 
human tumors that use changes in tumor volume to infer in vivo potency of the drug (e.g. T/C%). 
However, the point estimates used for these past IVIVCs do not contain complete information 
about the time course of a drug’s response, and could also change based on the time chosen to 
determine the particular endpoint (e.g. IC50 and T/C values can be different based on the time 
point chosen to calculate them). To overcome this issue, we have employed TSC as an integrated 
endpoint to conduct IVIVC, which is a secondary parameter derived from the model estimates.  

While conducting an in vitro time course study to assess the effect of anticancer agents on cell 
viability is better than a single time point study, correctly integrating the data from the time 
course study is equally important [10,1]. For example, despite conducting a time course study on 
the effect of anticancer agents on cell viability, Furukawa et al. [10] have reported their data 
without any kind of integration. This could have been easily accomplished with the use of a 
mathematical model that can characterize all the data simultaneously [1]. Accordingly, we have 
not only conducted detailed time course study to investigate the effect of ADCs on cell viability, 
but we have also integrated all the in vitro data for each ADC simultaneously using a novel 
mathematical model. The parameter estimates from this model were further used to derive TSCin 

vitro. The in vivo efficacy of each ADC was evaluated in xenograft models, where TGI studies were 
conducted after administering 3 different doses of ADCs, and the data from in vivo studies was 
integrated using a widely used PK/PD model [2,3]. However, similar to T/C values, just the 
parameter estimates from the mathematical model cannot be compared with the in vitro results. 
Thus, TSCin vivo was derived from the parameter estimates of the PK/PD model to use it as a 
variable for correlation with TSCin vitro. 

As reported in Table-3 and Figure-5 and based on the Spearman’s rank correlation coefficient 
value of 0.82, it can be deduced that there was a good positive correlation between TSCin vitro and 
TSCin vivo. These data suggest that the in vitro studies were correctly able to rank ADCs in terms of 
in vivo potency. Of note, the estimated value for the ratio of TSCin vivo to TSCin vitro for all the ADCs 
was ~27 (the slope of the power model fitted to the linear relationship between TSCin vivo and 
TSCin vitro), which imply that in order to achieve tumor stasis in vivo ~27 fold higher concentrations 
of ADC need to be maintained in the plasma of tumor bearing mouse compared to the ADC 
concentration in the cell culture media. This observation is consistent with the fact that tumor 
concentrations of antibodies/ADCs can be considerably lower than the plasma concentrations, 
requiring a higher plasma concentration to achieve tumor concentrations similar to the cell 
culture media concentration. The IVIVC established in this manuscript can help an ADC discovery 
and development project team triage the ADCs based on their relative potency and can help the 
team make go/no-go decisions about a particular ADC based on the expected plasma 
concentration required to achieve stasis. Thus, the triaging based on IVIVC can save a lot of time, 
resources, and animals by preventing unnecessary scale-up of ADCs and unnecessary in-vivo 
experiments. The ability to predict in vivo stasis concentration based on the in vitro experiment 
can also help scientists design an optimal dosing regimen with suitable doses.   

It is important to point out that for conducting IVIVC the same cell line was used for the in vitro 
and in vivo experiment. So, it remains to be seen whether the in vitro rank ordering of ADCs and 
IVIVC would hold up if different cell lines were used to conduct the analysis. Also, for one of the 
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ADCs there was no efficacy observed in vitro, however there was a marginal efficacy in vivo. This 
could occur because the in vitro cell culture medium provides a different biological milieu than 
the in vivo system, where the chances of an ADC being digested by a different mechanism and 
locally releasing the payload in the tumor may be a factor. Nonetheless, the ADC with IC50 value 
of >1000 nM had a very high TSCin vivo value as well, implying the weak efficacy in vitro is aptly 
translated to a weak efficacy in vivo. All the ADCs tested had payloads with similar mechanisms 
of action, and the IVIVC approach presented here should also be verified using payloads with 
diverse mechanism of action. Here we have assumed that nominal concentrations of ADC in the 
media remain the same, however it is well known that payload may fall off ADCs in the media. 
So, ideally one should account for the decreasing ADC concentrations in the media while 
modeling the in vitro data, but it becomes too laborious to measure ADC concentrations in all 
wells at each time point. Hence, we have assumed the constant concentration of ADC in media.  

The IVIVC approach established in this manuscript also showcases the tremendous potential of 
PK/PD modeling in integrating the available in vitro and in vivo data. Without such tools it would 
not have been possible to integrate all the in vitro and in vivo data to come up with one single 
variable representing the efficacy of a molecule in each experimental setting, which can be 
compared with each other to establish IVIVC. It is hypothesized that the methodology to establish 
IVIVC presented here can be applied to all anticancer therapeutic drugs. Since this approach 
accounts for in vitro and in vivo PK of the molecules and associates this PK with the observed 
efficacy of the molecules, it helps in establishing a relationship that purely depends on 
compounds’ potency. Thus, one should be able to establish IVIVC for any class of anticancer 
agents (e.g. small molecule or large molecule) using any of the available cancer cell lines. 
However, one has to keep in mind that this approach assumes that the cancer cells behaves 
similarly during in vitro and in vivo experiments, which may not always be true. One can also 
conduct the kinetic in vitro experiment with toxicity prone tissue cells (e.g. liver or bone marrow 
cells) to generate a toxicity matrix similar to TSCin vitro, which can help in generating an in vitro 
therapeutic index that could provide a better parameter for triaging anticancer drugs at the 
discovery stage. 

In summary, here we have presented a novel methodology to establish IVIVC for anticancer 
drugs, which uses PK/PD modeling to integrate the information obtained from the experimental 
data. The in vitro potency was represented as TSCin vitro and the in vivo potency was represented 
as TSCin vivo. Data from 19 different ADCs was used to establish the IVIVC between TSCin vitro and 
TSCin vivo, which provided a very good positive correlation evident from the Spearman’s rank 
correlation coefficient value of 0.82. Establishing IVIVC for oncology drugs provides a tremendous 
savings in terms of time and resources, along with an ability to triage correct molecules based on 
their potency in the discovery or early drug development stage. The PK/PD modeling approach 
to establish IVIVC presented here should be verified by employing a diverse set of anticancer 
drugs and cell lines. 
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Supplementary Material 
 
Supplementary Table 1: Parameter estimates obtained by fitting the model shown in Figure 1 to the in vitro ‘viable 
cell number vs. time’ data generated following incubation of N87 cells with different ADCs. 
 

ADC-1 
Parameter Estimate %RSE Unit 

Kg 5.93E-01 3 Day-1 

Cell Maximum 2.13E+05 3 Unit less 

TauC 0.979 14 Day 

TauS 0.184 12 Day 

Kmax_in_vitro 2.49 6 Day-1 

ICγ50_in_vitro 0.729 2 nM 

γ 1 Fixed Unit less 
 

ADC-2 
Parameter Estimate %RSE Unit 

Kg 5.52E-01 4 Day-1 
Cell Maximum 2.54E+05 6 Unit less 

TauC 0.55 19 Day 

TauS 0.162 9 Day 

Kmax_in_vitro 1.07 0 Day-1 

ICγ50_in_vitro 0.474 4 nM 

γ 1 Fixed Unit less 
 

 
ADC-3 

Parameter Estimate %RSE Unit 
Kg 3.73E-01 6 Day-1 

Cell Maximum 3.21E+05 12 Unit less 

TauC 0.231 24 Day 

TauS 0.0187 41 Day 

Kmax_in_vitro 1.17 1 Day-1 

ICγ50_in_vitro 1.3 2 nM 

γ 1 Fixed Unit less 
 

 
ADC-4 

Parameter Estimate %RSE Unit 
Kg 3.75E-01 6 Day-1 

Cell Maximum 4.12E+05 15 Unit less 

TauC 0.36 19 Day 

TauS 0.0463 11 Day 

Kmax_in_vitro 1.03 0 Day-1 

ICγ50_in_vitro 1.09 1 nM 

γ 1 Fixed Unit less 
 

 
ADC-5 

Parameter Estimate %RSE Unit 
Kg 9.66E-01 3 Day-1 

Cell Maximum 2.33E+05 3 Unit less 

TauC 0.256 39 Day 

TauS 0.35 10 Day 

Kmax_in_vitro 1.72 5 Day-1 

ICγ50_in_vitro 0.517 5 nM 

γ 1 Fixed Unit less 
 

 
ADC-6 

Parameter Estimate %RSE Unit 
Kg 8.69E-01 3 Day-1 

Cell Maximum 2.20E+05 2 Unit less 

TauC 3.60E-01 37 Day 

TauS 0.341 7 Day 

Kmax_in_vitro 1.72 8 Day-1 

ICγ50_in_vitro 0.907 1 nM 

γ 1 Fixed Unit less 
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ADC-7 
Parameter Estimate %RSE Unit 

Kg 8.56E-01 3 Day-1 
Cell Maximum 2.55E+04 5 Unit less 

TauC 1.02 18 Day 

TauS 0.253 8 Day 

Kmax_in_vitro 3.01 7 Day-1 

ICγ50_in_vitro 2.81 7 nM 

γ 1 Fixed Unit less 
 

 
 
 
 
 
 

ADC-8 
Parameter Estimate %RSE Unit 

Kg 0.928 3 Day-1 
Cell Maximum 26500 3 Unit less 

TauC 1.06 14 Day 

TauS 0.201 6 Day 

Kmax_in_vitro 2.21 3 Day-1 

ICγ50_in_vitro 2 6 nM 

γ 1 Fixed Unit less 
 

 
ADC-9 

Parameter Estimate %RSE Unit 
Kg 0.843 3 Day-1 

Cell Maximum 2.58E+04 3 Unit less 

TauC 1.05 10 Day 

TauS 1.38E-01 8 Day 

Kmax_in_vitro 3.32 5 Day-1 

ICγ50_in_vitro 6.42 5 nM 

γ 1 Fixed Unit less 
 

 
ADC-10 

Parameter Estimate %RSE Unit 
Kg 3.87E-01 6 Day-1 

Cell Maximum 3.71E+05 12 Unit less 

TauC 0.0351 168 Day 

TauS 0.0297 16 Day 

Kmax_in_vitro 0.676 5 Day-1 

ICγ50_in_vitro 1.91 10 nM 

γ 1 Fixed Unit less 
 

 
ADC-11 

Parameter Estimate %RSE Unit 
Kg 4.81E-01 7 Day-1 

Cell Maximum 4.44E+04 9 Unit less 

TauC 1.78E-01 19 Day 

TauS 0.0434 34 Day 

Kmax_in_vitro 1.14 2 Day-1 

ICγ50_in_vitro 3.25 12 nM 

γ 1 Fixed Unit less 
 

 
ADC-12 

Parameter Estimate %RSE Unit 
Kg 0.984 4 Day-1 

Cell Maximum 2.80E+04 3 Unit less 

TauC 2.22E-01 60 Day 

TauS 2.69E-01 18 Day 

Kmax_in_vitro 1.51E+00 3 Day-1 

ICγ50_in_vitro 2.18E+00 8 nM 

γ 1 Fixed Unit less 
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ADC-13 
Parameter Estimate %RSE Unit 

Kg 6.31E-01 3 Day-1 
Cell Maximum 3.81E+05 3 Unit less 

TauC 0.347 27 Day 

TauS 0.224 6 Day 

Kmax_in_vitro 0.857 2 Day-1 

ICγ50_in_vitro 1.68 3 nM 

γ 1 Fixed Unit less 
 

 
 
 

ADC-14 
Parameter Estimate %RSE Unit 

Kg 1.05 4 Day-1 
Cell Maximum 25300 4 Unit less 

TauC 0.199 43 Day 

TauS 0.302 9 Day 

Kmax_in_vitro 1.62 3 Day-1 

ICγ50_in_vitro 3.04 8 nM 

γ 1 Fixed Unit less 
 

 
ADC-15 

Parameter Estimate %RSE Unit 
Kg 1 3 Day-1 

Cell Maximum 2.57E+04 4 Unit less 

TauC 1.58E+00 15 Day 

TauS 0.0564 11 Day 

Kmax_in_vitro 1.23 1 Day-1 

ICγ50_in_vitro 2.79 9 nM 

γ 1 Fixed Unit less 
 

 
ADC-16 

Parameter Estimate %RSE Unit 
Kg 5.05E-01 3 Day-1 

Cell Maximum 2.54E+05 5 Unit less 

TauC 0.747 18 Day 

TauS 0.0928 12 Day 

Kmax_in_vitro 0.731 1 Day-1 

ICγ50_in_vitro 6.83 4 nM 

γ 1 Fixed Unit less 
 

 
ADC-17 

Parameter Estimate %RSE Unit 
Kg 5.99E-01 3 Day-1 

Cell Maximum 3.68E+05 3 Unit less 

TauC 0.488 22 Day 

TauS 0.197 11 Day 

Kmax_in_vitro 0.73 4 Day-1 

ICγ50_in_vitro 5.74 9 nM 

γ 1 Fixed Unit less 
 

 
ADC-18 

Parameter Estimate %RSE Unit 
Kg 6.12E-01 2 Day-1 

Cell Maximum 3.70E+05 2 Unit less 

TauC 0.436 35 Day 

TauS 0.226 22 Day 

Kmax_in_vitro 0.72 2 Day-1 

ICγ50_in_vitro 5.23 6 nM 

γ 1 Fixed Unit less 
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Supplementary Table 2: Parameter estimates obtained by fitting the model shown in Figure-2 to the TGI data 
generated in N87 xenografts following administration of different ADCs. 
 

ADC-1 
Parameter Estimate %RSE Unit 

kg Exponential 
 

0.102 7 Day-1 

kgLinear 
 

28.6 9 mm3 ●Day-1 

VMax 

 4.16E+03 22 mm3 

Tau 
 1.68 6 Day 

kkill_Max 

 0.174 4 Day-1 

KC50 

 1.01 0 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.266 94 Unit less 

IIV_kg Linear 
 

0.393 23 Unit less 
 

ADC-2 
Parameter Estimate %RSE Unit 

kg Exponential 
 

0.0745 6 Day-1 

kgLinear 
 

51.8 14 mm3 ●Day-1 

VMax 

 2.01E+03 8 mm3 

Tau 
 1.34 7 Day 

kkill_Max 

 0.212 6 Day-1 

KC50 

 3.04 17 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.222 70 Unit less 

IIV_kg Linear 
 

0.478 23 Unit less 
 

 
ADC-3 

Parameter Estimate %RSE Unit 
kg Exponential 

 
0.138 7 Day-1 

kgLinear 
 

58.5 8 mm3 ●Day-1 

VMax 

 3.82E+03 17 mm3 

Tau 
 5.01 2 Day 

kkill_Max 

 0.585 1 Day-1 

KC50 

 15.9 7 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.186 58 Unit less 

IIV_kg Linear 
 

0.322 23 Unit less 
 

 
ADC-4 

Parameter Estimate %RSE Unit 
kg Exponential 

 
0.236 7 Day-1 

kgLinear 
 

64.3 8 mm3 ●Day-1 

VMax 

 3.05E+03 10 mm3 

Tau 
 3.22 3 Day 

kkill_Max 

 0.975 0 Day-1 

KC50 

 59 8 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.349 >100 Unit less 

IIV_kg Linear 
 

0.357 24 Unit less 
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ADC-5 
Parameter Estimate %RSE Unit 

kg Exponential 
 

0.0636 13 Day-1 

kgLinear 
 

61.4 18 mm3 ●Day-1 

VMax 

 3.95E+03 5 mm3 

Tau 
 1 0 Day 

kkill_Max 

 0.135 6 Day-1 

KC50 

 2.39 26 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.467 28 Unit less 

IIV_kg Linear 
 

0.548 24 Unit less 
 

 
 
 

ADC-6 
Parameter Estimate %RSE Unit 

kg Exponential 
 

0.0982 14 Day-1 

kgLinear 
 

23.2 12 mm3 ●Day-1 

VMax 

 4.68E+03 45 mm3 

Tau 
 3.44 6 Day 

kkill_Max 

 0.537 17 Day-1 

KC50 

 37.9 22 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.34 62 Unit less 

IIV_kg Linear 
 

0.54 24 Unit less 
 

 
ADC-7 

Parameter Estimate %RSE Unit 
kg Exponential 

 
0.111 5 Day-1 

kgLinear 
 

64.8 9 mm3 ●Day-1 

VMax 

 3.77E+03 33 mm3 

Tau 
 2.63 6 Day 

kkill_Max 

 0.308 8 Day-1 

KC50 

 11.6 17 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.114 >100 Unit less 

IIV_kg Linear 
 

0.359 26 Unit less 
 

 
ADC-8 

Parameter Estimate %RSE Unit 
kg Exponential 

 
0.138 5 Day-1 

kgLinear 
 

61.6 8 mm3 ●Day-1 

VMax 

 3.77E+03 33 mm3 

Tau 
 3.94 5 Day 

kkill_Max 

 0.292 7 Day-1 

KC50 

 6.9 19 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.114 >100 Unit less 

IIV_kg Linear 
 

0.359 26 Unit less 
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ADC-9 
Parameter Estimate %RSE Unit 

kg Exponential 
 

0.16 16 Day-1 

kgLinear 
 

48.7 13 mm3 ●Day-1 

VMax 

 5.01E+03 26 mm3 

Tau 
 5.11 5 Day 

kkill_Max 

 0.265 13 Day-1 

KC50 

 7.36 23 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.715 50 Unit less 

IIV_kg Linear 
 

0.553 23 Unit less 
 

 
 
 

ADC-10 
Parameter Estimate %RSE Unit 

kg Exponential 
 

0.254 15 Day-1 

kgLinear 
 

79.7 8 mm3 ●Day-1 

VMax 

 2.77E+03 12 mm3 

Tau 
 2.84 8 Day 

kkill_Max 

 0.403 29 Day-1 

KC50 

 59.9 45 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.594 >100 Unit less 

IIV_kg Linear 
 

0.359 24 Unit less 
 

 
ADC-11 

Parameter Estimate %RSE Unit 
kg Exponential 

 
0.113 13 Day-1 

kgLinear 
 

61.5 9 mm3 ●Day-1 

VMax 

 4.38E+03 16 mm3 

Tau 
 1.1 16 Day 

kkill_Max 

 0.236 25 Day-1 

KC50 

 189 40 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.575 31 Unit less 

IIV_kg Linear 
 

0.45 24 Unit less 
 

 
ADC-12 

Parameter Estimate %RSE Unit 
kg Exponential 

 
0.12 9 Day-1 

kgLinear 
 

31.4 8 mm3 ●Day-1 

VMax 

 4.19E+03 23 mm3 

Tau 
 4.41 4 Day 

kkill_Max 

 0.78 0 Day-1 

KC50 

 86.6 5 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.365 75 Unit less 

IIV_kg Linear 
 

0.382 23 Unit less 
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ADC-13 
Parameter Estimate %RSE Unit 

kg Exponential 
 

0.11 20 Day-1 

kgLinear 
 

23.4 14 mm3 ●Day-1 

VMax 

 4.37E+03 7 mm3 

Tau 
 3.44 6 Day 

kkill_Max 

 0.148 18 Day-1 

KC50 

 21.8 44 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.5 Fixed Unit less 

IIV_kg Linear 
 

0.791 24 Unit less 
 

 
 
 
 
 
 

ADC-14 
Parameter Estimate %RSE Unit 

kg Exponential 
 

0.0732 11 Day-1 

kgLinear 
 

37.9 17 mm3 ●Day-1 

VMax 

 4.22E+03 18 mm3 

Tau 
 1.36 16 Day 

kkill_Max 

 0.405 38 Day-1 

KC50 

 131 48 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.47 38 Unit less 

IIV_kg Linear 
 

0.781 27 Unit less 
 

 
ADC-15 

Parameter Estimate %RSE Unit 
kg Exponential 

 
0.219 18 Day-1 

kgLinear 
 

15.9 26 mm3 ●Day-1 

VMax 

 2.27E+03 14 mm3 

Tau 
 0.999 29 Day 

kkill_Max 

 0.126 42 Day-1 

KC50 

 52.3 91 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.182 >100 Unit less 

IIV_kg Linear 
 

1.22 23 Unit less 
 

 
ADC-16 

Parameter Estimate %RSE Unit 
kg Exponential 

 
0.0934 8 Day-1 

kgLinear 
 

38.1 13 mm3 ●Day-1 

VMax 

 3.42E+03 21 mm3 

Tau 
 2.52 15 Day 

kkill_Max 

 0.225 55 Day-1 

KC50 

 177 84 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.283 39 Unit less 

IIV_kg Linear 
 

0.748 26 Unit less 
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ADC-17 
Parameter Estimate %RSE Unit 

kg Exponential 
 

0.0844 12 Day-1 

kgLinear 
 

54.9 12 mm3 ●Day-1 

VMax 

 4.24E+03 21 mm3 

Tau 
 0.999 5 Day 

kkill_Max 

 0.175 25 Day-1 

KC50 

 70.9 48 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.483 27 Unit less 

IIV_kg Linear 
 

0.516 24 Unit less 
 

 
 
 

 
 
 

ADC-18 
Parameter Estimate %RSE Unit 

kg Exponential 
 

0.266 12 Day-1 

kgLinear 
 

81.4 10 mm3 ●Day-1 

VMax 

 2.57E+03 9 mm3 

Tau 
 6.36 5 Day 

kkill_Max 

 0.353 3 Day-1 

KC50 

 14.5 10 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.533 >100 Unit less 

IIV_kg Linear 
 

0.479 23 Unit less 
 

 
ADC-19 

Parameter Estimate %RSE Unit 
kg Exponential 

 
0.133 10 Day-1 

kgLinear 
 

70.6 12 mm3 ●Day-1 

VMax 

 5.19E+03 20 mm3 

Tau 
 0.819 22 Day 

kkill_Max 

 0.192 14 Day-1 

KC50 

 75.7 29 µg/mL 

ψ 
 20 Fixed Unit less 

IIV_kg Exponential 
 

0.402 29 Unit less 

IIV_kg Linear 
 

0.657 23 Unit less 
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4.1 Abstract 

A modeling and simulation approach was used for quantitative comparison of a new generation 
HER2 antibody drug conjugate (ADC, PF-06804103) with trastuzumab-DM1 (T-DM1). To compare 
preclinical efficacy, the pharmacokinetic (PK)/ pharmacodynamic (PD) relationship of PF-
06804103 and T-DM1 was determined across a range of mouse tumor xenograft models, using a 
tumor growth inhibition (TGI) model. The tumor static concentration (TSC) was assigned as the 
minimal efficacious concentration. PF-06804103 was concluded to be more potent than T-DM1 
across cell lines studied. TSCs ranged from 1.0- 9.8 µg/mL (n=7) for PF-06804103 and from 4.7- 
29 µg/mL (n= 5) for T-DM1. Two experimental models which were resistant to T-DM1, responded 
to PF-06804103 treatment. A mechanism-based target mediated drug disposition (TMDD) model 
was used to predict the human PK of PF-06804103. This model was constructed and validated 
based on T-DM1 which has non-linear PK at doses administered in the clinic, driven by binding to 
shed HER2. Non-linear PK is predicted for PF-06804103 in the clinic and is dependent upon 
circulating HER2 extracellular domain (ECD) concentrations. The models were translated to 
human and suggested greater efficacy for PF-06804103 compared to T-DM1. In conclusion, a fit-
for-purpose translational PK/PD strategy for ADCs is presented and used to compare a new 
generation HER2 ADC with T-DM1. 

4.2 Introduction 

Human epidermal growth factor receptor 2 (HER2) over-expression in cancer patients is a genetic 
alteration that promotes cancer cell proliferation and survival, resulting in increased tumor 
growth and poor clinical outcome in the absence of HER2 targeted therapy [1, 2]. HER2+ cancers 
account for approximately 20% of all breast cancers [1, 2]. Trastuzumab, a monoclonal antibody 
(mAb) which specifically targets HER2, has revolutionized treatment as one of the first non-
hormonal medicines for breast cancer [3]. 

ADCs are a targeted therapy for cancer treatment, combining a specific mAb to a tumor antigen 
linked to a potent cytotoxic agent [4]. The aim for this type of therapeutic is to target the 
cytotoxic drug to tumor cells, thus maximizing efficacy while minimizing systemic toxicity due to 
normal tissue exposure. In 2013, the anti-HER2 ADC T-DM1 was approved, offering greater 
potential efficacy and enhanced survival by conjugation of a cytotoxic payload (DM1) to 
trastuzumab [5]. However, both trastuzumab and T-DM1 are only efficacious in patients with 
high HER2 expression and patients are acquiring resistance [6, 7]. As such there remains a need 
for improved HER2 therapies to reach a broader spectrum of patients and reduce risk of disease 
recurrence. 

PF-06804103 is a new generation HER2 ADC with an auristatin microtubule inhibitor payload 
(Aur-101) conjugated to an anti-HER2 IgG1 mAb via a site specific mcValCitPABC cleavable linker 
[8]. Although both PF-06804103 and T-DM1 are anti-HER2 ADCs, they differ in their linker-
payloads and their conjugation chemistry, which has a significant effect on their mechanism of 
action [9-12].  T-DM1 has a maytansine derived payload (DM1) which is linked via a stable 
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thioether linker to native lysines on trastuzumab. The conjugation method results in a 
heterogeneous mixture of conjugates with an average of 3.0- 3.6 drugs per antibody, and a range 
of 0- 6. Upon binding to HER2, T-DM1 undergoes receptor mediated internalization and 
trafficking from the endosomes to the lysosomes. In the lysosome T-DM1 undergoes proteolytic 
degradation, which releases the cytotoxic DM1-linker-lysine-metabolite (lysine-MCC-DM1). This 
metabolite must be actively transported from the lysosome in order to reach its intra-cellular site 
of action [13]. 

The payload of PF-06804103 is conjugated to specific cysteines on the anti-HER2 mAb which have 
been mutated at fixed locations. This results in production of a homogeneous ADC, with a fixed 
drug to antibody ratio (DAR) of 4.0. PF-06804103 is also internalized upon binding to HER2, and 
cleavage of the protease linker results in release of the Aur-101 payload in the endosomes. This 
is sufficiently permeable to diffuse out of the endosomes and into the nucleus. Unlike T-DM1, 
the permeability of the released payload means it can enter adjacent cells and mediate cell death, 
a process referred to as bystander effect [14]. This has been demonstrated in xenograft models 
in mouse where PF-06804103 enables potent tumor activity in non-HER2 amplified breast cancer 
and heterogeneous low HER2 models, where T-DM1 is ineffective. The site-specific conjugation 
method used in PF-06804103 should enable greater stability with more consistent efficacy and 
the bystander effect should enable treatment of patients with more heterogeneous tumors and 
lower HER2 expression. Differences in linker-payload chemistry of PF-06804103 compared to T-
DM1 should also impede mechanisms of resistance specific to lysine-MCC-DM1, including 
impaired lysosomal degradation or enhanced efflux [15, 16].  

In this manuscript, mathematical modeling and simulation is used as a tool to quantitatively 
compare PF-06804103 and T-DM1, in terms of their PK and efficacy. A modeling-based method 
is provided to assess efficacious concentration of PF-06804103 and T-DM1 across preclinical cell 
line xenograft (CLX) and patient derived xenograft (PDX) studies in mouse.  A mechanistic TMDD 
model is applied to account for variation in shed HER2 and to describe T-DM1 non-linearity in 
patients. A similar model is then used to predict clinical PK for PF-06804103. A fit-for-purpose 
translational strategy is proposed to predict clinical efficacy in patients. 

4.3 Methods 

Compounds 

PF-06804103 was synthesized at Pfizer as described [8]. Trastuzumab-maytansinoid conjugate 
was synthesized at Pfizer and is structurally similar to trastuzumab emtansine (T-DM1) with 
similar in vitro potency and in vivo efficacy [8]. It is comprised of an anti-HER2 trastuzumab 
antibody covalently bound to DM1 through a bifunctional linker. Conjugation was conducted as 
described previously [4]. 
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Animal studies 

All animal studies were approved by the Pfizer Institutional Animal Care and Use Committee 
according to established guidelines.   

PF-06804103 In vivo mouse and cynomolgus monkey PK studies 

PF-06804103 was administered as a single intravenous (IV) bolus dose of 3 mg/kg to female 
athymic nu/nu mice (n=4/dose). Blood samples were collected pre-dose and at 0.083, 6, 24, 48, 
96 168 and 336 h post dose. PF-06804103 was administered to cynomolgus monkey as multiple 
IV bolus doses, given every 3 weeks for a total of 3 doses at 3 mg/kg, 6 mg/kg (both n=3 males, 
n=3 females) and at 12 mg/kg (n=5 males, n=5 females). Blood samples were collected pre-dose 
and at 0.083, 6, 24, 72, 168, 336 and 504 h post-dose.  

PF-06804103 Assay 

Quantitation of ADC (mAb with at least one drug molecule conjugated) concentrations in plasma 
collected from female athymic nu/nu mice and cynomolgus monkeys following administration of 
PF-06804103 (or T-DM1) was achieved using Gyrolab™ (Gyros Protein Technologies, Uppsala, 
Sweden). Isolation and detection of ADC concentrations from biological matrix was carried out 
with streptavidin coupled micro columns located on Bioaffy™200 compact discs (CDs), an 
integrated nanoliter scale immunoassay device, within Gyrolab™. Plasma calibration standards, 
quality control samples and plasma study samples were all diluted to the minimum required 
dilution (MRD) and loaded onto the CDs. For measurement of ADC, a sheep anti-human IgG 
(Binding Site, San Diego, CA) reagent was used for capture and an internally generated mouse 
anti-payload reagent for detection. Fluorescence of analyte was measured using a laser 
embedded within the workstation.  All data was processed using Watson v7.4 LIMS with a 1/Y*2 
weighting.  

In vivo mouse xenograft studies 

Mouse efficacy studies were completed in 4 CLX models (JIMT-1, BT474 and HCC-1954 derived 
from breast cancers, N87 derived from gastric cancer) and 4 PDX models (24312 and 144580 
derived from breast, 37622 from lung and GA3109 from gastric tumors). Female athymic nude 
mice (Nude, Stock No: 002019) were obtained from the Jackson Laboratory (Farmington, CT).  For 
the CLX models, nude mice were injected subcutaneously in the flank with suspensions of 1 x106 
N87 cells, 5 x106 JIMT-1 cells, 5 x106 HCC-1954 cells or 10 x106 BT474 cells in 50% Matrigel (BD 
Biosciences, Franklin Lakes, NJ). For the PDX models, tumor fragments were subcutaneously 
passaged in vivo from animal to animal in nude mice. Mice were randomized into study groups 
when tumors reached approximately 150 to 300 mm3. Either phosphate buffered saline (PBS, 
Gibco, Cat#14190-144, as vehicle), PF-06804103, or T-DM1 were administered IV at different 
doses starting on day 0 for a total of four doses, 4 days apart (Q4d x4). Dose levels administered 
in each tumor model are shown in Table 2 for PF-06804103 and Table 3 for T-DM1. Tumors were 
measured at least weekly with a calibrator (Mitutoyo, Aurora, Illinois) and the tumor mass was 
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calculated as volume = (width X width X length)/2. These studies have been described previously 
[8]. 

PK/PD modeling in mouse 

1. Pharmacokinetics of PF-06804103 and T-DM1 in mouse and PF-06804103 in Cynomolgus 
monkey 

The PK of PF-06804103 in non-tumor bearing mouse following a single IV dose of 3mg/kg and in 
cynomolgus monkey following multiple dose IV administration at 3, 6 and 12 mg/kg Q3W x 3 
were characterized using a 2-compartment PK model with linear elimination from the central 
compartment (Figure 1a). T-DM1 PK in mouse was taken from the literature, where it was linear 
across the dose range studied (0.3- 15 mg/kg) [17]. 

2. Tumor growth inhibition PK/PD in xenograft mouse as a function of PF-06804103 or T-
DM1 concentration 

The mouse xenograft PK/PD relationship was established by relating PF-06804103 (or T-DM1) 
plasma concentration in mouse to measured xenograft tumor size data using a tumor growth 
inhibition model (Figure 1b; [18]). The mouse PK parameters derived above were fixed in the 
subsequent PD modeling of the xenograft mouse data. The presented model is a modified version 
of the model by Simeoni et al. [19]. Briefly, the unperturbed tumor growth was fitted first using 
individual animal growth data from the vehicle control group, using a logistic model describing 
linear (kg) and exponential (kgEx) growth. The measured initial tumor volume in each animal was 
used for the initial conditions (v0). V1 -V4 are the tumor volume in the growth compartment and  

 
Figure 1: PK/PD model used for the mouse tumor growth inhibition modeling.  (a) 2-compartmental linear PK 
model is linked to (b) a model of tumor growth inhibition. Please refer to Tables 1 and 2 for description of the 
model parameters. 
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three transduction compartments, respectively. TV is the total tumor volume (mm3). The inter-
individual variability of the growth parameters and the maximum tumor volume (Vmax) obtained 
from the unperturbed growth model were then fixed in the simultaneous estimation of growth 
and drug effect parameters from the complete tumor volume data set. τ is the transduction time, 
kkmax is the maximum kill rate, kc50 is the concentration of PF-06804103 or T-DM1 in the plasma 
at half the maximal kill rate, n is the hill co-efficient and ψ is the constant for switching from 
exponential to linear growth patterns. ψ was fixed to a value of 20 in all cases [19]. CADC is 
equivalent to free ADC plasma concentration, as no shed HER2 ECD was detected in mouse. 
Equations 1 - 6 describe the tumor growth inhibition modeling. 

1. 𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘 =  𝑘𝑘𝑘𝑘𝑘𝑘𝐸𝐸𝐸𝐸×  𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
𝐸𝐸

𝑘𝑘𝑝𝑝50
𝐸𝐸+ 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴

𝐸𝐸    

2.  𝑝𝑝𝑉𝑉1
𝑝𝑝𝑝𝑝

=
𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸 ×�1− 𝑇𝑇𝑇𝑇

𝑇𝑇𝑘𝑘𝐸𝐸𝐸𝐸
�× 𝑉𝑉1

�1+�
𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸

𝑘𝑘𝑔𝑔
 × 𝑇𝑇𝑉𝑉�

𝜓𝜓
�

1/𝜓𝜓 − 𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘  ×  𝑉𝑉1 

3. 𝑝𝑝𝑉𝑉2
𝑝𝑝𝑝𝑝

= 𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘 × 𝑉𝑉1 − 𝑉𝑉2
𝜏𝜏

 

4. 𝑝𝑝𝑉𝑉3
𝑝𝑝𝑝𝑝

= 𝑉𝑉2−𝑉𝑉3
𝜏𝜏

 

5. 𝑝𝑝𝑉𝑉4
𝑝𝑝𝑝𝑝

= 𝑉𝑉3−𝑉𝑉4
𝜏𝜏

 

6. 𝑇𝑇𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3 + 𝑉𝑉4 

Initial conditions: TV(t=0) = V1(t=0) = v0; V2(t=0) = V3(t=0) = V4(t=0) = 0 

Calculation of TSC 

TSC was defined as the concentration of PF-06804103 or T-DM1 where tumor growth and death 
rates are equal and tumor volume remains unchanged. This PK/PD derived parameter combines 
the growth pattern information and the drug effect, providing insight on the efficacy of the ADC. 
See equation 7 for TSC calculation. An 80% confidence interval on TSC was calculated using 
parametric bootstrap by resampling from the estimated parameters using a log-normal 
distribution. 

7. 𝑇𝑇𝑇𝑇𝐶𝐶 =  
𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸  × 𝑘𝑘𝐴𝐴50

𝐸𝐸 × �1− 𝑇𝑇0
𝑇𝑇𝑘𝑘𝐸𝐸𝐸𝐸

�

�𝑘𝑘𝑘𝑘𝑘𝑘𝐸𝐸𝐸𝐸 × �1+�𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸
𝑘𝑘𝑔𝑔  ×𝑉𝑉0�

𝜑𝜑
 �

1
𝜑𝜑

− 𝑘𝑘𝑔𝑔𝐸𝐸𝐸𝐸 × �1 − 𝑇𝑇0
𝑇𝑇𝑘𝑘𝐸𝐸𝐸𝐸

��

1
𝐸𝐸
 

Modeling: All modeling was performed using Monolix software v2016 (Paris, France) using the 
solver for stiff ordinary differential equations. The quality of the model fitting was assessed using: 
Diagnostic plots: (a) plots of observations versus population/ individual predictions and 
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comparison with line of unity, (b) plots of weighted residuals versus time/concentration and 
check for systematic deviation from zero, (c) visual predictive checks of observations and 
predictions for all individuals at each dose level to check for goodness of fit [20]. Diagnostic 
criteria: (a) reasonable precision of the parameter estimates (RSE/ CV%) (b) lack of correlation 
between model predicted parameters (<0.95) (c) lack of shrinkage (η-) as a check for model over-
parameterization (<40%) (d) reduction in objective function values and/or Akaike and Schwarz 
criterion for model comparison (e) Condition numbers (included in Tables 2 and 3). As a rule of 
thumb, condition number should be less than 10Npar where Npar is the number of parameters 
estimated in the model for a well-defined model with respect to the information in the data [21]. 
However, as with all these diagnostic checks, the condition number cannot be taken in isolation, 
and must be interpreted with respect to all the other criteria. 

Clinical PK predictions 

To predict the human PK for PF-06804103 a TMDD model [22] was constructed, incorporating 
binding to serum HER2 and subsequent clearance of the complex into a standard 2-
compartmental PK model. The extracellular domain (ECD) of HER2 is known to shed from the 
trans-membrane receptor at high levels in the target patient population (metastatic breast 
cancer) [23]. The presence of shed target is hypothesized to drive non-linear clearance of T-DM1. 
The TMDD model was initially used to fit the non-linear PK of T-DM1 observed in patients at doses 
administered in the clinic [24]. The model describes linear, catabolic clearance of T-DM1 (CL), as 
well as shedding of HER2 ECD (kshed), degradation of HER2 ECD (kdeg), binding of T-DM1 to HER2 
ECD (KD, kon and koff) and elimination of the complex (kelADC-ECD). The model structure is shown in 
Figure 3. The concentration of HER2 ECD was initially set to 20 ng/mL (0.2 nM) which is above 
the normal upper limit in healthy females (15 ng/mL), and above the median in metastatic breast 
cancer patients [25]. To improve the individual fit at each dose level, ECD concentration was 
varied between 16 and 28 ng/mL. Patients with higher ECD concentrations had more rapid 
clearance due to TMDD and varying the ECD concentrations enabled better description of the 
slope of the PK curves observed. The kon and KD of T-DM1 were fixed in the model at 61.3 nM-

1day-1 and 0.1 nM, respectively [26]. The binding of T-DM1 to HER2 was assumed to be the same 
for HER2 ECD and transmembrane domain.  kshed, kdeg and kelADC-ECD complex were all estimated 
in the model fitting process.  

The model was then applied to predict the human PK of PF-06804103. The 2-compartment linear 
parameters were scaled from cynomolgus monkey population PK parameters using allometric 
scaling exponents of 1 for volumes and 0.9 for clearance parameters [27]. The binding of PF-
06804103 to HER2 was incorporated into the model and assumed to be the same for HER2 ECD 
and transmembrane domain. The rate of HER2 shedding, HER2 degradation and the clearance of 
the complex were set to that estimated from the model used to fit T-DM1 PK data in patients. To 
investigate the impact of HER2 ECD concentrations on PK/PD, simulations were also performed 
at low (2ng/ml) and high (750ng/ml) HER2 ECD concentrations, representing the range of 
concentrations reported across 78 healthy females and 100 patients with metastatic breast 
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cancer [25]. Equations 8- 11 describe the TMDD modeling. CADC  is the free ADC concentration in 
the central compartment (nM), CADC_per is the ADC concentration in peripheral (i.e. tissue) 
compartment (nM), 𝐶𝐶𝐸𝐸𝐶𝐶𝐴𝐴 is the HER2 ECD concentration (nM) and 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶_𝐸𝐸𝐶𝐶𝐴𝐴  is the ADC- ECD 
complex (nM). In(t) is the infusion rate of the drug in nM/h, based on a MW of the drug of 150 
kDa; the infusion duration was 1 hour. Model simulations were performed in Berkeley Madonna 
v8.3.18 and the model code is included in the Supplementary Material. 

Equations:  

8. 𝑝𝑝𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴
𝑝𝑝𝑝𝑝

 = 𝐼𝐼𝑛𝑛 (𝑑𝑑) − �𝐶𝐶𝐿𝐿
𝑉𝑉𝑝𝑝

× 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶� − � 𝑄𝑄
𝑉𝑉𝑝𝑝

× 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶� + � 𝑄𝑄
𝑉𝑉𝑝𝑝

× 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶_𝑝𝑝𝑝𝑝𝑝𝑝 × 𝑉𝑉𝑝𝑝
𝑉𝑉𝑝𝑝

 �  − (𝑘𝑘𝐷𝐷𝑛𝑛 × 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶 ×

 𝐶𝐶𝐸𝐸𝐶𝐶𝐴𝐴 ) + �𝑘𝑘𝐷𝐷𝑘𝑘𝑘𝑘 × 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶_𝐸𝐸𝐶𝐶𝐴𝐴�  

9. 𝑝𝑝𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴_𝐸𝐸𝐸𝐸𝐿𝐿 
𝑝𝑝𝑝𝑝

= � 𝑄𝑄
𝑉𝑉𝑝𝑝

× 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶 × 𝑉𝑉𝑝𝑝
𝑉𝑉𝑝𝑝

� − � 𝑄𝑄
𝑉𝑉𝑝𝑝

× 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶_𝑝𝑝𝑝𝑝𝑝𝑝� 

10. 𝑝𝑝𝐶𝐶𝐸𝐸𝐴𝐴𝐴𝐴 
𝑝𝑝𝑝𝑝

=  𝑘𝑘𝐷𝐷ℎ𝑑𝑑𝑑𝑑𝐻𝐻𝐸𝐸𝐻𝐻2_𝐸𝐸𝐶𝐶𝐴𝐴 −  �𝑘𝑘𝑑𝑑𝑑𝑑𝐾𝐾𝐻𝐻𝐸𝐸𝐻𝐻2_𝐸𝐸𝐶𝐶𝐴𝐴  × 𝐶𝐶𝐸𝐸𝐶𝐶𝐴𝐴� −  (𝑘𝑘𝐷𝐷𝑛𝑛 × 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶 × 𝐶𝐶𝐸𝐸𝐶𝐶𝐴𝐴) +
� 𝑘𝑘𝐷𝐷𝑘𝑘𝑘𝑘 × 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶_𝐸𝐸𝐶𝐶𝐴𝐴� 

11. 𝑝𝑝𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴_𝐸𝐸𝐴𝐴𝐴𝐴
𝑝𝑝𝑝𝑝

=  (𝑘𝑘𝐷𝐷𝑛𝑛 × 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶 × 𝐶𝐶𝐸𝐸𝐶𝐶𝐴𝐴) −   �𝑘𝑘𝐷𝐷𝑘𝑘𝑘𝑘 × 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶_𝐸𝐸𝐶𝐶𝐴𝐴� − �𝑘𝑘𝑑𝑑𝑑𝑑𝐴𝐴𝐴𝐴𝐶𝐶_𝐸𝐸𝐶𝐶𝐴𝐴  × 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶_𝐸𝐸𝐶𝐶𝐴𝐴� 

Initial conditions: 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶  (t=0) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶_𝑝𝑝𝑝𝑝𝑝𝑝 (t=0) = 𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶_𝐸𝐸𝐶𝐶𝐴𝐴 (t=0) = 0; 𝐶𝐶𝐸𝐸𝐶𝐶𝐴𝐴 (t=0) = 0.206 nM  

 

Clinical PK/PD predictions 

The PD parameters estimated from mouse xenograft studies (Table 2 for PF-06804103 and Table 
3 for T-DM1) were integrated with the predicted human PK parameters (Table 4) to project 
clinical efficacy (tumor regression) following Q3w x4 dosing of PF-06804103 at 1 mg/kg and T-
DM1 at 3.6 mg/kg (clinical dose). It was assumed that mouse PD parameters translate directly to 
human (including initial tumor volumes). Due to the growth rate difference between xenograft 
models and clinical tumors, the predictions that achieve stasis using mouse xenograft PD 
parameters are assumed to be minimally efficacious in human, achieving greater than stable 
disease [18]. This method has been tested previously for T-DM1 and resulted in accurate 
predictions of efficacious dose in the clinic [18].  

4.4 Results 

PF-06804103 PK in mouse and cynomolgus monkey 

To determine the PK/PD relationship in mouse, PK was determined separately following IV 
administration of PF-06804103 at 3mg/kg and described using a 2-compartment linear model. To 
inform PF-06804103 clinical PK predictions, PK was determined in cynomolgus monkey following 
multiple dose IV administration at 3, 6 and 12 mg/kg Q3W x 3.  The PK was linear in monkey 
across the dose range studied and could be described using a 2-compartment PK model. This was 
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expected as there is no shed HER2 ECD in cynomolgus monkey. The terminal half-life in monkey 
was approximately 7 days. The 2-compartment model parameters in mouse and cynomolgus 
monkey are shown in Table 1.  

 

Table 1: Mouse and cynomolgus monkey PK parameters for PF-06804103  

Parameter (unit)a Description Mouseb Cynomolgus monkeyc (CV %) 

Vc (mL/kg) Central compartment volume 61.0 38.1 (3) 

CL (mL/day/kg) Clearance 22.8 7.2 (5) 

Vp (mL/kg) Peripheral compartment volume 56.2 20.2 (7) 

Q (mL/day/kg) Inter-compartmental clearance 35.0 19.2 (18) 

aMacro-constants conversion to micro-constants:  kel= CL/Vc; k12=Q/Vc; k21= Q/Vp.  bPK of PF-06804103 was 
determined in mouse following single IV administration at 3mg/kg. Mean PK values were fitted to a 2-compartment 
model (no % CV derived). cPK of PF-06804103 was determined in cynomolgus monkey following IV administration 
on day 1 at 3, 6, or 12 mg/kg. A 2-compartment population PK model was used to fit the cynomolgus monkey data 
with Omega V1 = 0.0589 (48), Omega CL = 0.22 (16) and proportional error= 0.131 (7).  

 

PF-06804103 and T-DM1 PK/PD relationship in mouse tumor xenograft models 

The ability of PF-06804103 and T-DM1 to regress tumors was studied in a range of CLX and PDX 
experimental mouse tumor models. The mouse PK parameters were integrated with the tumor 
volume data over time following different dose levels of drug to describe the ADC concentration 
versus response relationship. The model described the differences in growth rates observed 
across the tumor models. It described the delay between drug administration and tumor cell 
killing due to signal transduction. The different tumor models had varying susceptibilities to drug 
effect which are observed as differences in potency (kc50) and kill rate (kkmax) of PF-06804103 and 
T-DM1 across models. PD parameters determined for PF-06804103 in 7 mouse xenograft models 
(3 CLX and 4 PDX) are shown in Table 2 and goodness of fit plots are shown in Supplementary 
Figure 1. PD parameters for T-DM1 across 3 CLX models in mouse are shown in Table 3.  

Comparison of PF-06804103 and T-DM1 efficacy using TSC values 

Minimal efficacious concentration (Ceff) in mouse xenograft models was defined as the 
concentration required for tumor stasis (TSC). PF-06804103 and T-DM1 TSC values with 80% 
confidence intervals across a range of CLX/PDX are shown in Figure 2. Mean TSC of PF-06804103 
was 4.3 µg/ml across 7 studies, with a range of 1.0 – 9.8 µg/mL. Mean TSC of T-DM1 was 15.8 
µg/mL across 3 studies, with range of 4.7 – 29 µg/mL. JIMT-1 and 144580 mouse tumor models 
did not respond to T-DM1 and TSCs could not be determined in these models (> 50µg/mL).   
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Table 2: PF-06804103 estimated PD model parameters (CV %) and derived TSC values [80% confidence intervals] in 
3 CLX and 4 PDX mouse models  

Parameter 
(unit) 

Description JIMT-1 

CLX 
(Breast) 

N87 

CLX 
(Gastric) 

BT474 

CLX 
(Breast) 

24312 

PDX 
(Breast) 

37622 

PDX 
(NSCLC) 

144580 

PDX 
(Breast) 

GA3109 

PDX 
(Gastric) 

Doses 
(mg/kg) 

IV Q4d x 4 0, 0.25, 
0.5, 1 

0, 0.3, 1, 
3 

0, 0.5, 
1.5 

0, 1.5, 3, 
6 

0, 0.3, 1, 
3 

0, 1.5, 3, 
6 

0, 1, 3 

kgEx  
(day-1) 

Exponential 
growth rate 

0.0883 
(8) 

0.068  
(8) 

0.0442 
(65) 

0.023 
(12) 

0.0559 
(9) 

0.0461 
(8) 

0.115  
(6) 

kg 

(mm3 day-1) 
Linear growth 
rate 

47.5  
(23) 

26.8  
(14) 

78.5  
(23) 

24.4  
(15) 

68.4  
(22) 

395  
(65) 

57.2  
(9) 

Vmax  

(mm3) 
Maximum 
growth rate 

4.08E+03 
(15) 

4.60E+03 
(20) 

5.28E+03 
(23) 

5.00E+03 
(-) 

3.84E+03 
(13) 

5.92E+03 
(16) 

7.07E+03 
(26) 

τ   
(day) 

Transduction 
time 

2.23  
(6) 

2.54  
(6) 

3.04  
(16) 

1.66  
(1) 

3.32  
(5) 

9  
(5) 

5.81  
(2) 

kkmax  
(day-1) 

Maximum kill 
rate 

0.703  
(9) 

0.15  
(5) 

0.998 
(209) 

0.721  
(0) 

0.362 
(13) 

0.516 
(13) 

1.24  
(2) 

kc50  
(µg mL-1) 

Concentration 
at half 
maximal kill  

10.6  
(9) 

1.24  
(16) 

31.5 
(236) 

15.8  
(5) 

4.19  
(19) 

25.8  
(16) 

14.7  
(6) 

n -- 2.4  
(12) 

1  
(-) 

1  
(-) 

2.6  
(-) 

1.3  
(7) 

2.4  
(21) 

2.5  
(6) 

ψ  -- 20  
(-) 

20  
(-) 

20  
(-) 

20  
(-) 

20  
(-) 

20  
(-) 

20  
(-) 

Omega kgEx   0.401 
(12) 

0.271  
(-) 

2.59  
(17) 

0.373  
(-) 

0.372  
(-) 

0.359  
(-) 

0.25  
(-) 

Omega kg   1.23  
(14) 

0.666  
(-) 

0.717 
(23) 

0.0441  
(-) 

0.789  
(-) 

1.3  
(-) 

0.316  
(-) 

Additive error 13.4  
(12) 

34.9  
(7) 

106  
(6) 

19.1  
(6) 

35.8  
(3) 

63.4  
(4) 

18.3  
(4) 

Proportional error  0.118  
(6) 

0.055 
(12) 

- 0.227  
(6) 

0.0755 
(8) 

0.0648 
(11) 

0.188  
(5) 

Condition number 2.4E+03 1.5 2.7E+03 2.7E+03 87 85 2.7E+04 

TSC  
(µg mL-1) 
[80% CI]  

Tumor static 
concentration 

4.8  
[4.2, 5.5] 

1.0  
[0.8, 1.4] 

3.0  
[-] 

4.3  
[3.8, 4.6] 

1.2  
[0.8, 1.5] 

9.8  
[8.0, 
12.0] 

5.8        
[5.3, 6.2] 
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Table 3: T-DM1 estimated PD model parameters (CV %) and derived TSC values [80% confidence intervals] for 3 CLX 
models in mouse (N87, BT474 and HCC-1954) 

Parameter 
(unit) 

Description JIMT-1 

CLX  
(Breast) 

N87 

CLX 
(Breast) 

BT474 

CLX 
(Gastric) 

144580 

PDX  
(Breast) 

HCC-1954 

CLX 
(Breast) 

Doses 
(mg/kg) 

IV Q4d x 4 6 0, 1, 3,  
10 

0, 1, 3,  
10 

6 0, 0.3, 1, 
3 

kgEx  
(day-1) 

Exponential 
growth rate 

 

N
o 

Re
sp

on
se

 

0.0732 
(11) 

0.0575 
(46) 

  

N
o 

Re
sp

on
se

 

0.0918 
(8) 

kg  
(mm3 day-1) 

Linear growth rate 37.9  
(17) 

77.4  
(20) 

40.7  
(6) 

Vmax  

(mm3) 
Maximum tumor 
volume 

4.22E+03 
(18) 

5.28E+03 
(23) 

3.18E+03 
(27) 

τ   
(day) 

Transduction time 1.36  
(16) 

2.4  
(7) 

1  
(8) 

kkmax 

 (day-1) 
Maximum kill rate 0.405 

(38) 
1.38  
(91) 

0.319  
(7) 

kc50 

 (µg mL-1) 
Concentration at 
half maximal kill  

131  
(48) 

311  
(110) 

8.63  
(10) 

n -- 1  
(-) 

1.01 
(4) 

1.5  
(-) 

ψ -- 20 (-) 20 (-) 20 (-) 

Omega kgEx  0.47 (-) 2.26 (15) 0.371 (-) 

Omega kg  0.781  
(-) 

0.917 
(16) 

0.274  
(-) 

Additive error 66.8  
(6) 

30  
(-) 

14.4  
(10) 

Proportional error 0.0727 
(12) 

0.157  
(5) 

0.0754 
(8) 

Condition number 250 9E+05 27 

TSC  
(µg mL-1) 
[80% CI] 

Tumor static 
concentration 

29 
[13, 67] 

14 
[2.4, 57] 

4.7  
[4.0, 5.6] 
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Figure 2: PF-06804103 and T-DM1 TSCs across mouse tumor xenograft models. T-DM1 was not responsive in JIMT-
1 and 144580 mouse tumor xenograft models (TSC values > 50 µg/mL). This is represented on the plot as hatched 
bars. The error bars represent 80% confidence intervals on TSC values.  

 

Clinical PK modeling of T-DM1 using a TMDD model 

T-DM1 exhibits non-linear PK in the clinic, which is hypothesized to be due to binding to shed 
HER2 extracellular domain (ECD). A mechanistic TMDD model was developed to describe the 
clinical PK of T-DM1, which accounts for shedding of HER2 ECD into the serum, binding of T-DM1 
to the ECD and subsequent clearance of the T-DM1-ECD complex (Figure 3). The TMDD model 
parameters for T-DM1 are shown in Table 4 and the model fit to T-DM1 phase 1 clinical data [24]  
is shown in Figure 4a. 

 

 

 

Figure 3: Target mediated drug disposition (TMDD) model used to describe clinical PK of T-DM1 and to predict clinical 
PK of PF-06804103. Please refer to Table 4 for description of the model parameters. 
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Table 4: TMDD model parameters for T-DM1 in the clinic and predicted clinical PK of PF-06804103 following IV 
infusion of 1 hour 

Parameter (unit) Description T-DM1 Predicted  
PF-06804103 

Vc (mL/kg) Central compartment volume 37 38.1 

CL (mL/day/kg) Clearance 7.2 5.52 

Vp (mL/kg) Peripheral compartment volume 30 20.2 

Q (mL/day/kg) Inter-compartmental clearance 12 14.9 

aKD (nM) HER2 binding affinity 0.1 

bkshed HER2-ECD  (nM day-1) Rate constant for HER2 shedding 6.65 

kdeg HER2-ECD (day-1) Rate constant for HER2 degradation 33.3 

kelADC-ECD complex (day-1) Elimination rate constant of the HER2-ADC 
complex 

32.6 

HER2 ECD (ng/mL)/(nMc) Concentration of serum HER2 ECD 16-28/ 0.16- 0.28 20 /0.2 

aKD=koff/kon  bkshed HER2-ECD = kdeg HER2-ECD  x ECD (t=0) cMolecular weight of the HER2 ECD is 100kDa.  

 

Clinical PK projections for PF-06804103 

The TMDD model developed for T-DM1 was applied to predict the human PK of PF-06804103. 
The 2- compartment linear IV PK parameters were scaled from cynomolgus monkey PK 
parameters (as described above, Table 1). The KD was measured for PF-06804103, and all other 
parameters were estimated in the T-DM1 model. The predicted TMDD model IV PK parameters 
for PF-06804103 are shown in Table 4. The predicted PK profiles for PF-06804103 in the clinic 
following multiple dose administration of 0.15 mg/kg to 3 mg/kg IV Q3W x 4 are shown in Figure 
4b. Non-linear PK is predicted over this dose range with a predicted clearance of 33.6 mL/d/kg 
and elimination half-life of 1.0 day at the lowest simulated dose of 0.15 mg/kg, and a predicted 
clearance of 7.8 mL/d/kg with terminal half-life of 4.9 days at a dose of 3.0 mg/kg. These PK 
predictions are assuming a free drug assay. If a total assay is used (which measures free and 
bound drug) then the PK at each dose level would be as predicted for the high dose of 3.0 mg/kg.  

Predicted PF-06804103 concentration versus time profiles following an IV dose of 1mg/kg Q3W 
x4 in patients with low (2.0ng/ml), medium (20ng/ml) and high (750ng/ml) serum HER2 ECD 
concentrations are shown in Figure 4c. This figure indicates an inverse correlation between serum 
HER2 ECD concentration and PF-06804103 exposure. This relationship has also been observed 
for trastuzumab in clinical studies [6]. 
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Figure 4: (a) TMDD model fit to T-DM1 Phase 1 clinical PK data (single dose administration) [24] (b) PK predictions 
for PF-06804103 using TMDD model (free drug concentrations) from 0.15- 3 mg/kg IV Q3W x 4 (c) PK predictions for 
PF-06804103 following an IV dose of 1mg/kg Q3W x 4 to patients with low, medium and high HER2 ECD 
concentrations. These HER2 ECD concentrations are within the reported range for healthy females (low) and patients 
with advanced breast cancer (medium and high). 

(a) 
 

(b) 
 

(c) 
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Clinical PK/PD predictions for PF-06804103 and comparison with T-DM1 

The clinical PK estimates from the TMDD model and the mouse PD model parameter estimates 
were integrated to simulate PF-06804103 and T-DM1 efficacy in the clinic. This approach assumes 
that ADC plasma concentrations are a good surrogate marker for the target site concentration 
that drives response and that mouse PD parameters translate directly to the clinic. Predicted 
efficacy of T-DM1 following 3.6mg/kg Q3W x 4 IV dose administrations and PF-06804103 
following 1mg/kg Q3W x 4 dose administrations are shown in Figures 5a and 5b, respectively. For 
T-DM1, N87 and BT474 models predict tumor stasis and HCC-195 predict tumor regression at 
3.6mg/kg Q3W in the clinic. For PF-06804103, 144580 predicts tumor re-growth, N87 predicts 
tumor stasis and JIMT-1, BT474, 24312, 37622 and GA3109 all predict tumor regression at 
1mg/kg Q3W. 

 

 

 
Figure 5: Translation of preclinical PK/PD model to the clinic for each tumor cell line model studied preclinically. 
Predicted efficacy of (a) T-DM1 following a 3.6mg/kg Q3W dose and (b) PF-06804103 following a 1mg/kg Q3W dose 
to cancer patients. The dashed vertical lines represent dosing times. The response in different cell lines is thought 
to be representative of response in individual patients.  

(a) 
 

(b) 
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4.5 Discussion 

In this work we present the modeling and simulation strategy used to compare a new generation 
HER2 ADC (PF-06804103) with T-DM1, to ensure efficacy differentiation and as a rationale to 
pursue clinical development of PF-06804103. HER2 remains an exciting target to prosecute for 
oncology indications as it is clinically validated, with efficacy of HER2 targeted therapies 
established for breast and gastric patients that have HER2 amplification/ over-expression. In 
addition, recent data suggests that HER2 is over-expressed in a variety of other tumor types such 
as colon, bladder and biliary cancers, opening the door to new potential oncology indications for 
anti-HER2 therapies [28]. T-DM1 is a milestone drug which is standard of care second line 
treatment for patients with breast cancer and was the first ADC for the treatment of solid tumors. 
However, T-DM1 has limitations including moderate clinical activity (ORR 43.6% EMILIA and 31% 
in TH3RESA) [29] and Phase 3 failures (MARIANNE and GATSBY trials) [30, 31] . In addition, only 
high and homogeneously expressing HER2 tumors respond to T-DM1 [7]. The clinical activity of 
T-DM1 is also limited by intrinsic and acquired resistance. The mechanisms of resistance of T-
DM1 are not completely understood, and the pharmacological complexity of this agent has 
confounded efforts to establish the clinically important mechanisms [15]. However, most 
evidence points to altered trafficking/ metabolism of T-DM1 and impaired lysine-MCC-DM1 
mediated cytotoxicity as the predominant mechanisms of T-DM1 resistance in the clinic [15]. Loss 
of HER2 expression could also contribute to resistance, as has been proven for trastuzumab [32]. 
Also, evidence for mechanisms related to internalization, abnormal transit, lysosomal catabolism 
and drug efflux have been observed in non-patient derived experimental models [16, 33]. To help 
circumvent resistance, use of an alternative linker-payload in PF-06804103 would impede the T-
DM1 resistance mechanisms that are specific to lysine-MCC-DM1 including impaired lysosomal 
degradation or enhanced efflux [16]. For all the reasons discussed above, novel differentiated 
HER2 therapies are required for the treatment of cancer. 

Modeling and simulation strategy  

To quantitatively compare PF-06804103 and T-DM1 a translational PK/PD modeling and 
simulation strategy was implemented. This is a useful technique capable of integrating data 
generated from diverse test platforms in a mechanistic framework to describe exposure-
response relationships [34]. The strategy described herein uses a mechanism-based tumor 
growth inhibition (TGI) model which integrates system parameters (tumor growth and initial 
tumor size) and drug effects (transduction rate, kill rate and potency). It is used to characterize 
TGI in mouse as a function of ADC concentration, making use of PK and PD data routinely 
generated for ADCs in the discovery phase. A population modeling approach was utilized to 
quantify variability in tumor cell growth across mouse tumor models. This is combined with a 
transduction model of tumor cell death driven by plasma ADC concentrations. The model can be 
translated to the clinic by incorporation of human PK and used to simulate dosing regimens 
required for tumor volume reduction in patients. It has been applied previously to study the 
clinical translation of T-DM1 and an anti-5T4 ADC (A1mcMMAF) [18]. This modeling approach 
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differs from the larger quantitative systems pharmacology models that have been applied to 
ADCs to answer more complex mechanistic questions [35-37]. The level of model parsimony 
required depends upon the quantitative question asked [38]. In our case, the modeling question 
required comparison of 2 ADCs and a ‘fit-for-purpose’ modeling approach was applied, with the 
benefit that this could be easily re-applied to other ADCs or oncology drugs with a similar 
mechanism of action, such as mAbs or small molecule chemotherapeutics. 

Efficacy differentiation 

To determine the preclinical efficacy of PF-06804103, studies were completed in a range of 
mouse tumor models, including models resistant to T-DM1.  PDX and CLX were selected from 
different disease origins (breast, gastric and non-small cell lung cancer (NSCLC)). They also 
differed in HER2 expression levels. For example, N87 has 400,000 to 1 million HER2 receptors per 
cell, whereas JIMT-1 has 110,000 HER2 receptors per cell. To compare with T-DM1, some 
CLX/PDX were selected with susceptibility to both PF-06804103 and T-DM1. In addition, some 
‘tougher’ models were selected such as JIMT-1, established from the pleural metastasis of a 
patient with breast carcinoma who had failed trastuzumab therapy, and PDX 144580, which was 
derived from a triple negative breast cancer patient.   

TSC was used as a quantitative efficacy indicator to compare PF-06804103 and T-DM1 across 
models. It is defined as the concentration of the drug where the tumor is neither growing nor 
regressing and can be considered as the minimal concentration required for efficacy. TSC is a 
useful comparative metric as it combines information on the tumor growth pattern and the drug 
effect. TSC values for PF-06804103 were lower than for T-DM1 across the CLX/ PDX studied 
(Figure 2). PF-06804103 was concluded to be more potent than T-DM1 across the mouse tumor 
cell lines studied and was efficacious in T-DM1 resistant models. Mechanistically, this makes 
sense as PF-06804103 has a cleavable linker which enables efficient intracellular release of 
membrane permeable payload and subsequent bystander killing.  It is unknown whether the 
mechanisms of resistance to T-DM1 in animal models, that are overcome by PF-06804103, would 
directly translate to the clinical setting. However, alterations in lysine-mcc-DM1 mediated 
cytotoxicity appears to be a predominant mechanism of T-DM1 resistance in the clinic [15], which 
suggests that alternative therapies with different linker payloads may help overcome acquired T-
DM1 resistance. 

Translation to human: PK 

The first step in the clinical translation process was prediction of the clinical PK of PF-06804103. 
T-DM1 is known to exhibit non-linear PK in the clinic with increasing half-life and decreasing 
clearance values over the dose range studied in Phase 1 [24, 39]. For oncology drugs the size of 
the tumor is often not large enough to drive significant target mediated clearance. However, 
circulating soluble target can act as a sink for the drug and reduce the free levels of drug available 
to distribute to the tumor and bind to the target. The ECD of the HER2 receptor is shed from the 
cell surface and serum concentrations of HER2 have been shown to be higher in patients with 
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metastatic breast cancer compared with healthy females [25]. Extremely high concentrations of 
HER2 ECD (approximately 1000 ng/mL) were observed in some patients with metastatic disease. 
For trastuzumab, high levels of serum HER2 ECD are associated with rapid CL and decreased 
benefit from trastuzumab therapy [6, 25, 40].  A TMDD model was developed for T-DM1 
accounting for serum HER2 shedding, binding of T-DM1 to HER2 ECD and elimination of the T-
DM1-HER2 ECD complex, in addition to the standard linear catabolic CL process (Figure 3, Table 
4). This model was shown to describe the non-linear CL observed for T-DM1 in Phase 1 studies 
(Figure 4a, [24]). To test the model, it was used to predict PK of trastuzumab in a Phase 2 clinical 
study, where it was reported that a patient with high serum HER2 ECD exhibited vastly different 
PK to a patient with low serum HER2 ECD. Following IV administration of trastuzumab (250mg 
loading dose, followed by 100mg QW dosing), the patient with high HER2 ECD (> 700 ng/mL) 
showed rapid CL of trastuzumab resulting in steady state trastuzumab concentrations of 
approximately 4 µg/mL. The patient with low HER2 ECD (< 8.5 ng/mL) had steady state 
trastuzumab concentrations of approx. 70 µg/mL. The model was able to recapitulate the PK 
profiles with addition of only the reported HER2 ECD values and linear trastuzumab clearance 
(see Supplementary Figure 2). 

Since PF-06804103 is more potent than T-DM1 it may require lower doses for efficacy in the 
clinic. It was therefore considered important to predict the potential impact of non-linear 
clearance on the clinical PK of PF-06804103. The model developed for T-DM1 was applied to 
predict the PK of PF-06804103 in patients. The 2 -compartment linear PK parameters were scaled 
from the cynomolgus monkey PK parameters for PF-06804103. The KD for PF-06804103 binding 
to HER2 was included in the model. All other parameters, including shedding and degradation of 
the HER2-ECD and clearance of the PF-06804103- HER2 ECD complex were kept the same (Table 
4). PF-06804103 is predicted to have similar PK to T-DM1. 

Translation to human: efficacy 

Prior knowledge of the expected efficacy of an ADC in the clinic is desirable for optimal design of 
clinical trials and to ensure that an efficacious dose can be reached before the onset of dose 
limiting toxicities. In this analysis, preclinical PK/PD of PF-06804103 in mouse xenograft studies 
is translated to the clinic to compare predicted clinical efficacy with T-DM1. Prediction of clinical 
efficacy from mouse xenograft TGI is contentious and there is a long-held debate about their 
predictive capability [41-44]. Our thesis is that these studies contain rich information on the 
system and the effect of the drug. However, they are often not interpreted properly, and a 
systematic, rigorous quantitative method is required. To translate the preclinical PK/PD for PF-
06804103 to human, the predicted human PK was incorporated, and it was assumed that mouse 
PD parameters translated directly to human.  Since tumor doubling time is much slower in cancer 
patients (in the order of months) than in mouse experimental tumors (in the order of days), this 
represents a conservative approach and predictions that achieved stable disease (stasis) using 
mouse PK/PD parameters are assumed to be minimally efficacious in humans, achieving tumor 
regression. This method has been tested previously for T-DM1 and was shown to predict an 
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efficacious dose of 2.4- 4.8 mg/kg Q3W from modeling T-DM1 data from 3 mouse tumor models, 
which is consistent with the efficacious dose of 3.6 mg/kg Q3W [18]. An alternative approach 
would be to incorporate clinical tumor doubling times into the predicted clinical model, and this 
could be used for a more rigorous exploration of doses and regimens required for efficacy in 
specific patient populations. However, it is often difficult to obtain these rates, due to absence 
of placebo data. As such, a fit-for purpose approach was taken which is useful to compare 
between PF-06804103 and T-DM1, and has been shown to successfully predict clinical efficacious 
dose of T-DM1 [18].  

Translation of PF-06804103 to the clinic predicts efficacy at lower doses than T-DM1 (Figure 5a 
and 5b). These figures illustrate the benefit of studying several mouse tumor models to 
characterize efficacy and translate to the clinic. Depending on their individual characteristics and 
susceptibilities, different CLX and PDX tumor models predict a range of effects from complete 
response to tumor regrowth. An alternative approach to determining efficacy in mouse models 
was reported for PF-06804103 and T-DM1 [8]. They evaluated in vivo efficacy in a panel of HER2+ 
gastric and NSCLC PDX and completed a waterfall analysis, using RECIST criteria to define overall 
response rate (ORR). The NSCLC PDX were designated HER21+ to HER22+ and the gastric PDX were 
designated HER21+ to HER23+ by immunohistochemistry. In the panel of gastric cancer PDX 
models, PF-06804103 and T-DM1 had an ORR of 3/3 (100%) and 0/3 (0%), respectively. In the 
panel of NSCLC cancer PDX models, PF-06804103 and T-DM1 had an ORR of 8/9 (89%) and 1/10 
(10%), respectively.  

In conclusion, modeling and simulation strategies were used to demonstrate that a new 
generation HER2 ADC (PF-06804103) is a potentially exciting new therapy which differentiates 
from T-DM1 in its preclinical efficacy profile. PF-06804103 had a lower Ceff (TSC) in mouse models 
using CLX/PDX with both high and low HER2 expression and was efficacious in T-DM1 resistant 
models. Clinical PK of PF-06804103 is predicted to be similar to T-DM1 and non-linear across 
doses. The mouse PK/PD models were translated to the clinic and predicted superior efficacy 
compared to T-DM1. As a result, PF-06804103 is projected to provide benefit in HER2+ 
indications in the clinic.   
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Supplementary Materials 

Supplementary Figure 1: Goodness of fit plots for PF-06804103 PK/PD modeling in 3 CLX and 4 PDX xenograft 
mouse models Plots shown include: (i) visual predictive checks of tumor volume (mm3) data and model prediction 
versus time at each dose level. The magenta band represents the 95% prediction distribution and (ii) observations 
versus model predictions using the population and individual parameters compared to line of unity. 
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Supplementary Fig. 2 Validation of TMDD model by application to predict PK from a Phase II study [6] where 
discrepant PK was observed following trastuzumab administration to a patient with (a) low HER2 ECD (<8.5 ng/mL) 
and a patient with (b) high HER2 ECD concentration (>750 ng/ml). Trastuzumab dose was 250mg IV loading dose, 
100mg IV thereafter. Symbols represent data digitized from [6]. Lines represent TMDD model predictions. A CL value 
of 0.23 mL/h/kg was used for trastuzumab. In (a) HER-2 ECD concentration was set to 2 ng/mL and in (b) HER2 ECD 
concentration was set to 750 ng/ml. All other parameters were kept the same. 
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Model code for Clinical PK predictions (Berkeley Madonna v8.3.18) 

METHOD Auto 
STARTTIME = 0 
STOPTIME = 100; days 
DT = 0.02 
Tolerance = 1e-12 
Dose=210 ; mg or 3 mpk 
Dose_nmole=Dose*1000000/150000 ; per human  
;------------------------------------------------- 
INFUSION=(INFrate*INFrepeat*INFend)/(Vc*70/1000) ; Infusion Rate nM/day 

INFrepeat=IF TIME<(TINFstart) THEN 0 ELSE IF MOD(TIME+TINFstart,TINFrepeat)<=INFduration 
THEN 1 ELSE 0  

INFend=IF TIME>TINFend THEN 0 ELSE 1 

TINFstart=0.0 ;START TIME OF FIRST INFUSION  

TINFrepeat=21 ;TIME INTERVAL BETWEEN INFUSIONS  

TINFend=4*21 ;TIME AFTER WHICH NO NEW INFUSIONS ARE GIVEN  

INFduration=1/24 ;DURATION OF EACH INFUSION ;days 

INFrate=Dose_nmole/INFduration ;RATE OF EACH INFUSION 

;------------------------------------------------- 
{INITIAL VALUES} 
INIT Cadc           = 0 ; nM 
INIT Cadc_per  = 0.0 ; nM 
INIT Cecd           = T0 ; nM 
INIT Cadc_ecd  = 0.0 ; nM 
 
{DIFFERENTIAL EQUATIONS} 
d/dt(Cadc) =INFUSION -k12*Cadc + k21*Cadc_per*Vp/Vc - kon*Cadc*Cecd + koff*Cadc_ecd 
-kel*Cadc 

d/dt(Cadc_per)  =k12*Cadc*Vc/Vp - k21*Cadc_per 

d/dt(Cecd)    =kshed - kdeg*Cecd - kon*Cadc*Cecd + koff*Cadc_ecd 

d/dt(Cadc_ecd) =kon*Cadc*Cecd - koff*Cadc_ecd -kel2*Cadc_ecd 

 
{PARAMETERS} 
; PF-06804103 parameters 
CL          = 5.52         ; mL/day/kg 
Q           = 14.9         ; mL/day/kg 
Vc          = 38.1         ; mL/kg 
Vp         = 20.2         ; mL/kg 
T0          = 0.2           ; nM 
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kdeg       = 33.3         ; 1/day 
KD           = 0.1           ; nM 
koff         = 6.13         ; 1/day 
kel2         = 32.6         ; 1/day ;Cadc_ecd 
 
; static secondary parameters 
k12          = Q/Vc       ; 1/day 
k21          = Q/Vp      ; 1/day 
kel          = CL/Vc      ; 1/day 
kon          = koff/KD     ; 1/nM/Day 
kshed        = kdeg*T0       ;nM/Day 
 
{OUTPUTS} 
Free_Drug    = Cadc 
Total_Drug   = Cadc + Cadc_ecd 
Complex      = Cadc_ecd 
Free_Target  = Cecd 
Total_Target = Cecd  + Cadc_ecd 
Cadc_ugmL = Cadc*150000/1e6 
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5.1 Abstract 

A mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) model was used for preclinical 
to clinical translation of inotuzumab ozogamicin, a CD22-targeting antibody-drug conjugate 
(ADC) for B-cell malignancies including non-Hodgkin’s lymphoma (NHL) and acute lymphocytic 
leukemia (ALL). Preclinical data was integrated in a PK/PD model which included:  (1) a plasma 
PK model characterizing disposition and clearance of inotuzumab ozogamicin and its released 
payload N-Ac-γ-calicheamicin DMH, (2) a tumor disposition model describing ADC diffusion into 
the tumor extracellular environment, (3) a cellular model describing inotuzumab ozogamicin 
binding to CD22, internalization, intracellular N-Ac-γ-calicheamicin DMH release, binding to DNA 
or efflux from the tumor cell (4) tumor growth and inhibition in mouse xenograft models. The 
preclinical model was translated to the clinic by incorporating human PK for inotuzumab 
ozogamicin and clinically relevant tumor volumes, tumor growth rates and values for CD22 
expression in the relevant patient populations.  The resulting stochastic models predicted 
progression free survival (PFS) rates for inotuzumab ozogamicin in patients comparable to the 
observed clinical results. The model suggested that a fractionated dosing regimen is superior to 
a conventional dosing regimen for ALL, but not for NHL.  Simulations indicated that tumor growth 
is a highly sensitive parameter and predictive of successful outcome.  Inotuzumab ozogamicin PK 
and N-Ac-γ-calicheamicin DMH efflux are also sensitive parameters and would be considered 
more useful predictors of outcome than CD22 receptor expression.  In summary, a multi-scale, 
mechanism-based model has been developed for inotuzumab ozogamicin, which can integrate 
preclinical biomeasures and PK/PD data to predict clinical response. 
 
5.2 Introduction 

Antibody-drug conjugates (ADCs) represent a promising therapeutic modality for clinical 
management of cancer (1, 2).  There are more than 40 ADCs currently in different stages of clinical 
development for the treatment of various malignant diseases (3). In addition, brentuximab 
vedotin (Adcetris; Seattle Genetics) and ado-trastuzumab emtansine (T-DM1, Kadcyla; Roche-
Genentech) are examples of recently approved ADCs on the market for oncology indications (2).  
ADCs currently in clinical development offer substantial improvements over first generation ADCs 
with more potent cytotoxins and superior conjugation stability (4). However, some ADCs are 
failing in the clinic due to insufficient efficacy (relative to standard of care) and off-target toxicity.  
For example, IMGN-901 is a CD-56-targeting ADC which failed to demonstrate sufficient 
improvement in efficacy over standard of care (etoposide/ carboplatin) in a Ph2 SCLC trial (5). 
Seattle Genetics discontinued the clinical development of vorsetuzumab mafodotin (SGN-75), an 
ADC for the treatment of solid tumors and hematological malignancies in favor of SGN-CD70A, 
an ADC against the same target but with a more potent payload (6). The timing is right to learn 
from these ADCs and to use the latest technology advancements to understand how they can be 
improved upon.  Refinements in next generation ADCs are already being seen with advances in 
antibody engineering, improvements in linker-payload conjugation strategies (7) and the 
generation of novel highly potent payloads with different mechanisms of action (4, 8). 
Mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling is an example of an applied 
quantitative tool which can be used to provide understanding of the mechanistic processes of 
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drug action (9).  The complex, non-linear processes involved in the physiological and cellular 
disposition of ADCs and their component parts make them ideal candidates for mechanistic 
modeling to enable integration and understanding of these multiple processes (10).  The result is 
not only comprehension of the underlying system and mechanism of action, but also more 
tractable applications, including target feasibility, optimal ADC selection, preclinical to clinical 
translation and guidance on dose regimen optimization. 
Quantitative modeling of ADCs in the literature to date has focused on empirical, data-driven 
PK/PD models (11, 12).  These models are relatively easy to develop and apply and can be used 
for some level of extrapolation, e.g., across species (with some assumptions), to enable 
quantitative decision making.  However, ADCs have intricate mechanisms of action, and the 
quantitative questions asked often require the use of more complex mechanistic models.  For 
example, to optimize an ADC, properties of the target, including receptor expression, 
internalization rate and intracellular processing/recycling rate, need to be balanced (13).  
Properties of the ADC and its payload, including affinity for their targets and pharmacokinetics, 
also need to be included.  While such models are an investment in terms of data requirements, 
they offer a high return of investment with respect to the granularity of the questions answered. 
Such a mechanistic PK/PD model for ADCs, capable of integrating preclinical biomeasures and 
PK/PD data to predict clinical response, was proposed by Shah, et al. (10).  The authors used this 
model to quantitatively understand and characterize the disposition of brentuximab vedotin and 
its payload MMAE at the cellular and physiological level.  A novel tumor penetration model was 
developed to predict intracellular tumor payload concentration, which was then linked to an 
optimized tumor growth inhibition model to characterize ADC efficacy in mouse xenograft 
models.  The integrated mechanism-based PK/PD model was translated to the clinic and used to 
perform clinical trial simulation for brentuximab vedotin.  The resulting multi-scale mechanistic 
modeling approach predicted progression free survival (PFS) rates and complete response rates 
for brentuximab vedotin in patients that were comparable to the observed clinical results.  A 
different application of this model was described in a subsequent publication by Shah, et al. 
where it was used for a priori prediction of tumor concentrations of ADC and payload for an anti-
5T4 ADC, A1mcMMAF (14).  The model was also used to investigate sensitivity of model 
parameters.  For example, payload dissociation from ADC and tumor size were found to be the 
most important determinants of plasma and tumor payload exposure. 
In the analysis described herein, a mechanistic modeling approach was used to gain quantitative 
insight into the system dynamics of an anti-CD22 ADC in late stage clinical development for B-cell 
malignancies.  Inotuzumab ozogamicin (CMC-544, PF-05208773) is an ADC composed of an IgG4 
anti-CD22 monoclonal antibody conjugated to the enediyne DNA damaging agent N-Ac-γ-
calicheamicin DMH via an acid-labile 4-(4’-acetylphenoxy)butanoic acid (Acbut) linker (15, 16).  
Inotuzumab ozogamicin is currently being evaluated in Phase 2/3 clinical trials for treatment of 
acute lymphoblastic leukemia (ALL).  A Phase 3 study of inotuzumab ozogamicin in relapsed or 
refractory aggressive non-Hodgkin lymphoma (NHL) was discontinued due to lack of superiority 
relative to an active comparator arm (investigator’s choice of bendamustine + rituximab or 
gemcitabine + rituximab) (17). Preclinically, inotuzumab ozogamicin inhibited the growth and 
establishment of B-cell lymphomas and induced the regression of disseminated B-cell lymphomas 
(Ramos, RL) and acute lymphoblastic leukemia (REH) in mouse xenograft models (15, 16).  Mouse 
tumor growth inhibition data, along with inotuzumab ozogamicin plasma PK and target/system 
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parameters were used to perform mechanistic PK/PD modeling for inotuzumab ozogamicin and 
to predict intracellular tumor concentrations of N-Ac-γ-calicheamicin DMH.  The model was 
translated to the clinic, and the results from simulated clinical trials were compared with 
observed clinical trial data to validate the translation process.  The  human model has 
subsequently been utilized for hypothesis generation and as a tool to answer mechanistic 
questions, including the effect of changes in antigen expression or efflux transporter 
capacity/status in patient tumors and the effect of changes in dose and/or regimen (in particular 
for ALL vs. NHL). This application of mechanistic PK/PD modeling demonstrates how preclinical 
data can be translated to the clinic to help scrutinize the mechanism of action of an ADC and 
predict outcome.  Learnings can be applied to earlier stage programs as a quantitative tool to 
help guide their development. 
 
5.3 Materials and Methods 

CD22 Receptor Numbers 

A quantitative flow cytometry method was developed to determine surface antibody binding 
capacity (ABC) per cell as a measure of receptor numbers using the parent antibody (G544) of 
inotuzumab ozogamicin conjugated 1:1 with phycoerythrin (PE) (18).  Ramos and REH cell lines 
were cultured under standard culture conditions. A full binding curve was generated at 4°C under 
conditions that approached equilibrium to prevent internalization and samples were analyzed by 
FACS. The maximum specific binding fluorescent intensity derived from this data analysis was 
interpolated off a BD QuantiBRITE PE calibration curve to calculate the maximum ABC per cell as 
a measure of receptor numbers. 

G544 Internalization  

An imaging flow cytometry-based method was developed to measure internalization of G544, 
conjugated with PE or Alexa Fluor 647, under constant exposure condition.  For each sample 
membrane and cytosolic intensity from CD22+ single cells were determined using area masks 
defined from the brightfield image of each cell.  The extent of internalization at each time point 
was determined using IDEAS software internalization wizard which calculated an internalization 
score (IS) (19) based on the ratio of cytosolic intensity to total cell intensity using the upper 
quartile of pixel intensities.  A plot of the IS vs. time was used to determine the initial half-life of 
internalization.  

Binding Affinities 

The binding of inotuzumab ozogamicin to CD22 receptors was evaluated using surface plasma 
resonance analysis, using the method of DiJoseph et al. (15), and the resulting Kd was determined 
to be 200 pM.  The association rate constant (kon) was assumed to be typical of monoclonal 
antibodies at approximately 5 x 105 M-1s-1 (20).  The dissociation rate constant (koff) was 
interpolated from the Kd and kon using the relationship Kd  = koff / kon and was calculated to be 7.5 
x 10-5 s-1.  As previously reported by Tianhu, et al., N-Ac-γ-calicheamicin DMH binds to DNA with 
an estimated Kd of 135 nM (21). 
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Materials for Mouse Pharmacokinetic Study 

Humanized IgG4 anti-CD22 antibody (G544) was provided by Celltech Chiroscience, plc, Wayne, 
PA. It was linked to calicheamicin with an acid labile AcBut (4-(4_acetylphenoxyl) butanoic acid) 
linker at Wyeth Research. Loading of calicheamicin onto the CD22 antibody was 50 µg of 
calicheamicin per mg of antibody and the average DAR was 3.5. The NHL B cell line RL (CRL-2261) 
was obtained from the American Type Culture Collection (ATCC, Manassas, VA). The cell line was 
determined to be mycoplasma free by a polymerase chain reaction mycoplasma detection assay. 
The cells were maintained as suspension cultures in RPMI medium plus 10% FCS, 10 mM HEPES, 
1 mM sodium pyruvate, 0.2% glucose, Penicillin G sodium 100 U/mL, and streptomycin sulfate 
100 µg/mL. 

Mouse Pharmacokinetics 

The PK of inotuzumab ozogamicin were determined following single intraperitoneal (IP) dose 
administration to non-tumor bearing female nude mice at 20 µg calicheamicin/kg (0.27 mg/kg 
inotuzumab) and 160 µg calicheamicin/kg (3.2 mg/kg inotuzumab), or to tumor (RL) bearing mice 
at 160 µg calicheamicin/kg (3.2 mg/kg inotuzumab) (Monolix software v3.2 (Lixoft, Antony, 
France)). Non-serial, terminal blood samples were collected by cardiac puncture under CO2 
anesthesia from 4 animals/group/time point at 0.1, 0.5, 1, 4, 8, 24, 48, 72, 96, 120, 168, 240 and 
336 h post-dose. All blood samples were collected into tubes and stored on wet ice until the 
serum was separated by centrifugation at approximately 4°C for 15 min. 

Assays to Quantify G544 (Total mAb) and Inotuzumab Ozogamicin (ADC)  

Total mAb and ADC concentrations in mouse plasma were determined using a validated enzyme-
linked immunosorbent assay (ELISA) with colorimetric detection. For the total mAb assay, the 
capture protein was a soluble form of recombinant CD22 protein (CD22:Fc fusion protein) and a 
monoclonal murine anti-human IgG4 conjugated to horseradish peroxidase (HRP) was used to 
detect bound G544, using 3,3’,5,5’-tetramethylbenzidine (TMB) as the substrate for a 
colorimetric readout . For the ADC assay, CD22: Fc fusion protein was used to capture the G544 
antibody portion of the ADC molecule.  The calicheamicin portion of the molecule was then 
recognized with a rabbit anti-calicheamicin antibody.  A goat anti-rabbit antibody conjugated to 
HRP was used to detect the bound rabbit antibody with TMB as the substrate for colorimetric 
readout. 

Estimating Preclinical Pharmacokinetic Parameters for Total mAb, ADC and Payload 
Dissociation Rate  

PK parameters for the mouse mAb were determined by fitting a 2-compartment PK model to the 
total mAb concentrations. It was assumed that the difference in clearance between the total mAb 
and ADC profiles was due to the dissociation of the calicheamicin payload (PL) from the mAb.  
The total mAb model with an additional clearance term describing dissociation of the PL was then 
fitted to the ADC concentration profile to estimate the dissociation rate constant, kdis, as 
described previously (14).  
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Mouse Tumor Xenograft Studies  

Tumor growth inhibition studies were completed in three different xenograft bearing mouse 
models: Ramos (Burkitt lymphoma), RL (non-Hodgkin’s lymphoma) and REH (acute lymphoblastic 
leukemia), as reported in (15, 16).  Briefly, female athymic nude mice were exposed to total body 
irradiation (400 rad) to suppress their residual immune system and facilitate the establishment 
of xenografts.  Three days later, mice were injected subcutaneously with 5 x 106 REH ALL cells (6-
8 mice/group) or 1 x 107 Ramos or RL cells (7-9 mice/group) suspended in Matrigel (Collaborative 
Biomedical Products, Belford, MA, USA, diluted 1:1 in RPMI-1640 medium) in the right flank for 
REH and left flank for RL and Ramos.  Mice with staged tumors were administered normal saline 
(vehicle) or inotuzumab ozogamicin at Q4D x 3 regimen IP.  Doses of inotuzumab ozogamicin 
were calculated based on quantity of N-Ac-γ-calicheamicin DMH AcBut and were 10, 40 and 160 
µg calicheamicin/kg (0.14, 0.56, 2.22 mg/kg inotuzumab) for REH and Ramos or 20, 80 and 320 
µg calicheamicin/kg (0.28, 1.11, 4.44 mg/kg inotuzumab) for RL.  Tumors were measured at least 
once a week and their mass was defined as tumor volume (mm3) = 0.5 × (tumor width2) x (tumor 
length).  

PK/PD Modeling  

The mechanistic PK/PD model developed in this work and calibrated with the mouse xenograft 
data involved four major parts: 1) PK model describing time evolution of ADC and unconjugated 
payload in plasma, 2) tumor disposition model relating exposure between plasma and tumor, 3) 
cellular model describing intracellular payload at site of action, and 4) tumor growth and 
inhibition.  This model is similar to the model developed and described previously (10), with main 
differences being a CD22 target in contrast to CD30 and calicheamicin payload (DNA toxin) in 
contrast to MMAE payload (tubulin inhibitor). 

ADC and Unconjugated Payload PK 

Plasma PK of inotuzumab ozogamicin and unconjugated payload (calicheamicin) after dose 
administration was modeled with a two-compartment IP model with additional terms 
characterizing the specific clearance into the tumor (JACOBIAN Modeling and Optimization 
Software, RES Group Inc., Needham, MA). The tumor disposition model is described in the 
subsequent section.  The model equations are:   
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Parameter and variables for these equations are described in Tables 1 and 2.   

Tumor Disposition Model 

The tumor PK of ADC and unconjugated payload is described by a tumor disposition model (10, 
22-24). Expressions describing transport into the tumor appear in the PK equations above and 
tumor compartment expression below as additional source and sink terms involving a number of 
additional parameters (e.g., 𝑅𝑅𝑝𝑝𝑢𝑢𝑝𝑝, 𝑅𝑅𝑘𝑘𝑝𝑝𝑜𝑜𝑔𝑔ℎ, 𝑃𝑃𝐴𝐴𝐴𝐴𝐶𝐶, etc).  Rather than estimating these parameters 
from the mouse xenograft data, values for permeability and diffusivity of the ADC and payload 
are determined from established correlations with molecular weight and known tumor size 
parameters (22-24).  Values and references are provided in Table 2.  

Tumor and Intracellular Concentrations and Dynamics 

Concentrations of ADC and unconjugated payload in the tumor compartment and intracellular 
space are described by the equations below.  The equations account for transport into the tumor 
compartment from plasma, binding and internalization into cell and binding of payload to the 
DNA target of calicheamicin. 
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ADC and unconjugated payload enter the tumor compartment as described by the tumor 
disposition model.  ADC binds with CD22 on the cell surface followed by internalization and 
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release of payload.  Payload enters the cell via the ADC and also by non-specific internalization 
of unconjugated payload in the tumor compartment.  Once inside the cell, payload can exit by 
exocytosis or remain in the cell and bind to the DNA target. 

Tumor Growth and Inhibition 

Tumor growth and inhibition is described using the Haddish-Berhane model (12), with equations 
shown below. Model variables are defined in Table 1. 
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The tumor growth portion of this model accounts for a preliminary exponential phase growth, 
followed by linear phase growth and a maximum tumor volume possible in the xenograft.  
Growth inhibition is modeled by a Hill equation as a function of intracellular payload 
concentration and several transduction compartments as cells are killed.  The growth parameters 
are calibrated with data from the control arm of the mouse xenograft experiments and the drug-
related death parameters are calibrated from the various dose arms. 

 

Table 1: Model variables and terms used in equations 

Variable Definition Unit 

𝐴𝐴𝐴𝐴𝑓𝑓 , 𝐴𝐴𝐴𝐴𝑏𝑏 ADC concentration in tumor compartment, free and bound nM 

𝑃𝑃𝐿𝐿𝑇𝑇  Total free payload in cell nM 

𝑃𝑃𝐿𝐿𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 , 𝑃𝑃𝐿𝐿𝑏𝑏

𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘  Intracellular concentration of free and DNA-bound payload nM 

𝐴𝐴0, 𝐴𝐴1, 𝐴𝐴2 ADC dosed, central and peripheral compartments, respectively nmol/kg 

𝑃𝑃𝐿𝐿1, 𝑃𝑃𝐿𝐿2 Concentration of free payload in central and peripheral compartments nM 

𝑤𝑤 Tumor volume mm3 

𝑀𝑀1, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4 Tumor volume in growth and three transduction compartments mm3 
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Additional Equations 

Several additional equations appear in the model, including tumor volume as a function of the 
transduction compartments, tumor mass radius (assuming spherical tumor), total intracellular 
payload and 𝐷𝐷𝐴𝐴𝑅𝑅 as a function of dissociation rate.  

𝑤𝑤 = 𝑀𝑀1 + 𝑀𝑀2 + 𝑀𝑀3 + 𝑀𝑀4 

𝑅𝑅𝑝𝑝𝑢𝑢𝑢𝑢𝑜𝑜𝑝𝑝 = �
3𝑤𝑤
4𝜋𝜋

�
1/3 1

10
 

𝑃𝑃𝐿𝐿𝑝𝑝𝑜𝑜𝑝𝑝𝑢𝑢𝑘𝑘 = 𝑃𝑃𝐿𝐿𝑇𝑇 + 𝑃𝑃𝐿𝐿𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘 + 𝑃𝑃𝐿𝐿𝑏𝑏

𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘  

𝑑𝑑𝐷𝐷𝐴𝐴𝑅𝑅
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑝𝑝𝑝𝑝𝑠𝑠𝐷𝐷𝐴𝐴𝑅𝑅 

Calicheamicin Pharmacokinetics 

Parameters for the plasma PK model of unconjugated calicheamicin are required for mouse to fit 
the xenograft tumor growth inhibition (TGI) data and for human for the subsequent clinical 
predictions. However, single dose IV data for calicheamicin was only available for rat and dog.  A 
two compartment PK model was fit to this data to obtain values for 𝑉𝑉𝑃𝑃𝐿𝐿,1, 𝑉𝑉𝑃𝑃𝐿𝐿,2, 𝐶𝐶𝐿𝐿𝑃𝑃𝐿𝐿 and 𝐶𝐶𝐿𝐿𝐷𝐷𝑃𝑃𝐿𝐿 
for both available species.  PK parameter values for mouse and human were then obtained by 
allometric scaling the fitted rat and dog values. Note that the PK assay for unconjugated 
calicheamicin used a non-specific ELISA assay, which detects multiple forms of calicheamicin (i.e., 
N-Ac-γ-calicheamicin DMH + metabolites).  

Clinical Pharmacokinetics of Inotuzumab ozogamicin 

Clinical PK of inotuzumab ozogamicin is reported in two different Phase 1 studies in the literature 
(25, 26). Advani et al. describe a Phase 1 study of inotuzumab ozogamicin in an expanded MTD 
cohort of patients with relapsed or refractory CD22+ B-cell NHL (25). Ogura, et al. report a Phase 
1 study of inotuzumab ozogamicin in Japanese patients with follicular lymphoma (FL) pre-treated 
with rituximab-based therapy (26).  The PK was similar across both studies.  For the modeling 
analysis herein, a simple 2-compartment model with linear elimination from the central 
compartment was used to characterize the PK of inotuzumab ozogamicin from Ogaru, et al. (26).   

Preclinical to Clinical Translation  

The integrated preclinical PK/PD model describing inotuzumab ozogamicin concentration-
response relationship in REH, RL and Ramos xenograft bearing mice was translated to the clinic 
and used to perform clinical trial simulations.  Three different types of CD22+ B-cell malignancies 
were considered in clinical trial simulations:  follicular lymphoma (FL) and diffuse large B cell 
(DLBCL) subtypes of NHL and ALL. To enable preclinical to clinical translation the following 
changes were made to the model parameters:  (a) relevant CD22 receptor expression levels for 
FL, DLBCL and ALL were included in the model (27), (b) initial tumor volumes and maximal 
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possible tumor volumes were changed to clinically observed/ plausible values (28, 29), and (c) 
growth rates for FL, DLBCL and ALL were set to clinically observed values (30-34). Clinical PK 
parameters for inotuzumab ozogamicin and calicheamicin were incorporated into the model as 
described above. The rest of the parameter values, including the inter-individual variability in PD 
parameters, were kept the same as the preclinical case. Preclinical PK/PD parameter estimates 
from RL/ Ramos cell lines were used to inform NHL clinical trial simulations, and REH cell line data 
was used for ALL clinical trial simulations. Please refer to Table 2 for the specific parameter 
values. 

Clinical Trial Simulations  

Clinical trial simulations for inotuzumab ozogamicin were performed using the parametric 
simulation method (JACOBIAN Modeling and Optimization Software, RES Group Inc., Needham, 
MA) (35). In each trial, 1,000 patients were simulated for each dose. For the NHL clinical trial 
simulations, the full PK/PD model was used including the parameters describing penetration of 
ADC into solid tumors (see Figure 1 and Table 2). Three different trials were simulated for NHL: 
patients with follicular lymphoma (FL), DLBCL patients (slow growth) and DLBCL patients (rapid 
growth). Two different tumor growth rates were considered for DLBCL to account for the large 
range in growth rates reported in the literature encompassing low-grade through to refractory 
aggressive B-cell NHL (30, 33)). 

For the ALL clinical trial simulations the PK model was simplified by eliminating the parameters 
describing penetration into the solid tumor (Figure 1, red box). Instead rapid equilibrium between 
ADC in plasma and tumor interstitium was assumed, consistent with a liquid tumor. For both the 
NHL and ALL clinical trial simulations, two different dosing regimens were considered: 1.8 mg/m2 

(0.05mg/kg) Q4w x 3 and a fractionated regimen of 0.8, 0.5 and 0.5 mg/m2 on day 1, 8 and 15 of 
a 28 day cycle, consistent with regimens explored in actual clinical trials for inotuzumab 
ozogamicin (25, 26, 36). In each case, the total dose administered was 1.8 mg/m2.  

For each simulated clinical trial, predicted tumor volumes were determined over time and PFS 
rates were calculated. For the NHL trials, these were compared to clinical trial data for 
inotuzumab ozogamicin (25).  The criteria to categorize response rates for progressive disease, 
stable disease (SD), partial regression (PR), and complete regression (CR) for NHL were: more 
than 20% increase in tumor diameter, less than 30% reduction in tumor diameter, more than 
30% decrease in tumor diameter but still detectable, and below the detection limit of 0.5 cm 
tumor diameter, respectively, according to the methods of Cheson, et al.(37). For hematological 
tumors like ALL, the criteria for SD, PR and CR were bone marrow blast cells >25%, 6-25% and < 
5% respectively. CR with incomplete recovery (CRi) was defined as CR but without recovery of 
platelets to ≥ 100 × 109 / L or neutrophil counts to ≥ 109/L (36).  
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Table 2: Model parameters used in equations 

  

 Parameter Definition Unit Value (CV%) Source 

Pr
ec

lin
ic

al
 C

el
lu

la
r 

 P
ar

am
et

er
s 

𝐴𝐴𝐾𝐾 CD22 (antigen) 
concentration 

nM 17.9(Ramos)  

4.0(RL) 
3.4(REH) 

Ramos/ REH: 
experimentally derived. 
RL from (27) 

𝑘𝑘𝑜𝑜𝑢𝑢 
𝑘𝑘𝑜𝑜𝑓𝑓𝑓𝑓 

Binding of antibody to 
CD22 

1/nM/day, 
1/day 

43.2 

6.48 
Derived (20) 
(15) 

𝑘𝑘𝑝𝑝𝑢𝑢𝑝𝑝 Internalization rate of 
bound antibody 

1/day 199.6(Ramos) 

199.6(RL) 
199.6(REH) 

(38) 

𝑘𝑘𝑝𝑝𝑢𝑢𝑝𝑝
𝑃𝑃𝐿𝐿  Internalization rate of free 

payload 
1/day 9.66 Assumed same as 

MMAE  

Pr
ec

lin
ic

al
 P

la
sm

a 
PK

 
 P

ar
am

et
er

s 

𝑉𝑉1 Volume of distribution in 
central compartment for 
ADC 

L/kg 0.0478 (11) Estimated 
from in-house mouse PK 
data 

𝑉𝑉2 Volume of distribution in 
peripheral compartment 
for ADC 

L/kg 0.0214 (16) 

𝐶𝐶𝐿𝐿 Plasma clearance of ADC L/day/kg 0.039 (16) 
𝐶𝐶𝐿𝐿𝐷𝐷 Distribution clearance of 

ADC 
L/day/kg 0.024 (-) 

𝑘𝑘𝑢𝑢 Absorption rate of ADC 
into central compartment 

1/day 5.8 (37) 

𝑉𝑉𝑃𝑃𝐿𝐿,1 Volume of distribution in 
central compartment for 
payload 

L/kg 4.74  Extrapolated 
from in-house data 

𝑉𝑉𝑃𝑃𝐿𝐿,2 Volume of distribution in 
peripheral compartment 
for payload 

L/kg 37.4  

𝐶𝐶𝐿𝐿𝑃𝑃𝐿𝐿 Plasma clearance of 
payload 

L/day/kg 53.9  

𝐶𝐶𝐿𝐿𝐷𝐷𝑃𝑃𝐿𝐿 Distribution clearance of 
payload 

L/day/kg 31.8  

𝑘𝑘𝑝𝑝𝑝𝑝𝑠𝑠 Dissociation rate of 
payload from ADC  

1/day 0.24 (12) Estimated from in-house 
data 

𝐷𝐷𝐴𝐴𝑅𝑅 Drug-to-Antibody ratio Unitless 3.5 Measured  

Tu
m

or
 P

en
et

ra
tio

n 
 

Pa
ra

m
et

er
s 

𝑃𝑃𝐴𝐴𝐴𝐴𝐶𝐶 , 𝑃𝑃𝑃𝑃𝐿𝐿 Permeability of ADC and 
payload into tumor 

µm/day 334,  
18144  

(22) 
 

𝐷𝐷𝐴𝐴𝐴𝐴𝐶𝐶 , 𝐷𝐷𝑃𝑃𝐿𝐿 Diffusivity of ADC and 
payload into tumor 

cm2/day 0.022 
0.125 

(22) 

𝜖𝜖, 𝜖𝜖𝑃𝑃𝐿𝐿 Void fraction in tumor for 
ADC and payload 

Unitless 0.24  
0.44 

(22) 

𝑅𝑅𝑝𝑝𝑢𝑢𝑝𝑝 Capillary radius µm 8 (22) 
𝑅𝑅𝑘𝑘𝑝𝑝𝑜𝑜𝑔𝑔ℎ Average distance 

between 2 capillaries 
µm 75 (22) 

𝑅𝑅𝑝𝑝𝑢𝑢𝑢𝑢𝑜𝑜𝑝𝑝 Tumor radius 
 

cm Calculated Assume spherical tumor 
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Pr
ec

lin
ic

al
 P

D 
 P

ar
am

et
er

s 
𝑘𝑘𝑔𝑔0  Exponential tumor growth 

rate  
1/day 0.08 (37)(REH)  

0.122 (9)(RL)  
0.211(16)(Ramos) 

Estimated 

𝑘𝑘𝑔𝑔 Linear tumor growth rate mm3/day 225 (43)(REH) 
220 (-)(RL)  
274 (27)(Ramos) 

Estimated 

𝜓𝜓 Switch between 
exponential and linear 
growth phases 

Unitless 20 Fixed based on (39) 

𝑀𝑀𝑢𝑢𝑢𝑢𝑚𝑚 Maximum tumor volume mm3 5000 (-)(REH), 
6120 (82)(RL),  

6160 (45)(Ramos) 

Estimated 

𝑘𝑘𝑜𝑜𝑢𝑢𝑝𝑝
𝑃𝑃𝐿𝐿  Exocytosis rate of 

intracellular payload 
1/day 1.1 (57) Estimated across models 

𝐷𝐷𝐷𝐷𝐴𝐴 Concentration of DNA 
target in cell 

nM 196 (60) Estimated across models 

𝑘𝑘𝑢𝑢𝑢𝑢𝑚𝑚 Maximum killing rate 
constant 

1/day 17.6 (57)(REH), 
14.0 (59)(RL),  

15.6 (63)(Ramos) 

Estimated 

𝐼𝐼𝐶𝐶50 Concentration of payload 
corresponding to a killing 
rate constant of half 
maximum value 

nM 399 (15)(REH), 
237 (9)(RL),  

227 (8)(Ramos) 

Estimated 

𝛾𝛾 Hill coefficient of tumor 
killing function 

Unitless 1 Fixed 

𝜏𝜏 Transduction time 
between tumor 
compartments 

day 1.21 (14)(REH), 
4.06 (52)(RL),  

3.11 (75)(Ramos) 

Estimated 

Cl
in

ic
al

 P
K 

 P
ar

am
et

er
s 

𝑉𝑉1  Volume of distribution in 
central compartment for 
ADC 

L/kg 0.058 (11) Derived from (26) 

𝑉𝑉2 Volume of distribution in 
peripheral compartment 
for ADC 

L/kg 0.0124 (56) 

𝐶𝐶𝐿𝐿 Plasma clearance of ADC L/day/kg 0.029 (9) 
𝐶𝐶𝐿𝐿𝐷𝐷, Distribution clearance of 

ADC 
L/ day/kg 0.071 (135) 

𝑉𝑉𝑃𝑃𝐿𝐿,1  Volume of distribution in 
central compartment for 
payload 

L/kg 5.54 Extrapolated from in-
house data 

𝑉𝑉𝑃𝑃𝐿𝐿,2 Volume of distribution in 
peripheral compartment 
for payload 

L/kg 8.48 

𝐶𝐶𝐿𝐿𝑃𝑃𝐿𝐿 Plasma clearance of 
payload 

L/day/kg 19.8 

𝐶𝐶𝐿𝐿𝐷𝐷𝑃𝑃𝐿𝐿 Distribution clearance of 
payload 

L/day/kg 114 

𝑘𝑘𝑝𝑝𝑝𝑝𝑠𝑠 Dissociation rate of 
payload from ADC  

1/day 0.47 (31) Estimated from in-house 
data 
 
 



110 
 

 

Sensitivity Analysis  

A local sensitivity analysis was performed using the NHL clinical model to determine sensitivity 
of outcome (ORR) to variation in key model parameters. The parameters chosen were: 
exponential tumor growth rate (kg0), CD22 receptor expression (Ag), calicheamicin efflux out of 
tumor cells (kout,PL) and inotuzumab ozogamicin plasma clearance (CL). Nominal parameter values 
were kg0 = 0.012 day-1, Ag = 8000 receptors/cell, kout,PL = 1.1 day-1, CL = 29 mL/kg and initial tumor 
volume of 100 cm3. Each parameter value was varied 10 fold in the sensitivity analysis, and model 
simulations used to calculate ORR according to the method of Cheson, et al. (37).    

 

Figure 1: The PK/PD model for solid tumors (10). Note the model for liquid tumors (ALL) was approximated by 
eliminating transport to the solid tumor (shown in the red box). Please refer to the methods section and Tables 1 
and 2 for detailed description of the symbols used in schematics. 

Cl
in

ic
al

 P
D 

Pa
ra

m
et

er
s 

𝐴𝐴𝐾𝐾 CD22 (antigen) 
concentration 

nM 4.0(NHL:FL) 

4.0(NHL:DLBCL) 
0.09(ALL) 

(27) 
 
Experimentally derived 

𝑘𝑘𝑔𝑔0  Exponential tumor growth 
rate 

1/day  0.012(FL) 
0.02-0.05(DLBCL) 
0.347(ALL, fast) 

0.173(ALL,med) 

0.120(ALL,slow) 

(27-30) 
 

𝑘𝑘𝑔𝑔 Linear tumor growth rate mm3/day 13,397 (34) 
𝑤𝑤0 Initial tumor volume* mm3 >64cm3 (76) 

>500cm3 (30)(DLBCL) 

1995 (1e9 cells) (ALL) 

(32,33) 
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5.4 Results 

CD22 Receptor Expression and G544 Internalization  

Anti-CD22 mAb (G544) binding capacity per cell was used as a measure of receptor number. G544 
binding was saturable and minimal non-specific binding was observed for the cell lines tested. 
The receptor numbers for each cell line were determined from 3 separate independent 
experiments. On the Ramos NHL cell line there were 36,029 ± 5,004 CD22 receptors/cell, and on 
the ALL REH cells there were 5,037 ± 287 CD22 receptors/cell.  These values were converted to 
nM for modeling purposes and are reported in Table 2. The internalization rate constant for G544 
was found to be 199.6 day-1, which corresponds to a half-life of internalization of 5 min (Table 2).  

Mouse Pharmacokinetics  

Determination of ADC PK Parameters 

The plasma concentration-time profiles for inotuzumab ozogamicin obtained following single 
dose IP administration to non-tumor bearing mice at 20 µg calicheamicin/kg (0.27 mg/kg 
inotuzumab) and 160 µg calicheamicin/kg (3.2 mg/kg inotuzumab), or to tumor (RL) bearing mice 
at 160 µg calicheamicin/kg (3.2 mg /kg inotuzumab) are shown in Figure 2a.  The data was dose 
proportional and concentrations were similar in both tumor bearing and non-tumor bearing 
mice. As a result, the data were pooled for parameter estimation. The estimated 2-compartment 
model parameters are provided in Table 2.  

PK/PD Modeling of Mouse Xenograft Data 

The characterization of mouse tumor growth inhibition data using the PK/PD model for Ramos, 
RL and REH bearing xenografts are shown in Figure 2b. The model was able to describe the 
observed data well and provided a set of PD parameters for preclinical to clinical translation of 
inotuzumab ozogamicin efficacy. Parameter estimates are provided in Table 2.  

Determination of Calicheamicin PK Parameters  

The pharmacokinetics of calicheamicin in mouse and human were obtained by allometric scaling 
of rat and dog data, available from in-house reports. The rat and dog PK parameters were 
estimated using a 2-compartment linear PK model. The calicheamicin mouse PK parameters were 
estimated by back extrapolation, and the human PK by forward extrapolation utilizing allometric 
principles (see Table 2 and Figure 3). 

Clinical PK 

A 2-compartmental linear PK model was used to characterize inotuzumab ozogamicin PK in 
clinical patients from Ogaru, et al. (26).  The dissociation rate of calicheamicin in patients (kdis) 
was determined by simultaneous fitting of the total Ab and ADC data, as described previously 
(vide supra).  The estimated kdis was 0.47 day-1 in patients.  The estimated inotuzumab ozogamicin 
PK parameters utilized in the clinical trial simulations are presented in Table 2.   
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b. 

 

Figure 2a: Observed (symbols) and model fitted (lines) pharmacokinetics of inotuzumab ozogamicin in mouse 
plasma following single IP dose administration to non-tumor-bearing mice at 20 and 160 μg calicheamicin/kg (0.27 
and 3.2 mg/kg inotuzumab, respectively) or to tumor (RL)-bearing mice at 160 μg calicheamicin/kg (3.2 mg/kg 
inotuzumab). 2b: Observed (symbols) and model fitted (lines) tumor growth inhibition data in REH, Ramos and RL 
xenograft tumor-bearing mice following IP administration of inotuzumab Q4D × 3 
 
Model Predictions of Tumor Calicheamicin Concentrations in NHL and ALL Cancer Patients 

The model was used to simulate intracellular tumor calicheamicin concentrations in NHL (DLBCL) 
and ALL patient populations (see Figure 4). Following a single dose of inotuzumab ozogamicin at 
1.8 mg/m2, the concentrations of calicheamicin in the tumor were predicted to be significantly 
greater in ALL patients compared with NHL patients. This is consistent with greater diffusion/ 
accessibility of ADCs into liquid tumors (such as ALL) compared to solid tumors (such as NHL). 

Use of the Model to Compare Tumor Volume Reductions in ALL Patients Following Different 
Dosing Regimens 

The model was used to simulate reduction in tumor volume following different dosing regimens 
of inotuzumab ozogamicin. In Figure 5, four weekly administration of inotuzumab ozogamicin at 
1.8 mg/m2 and a weekly fractionated regimen of 0.8, 0.5 and 0.5 mg/m2 are compared for ALL 
patients. The fractionated dosing regimen was predicted to be more efficacious than the Q4w 
regimen, sustaining tumor volume reduction for longer time periods. 

a. 
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Model Predictions of Clinical Outcome in NHL and ALL Cancer Patients 

The model was used to simulate PFS times in NHL and ALL patient populations. The NHL clinical 
trial simulation was completed for FL and both slow and fast growing DLBCL patient populations 
using a regimen of inotuzumab ozogamicin given every 4 weeks, to mimic treatment in the Advani 
clinical trial (25). Figure 6 compares the model simulated and observed PFS data, which were 
found to correlate well. PFS rates were also predicted for ALL following a fractionated regimen 
(0.8, 0.5 and 0.5 mg/m2 on days 1, 8 and 15 of a 28 day cycle), but could not be compared with 
clinical observations as studies are still under completion and PFS data is not available yet. 
However, the model predictions for complete response (CR) of 60-79% using two different 
growth rates for ALL, compare favorably with CR/CRi of 80.7% (72-88) demonstrated by 
inotuzumab ozogamicin in an ongoing phase 3 study in patients with ALL (40). 

Sensitivity Analysis 

Sensitivity of variation in exponential tumor growth rate (kg0), CD22 receptor expression (Ag), 
calicheamicin efflux out of tumor cells (kout,PL) and inotuzumab plasma clearance (CL) on 
inotuzumab ORR was examined in the NHL (FL) model. The plots in Figure 7 show how ORR varies 
over a dose range from 0 to 0.06mg/kg (2.16mg/m2) with a 10- fold change in each parameter 
from its nominal value. The cross hairs on the plots represent the nominal case for Inotuzumab 
given at its recommended dose of 0.05mg/kg (1.8mg/m2). The most sensitive parameter was 
tumor growth rate, followed by PL efflux and then Inotuzumab clearance. CD22 expression was 
the least sensitive parameter. 

 

 
Figure 3: Allometric scaling of calicheamicin PK from rat and dog to human and 
mouse. In this context, W refers to body weight. 
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Figure 4: Model predicted intracellular calicheamicin 
PK for ALL (liquid tumor) and NHL (solid tumor). 

 
Figure 5: Simulated tumor volume profiles over time 
for a Q4 weekly dosing regimen and a fractionated Q1 
weekly regimen for ALL patients receiving a total dose 
of inotuzumab ozogamicin of 1.8 mg/m2 

 

5.5 Discussion 

Challenges in Predicting Clinical Efficacy of Anti-Cancer Agents from Preclinical Data 

Prior knowledge of the expected efficacious dose of an oncology drug in the clinic is desirable for 
optimal design of clinical trials to ensure that an efficacious dose can be reached with acceptable 
toxicity profile. However, predicting efficacy of anti-cancer agents in the clinic remains a 
challenge.  A problematic issue is that the preclinical tools used for identification of clinical drug 
candidates, such as mouse xenograft models, are thought to be poorly predictive of the clinical 
outcome (41-44). At a minimum, differences between preclinical and clinical drug exposures 
should be factored into clinical predictions. Indeed analyses by Rochetti et al. and Wong et al. 
showed that incorporation of human PK into xenograft data significantly improved quantitative 
prediction (43, 45).  

ADCs offer an additional level of complexity, as they are composed of multiple entities including 
an antibody, linker, and payload, which could potentially be responsible for driving efficacy and 
toxicity (46). The accuracy of the exposure response characterization and translation to the clinic 
will depend upon the exposure endpoint chosen. Typically, the concentration of drug in the 
plasma or blood is the preferred exposure endpoint to correlate with efficacy, as it is both an 
easily accessible biological sample and for many small molecule drugs it correlates well with drug 
concentration at the site of action.  However, for large molecules such as antibodies and ADCs, 
the concentration in the plasma does not represent concentration in the solid tumor due to a 
complex biodistribution mechanism.  Optimal translation requires use of drug concentration in 
the tumor as the exposure endpoint to accurately determine the exposure response relationship. 
Measurement of drug in the tumor is a costly, labor intensive process which may not be feasible 
and presents another challenge. For ADCs, it is necessary to determine the concentration of the 
released payload following ADC administration, as this concentration is responsible for eliciting 
the pharmacological action.  
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Given the challenges of trying to predict efficacy using mouse xenografts, which are an imperfect 
representation of human tumors, and the complexity of determining the relevant exposure 
endpoint (tumor payload concentration), it is not surprising that predicting efficacy of ADCs in 
the clinic is problematic. When dealing with complex biological systems with multiple variables 
and pathways, it is advisable to build a mathematical model of the system, capable of integrating 
and interpreting preclinical data and providing a quantitative framework for translation to the 
clinic (9, 47). 

 

 
Figure 6: Model predicted PFS rates in NHL patients from Clinical Trial Simulations and Comparison with Clinical 
Trial Results. The solid lines represent model simulated PFS rates after dosing inotuzumab ozogamicin at 1.8 mg/m2 

every 4 weeks to NHL patients. The dashed lines represent observed PFS rates in patients administered the same 
dose and regimen in clinical trials.  Note, clinical trial simulations were completed for FL and both slow and fast 
growing DLBCL patient populations, to be consistent with treatment in clinical trials. 

Tumor Cell Processing of Inotuzumab ozogamicin  

In this work, we have taken inotuzumab ozogamicin (CMC-544), which is an anti-CD22 ADC in the 
clinic for both solid tumor (NHL) and hematological malignancies (ALL) (48), and used a systems 
pharmacology modeling approach to investigate translation from pre-clinical data to the clinic. 
The model used was based on a mechanism-based, multiscale ADC PK/PD model proposed by 
Shah et al., capable of integrating preclinical biomeasures and PK/PD data to predict clinical 
response (10). Shah and colleagues used this model for a ‘bench to bedside’ translation of 
brentuximab vedotin and demonstrated its ability to predict clinical responses for this ADC.  In 
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the analysis herein, we applied the same type of approach for inotuzumab ozogamicin to gain 
quantitative insight into the mechanism of action of this ADC.  

The modeling process starts with a rigorous understanding of the mechanism of action of 
inotuzumab ozogamicin at the cellular level to build a model which represents the disposition of 
the ADC and release of payload in the tumor cell.  Once in the extracellular tumor environment, 
inotuzumab ozogamicin binds to its target CD22 on the surface of tumor cells and is rapidly 
internalized by receptor mediated endocytosis. The ADC is trafficked intracellularly from the 
endosomes to the lysosomes.  The AcBut-hydrazone linker, which tethers the CD22 mAb to the 
payload calicheamicin, is acid labile and is cleaved in the lysosomes to release the payload.  The 
liberated N-Ac-γ-calicheamicin DMH payload is subsequently released into the cytosol where it 
is reduced by glutathione to form the reactive diradical form.  This activated form of 
calicheamicin distributes to the nucleus where it binds to the minor groove in DNA and causes 
double-strand breaks, resulting in cell death (48).  Alternatively, the released payload form, N-
Ac-γ-calicheamicin DMH, can also bind to P-glycoprotein (P-gp) prior to nuclear translocation and 
be effluxed from the cell (49).  

 

 
Figure 7: Local Parameter Sensitivity Analysis. Sensitivity of outcome (ORR) to variation in CD22 antigen 
concentration (Ag), exponential tumor growth rate (kg0), calicheamicin efflux (PL_kout) and inotuzumab ozogamicin 
clearance (CL) was examined in the NHL (FL) model. Nominal parameter values were Ag = 8000 receptors/cell, kg0 = 
0.012 day-1, PL_kout = 1.1 day-1, CL = 29 mL/kg and initial tumor volume of 100 cm3. The cross hairs on the plots 
represent the nominal case for Inotuzumab given at its recommended dose of 0.05mg/kg (1.8mg/m2). 
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In building the tumor cell component of the PK/PD model, the goal was to provide a quantitative 
description of the principal operative intracellular processes. The first step was to determine 
which parameters were available from the literature and which were considered important 
enough to warrant experimental work to inform the model. From previous analyses, key cellular 
parameters governing the success of an ADC include antibody affinity to its receptor, receptor 
expression levels and internalization rate into the tumor cell (13, 14, 50). Payload affinity for its 
target and efflux of payload out of the cell are also key parameters in establishing payload 
concentration and retention in the cell (10). For this analysis, binding affinity data for antibody 
to CD22 (15) and calicheamicin to DNA (21), were available from the literature and could be 
incorporated directly into the model. Internalization rates and CD22 receptor expression were 
not available for all relevant cell lines and were therefore determined in-house.  

The parameter kout describes the exocytosis rate of N-Ac-γ-calicheamicin DMH from the tumor 
cell, incorporating active processes such as efflux by P-glycoprotein (P-gp). This is important as P-
gp is upregulated on many tumor cell types. Data to inform kout was not available in the literature 
and a method was not available to determine this experimentally. Instead kout was estimated 
within the model. The value of kout estimated for calicheamicin in the model (1.1 day-1; Table 2) 
was very similar to values used for monomethylauristatin E (MMAE; 0.68-1.1 day-1) in a similar 
modeling application (10). This makes some sense, as calicheamicin and MMAE are ADC payloads 
which are both reported to be substrates for P-gp (49, 51). Experimental data would have been 
optimal to inform the kout parameter for calicheamicin, but in absence of this data the estimated 
value is in line with a similar ADC payload. 

Tumor Growth Inhibition in Mouse as a Function of Tumor Calicheamicin Concentrations 

The next step was to combine the tumor cell component with a PK model describing the 
disposition/ elimination of ADC and payload in the plasma and distribution to the tumor cell. The 
plasma PK model structure describes distribution of inotuzumab ozogamicin into peripheral 
tissues, and ADC catabolism and de-conjugation to release payload into the systemic circulation. 
The entire payload released systemically from the hydrolysis of the acid-labile hydrazone linker 
was assumed to be N-Ac-γ-calicheamicin DMH. It is possible that metabolites are also formed 
which were not specified in the model. However, since the unconjugated calicheamicin PK assay 
used a non-specific ELISA method, it may well detect some of these calicheamicin metabolites. 
The model also accounts for distribution and clearance of the payload.  Important data to 
characterize this part of the model included inotuzumab ozogamicin PK in mouse (total antibody 
and ADC) and calicheamicin PK. The plasma concentrations of ADC and payload were 
characterized using a simple two compartmental model. This step also enabled estimation of the 
rate of dissociation of payload from the ADC (kdis), providing an estimate of the drug to antibody 
ratio (DAR) for ADCs that would internalize into cancer cells. 

The solid tumor penetration part of the model was incorporated using drug exchange parameters 
from the literature (10, 22, 52, 53). The model assumes that diffusion is the predominant pathway 
of ADC passage into the tumor, as the high interstitial pressure within the tumor and absence of 
lymphatics means that convection is absent or minimal. The drug exchange parameters account 
for the size of the molecule being exchanged, the vascular permeability, tissue diffusion rates and 
accessible tissue volume corresponding to that size. The model includes diffusion from the 
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periphery of the tumor which is predominant when the tumors are small and avascular. As the 
tumor becomes larger, diffusion from the vasculature takes over as the dominant pathway (10, 
22, 52, 53). Once the ADC is in the tumor interstitium, the cellular model is used to describe 
binding to the target and intracellular processing and binding. 

The advantage of using a physiological relevant PK model for inotuzumab ozogamicin was that it 
enabled prediction of tumor calicheamicin concentrations, which are a more appropriate 
exposure endpoint to link to tumor regression/efficacy.  The efficacy of inotuzumab ozogamicin 
was studied in 3 different xenograft bearing mouse models: Ramos (Burkitts lymphoma), RL (NHL) 
and REH (ALL) (15, 16). The mechanism-based tumor disposition model was combined with a 
pharmacodynamic model of tumor growth and cell kill (12), in which tumor payload 
concentrations were used to drive efficacy. The model features a dynamic interaction between 
tumor distribution parameters and tumor size, where changes in tumor volume are directly able 
to influence the concentration of payload in the tumor, which in turn is responsible for the size 
of the tumor. As shown in Fig. 2b, the PK/PD model was able to provide a good fit to the observed 
inotuzumab ozogamicin preclinical TGI data, providing estimates of the efficacy parameters and 
the inter-individual variability associated with them.  

Translation to the Clinic  

Once the preclinical PK/PD relationship describing tumor growth inhibition as a function of tumor 
calicheamicin concentration had been characterized, the next step was to translate this model to 
the clinic to predict inotuzumab ozogamicin efficacy in patients.  The overall model structure was 
kept the same, with the exception that mouse system parameters such as initial tumor size, 
tumor growth rates and receptor expression were replaced with clinically relevant parameters, 
to make the model representative of the human system. In addition, inotuzumab ozogamicin and 
calicheamicin clinical PK were incorporated into the model.  To accomplish this, a two 
compartment linear PK model was used to fit the Phase 1 clinical PK data for inotuzumab 
ozogamicin (26). Clinical PK for calicheamicin was allometrically scaled from rat and dog (Figure 
3). The rate of dissociation of payload from the ADC (kdis) was determined in clinical data by 
simultaneous fitting of the total mAb and ADC data. Since the parameters describing the tumor 
disposition are clinically translatable, they were kept the same (10).  In addition, drug specific 
parameters including binding parameters for ADC and calicheamicin to their targets, 
internalization rate, exocytosis rate of intracellular payload (koutPL), IC50, kill rate (kmax) and 
transduction time between tumor compartments (τ) were not changed. Most importantly, 
systems parameters were changed to match literature estimates for NHL and ALL patients. For 
example, initial tumor volumes for NHL and ALL were taken from the literature (28, 29).  Tumor 
growth rates and CD22 receptor expression for low grade NHL (FL), refractory aggressive NHL 
(DLBCL) and ALL were all used in clinical simulations (27, 30-34).  

This ‘switching’ of systems parameters from murine values to relevant clinical values for the 
disease population gives this method for translating efficacy a greater level of  relevance and 
fidelity compared to previous translational approaches which account for exposure differences 
only (43, 45). Following translation of the PK/PD model to the clinic, the model was used to 
perform clinical trial simulations.  
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Simulations of Tumor Calicheamicin Concentrations 

In the first simulations, tumor concentrations of calicheamicin in NHL (DLBCL) and ALL patient 
populations were compared following equivalent doses of inotuzumab ozogamicin (1.8mg/m2 
Q4w) to each group. The PK model for NHL (DLBCL) differed from the ALL model in terms of the 
tumor penetration parameters. NHL is considered to be a malignant solid tumor of the immune 
system which can arise from undifferentiated lymphoid cells in virtually any part of the body. 
Drug exchange parameters for solid tumors are therefore required to describe penetration of 
inotuzumab ozogamicin into the NHL tumor types. In contrast, ALL is a hematopoietic or ‘liquid’ 
tumor which arises in the bone marrow. These tumors have less of a barrier to diffusion 
compared with solid tumors. As a result, the PK/PD model was simplified by elimination of the 
drug exchange tumor penetration parameters, and equilibrium was assumed between ADC 
concentration in plasma and tumor interstitium.  The manifestation of the difference in the tumor 
model between a liquid tumor (such as ALL) and a solid tumor (such as DLBCL) is shown in Figure 
4. Following the same dose of inotuzumab ozogamicin, the ALL tumor calicheamicin 
concentrations are predicted to be approximately 2 orders of magnitude higher than the DLBCL 
tumor calicheamicin concentrations. This simulation suggests that liquid tumors such as ALL will 
be easier to treat, requiring lower doses than solid tumors. This simulation agrees with the 
observation that solid tumors are often difficult for drugs to penetrate (54). 

Simulations of Optimal Dosing Regimens for ALL 

The model was also used to simulate different dosing regimens for treating ALL. The first regimen 
selected was 1.8mg/m2 Q4w, which had been investigated in clinical trials for inotuzumab 
ozogamicin in the treatment of NHL (25). The second regimen was a fractionated schedule of 3 
weekly doses over a 4-week treatment cycle, with doses of 0.8, 0.5, and 0.5mg/m2 on days 1, 8 
and 15 respectively. This regimen is under investigation in clinical trials for the treatment of ALL 
(40). Both regimens had the same total dose of 1.8mg/m2 per monthly cycle. Individual subject 
tumor volume plots over time are shown in Figure 5 (with the subject chosen having median rate 
of clearance of inotuzumab ozogamicin). In the ALL simulations, the fractionated dosing regimen 
was predicted to be more tumor regressive than the Q4 weekly regimen. Although Q4 weekly 
dosing results in higher tumor suppression at each dose, this is offset by considerable tumor re-
growth. In contrast, the fractionated dosing results in a more constant suppression over the 
dosing period. This analysis demonstrates that prediction of optimal dosing regimen is dependent 
on integration of all parameters and is therefore a worthy application of this type of mechanistic 
model. 

Prediction of Progression Free Survival Rates 

For each simulated clinical trial, PFS rates were calculated (Figure 6). For the NHL trial, PFS 
predictions could be compared with clinical trial data for inotuzumab ozogamicin (25). For both 
FL and DLBCL, the model predicted PFS and observed data from clinical trial compared well. 
Interestingly, large drops in PFS were observed at the longest survival times in the clinical trial, 
which may have been due to the small ‘n’ number by this stage of the analysis. In contrast, the 
model predicts a more logical flattening of PFS at the longer survival times.   
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Sensitivity Analysis 

The final application of the model in this analysis was to perform a local sensitivity analysis to 
give insight into the most important parameters defining, or even limiting, efficacy of inotuzumab 
ozogamicin versus NHL. CD22 receptor expression, calicheamicin efflux rate, inotuzumab 
ozogamicin PK (clearance rate) and tumor growth rate were selected as interesting parameters 
to vary in the model. The impact of varying these parameters over orders of magnitude from 
their nominal values, at a range of inotuzumab ozogamicin doses, is shown in Figure 7. At the 
recommended dose of 1.8 mg/m2 (0.05 mg/kg)  the least sensitive parameter was CD22 receptor 
expression, indicating that for inotuzumab ozogamicin this is least limiting for efficacy and 
probably reflects the optimal characteristics of this receptor as an ADC target, due to its high 
expression across B-cell types and rapid internalization (and recycling rates).  Calicheamicin efflux 
from the tumor cell was a more sensitive parameter, indicating the impact of this parameter on 
intracellular payload concentrations and resultant efficacy. This is important, as N-Ac-γ-
calicheamicin DMH is known to be a substrate for P-glycoprotein (P-gp), an efflux transporter 
which is upregulated on many tumor cell types (49). A further development of the model would 
be to include P-gp expression across cell lines or patients to investigate its relationship with 
efflux. Data was not available to support this in the current version of the model; however, this 
refinement would enable assessment of MDR1 as a quantitative diagnostic of efficacy. 

Clearance was also a sensitive parameter for inotuzumab ozogamicin.  Compared to more recent 
ADCs, inotuzumab ozogamicin has a faster rate of clearance, likely due to the contribution of 
CD22 receptor-mediated clearance as an additional CL mechanism, supplemental to the usual 
mechanisms of ADC catabolism and de-conjugation. As can be seen from the sensitivity plots, 
high clearance values of inotuzumab ozogamicin have a substantial impact on efficacy. However, 
the most sensitive parameter was rate of tumor growth in the model, indicating that even at 
nominal clearance and efflux values, the most aggressive, refractory tumors require higher doses 
for treatment of NHL. 

5.6 Conclusions 

In summary, a mechanism-based PK/PD model has been used for preclinical to clinical translation 
of inotuzumab ozogamicin. The model was able to predict PFS responses for inotuzumab versus 
NHL that were comparable to observed clinical trial results, demonstrating its utility for 
predicting efficacy of ADCs. The model was also able to give useful mechanistic insight into 
optimal dosing regimens and sensitive parameters impacting outcome, including tumor growth 
rate, inotuzumab ozogamicin clearance and calicheamicin efflux. This knowledge could be 
applied to optimize the design of ADCs in the discovery phase of research, and/or for selection 
of predictive diagnostics in the clinic.  
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 6.1 Abstract 

CD3 bispecific antibody constructs recruit cytolytic T-cells to kill tumor cells, offering a potent 
approach to treat cancer. T-cell activation is driven by the formation of a trimolecular complex 
(trimer) between drug, T-cells, and tumor cells, mimicking an immune synapse. A translational 
quantitative systems pharmacology (QSP) model is proposed for CD3 bispecific molecules 
capable of predicting trimer concentration and linking it to tumor cell killing. The model was used 
to quantify the pharmacokinetic (PK) /pharmacodynamic (PD) relationship of a CD3 bispecific 
targeting P-cadherin (PF-06671008). It describes disposition of PF-06671008 in the central 
compartment and tumor in mouse xenograft models, including binding to target and T-cells in 
the tumor to form the trimer. The model incorporates T-cell distribution to the tumor, 
proliferation, and contraction. PK/PD parameters were estimated for PF-06671008 and a tumor 
stasis concentration (TSC) was calculated as an estimate of minimum efficacious trimer 
concentration. TSC values ranged from 0.0092 to 0.064 pM across mouse tumor models. The 
model was translated to the clinic and used to predict the disposition of PF-06671008 in patients, 
including the impact of binding to soluble P-cadherin. The predicted terminal half-life of PF-
06671008 in the clinic was approximately 1 day, and P-cadherin expression and number of T-cells 
in the tumor were shown to be sensitive parameters impacting clinical efficacy. A translational 
QSP model is presented for CD3 bispecific molecules, which integrates in silico, in vitro and in 
vivo data in a mechanistic framework, to quantify and predict efficacy across species. 

6.2 Introduction 

Immunotherapy, which recruits a patient’s own immune system to kill cancer cells, has begun to 
revolutionize cancer treatment (1). Within the class of immune-oncology therapies are the 
bispecific immune cell re-targeting molecules (2). These are typically recombinant bispecific 
antibodies, or antibody fragments, with one binding domain targeting a specific tumor antigen 
of choice and the other domain targeting CD3 on T- cells. Because CD3 serves as the signaling 
component of the T-cell receptor (TCR) complex, these CD3 bispecific molecules enable T-cells to 
circumvent the need for the interaction between the TCR and antigen presented by major 
histocompatibility complex (MHC) class I molecules. This expands the repertoire of T-cells able to 
recognize the tumor and stimulate them to act as effector cells (3). Similar to the standard 
immune synapse formation, once a threshold of bispecific mediated molecular interactions has 
been reached, CD3 signals the T-cell to initiate a cytotoxic response toward the adjacent tumor 
cell expressing the specific antigen. Cytotoxicity is mediated by the release of cytotoxic granules 
containing perforin and granzymes by the T cell.  Perforin is a pore-forming protein enabling entry 
of granzymes, and the granzymes trigger a caspase cascade that leads to apoptosis. Activation of 
T-cells leads to transient release of cytokines and T-cell proliferation, recruitment, and infiltration 
into the tumor environment, which drives serial killing of tumor cells.  

In 2014, blinatumomab (CD3-CD19) was the first CD3 bispecific construct approved in the US for 
the treatment of resistant/ refractory B-cell acute lymphocytic leukemia (B-ALL) (4). 
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Blinatumomab is also being investigated in a Phase 2 clinical trial in patients with resistant/ 
refractory non-Hodgkin’s lymphoma (NHL) (5). The first generation bispecific T-cell retargeting 
molecules such as blinatumomab are tandemly linked single-chain Fv (scFv) known as bi-specific 
T-cell engager (BiTE) molecules (2, 3). These molecules are around 50kDa and have a short 
circulating half-life (approx. 2 hour) requiring constant infusion through the use of a pump to 
achieve a stable therapeutic exposure of the molecule (6). New generation CD3 bispecifics with 
a variety of formats are being tested in clinical trials. These include PF-06671008 which is a P-
cadherin-specific LP DART: a molecule based on the DART® platform, but containing a human IgG1 
Fc domain to extend the half-life (7). This bispecific targets CD3 and P-cadherin expressed on 
solid tumors. P-cadherin is a member of a family of molecules that mediate calcium dependent 
cell-cell adhesion and has been reported to correlate with increased tumor cell motility and 
invasiveness when over-expressed (8-10). Upregulation of P-cadherin has been reported in 
breast, gastric, endometrial, colorectal and pancreatic carcinomas and correlates with poor 
survival of breast cancer patients (11-14). In contrast, P-cadherin has low expression in normal 
tissues, making it an attractive target for immunotherapy (12). In preclinical studies, in vitro and 
in vivo data indicate that PF-06671008 is a highly potent molecule eliciting P-cadherin expression 
dependent cytotoxic T-cell activity across a range of tumor indications (15). In addition, PF-
06671008 is stable and has desirable biophysical and PK properties with a half-life of 3.7- 6 days 
in mouse (7, 15). PF-06671008 is currently being investigated in Phase 1 clinical trials in patients 
with advanced solid tumors with the potential to have P-cadherin expression 
(https://clinicaltrials.gov/ct2/show/NCT02659631). 

In order to characterize the in vivo efficacy of PF-06671008 in tumor bearing mice, a quantitative 
systems pharmacology (QSP) model was established. This model integrates the PK of PF-
06671008, its binding to shed P-cadherin and circulating T-cells in the systemic circulation, its 
biodisposition in the tumor and the formation of a trimolecular complex (trimer) with T-cells and 
P-cadherin expressing tumor cells in the tumor microenvironment (TME). The model 
incorporates T-cell kinetics in the tumor including T-cell proliferation and contraction. The 
concentration of the trimer in the tumor is used to drive efficacy in mouse using an optimized 
transduction model of tumor cell growth and killing.  In this manuscript, we discuss the use of 
the model to characterize the underlying pharmacology in mouse, and translation of the 
preclinical efficacy data to the clinic by incorporation of predicted human PK and disease 
parameters. The quantitative translational framework for CD3 bispecific molecules presented 
here can aid in drug design, candidate selection and clinical dosing regimen projection. 

 

6.3 Materials and Methods 

In vivo studies 

All procedures in animals were approved by the Pfizer Institutional Animal Care and Use 
Committees and studies were performed according to established guidelines. 

https://clinicaltrials.gov/ct2/show/NCT02659631
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PF-06671008 mouse PK study 

PF-06671008 was administered as a single intravenous (IV) dose of 0.05 or 0.5 mg/kg to HCT-116 
tumor-bearing female NOD-scid IL-2rgnull (NSG) mice, (n=3/ time point /dose) with or without 
human peripheral blood mononuclear cell (PBMC) engraftment. Mice were injected with 5x106 
HCT-116 cells in matrigel subcutaneously in the dorsal left flank. When the tumors had grown to 
approximately 0.5 g in size (after 14 days), the mice were administered PF-06671008. Serum and 
tumor samples were collected at predetermined time points from 5 minutes (min) to 240 hours 
(h) post dose.  

ELISA assay to quantify PF-06671008 

 PF-06671008 concentrations in mouse serum and tumor homogenate were determined using an 
enzyme-linked immunosorbant assay (96-well format) with colorimetric detection. Briefly, the 
capture protein was a polyclonal goat antibody recognizing the CD3 scFv domain and the 
detection antibody was a goat anti-human IgG-Biotin (Qualex), followed by HRP-Streptavidin 
conjugate (Jackson ImmunoResearch, West Grove, PA). Optical density was measured on a 
spectrophotometer (Molecular Devices). The lower limit of quantitation (LLOQ) of the assay was 
12.5 ng/mL for serum samples, and 1.5 ng/mL for tumor samples. The minimal required dilution 
was 1:25 for serum and 1:6 for tumor. 

Flow cytometric tumor infiltrating lymphocyte (TIL) analysis 

HCT-116 tumor-bearing mice (n=3) engrafted with human PBMC and administered a single IV 
dose of 0.01, 0.05, or 0.5 mg/kg PF-06671008 were euthanized pre-dose and 24, 72 and 144 h 
following dosing to assess tumor infiltrating human CD3+ lymphocytes.  Tumor samples were 
collected into gentleMACS C tubes containing human tumor cell dissociation buffer (Miltenyi 
Biotech) and processed to single cell suspensions using the manufacturer’s suggested protocol 
for soft human tumors using the gentleMACS tissue dissociator (Miltenyi Biotech).  After 
subsequent washing steps and live cell counting (using a hemocytometer and trypan blue 
exclusion), 1x106 live cells from each sample were collected and stained with CD3 FITC (BD 
Pharmingen) for 30 min on ice.  Samples were analyzed using LSRII with FACS Diva software (BD 
Pharmingen).  Absolute numbers of CD3+ T-cells per gram of tumor were then calculated using 
the number of CD3+ events and sample tumor weight. 

PF-06671008 mouse xenograft studies  

Mouse xenograft studies were completed in human T-cell engrafted (HCT-116) or adoptive 
transfer (HCT-116 or SUM-149) established tumor models. In the human T-cell engrafted model, 
tumor cells (5x106 HCT-116) were implanted subcutaneously (SC) into the right flank of 6-8 week 
old female NSG mice as a 0.2mL bolus mixed with 4 mg/mL Cultrex basement membrane extract 
(Trevigen) in PBS.  Seven days prior to randomization, mice were inoculated with 5x106 or 2.5x106 
freshly isolated human PBMC as an intraperitoneal injection of 0.2mL cell suspension in PBS.  In 
addition to vehicle (PBS), dose levels of 0.01, 0.05, 0.1, 0.15, and 0.5 mg/kg PF-06671008 were 
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administered for HCT-116 studies (n= 10 /dose). The doses were administered IV as a q7d x 2 
regimen.  

For the T-cell adoptive transfer established tumor model, 8- to 10-week old NSG mice were 
inoculated with either 5x106 HCT-116 cells in the flank or 5x106 SUM-149 cells in the mammary 
fat pad in a total injection volume of 0.2mL, seven days prior to randomization. HCT-116 cells 
were suspended in PBS, while SUM-149 cells were suspended in growth media and mixed 1:1 
with Matrigel Basement Membrane Matrix (BD Biosciences, San Jose, CA). T-cells, which had 
been isolated from PBMCs, were activated and expanded using Dynabeads Human T-Expander 
CD3/CD28 magnetic beads (Life Technologies) for 6-9 days, depending on the study, were 
harvested and re-suspended in PBS at 1x107 cells/ ml for in vivo inoculation. An initial dose of PF-
06671008 or vehicle was administered to mice on day 0 and on the following day mice were 
inoculated with 0.5, 1, 2, 2.5 or 5 x106 T-cells/ mice IV. In addition to vehicle, dose levels of 0.05, 
0.15 and 0.5 mg/kg PF-06671008 were administered for HCT116 xenograft studies and 0.05, 0.15, 
and 0.5 mg/kg PF-06671008 for SUM149 xenograft studies (n= 10 /dose). The doses were 
administered IV as a q7d x 3 or q7d x 5 regimens.   

Tumor volume was measured using a digital Vernier caliper (Mitutoyo America, Aurora, IL), and 
volumes were calculated by use of the modified ellipsoid formula ½ (width2 × length). Tumor 
measurements were collected twice weekly, with continuous health monitoring, until the 
animals had to be euthanized due to tumor burden or health concerns out to a maximum of 16 
days (HCT-116 in the human T-cell engrafted model), 42 days (SUM-149 adoptive transfer) or 65 
days (HCT-116 adoptive transfer). For a full description of the mouse xenograft studies, please 
refer to (15). 

PF-06671008 cynomolgus monkey PK study  

The PK of PF-06671008 in cynomolgus monkey was evaluated following IV bolus and SC 
administration at weekly escalating doses for 1 month. The IV doses administered were 1.1/3.3, 
3.3/10, or 10/20 µg/kg/week, and the SC dose administered was 10/30 µg/kg/week. This study 
has been described previously (16). 

Measurement of soluble P-cadherin (sPcad)    

Baseline sPcad levels were measured in cynomolgus monkey, healthy volunteer, and cancer 
patient serum samples (Bioreclamation). sPcad levels were also measured in cynomolgus monkey 
after treatment with PF-06671008 (in-house samples). A qualified Meso Scale Discovery (MSD) 
human P-cadherin kit was used to measure soluble P-cadherin levels, as described previously 
(16). 

Modeling of mouse tumor growth inhibition (TGI) data: A QSP model was constructed to 
describe the disposition of PF-06671008 and T-cells in the central compartment and tumor of the 
xenograft mouse models (Figure 1A). The model accounts for the binding of PF-06671008 to 
tumor cells and T-cells in the extracellular space of the TME to form trimers. The trimers are 
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assumed to drive tumor cell killing. Description of all the symbols and parameters used in the 
mouse equations are shown in Tables I and II. 

1. Modeling of PF-06671008 and T-cells in central / peripheral compartments and distribution 
to the tumor 

Following systemic administration to mouse, PF-06671008 is assumed to be able to distribute to 
a peripheral compartment, distribute to the tumor, bind to circulating T-cells or be cleared from 
the central compartment. In the mouse model, PF-06671008 does not bind to sPcad. 
Mouse PK: The mouse serum concentration profiles in human PBMC engrafted mice, following 
IV administration of PF-06671008 at 0.05 and 0.5 mg/kg were described using a 2-compartment 
model with linear elimination from the central compartment (Equations 1 - 2). C1, C2 and C3 are 
the concentrations of the drug, PF-06671008, in plasma, peripheral compartment and tumor, 
respectively. kel is the elimination rate of PF-06671008 from the central compartment. k12 and 
k21 are the inter-compartmental rate constants describing distribution of PF-06671008 between 
the central compartment and the peripheral compartment. These values were fixed in the 
subsequent TGI modeling. Distribution of free PF-06671008 to the extracellular environment of 
the tumor was characterized using tumor disposition equations (Equations 3 - 4) that have been 
described previously (17-19). Briefly, P is the rate of permeability and D is the diffusion of drug, 
across and around the tumor blood vessels. Rcap is the radius of the tumor blood capillary; Rkrogh 
is the average distance between 2 capillaries, Rtumor is the radius of the tumor and ε is the tumor 
void volume for the drug. 

Binding to T-cells: Binding of PF-06671008 to circulating T-cells was determined from CD3 
binding (konCD3 and koffCD3), the number of CD3 receptors per T-cell (CD3) and number of T-cells in 
the central compartment, or plasma (Tcellsp). These values were used to calculate total CD3 in 
the central compartment (TotCD3p) (Equation 5). Binding to CD3 (and P-cadherin) was 
determined using surface plasmon resonance (SPR) assays run on a Biacore instrument as 
described previously (7). The number of CD3 receptors per T-cell was taken from literature data 
(20, 21). The number of T-cells administered per mouse was used to inform the initial number of 
T-cells in the central compartment. See Equation 6 for binding of PF-06671008 to CD3 in the 
central compartment. DCD3p and DCD3t are the concentration of drug-CD3 dimers in plasma and 
tumor, respectively.  

T-cell trafficking: Following administration of T-cells to mouse, T-cells were assumed to be able 
to distribute to the tumor (Equations 7 – 8), bind to PF-06671008 or be cleared from the central 
compartment. k12T and k21T  are the rate constants describing distribution of T-cells between the 
central compartment and the tumor. kelT is the elimination rate of the T-cells from the central 
compartment. These parameters were determined from modeling of in-house PBMC data in 
tumor bearing mice (not shown here). A lag time of 5 days was introduced to accommodate the 
disposition and start of proliferation of T-cells at the tumor site. This was informed from in-house 
immunohistochemistry data and was equivalent to time of T-cell observation in the tumor. 
Tcellstm are T-cells which have migrated from the central compartment to TME during the 5 days. 
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Figure 1a: Translational quantitative systems pharmacology model for CD3 bispecific molecules. Parameter 
descriptions and values are summarized in Tables I to III. The figure represents both mouse and human models, 
with the following exceptions: (a) binding to sPcad was only included in the human model (b) T-cell proliferation 
and exhaustion in the tumor was only included in the mouse model 1b: Schematic of the bell-shaped 
concentration relationship which can be observed for CD3 bispecific molecules. Formation of trimers between 
drug, T-cells and tumor cells are required for efficacy. The QSP model predicts trimer concentration and links it 
to tumor cell killing.  

a 

b 
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2. Modeling of T-cell proliferation and trimer formation in the TME 

T-cell kinetics in the tumor: CD3+ cells/ mg tumor was measured in HCT-116 tumor bearing mice, 
engrafted with human PBMCs, following administration of PF-06671008 at 0.01, 0.05 or 0.5mg/kg 
(described above). This data was used to determine the proliferation rate of T-cells in the tumor. 
The relationship between CD3+ cells/ mg tumor with time at each dose level was described using 
an exponential function. The slope of each line represents the rate of proliferation of CD3+ cells 
and was plotted versus PF-06671008 dose. An empirical model was then used to describe the 
CD3+ proliferation rates (Prate) as a function of dose (Equation 9).  Please see supplementary 
material for additional information and plots. T-cells migrating into the TME during the 5-day lag 
time (Tcellstm) undergo proliferation for 7 days (Equation 10).  

Following proliferation, T-cells undergo contraction which was characterized using mono-
exponential decline (k_exhaust) (Equation 11).  The time (7 days) and rate of decline (0.0412 1/h) 
was estimated from literature data (22). It was assumed that T-cell proliferation was only taking 
place in the tumor environment and that proliferation and contraction rates were the same in 
the human T-cell engraftment and adoptive transfer mouse tumor models.  

Trimer formation: In the TME, PF-06671008 can bind to P-cadherin on tumor cells or to CD3 on 
T-cells to form dimers, or both tumor cells and T-cells to form the active trimers. The binding 
constants between drug and P-cadherin are: konPcad and koffPcad and the binding constants 
between drug and CD3 are: konCD3 and koffCD3. In addition to binding affinity values, trimer 
formation was a function of P-cadherin receptors per tumor cell (mPcad), number of tumor cells 
(Tumorcellst), CD3 receptors per T-cell (CD3) and number of T-cells in the TME (Tcellst). These 
values were used to calculate total P-cad (TotPcadt) and total CD3 (TotCD3t) in the TME 
(Equations 12 – 13). P-cadherin receptor expression in HCT-116 and SUM-149 tumor cell lines 
was determined by phycoerythrin (PE) labelling of anti-P-cadherin mAb and flow cytometry to 
determine number of PE labeled antibodies bound per cell. This study has been described 
previously (15). Internalization rate of drug bound to P-cadherin (kint) in the tumor was 
determined from the mouse PK study, completed in the presence of PBMCs. The number of 
tumor cells was determined from xenograft data. The number of CD3 receptors/ T-cell was taken 
from published data (20, 21). See Equations 14 – 16 for binding of PF-06671008 to P-cadherin 
and CD3 to form dimers and trimers 

3. Tumor growth inhibition  

The mouse xenograft PK/PD relationship was established by relating mouse PF-06671008 trimer 
concentration in the TME to measured xenograft tumor volume data using an optimized cell 
distribution transduction model (23). The presented model is a modified version of the model by 
Simeoni et al. (24). Briefly, the unperturbed tumor growth was fitted first using individual animal 
growth data from the vehicle control group, using a logistic model describing linear (kg) and 
exponential (kg0) growth. The measured initial tumor volume in each animal was used to inform 
the initial conditions (M1). M1 -M4 are the tumor volumes in the growth compartment and three 



133 
 

transduction compartments, respectively. w is the total tumor volume (mm3). The inter-
individual variability of the growth parameters and the maximum tumor volume (Mmax) obtained 
from the unperturbed growth model were then fixed in the simultaneous estimation of growth 
and drug effect parameters from the complete tumor volume data set. Tumor cell killing was 
driven by the concentration of the trimolecular complex (Trimer). τ is the transduction time, kmax 
is the maximum kill rate, kc50 is the concentration of the trimer in the tumor at half the maximal 
kill rate, and ψ is the constant for switching from exponential to linear growth patterns. Equations 
17-22 describe the tumor growth inhibition modeling. 

 

Table 1: Model variables and terms used in equations 

Variable Definition Unit 
TotPcadt Total Pcad in the tumor nM 
TotCD3p Total CD3 in the central compartment nM 
TotCD3t Total CD3 in the tumor nM 
Tcellsp T-cells in the central compartment cells/L 
Tcellstm T-cells migrated from plasma to tumor, during 5-day lag time cells/L 
Tcellst T-cells in the tumor cells/L 
Dose Dose of PF-06671008 nmols 
C1 Concentration of PF-06671008 in central compartment nM 
C2 Concentration of PF-06671008 in the peripheral compartment nM 
C3 Concentration of PF-06671008 in the tumor nM 
DCD3p Dimer of PF-06671008-CD3 in the central compartment nM 
DCD3t Dimer of PF-06671008-CD3 in the tumor nM 
DPcadp Dimer of PF-06671008-Pcad in the central compartment nM 
DPcadt Dimer of PF-06671008-Pcad in the tumor nM 
Trimer Trimer of PF-06771008-CD3-Pcad in the tumor nM 
𝑤𝑤 Total tumor volume mm3 
M1, M2, M3, M4 Tumor volume in growth and three transduction compartments mm3 

 

Determination of tumor static concentration (TSC)  

TSC is the concentration of trimers at which tumor growth and death rate are equal and is defined 
as the minimal efficacious concentration (Ceff). This PK/PD derived parameter combines growth 
information and drug effect, providing insight into the efficacy of PF-06671008 in mouse 
xenograft models. TSC was used as a translational factor for extrapolation of xenograft data to 
the clinic. See Equation 23 for TSC calculation. An 80% confidence interval on TSC was calculated 
using parametric bootstrap by resampling from the estimated parameters using a log-normal 
distribution. 
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(8) 
 

𝑃𝑃𝑝𝑝𝑢𝑢𝑝𝑝𝑝𝑝 =  �
0.014

4 + 𝑑𝑑𝐷𝐷𝐷𝐷𝑑𝑑
 + 1.5𝑑𝑑 − 5�  × 𝑑𝑑𝐷𝐷𝐷𝐷𝑑𝑑 

 

(9) 

𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝 = 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑢𝑢 × 𝑑𝑑𝑃𝑃𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸 × 𝑝𝑝  for t ≤ 7 days, after 5-day lag time 
 

(10) 

𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝 = (𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑝𝑝𝑢𝑢 ×  𝑑𝑑𝑃𝑃𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸 × 7) ×  𝑑𝑑−0.0412 ×(𝑝𝑝−7) for t > 7 days, after 5-day lag time (11) 
 

𝑇𝑇𝐷𝐷𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑝𝑝 = �
 𝑇𝑇𝑢𝑢𝑇𝑇𝐷𝐷𝑇𝑇𝑝𝑝𝑝𝑝𝑘𝑘𝑘𝑘𝑠𝑠𝐸𝐸 × 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑

6.023 ×  1023 �  × (1 ×  109) 

 

(12) 

𝑇𝑇𝐷𝐷𝑑𝑑𝐶𝐶𝐷𝐷3𝑝𝑝 = �
 𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝑝𝑝 × 𝐶𝐶𝐷𝐷3
6.023 ×  1023 �  × (1 ×  109) 

 

(13) 

𝑑𝑑𝐷𝐷𝐶𝐶𝐷𝐷3𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑜𝑜𝑢𝑢𝐶𝐶𝐴𝐴3  × 𝐶𝐶3 × �
(𝑇𝑇𝐷𝐷𝑑𝑑𝐶𝐶𝐷𝐷3𝑑𝑑 − 𝐷𝐷𝐶𝐶𝐷𝐷3𝑑𝑑 − 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇)

𝜀𝜀
� −  𝑘𝑘𝑜𝑜𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴3  × 𝐷𝐷𝐶𝐶𝐷𝐷3𝑑𝑑

−  𝑘𝑘𝑜𝑜𝑢𝑢𝑃𝑃𝑝𝑝𝑢𝑢𝑝𝑝  × 𝐷𝐷𝐶𝐶𝐷𝐷3𝑑𝑑 × �
(𝑇𝑇𝐷𝐷𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑 − 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇)

𝜀𝜀
� +  𝑘𝑘𝑜𝑜𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃  × 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇 

DCD3t(t=0) = 0 

(14) 
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𝑑𝑑𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
=  𝑘𝑘𝑜𝑜𝑢𝑢𝑃𝑃𝑝𝑝𝑢𝑢𝑝𝑝  × 𝐶𝐶3 × �

(𝑇𝑇𝐷𝐷𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑 − 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇)
𝜀𝜀

� −  𝑘𝑘𝑜𝑜𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃  × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑

−  𝑘𝑘𝑜𝑜𝑢𝑢𝐶𝐶𝐴𝐴3  × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑 × �
(𝑇𝑇𝐷𝐷𝑑𝑑𝐶𝐶𝐷𝐷3𝑑𝑑 − 𝐷𝐷𝐶𝐶𝐷𝐷3𝑑𝑑 − 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇)

𝜀𝜀
� + 𝑘𝑘𝑜𝑜𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴3  × 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇

− 𝑘𝑘𝐷𝐷𝑛𝑛𝑑𝑑 × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑 
DPcadt(t=0) = 0 
 

(15) 
 

𝑑𝑑𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

=   𝑘𝑘𝑜𝑜𝑢𝑢𝐶𝐶𝐴𝐴3  × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑 × �
(𝑇𝑇𝐷𝐷𝑑𝑑𝐶𝐶𝐷𝐷3𝑑𝑑 − 𝐷𝐷𝐶𝐶𝐷𝐷3𝑑𝑑 − 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇)

𝜀𝜀
�  −  𝑘𝑘𝑜𝑜𝑓𝑓𝑓𝑓𝐴𝐴𝐴𝐴3  × 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇

+  𝑘𝑘𝑜𝑜𝑢𝑢𝑃𝑃𝑝𝑝𝑢𝑢𝑝𝑝  × 𝐷𝐷𝐶𝐶𝐷𝐷3𝑑𝑑 × �
(𝑇𝑇𝐷𝐷𝑑𝑑𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑 − 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇)

𝜀𝜀
� −  𝑘𝑘𝑜𝑜𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃  × 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇 

Trimer(t=0) = 0 
 

(16) 
 

𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘 =  
𝑘𝑘𝑢𝑢𝑢𝑢𝑚𝑚 × 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇
𝑘𝑘𝑇𝑇50 + 𝑇𝑇𝑇𝑇𝐷𝐷𝑇𝑇𝑑𝑑𝑇𝑇

 

 

(17) 
 

𝑑𝑑𝑀𝑀1

𝑑𝑑𝑑𝑑
=

𝑘𝑘𝑔𝑔0  × �1 − 𝑤𝑤
𝑀𝑀𝑢𝑢𝑢𝑢𝑚𝑚

� × 𝑀𝑀1

�1 + �
𝑘𝑘𝑔𝑔0
𝑘𝑘𝑔𝑔

 ×  𝑤𝑤�
𝜓𝜓

�

1
𝜓𝜓

− 𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘  ×  𝑀𝑀1 

M1(t = 0) = TV 
 

(18) 
 

𝑑𝑑𝑀𝑀2

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑘𝑘𝑝𝑝𝑘𝑘𝑘𝑘 × 𝑀𝑀1 −

𝑀𝑀2

𝜏𝜏
 

 M2(t=0)=0 
 

(19) 
 

𝑑𝑑𝑀𝑀3

𝑑𝑑𝑑𝑑
=

𝑀𝑀2 − 𝑀𝑀3

𝜏𝜏
 

M3(t=0) = 0 
 

(20) 

𝑑𝑑𝑀𝑀4

𝑑𝑑𝑑𝑑
=

𝑀𝑀3 − 𝑀𝑀4

𝜏𝜏
 

M4(t=0) = 0 
 

(21) 
 

𝑤𝑤 = 𝑀𝑀1 + 𝑀𝑀2 + 𝑀𝑀3 + 𝑀𝑀4 
 

(22) 

𝑇𝑇𝑇𝑇𝐶𝐶 =  
𝑘𝑘𝑔𝑔0 ×  𝑘𝑘𝐶𝐶50

𝑘𝑘𝑢𝑢𝑢𝑢𝑚𝑚 −  𝑘𝑘𝑔𝑔0 
 

(23) 
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Table 2: Mouse model parameters                                

 Parameter Definition Unit Value (CV%) Source 
Bi

nd
in

g 

konCD3, 
koffCD3, 
Kd_CD3 

Binding of PF-06671008 to 
CD3 

1/nM/h, 1/h 

nM 

1.72, 19.66 
11.4 

(7) konPcad, 
koffPcad, 
Kd_Pcad 

Binding of PF-06671008 to P-
cadherin 

1.57, 0.74 
0.47 

Ce
nt

ra
l /

 P
er

ip
he

ra
l C

om
pa

rt
m

en
t 

V1 Volume of distribution in the 
central compartment mL/kg 49.6 (9) 

Estimated from 
mouse PK data.  

kel= CL/V1 
k12= CLd/V1 
k21= Cld/V2 

V2 Volume of distribution in the 
peripheral compartment mL/kg 60.7 (16) 

CL Clearance mL/h/kg 0.45 (12) 

CLd Inter-compartmental 
clearance mL/h/kg 4.95 (28) 

Omega CL Inter-individual variability in 
clearance - 0.064 (41) 

a Additive error - 0.067 (32) 

b Proportional error - 0.207 (15) 

Tcellsp0 Number of T-cells 
administered/mouse cells/L 0, 2.5e8, 5e8, 1e9, 1.25e9, 

2.5e9 
See methods 

section 

CD3 CD3 expression on T-cells receptors/cell 100,000 (20, 21) 

Tu
m

or
 D

isp
os

iti
on

 o
f  

PF
-0

66
71

00
8/

 T
-c

el
ls 

P Permeability of drug into 
tumor µm/day 334 

(18) 

D Diffusivity of drug into tumor cm2/day 0.022 

ε 
Void fraction in tumor for 
drug - 0.24 

Rcap Capillary radius µm 8 

Rkrogh Average distance between 2 
capillaries µm 75 

Tlag 
Lag time for T-cell 
disposition/ onset of T-cell 
proliferation in the tumor 

day 5 

Set empirically, 
using in-house 

data kelT, k12T, 
k21T 

T-cell re-distribution from 
the central compartment to 
the tumor 

1/day 2.51, 0.002, 0.0005 
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Tu
m

or
 C

om
pa

rt
m

en
t 

Prate T-cell proliferation rate 1/h Function of dose. Equation (9) See methods 

kexhaustc Slope of T-cell decline 1/h 0.0412 Interpolated from 
(22) 

Tumorcellst Number of tumor cells  cells/ gram 
of tumor 1e8 (26) 

mPcad P-cadherin expression on 
tumor cells 

receptors/
cell 

28,706 (HCT-116) 

17,500 (SUM-149) (15) 

Rtumor Tumor radius cm Calculated from w Measured 

kint 
P-cadherin internalization 
rate day-1 0.1728 (-) 

Estimated from 
mouse tumor PK 
data. 96h half-life 
of internalization. 

Tu
m

or
 G

ro
w

th
 In

hi
bi

tio
n 

 Mouse tumor models  HCT116a HCT116b SUM149b  

𝑘𝑘𝑔𝑔0 Exponential tumor growth 
rate 1/day 0.30 (-) 0.19 (3) 0.12 (3) 

Estimated in 
mouse models 

from unperturbed 
tumor growth data 

𝑘𝑘𝑔𝑔 Linear tumor growth rate mm3/day 105 (4) 123 (2) 74.3 (5) 

𝑀𝑀𝑢𝑢𝑢𝑢𝑚𝑚  Maximum tumor volume mm3 3.8x103  
(-) 

6.0 x103 
(-) 

5.8 x103  
(-) 

𝜓𝜓 
Switch between 
exponential and linear 
growth phases 

- 20 (-) Fixed based on 
(24) 

𝑘𝑘𝑢𝑢𝑢𝑢𝑚𝑚  Maximum killing rate 1/day 0.74 (7) 1.32 (7) 2.71 (14)  

𝑘𝑘𝐶𝐶50 Concentration at half 
maximum kill rate nM 1.0x10-4  

(6) 
6.9x10-5 

(7) 
2.0x10-4 

(15) 

Estimated in 
mouse models 

 

𝜏𝜏 
Transduction time 
between tumor 
compartments 

day 4.78 (10) 3.99 (1) 2.25 (3) 

Omega kg0 
Inter-individual variability 
in exponential growth 
rate 

 0.46 (14) 0.34 
(11) 0.12 (25) 

Omega kg Inter-individual variability 
in linear growth rate  0.35 (13) 0.16 

(13) 0.16 (28) 

a Additive error  5 (-) 60 (-) 60 (-) 

b Proportional  error  0.26 (3) 0.06 (6) 0.01(50) 

TSC (pM) 
[80% 
confidence 
interval] 

Tumor static 
concentration of the 
trimer 

 
0.064  

[0.044, 
0.096] 

0.011  
[0.0096, 
0.013] 

0.0092 
[0.0071, 
0.012] 

aTcell engrafted tumor model, bT cell adoptive transfer tumor model, conset of exhaustion of T-cells set to 7d after disposition in the tumor 
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Modeling: All modeling was performed using Monolix software v4.3.3 (Paris, France). The quality 
of the model fitting was assessed using: 

Diagnostic plots: (a) plots of observations versus population/ individual predictions and 
comparison with line of unity, (b) plots of weighted residuals versus time/concentration and 
check for systematic deviation from zero, (c) visual predictive checks of observations and 
predictions for all individuals at each dose level to check for goodness of fit. 

Diagnostic criteria: (a) reasonable precision of the parameter estimates (RSE/ CV%) (b) lack of 
correlation between model predicted parameters (<0.95) (c) lack of shrinkage (η-) as a check for 
model over-parameterization (<40%) (d) reduction in objective function values and/or Aikake and 
Schwarz criterion for model comparison. 

Translation of the model to human 

Prediction of human PK: Human PK parameters were predicted from cynomolgus monkey PK 
parameters using a two-compartmental PK model which incorporates binding to sPcad (Table III 
and Figure 1A). PK parameters were scaled from monkey to human using allometric exponents 
of 0.9 for clearance, 1 for volume of distribution and -0.25 for absorption rate. These exponents 
were selected as they have been previously identified as optimal for monoclonal antibodies (25). 
The degradation rate of sPcad (kdeg) was scaled from monkey to human using an exponent of -
0.25. The degradation rate of the PF-06671008-sPcad complex (kdegcx) was assumed to be the 
same as PF-06671008 elimination rate. 

Prediction of clinical PK/PD: The QSP model used to describe the PK/PD relationship in mouse 
was translated to human using the physiological parameters and assumptions described in Table 
III. An important difference from the mouse model is that PF-06671008 binds to circulating target 
(sPcad) to form drug-P-cadherin (DPcadp) dimers in the central compartment in the human 
model. The additional model equations are shown in Equations 24 – 26. In addition, T-cell 
proliferation/ contraction kinetics were not included in the human model. Instead, a ‘steady 
state’ number of T-cells in tumor are assumed (Tcellst). All model simulations were completed 
using Berkeley-Madonna v8.3.18.  

𝑑𝑑𝐶𝐶1 
𝑑𝑑𝑑𝑑

 = −𝑘𝑘𝑑𝑑𝑑𝑑 × 𝐶𝐶1 − 𝑘𝑘12 × 𝐶𝐶1 + 𝑘𝑘21 × 𝐶𝐶2 ×
𝑉𝑉2
𝑉𝑉1

− 𝑘𝑘𝐷𝐷𝑛𝑛𝐶𝐶𝐴𝐴3 × 𝐶𝐶1 ×  �𝑇𝑇𝐷𝐷𝑑𝑑𝐶𝐶𝐷𝐷3𝑝𝑝 − 𝐷𝐷𝐶𝐶𝐷𝐷3𝑝𝑝 �
+ 𝑘𝑘𝐷𝐷𝑘𝑘𝑘𝑘𝐶𝐶𝐴𝐴3  × 𝐷𝐷𝐶𝐶𝐷𝐷3𝑝𝑝 − 𝑘𝑘𝐷𝐷𝑛𝑛𝑃𝑃𝑝𝑝𝑢𝑢𝑝𝑝 × 𝐶𝐶1 × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑 +  𝑘𝑘𝐷𝐷𝑘𝑘𝑘𝑘𝑃𝑃𝑝𝑝𝑢𝑢𝑝𝑝  × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑝𝑝

− 𝑇𝑇𝑢𝑢𝑇𝑇𝐷𝐷𝑇𝑇 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑𝐷𝐷𝐷𝐷𝑛𝑛 ×  
𝑇𝑇𝑉𝑉
𝑉𝑉1

 

C1(t=0) = Dose in nmols                   

(24) 

   
𝑑𝑑𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑 

𝑑𝑑𝑇𝑇
= 𝑘𝑘𝐷𝐷𝑘𝑘𝑛𝑛 − 𝑘𝑘𝑑𝑑𝑑𝑑𝐾𝐾 × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑 − 𝑘𝑘𝐷𝐷𝑛𝑛𝑃𝑃𝑝𝑝𝑢𝑢𝑝𝑝 × 𝐶𝐶1 × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑 +  𝑘𝑘𝐷𝐷𝑘𝑘𝑘𝑘𝑃𝑃𝑝𝑝𝑢𝑢𝑝𝑝  × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑝𝑝 

  
sPcad (t=0) = sPcad in nM                                                                                            

 
(25) 
 

 
𝑑𝑑𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑝𝑝

𝑑𝑑𝑇𝑇
= �𝑘𝑘𝐷𝐷𝑛𝑛𝑃𝑃𝑝𝑝𝑢𝑢𝑝𝑝 × 𝐶𝐶1 × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑 −  𝑘𝑘𝐷𝐷𝑘𝑘𝑘𝑘𝑃𝑃𝑝𝑝𝑢𝑢𝑝𝑝  × 𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑝𝑝� − 𝑘𝑘𝑝𝑝𝑝𝑝𝑔𝑔𝑝𝑝𝑚𝑚  ×  𝐷𝐷𝑃𝑃𝑇𝑇𝑇𝑇𝑑𝑑𝑝𝑝 

   
(26) 
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DPcadp(t=0)=0 

                                                                                   

Sensitivity analyses: Local sensitivity analyses were performed to assess the sensitivity of the 
QSP model to P-cadherin receptor expression on tumor cells, and to tumor T-cell (effector) to 
tumor cell ratio (E:T), as these are potentially variable parameters in patients. P-cadherin 
receptor numbers of 1,000, 3,000, 10,000 and 28,706 were used for simulations with the human 
model. These values represented the range of P-cadherin expression measured across human 
tumor cell lines (15). The nominal value of E:T used in the model was 1:150, which is thought to 
be representative of a solid tumor (26, 27). In the sensitivity analysis, E:T ratios of 10-fold lower 
(1:15) and 10-fold higher (1:1500) than the nominal value were investigated in the human model. 
For quantitative comparison, sensitivity was represented as predicted tumor trimer 
concentration at each expression level, or E:T ratio, following an IV dose of 0.1µg/kg PF-06671008 
QW to cancer patients.  

6.4 Results 

Serum and tumor PK of PF-06671008 in mouse: PK profiles of PF-06671008 in PBMC engrafted 
and non-PBMC engrafted HCT-116 tumor-bearing mice following single dose IV administration at 
0.05 and 0.5 mg/kg are shown in Figure 2A. Area under the curve (AUC) of PF-06671008 in serum 
was dose proportional between 0.05 and 0.5 mg/kg and similar between PBMC engrafted and 
non-PBMC engrafted mice (Figure 2). In contrast, the tumor AUC from the study with PBMC 
engraftment was more than 5-fold higher than the study without PBMCs (Figure 2B). This was 
attributed to a reduction in the internalization of PF-06671008 bound to P-cadherin on tumor 
cells in the presence of PBMCs.  

The serum PK in the PBMC engrafted mice was used for PK modeling. The estimated serum PK 
parameter estimates for PF-06671008 are shown in Table 2, and the goodness of fit plots are 
shown in Supplemental Figure 1. The tumor internalization rate in the presence of PBMCs was 
used in the TGI PK/PD modeling (Table 2).  

Tumor T-cell kinetics: HCT-116 tumor bearing mice engrafted with PBMCs and administered PF-
06671008, showed dose dependent increases of tumor infiltrating/proliferating CD3+ 
lymphocytes (TILs) over time (Figure 3). The relationship with time was transformed to calculate 
a proliferation rate of CD3+ cells as a function of dose which was used to describe tumor T-cell 
kinetics in the QSP model (Supplementary Figure 2). 

PK/PD relationship of PF-06671008 in mouse xenograft models: The QSP model (Figure 1A) was 
used to fit the tumor growth inhibition data obtained from the HCT-116 and SUM-149 mouse 
xenograft studies. The tumor trimer concentration was used as a driver of tumor cell killing. 
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Figure 2: (A) Serum and (B) Tumor PK profiles of PF-06671008 in PBMC engrafted and non-PBMC engrafted HCT-116 
tumor bearing mice following single dose intravenous administration at 0.05 and 0.5mg/kg. 

 

A 

B 
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Estimated model parameters with percent co-efficient of variation (CV) and calculated tumor 
trimer TSCs with 80% confidence intervals are shown in Table II. Parameters were estimated with 
good precision as assessed by the % CV for all cell lines. The goodness of fit and model 
performance were assessed using goodness of fit plots (population prediction, individual 
prediction and visual predictive check) that are shown in Supplemental Figure 3 for HCT-116 in 
the T-cell engrafted model, and for HCT-116 and SUM-149 in T-cell adoptive transfer 
experimental model. Overall, the median response and variability of all cell lines were described 
well by the mechanistic model. The calculated population median TSCs were 0.064, 0.011 and 
0.0092 pM for HCT-116 in T-cell engrafted model, and for HCT-116 and SUM-149 in T-cell 
adoptive transfer experimental models, respectively. The Ceff for tumor stasis is defined as the 
geometric mean of the TSCs in three mouse xenograft models and was calculated to be 0.028 pM 
trimer concentration in the tumor.  

Serum P-cadherin concentrations across species: The concentrations of sPcad in serum samples 
from cynomolgus monkey, healthy humans and cancer patients are shown in Table IV. There was 
no difference in sPcad levels in serum of healthy human volunteers and cancer patients. Higher 
variability was observed in lung and colorectal cancer samples compared to samples from breast 
cancer patients or healthy humans. Levels of sPcad in cynomolgus monkeys were similar to those 
in human. 

 
Figure 3: PF-06671008 induced tumor T-cell proliferation in mice bearing HCT-116 tumors with human PBMC 
engraftment. Number of CD3+ cells/ mg of tumor (with standard deviations) are plotted against time following IV 
administration of control and PF-06671008 at 10 µg/kg, 50 µg/kg and 500 µg/kg. 

Clinical PK predictions for PF-06671008: The predicted human PK parameters for PF-06671008 
are shown in Table 3. The predicted human CL and Vss were 4.6 mL/h/kg and 251 mL/kg, 
respectively, and the terminal half-life was predicted to be approximately 1 day.  
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Clinical PK/PD predictions for PF-06671008 and sensitivity to P-cadherin expression on tumor 
cells and T-cell number: To translate the QSP model from mouse to human, the predicted human 
PK was incorporated along with assumptions and parameters describing the human physiology 
(Table 3). Model simulated serum PK and tumor trimer concentrations following IV infusion of 
PF-06671008 at 0.01, 0.1, and 1µg/kg QW to cancer patients are shown in Figures 4A and 4B, 
respectively. Expression levels of P-cadherin on tumor cells are expected to vary across patients. 
To investigate the potential impact on tumor trimer concentrations, a sensitivity analysis was 
performed varying P-cadherin receptor numbers from 1,000 -28,706 (HCT-116). Predicted tumor 
trimer concentration increases with increasing receptor expression (Figure 5A) suggesting that P-
cadherin expression is a sensitive parameter. Tumor immune status is also likely to vary across 
patients. The nominal E:T ratio in the model is assumed to be low (1:150) in a solid tumor (26, 
27). To investigate potential impact of tumor T-cell number on tumor trimer concentrations, a 
sensitivity analysis was performed varying E:T ratio from 1:15 to 1:1500 and assuming a constant 
number of tumor cells. Predicted tumor trimer concentration correlates with E:T ratio (Figure 
5B), suggesting T-cells in the tumor are a sensitive parameter.  

6.5 Discussion 

Complex exposure response relationships for CD3 bispecific molecules  

Bispecific antibodies are emerging as a leading class of biotherapeutic drugs in oncology, with 
potential to enhance efficacy, increase tumor targeting and reduce systemic toxicity compared 
to their monospecific counterparts. These formats can vary in their molecular weight, PK, and 
ability to support immune effector functions. Perhaps more significantly, they can also vary in 
geometry, number of antigen binding sites, and the intrinsic affinity of individual arms (28). As a 
result of this complexity, dose response relationships for bispecific antibodies can be non-
intuitive and difficult to rationalize.  

An additional complexity emerges for the CD3 bispecific T-cell retargeting modality, where 
efficacy is driven by the formation of a trimer between the drug, T-cell, and tumor cell. A bell-
shaped concentration response relationship can be observed (Figure 1B), which is a well 
described phenomenon for ternary complexes (29-32). When concentrations of antibodies are 
low, conditions favor the formation of trimers, with an optimal antibody concentration needed 
for trimer formation. However, as concentrations increase further, antibodies will be in excess 
and the equilibrium will shift to formation of dimers between antibodies and T-cell, or antibodies 
and tumor cell. This results in a decrease of response as dimers cannot trigger cytotoxicity. Since 
trimer concentration is a function of drug Kd values, tumor antigen expression, CD3 expression 
and E:T ratio, a single drug concentration could potentially result in different trimer 
concentrations. Therefore, interpretation of response by drug exposure alone can be misleading. 
For the CD3 bispecific molecule discussed in this manuscript (PF-06671008), a bell-shaped dose 
response relationship was not observed in mouse xenograft studies. This is probably because 
there was high P-cadherin expression on the tumor cell lines studied and good infiltration of T- 
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Table 3: Predicted human parameters used in simulations 

 Parameter Definition Unit Value (CV%) Source 
Bi

nd
in

g 

konCD3  
koffCD3 
Kd_CD3 

Binding of PF-06671008 to 
CD3 1/nM/h 

1/h 
nM 

1.72 
19.66 
11.4 (7) 

 konPca 

koffPcad 

Kd_Pcad 

Binding of PF-06671008 to 
P-cadherin 

1.57 
0.74 
0.47 

Ce
nt

ra
l /

 P
er

ip
he

ra
l C

om
pa

rt
m

en
t 

V1 Volume of distribution in 
central compartment mL/kg 40.2 Allometrically scaled 

from cynomolgus 
monkey PK analysis (16) 
kel= CL/V1 
k12= CLd/V1 
k21= Cld/V2 

V2 Volume of distribution in 
peripheral compartment mL/kg 211 

CL Clearance mL/h/kg 4.61 

CLD Inter-compartmental 
clearance mL/h/kg 25.2 

sPcad sPcadherin concentration 
in central compartment nM 1.1 

(0.4- 4.1) 

Measured in-house (= 
92.7ng/mL) Median 
value of healthy 
subjects and patient 
data 

kdeg sPcad degradation rate 1/h 0.15 

Allometrically scaled 
from cynomolgus 
monkey PK analysis 
(0.31 1/h in cyno) (16) 

kdegcx 
sPcad-PF-06671008 
complex degradation rate 1/h 0.115 

Assumed to equal PF-
06671008 elimination 
rate (CL/V1) 

Tcellsp T-cell concentration in 
central compartment cells/ µL 5000 (42) 

CD3 CD3 expression on T-cells receptors/cell 100,000 (20, 21) 

Tu
m

or
 D

isp
os

iti
on

 o
f P

F-
06

67
10

08
/ T

-c
el

ls 

P Permeability of drug into 
tumor µm/d 334 

(18) 

D Diffusivity of drug into 
tumor cm2/d 0.022 

ε 
Void fraction in tumor for 
drug - 0.24 

Rcap Capillary radius µm 8 

Rkrogh Average distance between 
2 capillaries µm 75 

Tcellst a Number of T-cells in tumor cells/gram of 
tumor 6.49e5 (27) 

Tumorcellst Number of Tumor cells  cells/ gram of 
tumor 1e8 (26) 

mPcad P-cadherin expression on 
tumor cells receptors/cell 28,706 (15) 

Rtumor Tumor radius cm 1 Assumed 

kint 
Internalization rate with 
PBMCs day-1 0.1728 (-) 

Estimated from mouse 
tumor PK data. 
Represents 96h half-life 
of internalization. 

aAssume no proliferation in tumor; ksyn = kdeg*sPcad  MWt of PF-06671008= 105kDa, MWt of sPcad=85kDa 
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cells. In addition, PF-06671008 is a potent drug with low Kd values for P-cadherin and CD3. As a 
result, sufficient trimer concentrations were achieved at each dose for efficacy. The bell-shaped 
relationship has been confirmed for other CD3 bispecific molecules in-house, where target 
expression is lower and/ or affinity weaker. It has also been observed in the literature from 
modeling of in vitro and in vivo experimental data (33, 34).  

Translational QSP model for CD3 bispecific molecules 

QSP models, which map out the causal path between drug administration and effect in a 
mechanistic framework, can be a useful tool to deconvolute complex mechanisms (35). Some 
examples of the use of mechanistic PK/PD models to quantify and understand system dynamics 
of CD3 bispecific molecules are emerging in the literature. For example, Jiang et al. (33) proposed 
a cell killing model based on target cell-biologic-effector cell complex formation and used it to 
describe and predict in vitro cytotoxicity data for multiple T-cell redirecting bispecific antibodies 
under different experimental conditions. Campagne et al. (36), developed a PK/PD model for a 
bispecific CD123/CD3 DART molecule in non-human primates. The model describes DART 
molecule binding to peripheral CD3 expressing cells and CD123+ cells, T-cell trafficking, 
activation, and expansion, and resulting peripheral depletion of CD123 cells. 

In this manuscript, a translational QSP model is proposed for CD3 bispecific T-cell retargeting 
molecules, capable of predicting trimer formation and linking it to tumor cell killing in in vivo 
efficacy models. In addition, the mechanistic nature of the model enables integration of patient 
data/ parameters and subsequent clinical predictions. The model consists of 3 parts describing 
the central, tumor and effect compartments (Figure 1A). The first part includes the bispecific 
antibody PK, binding to circulating T-cells, and binding to soluble target (when applicable) in the 
central compartment. The second part describes distribution of the antibodies to the tumor 
compartment using mechanistic tumor penetration equations, and parameters calculated based 
on the drug’s molecular weight and tumor size (18, 19, 37). If the model is being used for a liquid 
tumor these drug exchange tumor penetration parameters can simply be removed, as liquid 
tumors are assumed to provide less of a diffusion barrier than solid tumors, and equilibrium can 
be assumed between drug concentration in the central compartment and tumor interstitium. In 
the tumor compartment, the model incorporates binding of the drug to CD3 on T-cells and the 
specific antigen on tumor cells to form inactive dimers and ultimately the active trimers. In the 
mouse model a simple description of T-cell expansion and contraction is included, constructed 
using mouse TIL data and published information. For translation of this model to human, data on 
T-cell kinetics was not available and instead a baseline concentration of T-cells was assumed with 
no proliferation.  

In the third part of the model the trimer concentration is used as the basis for quantifying tumor 
volume reduction using a tumor growth inhibition model. The model used is a transduction 
model describing tumor cell growth and tumor cell killing (as a function of the tumor trimer 
concentration). The model parameters from each mouse study can be used to calculate a 
secondary parameter called the TSC. This is the concentration of trimer where the tumor is 
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neither growing nor regressing and can be considered as the minimum concentration of tumor 
trimer required for efficacy. The TSC is a useful parameter which can be used as a 
pharmacodynamic index to rank compounds, or to understand the difference in compound 
potency across mouse xenograft models, or as the denominator in therapeutic index calculations. 

Application of the QSP model to quantify PK/PD relationship for PF-06671008 in mouse 
xenograft models 

The model was used to quantify the preclinical PK/PD relationship of a CD3 bispecific molecule 
targeting P-cadherin (PF-06671008). To implement the model, the first step was to collect drug 
and system parameters describing the mechanism of action in mouse. To calculate trimer 
concentration in the tumor, receptor expression of P-cadherin was determined for the HCT-116 
and SUM-149 human tumor cell lines used in the mouse xenograft experiments. P-cadherin 
receptor expression in both cell lines (28,706 for HCT-116 and 17,500 for SUM-149) was lower 
than the expression of CD3 on T-cells (100,000 (20, 21)). This is typical for CD3 bispecific 
molecules as expression of most tumor targets is less than 100,000, and as a result tumor antigen 
receptor expression can be limiting and a key driver of efficacy. This was exemplified for a 
carcinoembryonic antigen T-cell bispecific (CEA-TCB) for the treatment of solid tumors. CEA-TCB 
activity was found to be strongly correlated with CEA expression, with a higher potency observed 
in highly CEA expressing tumor cells, with a threshold of 10,000 CEA binding sites/ cell (38). Target 
affinity data was also required to calculate trimer concentration. PF-06671008 binds to P-
cadherin with a Kd of 0.47 nM and CD3 with a Kd of 11.4 nM (7). Binding to the tumor target 
antigen is often more potent than binding to CD3 on T-cells in order to target the CD3 bispecific 
toward the tumor and away from peripheral tissues (34). In addition, strong binding to CD3 has 
been shown to drive more rapid clearance of an anti-CD3/anti-CLL1 bispecific in preclinical in vivo 
models (39).  

The QSP model was used to integrate the mouse PK for PF-06671008 with the TGI data and to 
calculate TSCs in T-cell engrafted (HCT-116) and T-cell adoptive transfer (HCT-116 and SUM-149) 
established mouse tumor models. TSC values were very similar in the adoptive transfer model 
for both the SUM-149 and HCT-116 tumor cell lines (0.0092 and 0.011 pM respectively, with 
overlapping 80% confidence intervals). In contrast, a 6-fold higher TSC value was obtained in the 
T-cell engrafted versus T-cell adoptive transfer model with the same cell line (HCT116, 0.064pM), 
and the respective 80% confidence intervals do not overlap. This is probably due to differences 
in T-cell engraftment between the two mouse tumor models. In the T-cell engrafted model the 
T-cells are administered as freshly isolated human PBMCs, 7 days prior to drug administration. In 
contrast, in the adoptive transfer model, activated T-cells are given 1-day post drug treatment. 
There are also other factors which can result in different TSCs including initial tumor size, and 
differences in tumor growth rates.  
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Table 4: Concentration of soluble P-cadherin in cynomolgus monkey and human serum  

Species Disease state n Soluble P-cadherin concentration 
  Median (ng/mL) Range (ng/mL) 

Cynomolgus monkeya Healthy 32 47 29-273 

Cynomolgus monkeyb Healthy 4 68 57-74 

Humana Healthy 40 90 45-150 

Humana Breast cancer 
patients 23 78 32-190 

Humana Colon cancer 
patients 31 102 36-328 

Humana Lung cancer 
patients 25 102 65-320 

aSamples from Bioreclamation (Westbury, NY), bSamples from in-house studies 

MWt of PF-06671008= 105kDa, MWt of sPcad=85kDa 

 

Translation of the model to the clinic 

The first step in translation to human was prediction of the clinical PK parameters. For PF-
06671008, circulating soluble target can act as a sink for the drug and reduce free drug exposure 
by forming complexes with PF-06671008. The reduction of free sPcad concentrations in 
cynomolgus monkey following dosing of PF-06671008 has been reported previously (16). The 
human PK of PF-06671008 was predicted from cynomolgus monkey PK using a two-
compartmental PK model which incorporates binding to sPcad. Levels of sPcad were measured 
in healthy volunteers and in breast, colon and lung cancer patients and the median concentration 
in cancer patients was used in the human model.  

The next step in the clinical translation process was incorporation of human systems parameters 
into the QSP model. These parameters are summarized in Table III and include T-cell 
concentration in the circulation and tumors, tumor cell concentration and typical tumor volumes 
in cancer patients. Values for all these parameters were obtained from the literature. CD3 
receptor expression was kept the same as the mouse model (which used human T-cells or 
PBMCs). P-cadherin expression of 28,706 was used in the clinical simulations. This was the value 
from the HCT-116 cell line, and represents a medium-high level expression of P-cadherin 
measured across human tumor cell lines used in in vitro cytotoxicity experiments (874- 37,582 
(15)).  

Model simulated serum PK and tumor trimer concentrations following IV infusion of PF-
06671008 at 0.01, 0.1 and 1µg/kg QW to cancer patients are shown in Figures 4A and 4B, 
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respectively.  In human, the terminal half-life of PF-06671008 was predicted to be approximately 
1 day. Concentration of trimer in the tumor, which is the more relevant concentration for 
efficacy, accumulates slowly (Cmax approx. 2 days post first dose) and persists for longer (Figure 
4B). This is due to slow diffusion of the drug into the tumor and formation of a more stable trimer 
which is retained within the TME. Since receptor expression of tumor target was known to be a 
key parameter, a sensitivity analysis was completed using the human model with P-cadherin 
expression varying from 1,000-28,706 receptors/cell. This analysis confirmed that P-cadherin 
receptor expression was a sensitive parameter and that concentration of trimer formed in the 
tumor correlates with expression level (Figure 5A). This has an impact on predicted clinical 
efficacy with a higher dose required for efficacy in patients with lower P-cadherin expression. In 
addition, the T-cell number in the tumor was found to be a sensitive parameter (Figure 5B), with 
higher predicted concentration of trimer in the tumor with increasing E:T ratio. High doses of PF-
06671008 were also simulated, to check to see where the bell-shaped relationship might be 
observed. At doses of >1.8mg/kg, a reduction in tumor trimer concentration is predicted with 
increasing dose levels (Supplementary Figure 4). However, at these doses the predicted trimer 
concentrations in the tumor are high enough that good responses would be expected (assuming 
the doses would be tolerated). A translational flow diagram describing the steps taken to 
translate CD3 bispecific drugs from preclinical TGI data in mouse to human is shown in Figure 6. 

 The translational QSP model described for CD3 bispecific compounds can be used to drive 
decision making at different stages of the drug discovery and development continuum.  At early 
stages the model can be used to provide guidance on compound selection, by predicting optimal 
Kd values for CD3 and the tumor antigen. This can be achieved by modeling of in vitro data, using 
a reduced version of the model without the PK (central and peripheral) compartments. For 
example, the model was previously used to describe the in vitro exposure response of PF-
06671008 in cytotoxicity assays and was able to simultaneously describe the kinetics of tumor 
and T-cells at various E:T ratios (16). Once a lead compound has been selected the model can be 
used to predict clinical doses and regimens and to optimize efficient clinical study design (40). A 
precision medicine approach could be adopted, whereby parameters in the model such as 
immune cell numbers, or tumor target expression levels, are tailored to individual characteristics 
of patients. This could result in recommendation of different doses for different patients. The 
model has also been used to predict clinical starting dose for PF-06671008 using a minimal 
biological effect level approach (MABEL), which is recommended for CD3 bispecific constructs 
due to their immune agonistic activity following target engagement (16, 41).  A recent analysis 
by the FDA concluded that receptor occupancy-based methods were not advised for CD3 
bispecifics. The QSP modeling approach is more suitable to determine MABEL as efficacy is driven 
by drug bound to both T-cells and tumor cell, rather receptor occupancy of either target singly. 
It is also independent of E:T ratio or other experimental specificities.  
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Figure 4: Model simulated (A) serum PK and (B) tumor trimer concentrations following IV infusion of PF-06671008 
at 0.01, 0.1, and 1µg/kg QW to cancer patients 

 

A 

 B 
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Figure 5: Model simulated tumor trimer concentrations at (A) different P-cadherin receptor expression values 
(1,000- 28,706 receptors/ cell) and (B) different E:T ratios (1:1500- 1:15)  following IV infusion of PF-06671008 at 
0.1µg/kg QW to cancer patients 

The model in its current state is very useful for a range of tasks from optimization of drug design 
to clinical dose predictions. However, opportunities exist to improve the model. For example, the 
current model includes an empirical description of T-cell activation/ proliferation in mouse, 
constructed based on TIL analysis across dose and time. A more mechanistic model could be 
developed by collection and characterization of more tumor lymphocyte kinetic data across 
species. In addition, the model is based upon a ‘well-mixed’ hypothesis in which tumor target 

 B 

A 
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and T-cells are assumed to be homogeneously distributed throughout the tumor environment 
with equal opportunity for trimer formation. However, tumors are known to be a complex 
environment with heterogeneous distribution of T-cells and tumor cells expressing target. Future 
versions of the model will take this into account. 

6.6 Conclusion 

The mechanistic PK/PD model and translational framework described for CD3 bispecific 
molecules, provides a holistic solution for quantitative decision making throughout the drug 
discovery and development process. In this manuscript, use of the model to characterize the in 
vivo PK/PD relationship of a P-cadherin/ CD3 bispecific construct (PF-06671008) across mouse 
efficacy models is described. The model can also be translated to the clinic for human PK/PD 
predictions and sensitivity analysis to determine important parameters driving efficacy. The 
model can be applied at early stages to aid in the design of CD3 bispecific constructs and to select 
molecules with optimal properties. 

 
Figure 6: QSP model-based strategy for translating preclinical data for CD3 bispecific compounds to the clinic. 
‘Biomeasures’ can be defined as system dependent parameters. TAA is tumor associated antigen.  
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Supplemental Files: 

 

Supplemental Figure 1: Goodness of fit plot for PF-06671008 PK model fitting in PBMC engrafted HCT-116 tumor 
bearing mice following IV administration at 0.05mg/kg and 0.5mg/kg. The cyan band represents the 95% prediction 
distribution. 
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Supplemental Figure 2: CD3+ cells/ mg tumor versus time relationship following IV administration of PF-06671008 
at (A) 10µg/kg, (B) 50µg/kg and (C) 500µg/kg. An exponential function was fitted to the data and the equations are 
shown on each plot. In (D) the slope of each line is plotted versus dose, and an empirical model is fitted to the data.  
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Supplemental Figure 3: Goodness of fit plots for (A) HCT-116 in T-cell engrafted model, (B) HCT-116 in T-cell adoptive 
transfer model, and (C) SUM-149 in T-cell adoptive transfer model.  

Plots shown include: (i) observations versus model predictions using the population and individual parameters 
compared to line of unity and (ii) visual predictive checks of tumor volume (mm3) data and model prediction versus 
time at each dose level. The cyan band represents the 95% prediction distribution. 
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Supplemental Figure 4: Model simulated tumor trimer concentrations following IV infusion of PF-06671008 at 0.01, 
0.06, 0.3, 1.8 and 10mg/kg QW to cancer patients. At doses of >1.8mg/kg predicted tumor trimer concentrations 
start to decrease with increasing dose, representing the bell-shaped relationship. 
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7.1 Abstract 

Bispecific antibodies (bsAbs) have become an integral component of the therapeutic research 
strategy to treat cancer. In addition to clinically validated immune cell re-targeting, bsAbs are 
being designed for tumor targeting and as dual immune modulators. Explorative preclinical and 
emerging clinical data indicate potential for enhanced efficacy and reduced systemic toxicity. 
However, bsAbs are a complex modality with challenges to overcome in early clinical trials 
including selection of relevant starting doses using a minimal anticipated biological effect level 
(MABEL) approach and predicting efficacious dose despite non-intuitive dose response 
relationships. Multiple factors can contribute to variability in the clinic including differences in 
functional affinity due to avidity, receptor expression, effector to target cell ratio and presence 
of soluble target. Mechanistic modeling approaches are a powerful integrative tool to understand 
the complexities and aid in clinical translation, trial design and prediction of regimens and 
strategies to reduce dose limiting toxicities of bsAbs. In this tutorial the use of mechanistic 
modeling to impact decision making for bsAbs is presented and illustrated using case study 
examples.  

7.2 Introduction 

Cancer is a complex, multifactorial disease. Crosstalk between signaling cascades and multiple 
mediators of tumor survival and immune evasion exist. Genetic alterations lead to heterogeneity 
in tumor cell antigen expression within and between patients. Acquisition of resistance to 
therapy is associated with upregulation of alternative receptors as well as pathway switching 
between receptors. Overall, this means that specific targeting of a single receptor is often 
insufficient for efficacy and standard of care consists of combinations of therapies to kill tumor 
cells (1). However, development of individual drugs for a combination therapy can be a costly 
and time-consuming process requiring separate manufacturing processes and filing of the safety 
of each antibody component separately (2, 3).  

During the past decade, advances in protein engineering have resulted in the ability to robustly 
and cost effectively synthesize bispecific antibodies (bsAbs) as an alternative to combination 
therapy or use of mixtures (4). This has led to an explosion of bispecific antibodies in drug 
development- currently there are 57 bsAbs in clinical trials in cancer patients (5), with a large 
diversity in formats (6). Thus far, blinatumomab (Blincyto, Amgen Inc.) is the only bsAb approved 
in oncology (7). Blinatumomab is a CD19/CD3 bispecific T cell engager (BiTE®) which was initially 
approved in 2014 for Philadelphia chromosome (Ph)-negative relapsed or refractory (r/r) B-cell 
precursor acute lymphoblastic leukemia (ALL) in adults (8). Since then it has gained approval for 
treatment in pediatric patients with ALL and for minimal residual disease positive B-cell precursor 
ALL, where it is the first FDA approved treatment for this specific patient population. Despite the 
success of blinatumomab, there remains many opportunities to improve this modality in new 
generation bsAbs. For example, blinatumomab has a boxed warning due to cytokine release 
syndrome (CRS) and neurological toxicities experienced by patients (8). In addition, the small 
structure of blinatumomab and lack of an Fc domain leads to accelerated clearance and short 
half-life in patients, such that a continuous infusion regimen is required (9). This has opened the 
door to an evolution of approximately 100 different bispecific formats varying in size, 
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arrangement, valency, flexibility and geometry of their binding modules, as well as in their 
distribution and pharmacokinetic (PK) properties (6). In addition to immune cell re-targeting, 
bsAbs have the capacity to simultaneously target multiple disease pathways, releasing the 
potential for attractive new therapies with enhanced efficacy and tumor selectivity leading to 
reduced systemic toxicity and improved therapeutic index (TI). To this end, bsAbs are being 
utilized for several different applications in oncology, which are summarized below and 
illustrated in Figure 1. 

 

Figure 1: Mechanism of action (MoA) of bsAbs. MoA 1- CD3 T cell engagers. These bsAbs bind to CD3 expressed by 
the T cell and a specific antigen expressed by the tumor cell, resulting in the formation of an immune synapse. This 
stimulates the T cell and ‘re-directs’ cytotoxicity against the tumor cell. MoA 2- Tumor targeting. These bsAbs direct 
binding towards the tumor by binding to a specific antigen on the tumor cell and to an immune receptor expressed 
on tumor infiltrating T cells (or other immune cells). For example, a bsAb binding to HER2 on tumor cells and 4-1BB 
on T cells is shown, which can result in a potent anti-tumor immune response. MoA 3- Targeting multiple immune 
modulatory receptors. These bsAbs can bind to different targets modulating immune responses, thus allowing 
combined biological effects and synergies.  For example, a bsAb targeting PD-1 and LAG-3 expressed on exhausted 
T cells and/or TILs is shown which inhibits the immunosuppressive mechanisms associated with these targets. 

Although bsAbs have great potential, their clinical development is complex with many inherent 
challenges. To start with, it is difficult to translate from preclinical efficacy studies, which may be 
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conducted in immunodeficient mice engrafted with human cancer cells and immune cells, or with 
immune competent syngeneic mice engrafted with human cancer cells using surrogate murine 
antibodies, or in transgenic mice to predict clinical efficacy. Many bsAbs in oncology have 
immune agonistic properties and a MABEL approach is required for selection of clinical starting 
doses. Selection of clinical starting dose is highly dependent upon the type of in vitro assay 
chosen to determine MABEL and can result in selection of overly conservative doses and many 
rounds of dose escalation before reaching efficacious doses in the clinic. In addition, the 
efficacious dosing regimen of the two targets cannot be independently controlled for a bsAb, as 
it would for a combination therapy of two monospecific antibodies. As a result, it may be 
challenging to optimize target engagement for two targets. For example, combination of a 
binding domain for an immune agonist with an immune antagonist would require different levels 
of target engagement necessitating different PK profiles from pulsatile to complete exposure. 
There are many factors impacting variability in the clinic including affinity of the individual arms, 
potential for avidity, target expression, presence of soluble target and PK, to name a few (Table 
1). In addition, key safety concerns such as CRS require to be minimized and managed in the 
clinical setting. 

The inherent complexity of bsAbs lends itself well to the use of mathematical modeling and 
simulation, in order to map out the mechanistic pathways and consider the impact of multiple 
variables. Mechanistic approaches, such as quantitative systems pharmacology (QSP) models, 
combine computational modeling and experimental data to examine the relationships between 
a drug, the biological system, and the disease process (10, 11). These models describe the 
biophysics of binding of bsAbs to their membrane receptors and soluble target in different 
compartments (e.g. blood, periphery, tumor, immune tissues) using a system of ordinary 
differential equations. The receptor binding interactions can then be linked to downstream 
pharmacodynamics of response and efficacy or toxicity. To do this, QSP models integrate data 
from diverse sources and assays, including drug assays (e.g. Kds or EC50s), system parameters 
(receptor expression, internalization rates), in vitro experimental data, preclinical in vivo studies, 
and clinical data. A quantitative framework is assembled which can provide mechanistic 
understanding of bsAb function, enabling optimal experimental design and faster data 
interpretation. The model framework can be used at early stages to aid in the identification of 
optimal drug properties for next generation molecules, including optimal target, epitopes and 
drug format. Once a lead compound has been selected, the QSP model can be used to translate 
from preclinical in vitro and in vivo studies to the clinic, to inform clinical study design including 
prediction of clinical starting dose, efficacious dose and regimen. 

 In this tutorial, the mechanism of action of bsAbs in oncology drug development will be 
discussed, and specific clinical pharmacology challenges in early stage clinical development will 
be considered and reviewed. The use of mechanistic modeling and simulation strategies to 
address these challenges will be presented, supported by case studies which exemplify the 
application and impact of mechanistic modeling in the drug development process. Note that 
challenges and modeling strategies for bsAbs in later stage clinical development are out of the 
scope of this tutorial and will not be discussed.  
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Table 1: Variables impacting efficacy and toxicity of bispecific antibodies 

Variable 

(Unit) 

Quantitative 
method of 
analysis 

Potential 
range 

Examples Considerations 

Drug properties of bsAbs 

Affinity for 
each target 

(Kd; nM) 

Surface 
plasmon 
resonance 
(SPR) (e.g. 
Biacore, 
Kinexa) 

 

pM- nM Blinatumomab: CD19 1.49nM/ CD3 
260nM (9) 
Solitomab: Epcam 16nM /CD3 77nM 
(74) 
AMG330: CD33 8.0nM/ CD3 5.1nM 
(75) 
PCad-LP-DART: Pcad 0.47nM/ CD3 
11.4nM (13) 
PRS-343: HER-2 0.3nM/ 41BB 5nM (19) 
MGD-013: PD1 1.0/ LAG3 0.1 nM (76) 

For CD3 bsAbs, a 
relatively higher 
affinity for the TAA 
compared to CD3 may 
improve tumor 
localized T-cell 
activation and reduce 
systemic CD3 
targeting and toxicity. 

Avidity 

(cross linking 
chi-factor) 

On cell 
binding by 
ELISA and/or 
flow 
cytometry & 
QSP model 

1e2- 1e6 
(46) 

 May be a requirement 
for tumor targeting to 
prevent on target/ off 
tumor toxicity. 

PK: elimination 
half-life 

(hours- days) 

Ligand 
binding assay. 

Occasional 
mass 
spectrometry. 

hours- 
days 

Typical mAb: 16-21 days (77)  
Blinatumomab (BiTE): 2 hr (9) 
Pcad-LP-DART: 1 day (13) 
Solitomab (BiTE): 4.5 hr (70) 
AFM-13: 8.7-19.2 hr (15) 
PRS-343: 5 days (20) 

Dictated by presence 
of an Fc domain. 
Soluble target may act 
as a peripheral sink. 
Potential for target 
mediated drug 
disposition. 

System properties of bsAb targets 

   Tumor cells1 Immune cells2  

Receptor 
expression 

(receptors/cell) 

 

Flow 
cytometry: 
Phycoerythrin 
(PE) 
conjugated 
antibodies 
(1:1) and 
calibration 
beads 
(QuantiBRITE 
or Bangs®) to 
determine 
antigen 
binding 
capacity 

100: limit 
of 
detection 

1e3: low 

1e4: 
medium 

1e5–1e6: 
high 

 

PDL1: 1e4 (78) 
HER2 (different 
cancers): 2e4 - 
1e6 (79, 80) 
BCMA (Multiple 
Myeloma): 
1479 (42- 
1.4e4) (81) 
Pcad: 2.8e4 (13) 
Epcam: 1.1e5 
(74) 
CD19 (B cell 
leukemias): 1- 
3.8e4  

CD3 (T cells): 5e4- 
1e5 (82) 
CD16 (NK cells): 
7.9e4 ± 3.0 (82) 
3.64e5 (median) 
(83)  
41BB (monocytes 
and other immune 
cell types) ~1e3 (84) 
PD1 (TILs): 5e4 (1e4 
– 1e5) (78) 

Is the receptor 
constitutively 
expressed or 
inducible? 

What % of cells 
express the receptor 
(heterogeneity of 
expression)? 

Quantify across 
tissues, species and in 
disease. 
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Soluble target 
in the central 
compartment 

(nM) 

Mass 
spectrometry 
or ELISA 

<1nM- 
100nM 

HER2: 0.15nM (upper limit of normal)- 
22µM (MW = 100kDa) (49) 
BCMA: 16nM- 94nM (MW = 5.3kDa) 
(53) 
Pcad: 1.1 nM (0.4- 4.1) (13) 
PDL1: 0.05 – 0.139nM (MW = 25kDa) 
(Durvalumab BLA)  
PD1 (pancreatic and NSCLC patients): 
0.00143- 1.85 nM (MW=14kDa) (85, 
86)  

Variable across 
species. 

May be higher in 
patients expressing 
high levels of target. 

For HER2 and BCMA 
correlates with 
efficacy. 

Internalization/ 
turnover rate 

Amnis 

FACS 

mins- 
hours 

Pcad: 0.1728 1/d (13)  

1- Expression on human tumor cells (where possible). 2- Expression on human whole blood lymphocytes 
 

7.3 Mechanism of action of bispecific antibodies in oncology 

1. Engagement of immune cells (adaptive immune response) 

The majority of bsAbs in clinical trials are CD3 T cell engager (TCE) molecules. These bsAbs bind 
to CD3 in the T cell receptor/ CD3 protein complex expressed on the surface of T cells and to a 
tumor associated antigen (TAA) on the tumor cell surface. When both CD3 and TAA are engaged, 
the proximity of the T cell and the tumor cell result in the formation of an immune synapse, 
stimulation of the T cell and ‘re-direction’ of cytotoxicity against the tumor cell (Figure 1, MoA 
1). CD3 bsAbs have minimal tumor cell killing on their own (12), and efficacy and on-target toxicity 
are driven by the formation of a trimolecular complex (hereafter trimer) between the bsAb, T cell 
and tumor cell (13).  

CD3 bsAbs have exhibited clinical validation for hematological malignancies through 
blinatumomab, and several other TCEs in clinical trials. These include BiTE®s, half-life extended 
diabodies/ antibody fragments and full length heterodimeric IgGs targeting TAAs including CD20, 
BCMA, CD33, CD19, CD123 and others. There are a smaller number of CD3 bsAbs in clinical 
development for solid tumors, targeting for example HER2, DLL3, gpA33 and CEA for metastatic 
breast, small cell lung, colorectal and other solid tumor indications, respectively. Blinatumomab 
and other CD3 bsAbs are reviewed extensively in the work by Yuraszeck et al. (14). 

2. Engagement of immune cells (innate immune response) 

In addition to T cells, other effector cells or immune cell subsets can also be recruited to tumor 
cells. For example, bsAbs have been developed to target natural killer (NK) cells which are potent 
cytotoxic lymphocytes of the innate immune system. An example of an NK cell re-director is 
AFM13, a tandem diabody construct targeting CD16 on NK cells and CD30 on tumor cells (15). In 
a phase 1 trial in patients with r/r Hodgkin’s lymphoma, treatment with AFM-13 resulted in 
activation of NK cells and a decrease in soluble CD30 in peripheral blood, and 3 out of 26 patients 
had a partial response (15). AFM-13 is now in a phase 2 trial for patients with Hodgkin’s 
lymphoma.  
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3. Tumor targeting 

These bsAbs focus their immune-activating pharmacologic effects to the tumor environment, 
thereby achieving improved efficacy as well as reduced systemic immune-related adverse effects 
(Figure 1, MoA 2). They are an emerging class of bsAbs which are mainly in the preclinical phase. 
However, explorative preclinical and emerging clinical data suggest great potential (16). 

4-1BB is a potent co-stimulatory receptor which is upregulated on effector T cells, and upon 
stimulation promotes cytotoxic function as well as induction of immunological memory (17). It is 
a good candidate for tumor targeting as systemic activation can result in severe toxicity. For 
example, the initial clinical development of the agonistic 4-1BB monospecific antibody urelumab 
was terminated due to fatal hepatotoxicity, with a maximum tolerated dose of 0.1 mg/kg Q3w 
(18). A 4-1BB/ HER2 bispecific molecule PRS-343 is designed to facilitate T-cell co-stimulation by 
tumor-localized, HER2-dependent 4-1BB clustering and activation (Figure 1) (19). In a phase 1 
study in HER2+ cancer patients, PRS-343 demonstrated single-agent anti-tumor activity, including 
partial responses, and was well tolerated at doses up to 8mg/kg Q2w (20).  

Another popular target for tumor focused bsAbs is CD47, an innate checkpoint receptor which is 
widely expressed on many tumor types. Interaction with its receptor SIRPα on macrophages and 
dendritic cells (DCs) acts as a ‘don’t eat me signal’ enabling tumor cells to evade phagocytosis 
and clearance. Blockade of CD47 in preclinical studies using monospecific antibodies has resulted 
in encouraging efficacy. However, CD47 is expressed on the membranes of all cells in mice and 
humans, including red blood cells, which can act as a substantial ‘antigen sink’, resulting in limited 
systemic use of CD47 inhibitors due to side-effects.  BsAbs which target tumor specific receptors 
with high binding affinity on one arm, and CD47 with weaker affinity on the other arm are a 
popular strategy for increasing tumor cell targeting and enhancing therapeutic index. A bispecific 
antibody targeting PD-L1 and CD47 (21), showed significantly enhanced tumor targeting and 
therapeutic efficacy versus monotherapy. In addition, as critical innate and adaptive checkpoints 
on tumor cells, CD47 and PD-L1 coordinate to suppress immune sensing.  

4. Combining checkpoint inhibition and immune modulating receptors  

BsAbs are also being used to combine checkpoint inhibitors (CPIs) or for dual targeting of CPIs 
and co-stimulators of the immune response, or inhibitors of exhaustion markers (Figure 1, MoA 
3). These compounds may combine the activity of the original drugs, but also allow for additional 
synergies and unexpected novel biological effects that could not be achieved by combining the 
corresponding monospecific antibodies. A potential disadvantage of such compounds may be the 
risk of toxicity due to strong immune activation. Most of these bsAbs block two inhibitory 
checkpoint pathways, such as PD-1 or PD-L1 combined with other immunosuppressive targets 
such as TGF-β, LAG-3 and TIM-3. For example, MGD-013 is a bsAb based on the dual affinity re-
targeting (DART®) platform which targets PD-1 and LAG-3, which are both expressed on 
exhausted T cells and tumor infiltrating lymphocytes (TILs) (Figure 1). Inhibition of these targets 
has been shown to exert a synergistic effect on tumor immunity in mice (22). MGD-013 is 
currently in phase 1 clinical trials. There are many other dual immunomodulator bsAbs in 
preclinical development including MCLA-134 which targets PD-1/ TIM-3 and XmAb-20717 which 
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targets CTLA-4/ PD-1 (16). The mechanism of action of T cell engagers, tumor targeting bsAbs and 
bsAbs targeting multiple immune modulating receptors are shown pictorially in Figure 1.  

 

7.4 Early clinical pharmacology challenges for bispecific antibodies 

1. Selection of clinical starting dose: how to define MABEL 

To ensure maximum clinical benefit of phase 1 dose escalation clinical trials, particularly for 
patients in early dose cohorts, it is important to select a safe starting dose and then rapidly 
escalate to the efficacious dose. To select starting dose of bsAbs, including CD3 bsAbs, a MABEL 
approach is recommended due to their immune agonistic properties (14). The principal of MABEL 
is that it is better to start with the lowest dose believed to be active, rather than the highest dose 
thought to be safe. However, MABEL can be difficult to interpret, and this can result in selection 
of a starting dose that is far below doses required for efficacy in patients and consequently dose 
escalation trials can take several years (23). For example, Amgen’s BCMA BiTE (AMG-420) 
entered clinical trials in 2015 with a starting dose of 0.2 µg/ day. The first positive clinical results 
were reported 3 years later in patient cohorts that were dosed several logs higher than the initial 
cohort, with a dose of 400 µg/ day finally selected as the efficacious dose for further 
investigations (24). Another example is Roche’s CEA-TCB, a novel T-cell-bispecific (TCB) antibody 
targeting CEA, which started Phase 1 clinical trials in 2014, at a starting dose of 52 µg (25). In the 
dose expansion cohort doses up to 600 mg have been evaluated over a period of 5 years (26).  

An important issue is the approach used for determining MABEL of CD3 bsAbs. Traditionally 
MABEL is based upon doses which achieve receptor occupancy (RO) of approximately 10 – 20%, 
however this approach is not recommended for CD3 bsAbs as they are immune agonists with low 
and variable RO required for efficacy (27). The most popular method is to use a PK driven 
approach, where the recommended clinical starting dose is calculated by setting the predicted 
drug exposure below the EC20, which is selected as a threshold from in vitro assays (27, 28). This 
method is easy to accomplish, and regulatory agencies typically accept proposed starting doses 
corresponding to 10- 30%, or even in some cases 50% pharmacological activity (27), depending 
the target biology and other factors including the proposed application, available data and impact 
of the model based decision. However, this approach can be misleading as it is calculated using 
bsAb concentration rather than trimer concentration which is required to drive efficacy and 
toxicity (13). It is highly dependent upon the experimental conditions of the in vitro assay used 
to determine EC20, which can result in substantially different MABEL doses. These assays include 
cytokine release, cytotoxicity and T-cell activation/ proliferation assays which are commonly used 
to determine bsAb activity. In order to observe activity in vitro in short time frames, the assays 
are generally completed under non-physiological conditions, including effector: target (E:T) cell 
ratios of > 5:1 which are significantly higher than those observed in patient tumors and use cell 
lines which over-express target. In addition, often the most sensitive assay is selected for MABEL 
determination. Depending on the in vitro experimental conditions, an overly conservative in vitro 
threshold can be selected, which may result in a starting dose which results in many rounds of 
sub-efficacious dose escalation, or a starting dose could be selected which is too close to the 
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efficacious dose such that it gives safety concerns. A better method is to use a mathematical 
modeling approach for selection of clinical starting doses for bsAbs, which can integrate in vitro 
data generated under different experimental conditions to estimate a single EC20 based on trimer 
concentrations, rather than bsAb concentrations. The mathematical model can be translated to 
the clinic and the in vitro trimer EC20 can be used as a threshold to predict a relevant clinical 
starting dose, which is independent of experimental conditions. A QSP modeling approach to 
MABEL is discussed in detail below. 

2. Determining clinical efficacious dose: non-intuitive dose-response relationships of 
bsAbs in early clinical trials 

Historically, in oncology drug development, efficacy has been assumed to be dose related and 
cancer drugs are escalated to the maximum tolerated dose (MTD) in phase 1 clinical trials, which 
is subsequently defined as the efficacious dose (29). However, bsAbs have a complex mechanism 
of action, which can make dose response relationships non-intuitive and difficult to rationalize. 
For example, a specific complexity of CD3 bsAbs is  efficacy and on-target toxicity are driven by 
trimer formation between the bsAb, T cell and tumor cell (13). A bell-shaped concentration 
versus response relationship can be observed which is a well described phenomenon for ternary 
complexes (30-32). When bsAb concentrations are low, conditions favor bivalent binding and the 
formation of trimers. As bsAb concentration is increased, an optimal concentration is reached for 
trimer formation. If additional bsAb is added, it will be in excess and favor monovalent binding 
to form dimers between bsAb and T cells or bsAb and tumor cells. This results in decrease in 
response as dimers cannot trigger cytotoxicity (Figure 2). The width of the bell shape, or efficacy 
window of the bsAb (Figure 2), will depend upon variables impacting trimer formation, such as 
receptor expression, E: T ratio and the binding affinity of the bsAb for CD3 and its specific tumor 
antigen (33). As a result, the bell-shaped relationship will be different for every bsAb and could 
be different for every patient treated with a given bsAb. This could potentially impede 
interpretation of phase 1a dose escalation trials and impact selection of doses for phase 1b 
expansion cohorts, or even recommended phase 2 doses. For example, it may be difficult to 
determine whether a dose close to projected efficacious dose is ineffective due to being on the 
right-hand side of the bell-shaped response and when to stop dose escalation. The bell-shaped 
relationship has been confirmed preclinically for CD3 bsAbs (34, 35) and mechanistic modeling 
can be used to predict it and to optimize variables to minimize its impact on efficacy and toxicity. 
For example, Schropp et al. developed an equilibrium binding model for bsAbs and investigated 
how changes in receptor and bsAb concentration impacted the formation of the trimolecular 
complex and the efficacy window of the bell-shaped curve (33).   

In addition to CD3 bsAbs, the bell-shaped relationship could affect other bsAbs that form ternary 
complexes by binding in trans to link effector and target cells, including NK cell engagers, tumor 
targeting agents and dual immunomodulators. To optimize drug dosing and scheduling in the 
clinic, a rational dose selection approach using mathematical modeling is recommended, which 
will account for the variables discussed above. This mathematical framework could be updated 
with emerging clinical data (such as PK, or receptor expression data) to refine dosing protocols in 
real time and to help in the interpretation of complex data.  
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Figure 2: Bell-shaped concentration response relationship observed for CD3 bispecific antibodies. 

 

3. Specific features of bsAbs impacting variability in clinical response 

A major challenge in oncology drug development is interindividual variability in drug response, 
which affects both efficacy and toxicity. BsAbs are a complex drug modality, binding to two 
distinct targets, often with two separate mechanisms of action. As a result, many different 
variables can impact the concentration versus response and toxicity relationship for bsAbs in 
individual patients. These variables can be categorized as ‘drug specific’ and ‘system specific’ 
parameters (36). Drug specific parameters typically include pharmacologic parameters such as 
affinity and avidity, and PK parameters including clearance, volume of distribution and 
elimination half-life. System specific parameters include receptor expression, concentrations of 
soluble target, receptor internalization/ turnover rates and E:T ratio. In Table 1 some of these 
variables are listed along with quantitative methods of analysis and ranges of values possible for 
bsAbs and their targets. The PK of bsAbs has already been reviewed and will not be covered here 
(37). Also, variability due to co-morbidities, comedications and disease severity are other 
important factors influencing variability in clinical responses, especially at later stages of clinical 
development, which are out of scope in this tutorial. Further discussion on some of the unique 
features of bsAbs which may impact response across patients are reviewed below. 

Impact of avidity: A key variable of bsAbs, especially those with multi-valency, is their ability to 
have enhanced functional affinity due to avidity (16, 38). Affinity is defined as the strength, 
expressed in thermodynamic terms, of the binding interaction between a single antigen and a 
single region of the mAb (38). Avidity, however, is the accumulated strength of multiple affinities 
summed up from multiple binding interactions and is commonly referred to as a functional 
affinity (38). The strength of avidity is likely a function of tethering producing an increased local 
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concentration of the antibody due to restriction of diffusion to the cell membrane, and epitope- 
and format-specific steric variability (39).  

Avidity arising from binding of a bsAb to two receptors on a target cell may lead to greater efficacy 
than a combination with two antibody molecules, each binding only a single receptor (40). Avidity 
often correlates with receptor expression (39-41), and it is therefore believed that the avidity 
effect could, in some circumstances, be exploited to reduce systemic toxicity, due to the higher 
density of receptors on tumor cells leading to enhanced avidity of bsAbs compared with normal 
cells expressing a lower concentration of receptors (42). To benefit from the potential advantages 
of avidity, protein engineers are modulating bsAbs to have weaker affinity for their receptors in 
order to minimize normal tissue binding, without impairing the potency for target cells (43). This 
is seen in nature, where T cells can distinguish between high and low antigen expressing cells by 
means of relatively low affinity T cell receptors that can still achieve high affinity binding to target 
cells expressing high levels of target antigen (44). However, these are complex interactions and 
the interplay of factors such as affinity, avidity and format valence in relation to the ability of a 
bsAb to promote target selectivity is not yet well understood (42). Since avidity can vary with 
receptor expression, it is likely to result in different observed functional affinities/ potencies of 
bsAbs across patients. To understand avidity and predict its variability and impact on tumor 
targeting, efficacy and potential to reduce systemic toxicity, it is important that it can be 
quantified. First of all, the intrinsic affinity of the monovalent interaction in equilibrium binding 
experiments should be determined (41). The avidity could then be predicted using a 
mathematical model of the bivalent interaction and related to receptor expression, ratios of 
targets and affinity under different conditions relevant to the clinic (39-41, 45, 46) 

Impact of soluble target: Another factor which can impact the PK/PD of bsAbs and lead to patient 
variability in the clinic is the presence of soluble target, or the shed ectodomain (ECD) of a 
membrane bound target, which can act as a significant sink for bsAbs restricting the amount of 
drug free to distribute to the tumor (47) and potentially impacting efficacy (48). This is especially 
prevalent for bsAbs in immune oncology which are often potent activators of the immune system 
requiring low doses for efficacy (27). As a result, circulating concentrations of soluble target/ ECD 
are not saturated at dose levels administered in clinical trials. Levels of soluble target/ ECD can 
also vary significantly across species, complicating preclinical to clinical translation. They are 
often higher in patients who over-express tumor target and are variable across patients, 
impacting doses driving efficacy and toxicity. For example, high levels of shed HER2 ECD have 
been detected in cancer patients (2.21 µg/mL) compared with those in healthy subjects (< 15 
ng/mL) (49). For the anti-HER2 antibody trastuzumab, high levels of serum HER2 ECD are 
associated with rapid clearance and decreased benefit from trastuzumab therapy (49-51).  BCMA 
was found to be shed and is elevated in multiple myeloma (MM) patients, correlating with 
disease status and survival (52). Ghermezi et al. showed that serum BCMA (sBCMA) was 
significantly lower in 43 aged matched healthy donors (median 36.8 ng/mL), than 46 patients 
with smoldering MM (median 88.9 ng/mL) and 44 patients with active MM prior to treatment 
(median 505.9 ng/mL) (53). There was significant variability in each group; for example, the active 
untreated group had sBCMA levels ranging from undetectable to approximately 5,500 ng/mL 
(53). sBCMA levels were found to directly correlate with response to treatment and clinical 
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status. Specifically, patients with complete response had significantly lower sBCMA levels 
(median 38.6 ng/mL) than those with partial response (median 99.7 ng/mL) or non-responsive 
disease (median 195.3 ng/mL) (53). There are several bsAbs targeting HER2 and BCMA in clinical 
development and levels of shed target are likely to impact patient variability to drug treatment 
and resulting efficacy. For targets less well understood, measurement of soluble target levels is 
also recommended to de-risk impact on efficacy and toxicity. For the CD3 bsAbs, binding to 
circulating T cells expressing CD3 can also act as significant sink for the drug. Leong et al. showed 
that high affinity CLL1/CD3 TCEs were more potent in vitro but had comparable potency to lower 
affinity variants in vivo (54). This was due to differences in PK, with higher affinity variants 
showing higher clearance in vivo due to binding to CD3 on circulating T cells. Given the ability to 
impact the therapeutic efficacy of bsAbs, binding to soluble target needs to be accounted for in 
all experimental systems and species in order to provide meaningful PK and dose predictions. 
QSP modeling is an ideal way to do this and will be discussed later in this tutorial. 

Impact of target burden: Target burden is an important factor which can vary substantially across 
patients and correlate with doses driving efficacy/ toxicity and the likelihood of clinical success 
of bsAbs. Target burden is a function of the number of receptors expressed per cell and the 
number of cells. For bsAbs, targets can be expressed on both tumor cells and immune cells, and 
can vary substantially depending on tumor burden, E:T ratio, disease status and patient specific 
factors such as prior treatment. Immune targets can also be inducible with potential to vary 
during treatment in response to therapy. In addition, tumor targets can display significant 
intratumoral heterogeneity resulting in bsAbs only targeting a sub-population of cells where 
receptor is expressed (55). An analysis of the CEA/CD3 TCB showed that activity strongly 
correlated with CEA expression, with higher potency observed in high CEA expressing tumor cells 
with a threshold of approximately 10,000 CEA binding sites per cell required for efficient tumor 
cell killing (44). In line with this, the CEA TCB was unable to induce T cell mediated killing of 
primary epithelial cells expressing less than 2000 CEA binding sites per cell in vitro (44). The 
measurement of target burden is therefore recommended as an important factor impacting the 
success of bsAb clinical trials and may require adaptation of clinical trial design to include 
comprehensive longitudinal tissue collection protocols. Incorporation of target burden into 
predictions of efficacious doses using QSP modeling are exemplified in the case studies presented 
below.  

7.5 Use of modeling & simulation in decision making for bispecific antibodies 

Model-based approaches are increasingly being used to support decisions spanning the entire 
drug development process, from preclinical development through to post marketing (56). In early 
clinical trials, mechanistic modeling can be used to select a clinical starting dose so that patients 
in early cohorts can benefit from clinical trials. Modeling approaches can also be used to select 
optimal regimens and step-dosing protocols to avoid cytokine release syndrome, and other 
toxicities. Mechanistic modeling can be used to predict efficacious dose so that phase 1 first-in-
patient trials can be designed to escalate efficiently to doses where most benefit to patients is 
predicted (57). Quantitative modeling approaches can be used to determine which biomarkers 
are predicted to best correlate with efficacy or toxicity (10). In the face of significant variability, 
modeling can be used to deconvolve efficacy from variability to predict a robust dose and 
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regimen for phase 1b expansion trials, or recommended phase 2 dose. Mechanistic modeling can 
be used to optimize predictions in specific patient populations or for different indications and for 
defining patient selection criteria so that the trials have greater chance of success. Simulation 
based on mechanistic models could be used as a basis for selecting combination therapies, which 
is generally more empirically derived, and unfeasible to determine experimentally via a ‘trial and 
error’ process (10, 58).   

In this section, the utility of mechanistic models to drive decision making and enable success for 
bsAbs in early clinical trials will be discussed including preclinical to clinical translation, 
determining clinical starting and efficacious doses, considerations for early clinical trial design 
and predicting toxicities. In addition, consideration of good QSP practice including model 
verification, validation and uncertainty quantification will be reviewed.   

1. Translational strategies 

Preclinical to clinical translation of bsAbs is required to predict efficacious doses in patients and 
is a key determinant of clinical success (23). It is particularly challenging for bsAbs as they have 
(at least) 2 targets and mechanisms of action to translate, with multiple inter-related factors 
impacting efficacy. In oncology, mouse xenograft models have become the mainstay of clinical 
translation, as efficacy (tumor growth inhibition) in response to drug can be measured 
dynamically over time (59). However, for bsAbs in immune oncology in vivo models are not ideal 
and often contrived, with very different conditions to those observed in patients. Two classes of 
in vivo models are currently most widely used: 1) immunocompromised mice with engraftment 
of human cancer cells and immune cells 2) immunocompetent syngeneic mice engrafted with 
human cancer cells (59). The latter are perhaps more translationally relevant as they possess fully 
intact immune systems, however they require mouse surrogate bsAbs to be used instead of 
human bsAbs to avoid immunogenicity (60). Non-human primates serve as good toxicology 
species; however, they lack tumor tissue and are therefore not relevant for understanding 
efficacy. The complex mechanism of action of bsAbs and the distinct conditions of preclinical in 
vivo models demands an integrated analysis to translate to the clinic. QSP modeling and 
simulation approaches can incorporate and systematically analyze in vitro, preclinical, and clinical 
data to simultaneously assess the individual effect of, as well as the dynamic interactions among, 
various factors (34). Some examples of the use of QSP models to translate preclinical data to the 
clinic are emerging in the literature for the CD3 bsAbs. For example, Campagne et al. (61) 
developed a PK/PD model for a bispecific CD123/ CD3 DART molecule in non-human primates. 
The model describes DART molecule binding to peripheral CD3 expressing cells and CD123+ cells, 
T-cell trafficking, activation and expansion, and resulting peripheral depletion of CD123 cells. By 
integrating primary PK and pharmacology, the model represents an efficient translational 
framework to provide quantitative predictions of drug disposition and potency in humans, and 
to predict dosing strategies to inform ongoing clinical trials. A translational QSP model is 
presented for CD3 bispecific molecules by Betts et al. (13), which integrates in silico, in vitro and 
in vivo data in a mechanistic framework to quantify and predict efficacy across species. This is 
discussed in more detail in Case Study 1. 
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Jiang et al. (34) proposed a mechanism-based PK/PD model based on target cell-biologic effector 
cell complex formation and used it to describe and predict in vitro cytotoxicity. The model was 
also used to translate from in vitro data to the clinic, validated using blinatumomab data. The 
model reasonably projected the exposure-response relationship of blinatumomab in ALL patients 
by incorporating drug-specific parameters identified from in vitro cytotoxicity data and system-
specific parameters based on human physiology and pathology data for multiple T cell redirecting 
bispecific antibodies under different experimental conditions. A similar approach was taken by 
Hua et al. (62) who developed in vitro and human QSP models for an Epcam/ CD3 bsAb, 
solitomab, and used the model to show that number of trimers/ T cell required to drive 
cytotoxicity in vitro could be used as a target engagement metric to translate to human and 
predict clinical efficacious dose. The inherent complexities of bsAbs mean that clinical translation 
will be challenging to determine empirically, but may be aided by mechanistic models that 
capture the pathophysiology of the disease and the mechanisms of action of each agent (14). 

2. Optimizing design of clinical trials 

A holistic, mechanistic methodology to select MABEL based clinical starting doses of bsAbs is to 
use a QSP modeling approach (28). For CD3 bsAbs, an in vitro QSP model can be used to estimate 
the trimer concentration that results in 20% tumor cell killing (trimer EC20). The model describes 
bsAb binding to CD3 on T cells and TAA on tumor cells to form dimers and then trimers, which 
are linked to cytotoxicity and/or T cell proliferation. The model accounts for the specific 
conditions of the in vitro assay including the number of cells, E:T ratio, and receptor expression 
on tumor cell lines used in the experiment. It can then be translated to human by incorporation 
of a PK model, and updating parameters (including E:T ratio, and receptor expression) to reflect 
patient tumors, in order to determine the dose required to achieve trimer concentrations 
approximating trimer EC20 in the clinic. This approach accounts for tumor trimer concentrations 
driving efficacy/ toxicity and normalizes for differences between in vitro experimental conditions 
and the clinic. This method was used to predict clinical starting dose of a P-cadherin/ CD3 bsAb 
using the MABEL approach and is described in Case Study 2.  Another advantage of using a QSP 
model is that it provides a translational framework where the same model can be used for 
determining the starting and efficacious doses. Clinical trials can subsequently be designed for 
rapid escalation from the predicted starting dose to the efficacious dose, to reduce patients 
receiving subtherapeutic doses and reducing overall time in phase 1 (63).  The QSP approach to 
MABEL can be integrated with other clinical trial design strategies such as use of single patient 
cohorts early in the early stages of dose escalation and even intrapatient dose escalation. The 
model can also be used for a sensitivity analysis to determine key parameters driving efficacy and 
toxicity. Such a QSP modeling approach was described in Case Study 1. The mathematical model 
can be updated with emerging clinical data and used to refine drug dosing and scheduling as well 
as guiding go/ no-go decisions. 

3. Predicting toxicities associated with bsAbs 

The key safety concerns with bsAbs, mainly from clinical data on CD3 bsAbs, are excessive release 
of cytokines, which may translate to potentially life threatening CRS and target organ toxicity due 
to redirection of T cells to normal tissues expressing the TAA (off-tumor/ on-target cytotoxicity) 
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(63). These toxicities can prevent efficacious doses of bsAbs being reached in the clinic before 
the onset of adverse events (AEs) and consequently limit the clinical utility of bsAbs. 

Since the development of the first CD3 bsAb, clinical trials have shown that they can cause rapid 
and uncontrolled T cell mediated CRS, even at very low doses (64, 65). Mechanisms for mitigating 
CRS in the clinic have been implemented including a ‘priming’ dose strategy (i.e. a lower initial 
dose followed by a higher maintenance dose), timely supportive care, corticosteroids 
administered prophylactically or upon onset of symptoms, and IL6/ IL6R mAbs (e.g. tocilizumab) 
upon onset of CRS (66, 67). New generation CD3 bsAbs are being designed with reduced CD3 
affinity, or with novel CD3 epitopes that limit cytokine release but maintain cytotoxic activity, or 
with different mAb formats to reduce potential for CRS (68). However, predicting the incidence 
and severity of CRS from preclinical experiments remains a challenge and selection of dose 
priming regimens in the clinic is mostly based on an empirical trial and error approach. These 
challenges could be addressed through mathematical modeling, and an example of a ‘fit-for-
purpose’ PK/PD approach is discussed in Case Study 3.  

Due to the small number of TAA required on target cells, off-tumor/ on-target toxicities can 
become an issue with CD3 bsAbs (69) and result in dose-limiting toxicities, limiting TI in some 
cases (70). For example, in a phase 1 clinical study with solitomab, an EpCAM/ CD3 BiTE® 
construct, treatment of r/r EpCAM+ solid tumors was associated with AEs including severe 
diarrhea and increase in liver enzymes which precluded dose escalation to potential therapeutic 
levels (70). EpCAM was subsequently shown to be expressed in the gastrointestinal tract epithelia 
and liver bile duct of patients (70). The AEs associated with solitomab treatment therefore likely 
represent off-tumor/ on-target toxicity due to T cell activation and killing of non-malignant cells. 
A QSP model developed for solitomab demonstrated that trimers/ T cell required for in vitro cell 
killing (approx. 200- 400) were similar to the number predicted at the maximum tolerated dose 
observed in the clinical study. The TI for solitomab was predicted to be close to 1 based on the 
trimers/ T cell formed in tumor and in normal tissue.  Multiple ways to mitigate potential off-
tumor/ on-target toxicities are currently being investigated in preclinical development.  If the 
TAA is overexpressed in tumors, relying on avidity is one potential way to selectively target the 
tumor (43). An alternative mechanism, shown in non-human primate studies, is the use of 
masked antibodies, where the mask is only cleaved in the tumor microenvironment (71).  

4. Good QSP practice 

QSP models are complex, with a variety of data used in model development, often from disparate 
sources. Many calculations require propagation between models. In addition, models often span 
multiple time scales from binding to disease modification.  As such QSP models need to be 
rigorously evaluated and conform to a set of best practices before enabling clinical decisions. A 
process of good QSP practice is recommended based on model verification, validation, and 
uncertainty quantification paradigm. A white paper has been published which presents a 
minimum set of recommendations to guide QSP practitioners (72). Some critical considerations 
are also discussed below. 
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First, a ‘right sized’ model should be used which is suitable for the question asked and has 
reasonable assumptions. A model verification step should be included to determine that the 
computational model and analysis accurately represent the underlying mathematical model and 
its solution. The model should be validated to determine if it is an accurate representation of the 
real world from the perspective of intended use. Finally, to quantify the accuracy of the 
prediction and the data, an uncertainty quantification step should be undertaken. These steps 
are a requirement to evaluate QSP models, to increase understandability to enable model reuse 
and to enable routine and unbiased calculation of prediction uncertainty to better understand 
the consequence of parameter error and patient variability. 

7.6 Case studies 

The following case studies were selected as useful representative examples where QSP or other 
mechanistic modeling approaches have impacted early clinical development strategies for 
particular bsAbs, with the ability to be re-purposed for other bsAbs. Case study 1 exemplifies the 
impact of a QSP modeling approach to translate from preclinical in vivo studies to the clinic to 
predict efficacious dose of a CD3 bsAb (13). Case study 2 uses the same modeling framework to 
predict clinical starting dose and demonstrates in vitro to clinical translation (28). Case study 3 
demonstrates a QSP approach to predict and therefore minimize CRS toxicities upon bsAb dosing 
(73). In each case, the focus is on the strategic applications of the mechanistic modeling and its 
impact. Technical details including specific models structures, equations and parameter values 
are not included, and can be found in the published manuscripts (13, 28, 73). The case studies all 
describe a generalized CD3 bsAb model based on CD3 engaged through trimer formation, as the 
important variable driving efficacy and on-target/off-tumor toxicity. As such, this model is a 
useful platform for all CD3 bsAbs and bsAbs which bind in trans configuration (described as MoA 
1 and 2 in Figure 1).  The CRS model has further applicability to immune modulators resulting in 
cytokine release. These models could play an important role in design and interpretation of early 
clinical trials. 

Case study 1: Preclinical to clinical translation of a P-cadherin/CD3 DART® molecule using QSP 
modeling 

A QSP model was developed for a P-cadherin/CD3 DART® bsAb (Pcad-LP-DART), capable of 
predicting trimer formation and linking it to tumor cell killing (13). The model was used to 
quantify the PK/PD relationship of Pcad-LP-DART in mouse xenograft models. The model, which 
had the general structure presented in Figure 3, integrated the PK of Pcad-LP-DART, its binding 
to soluble P-cadherin and circulating T cells in the systemic circulation, its biodisposition in the 
tumor and the formation of a trimolecular complex with T cells and P-cadherin expressing tumor 
cells in the tumor microenvironment. The model incorporated T cell kinetics in the tumor 
including T cell proliferation and contraction. The concentration of the trimer in the tumor was 
used to drive efficacy in mouse using a model of tumor cell growth and killing. A hybrid approach 
was used in the modeling where known parameters were fixed in the model up-front (binding  
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Figure 3: Model framework for trimer formation and tumor growth inhibition of CD3 bispecific antibodies. Formation 
of trimers between drugs, T cells, and tumor cells, is required for efficacy. The QSP model predicts trimer 
concentration and links it to tumor cell killing. The model shown here is for P-cadherin-LP-DART, which is a bispecific 
antibody molecule which binds to P-cadherin (Pcad) on tumor cells and CD3 on T cells. Drug can also bind to soluble 
P-cadherin (sPcad) in the central compartment.  

 

kinetics, receptor expression, number of T cells and tumor cells) and unknown parameters were 
estimated using the model to fit the data (tumor cell growth and killing parameters). A tumor 
static concentration (TSC) was calculated and used as an estimate of minimum efficacious trimer 
concentration across mouse tumor models. The TSC values were in the picomolar range, 
demonstrating the inherent potency of this mechanism.  

The model was translated to the clinic by incorporating predicted human PK and clinically 
relevant measures such as T cell concentration (circulating and tumor), tumor volumes, soluble 
P-cadherin levels, CD3 and P-cadherin expression. The model was subsequently applied to predict 
clinical PK, including impact of binding to soluble P-cadherin and prediction of clinical efficacious 
dose. The model was also used for sensitivity analysis and showed that P-cadherin expression 
and number of T cells in the tumor were sensitive parameters impacting clinical efficacy. The 
resulting QSP model and strategy offer a translational framework for CD3 bsAbs which could be 
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used for decision making at different stages of the drug discovery and development process from 
drug design through to candidate selection and clinical dose predictions (13).  

Case study 2: Predicting clinical starting dose of a P-cadherin/CD3 DART® bsAb using a QSP 
model/ MABEL based approach  

A QSP modeling approach was used to project clinical starting dose based on MABEL principles 
for a P-cadherin/ CD3 DART bsAb (Pcad-LP-DART; described in Case Study 1) (28). The QSP 
approach was based on the principle that trimer formation between drug, T cell and tumor cell 
is driving efficacy and not drug concentration alone. Orthogonal approaches including PK based 
methods and receptor occupancy were also investigated. In the QSP modeling approach, a 
mechanistic in vitro model was constructed describing binding of P-cad-LP-DART to T cells and 
tumor cells in a dish, to form inactive dimers and the active trimer species. Predicted trimer 
concentration was linked to in vitro T cell kinetic and cytotoxicity experiments to determine EC20 
of trimer driving T cell proliferation and tumor cell killing. The model was able to capture in vitro 
data at various E:T ratios using the same EC20 value, which was considered to be the in vitro 
MABEL. The in vitro MABEL was then translated to the in vivo MABEL in order to predict human 
MABEL dose, by incorporation of predicted human PK (which included binding to soluble P-
cadherin) and physiological parameters (described previously in Case Study 1). The MABEL 
human dose was determined as the predicted average tumor trimer concentration at steady 
state equal to the in vitro MABEL (EC20, trimer). The predicted clinical MABEL dose using the QSP 
approach was 1.9 ng/kg/dose.  

To build confidence in projecting the MABEL dose, additional approaches were explored 
including a PK driven and receptor occupancy approach (Table 2). For the PK driven approach, 
MABEL was defined as the lowest EC20 (based on drug concentration) across a panel of in vitro 
assays including cytotoxicity and cytokine release. The MABEL based human starting dose was 
calculated by simulating the predicted human PK and identifying the dose to keep drug 
concentrations below the EC20 values defined from cytotoxicity and cytokine release assays. The 
resulting MABEL was 1.5ng/kg dose, which was similar to the PK/PD approach. Finally, MABEL 
was estimated by determining drug concentration required for 10% RO, using equilibrium drug-
receptor interaction theory and predicted human PK. This method resulted in MABEL doses of 
360 and 8300 ng/kg/week for 10% P-cadherin and 10% CD3 occupancy respectively, which were 
much higher than the QSP model or PK driven approaches. The RO based approach is not 
considered to be appropriate for immune agonists (27). The MABEL doses using the PK, QSP and 
RO approaches are summarized in Table 2. Collectively, a dose of 1.5 ng/kg/week was suggested 
as the FIH starting dose consistently supported by the QSP- and PK-driven approaches (28). In 
this example, the QSP- and PK- based approaches gave similar starting dose predictions, which 
increased confidence in the suitability of the proposed starting dose to ensure the safety of 
patients given the potency of Pcad-LP-DART. The same model was used to predict efficacious 
dose (Case Study 1) and therefore the clinical trial could be designed to escalate efficiently to the 
projected efficacious dose. The prediction using the PK method, assumes drug concentration 
Table 2: Projection of Minimal Anticipated Biological Effect Level for P-cadherin LP-DART, 
reviewed in Case Study 2. Reproduced with permissions from (28). 
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Table 2: Projection of Minimal Anticipated Biological Effect Level for P-cadherin LP-DART, reviewed in Case Study 2. 
Reproduced with permissions from (28). 

 

 
In vitro Assay Efficacy Variable MABEL Starting Dosea 

(ng/kg/wk) 

PK/PD-driven approach 
In vitro kinetic 

cytotoxicity 
assay 

Cytotoxicity  
EC20, syn=1.2×10-6 nM 

Maximum tumor 
synapse conc. < 

EC20, syn 
1.9 

PK-driven approach 

In vitro 
cytokine 

release assay 

Cytokine release 

EC20, CRA= 0.025 ng/mL 
Cmax < EC20, CRA 

1.5 
In vitro 

cytotoxicity 
assay 

Cytotoxicity 

EC20, CTL= 0.01 ng/mL 
Cave < EC20, CTL 

Receptor Occupancy 
(RO) 

In vitro binding RO 

EC10, RO = 6 (P-cad) and 
134 (CD3) ng/mL 

Cmax < EC10, RO 
360 (P-cad) 

8300 (CD3) 

a – 1 hour infusion  

 

alone is driving efficacy and is very sensitive to conditions used in the in vitro assay (including E:T 
ratio, incubation times and cell lines). For example, the predicted PK driven MABEL dose ranged 
from 1.5 ng/kg/week to 79.5 ng/kg with only a small difference in E:T ratios (5:1 and 3:1) and 
incubation times (24, 48, or 72 h). If this in vitro experiment had been used to inform MABEL 
using the PK- driven approach the clinical starting dose would have been much closer to the 
projected efficacious dose and potentially an inappropriate choice. The advantage of the QSP 
method is that it uses trimer concentration for driving efficacy and the predicted dose is 
independent of experimental conditions.  

Case study 3: A model framework to characterize cytokine release upon CD3 bsAb therapy 

In the work by Chen et al. 2019 (73), a quantitative modeling framework was developed for 
characterizing cytokine profiles upon CD3 bsAb treatment, with the goal to facilitate the design 
of priming dose strategies to minimize CRS toxicities (Figure 4). The model describes cytokine 
release stimulated by CD3 bsAbs forming trimers by binding to CD3 on T cells and TAA on tumor 
cells. Tumor kinetics are accounted for in the model to determine the impact of tumor burden 
on the active trimer concentration. The release of cytokines is controlled by a time variant 
negative feedback loop which prevents over activation of the immune system and accounts for 
the priming effect, where negative inhibition increases with increasing number of doses. The 
model was able to describe cytokine release data for blinatumomab in patients and for P-
cadherin LP DART in cynomolgus monkeys, across a wide range of dose levels and regimens. The 
model could be used to design optimal dosing regimens to be tested in clinical trials, and with 
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more development could be used to translate from cynomolgus monkey to human. In addition, 
based on similarities in underlying mechanisms, the current model could be used for other 
immune agonistic bsAb therapeutics.  

 

Figure 4: Cytokine release PK/PD model for CD3 bsAbs, reviewed in Case Study 3. Reproduced with permissions from 
(73). Briefly, an appropriate PK model accounts for the drug exposure. Depending on the tumor type (hematological 
or solid), the tumor kinetics are accounted for in the model to account for the impact of tumor burden on the active 
synapse concentration. For the cytokine PD model, the synapse exposure then stimulates cytokine release. A time-
variant negative feedback loop accounts for the priming effect, where the negative inhibition increases with the 
increasing number of doses. T-bsAb, T cell-engaging bispecific antibody. 

 

7.7 Conclusion 

In conclusion, bsAbs are an exciting immunotherapeutic modality with potential to further 
improve clinical efficacy and safety in the treatment of cancer. Their inherent complexity leads 
to significant clinical pharmacology challenges in a disease area which is already difficult to treat 
and characterized by heterogeneity and development of resistance. Mathematical modeling and 
simulation is a powerful tool which can be used to integrate diverse knowledge and data to 
predict/ refine clinical dosing regimens and design trials to optimize efficacy and TI. Modeling can 
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be used to guide rational decision making, to inform precision medicine strategies and to increase 
overall efficiency and effectiveness of the oncology clinical development process. In the future, 
combination of QSP modeling with data science methods including machine learning will further 
strengthen the role of modeling as an essential quantitative tool in oncology.  
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8.1 Mechanistic modeling in oncology research 

The high cost and attrition of the drug development process is a fundamental challenge in 
biomedical research and requires novel approaches to improve efficiency and effectiveness [1]. 
This is particularly true in oncology drug development, which has the lowest success rate of all 
therapeutic areas [2]. Cancer treatment has been revolutionized with the advent of immune-
oncology therapies; however, the biology is complex and difficult to translate and currently only 
a minority of patients are benefiting. Simultaneously, there has been rapid innovation in the field 
of protein engineering which has led to an explosion in the number of biological modalities being 
explored [3], including an increasing number of cell therapies [4]. Combination approaches are 
actively being pursued as a means of treating the heterogeneity of the disease across and within 
patients and reducing the risk of relapse to therapy. However, combination therapy is being 
approached as a ‘trial and error process’ in patients. A recent report showed that there were 
approximately 4000 immune-oncology drugs in development, and greater than 5000 clinical trials 
[5]. A more systematic process is required to enable more patients to benefit and to reduce 
clinical failures. 

Mathematical modeling-based approaches have been shown to improve productivity in drug 
development and enhance decision making. Indeed, a recent publication by the FDA states that 
quantitative pharmacology modeling and simulation are seen as critical to accelerating drug 
development and assisting in regulatory decisions [1]. In the last two decades modeling and 
simulation has evolved from a tool primarily used in later stage clinical drug development, to 
playing a significant role in early clinical development (Phase 1 studies) and most recently in 
preclinical drug discovery and development [6]. As a result, the types of modeling and simulation 
approaches have evolved to support translational predictions across systems and species. 
Empirical PK/PD models have proved very useful in preclinical and clinical development to 
maximize information obtained from in vivo experiments, while minimizing resource utilization. 
These models are easy to develop and use, portable and good at extrapolating within a limited 
field of vision, across different doses and sub-populations [7]. However, they are limited in their 
ability to predict efficacy and safety across different targets and biomarkers.  As a result, more 
mechanistic modeling and simulation is now being used to understand specifics of the 
pharmacology and mechanism of action of drugs to translate from in vitro experiments, to 
preclinical species and ultimately to human. These models are more data integrative, linking the 
exposure of drugs (or combination of drugs) and the modulation of pharmacological targets, 
physiological pathways and disease systems and can be used to develop a unified understanding 
of the data collected at different stages of drug discovery and development, and as such can 
provide a quantitative framework for drug research [6]. These mechanistic models have been 
termed ‘quantitative systems pharmacology’ or QSP models [7]. A key feature of these models is 
their explicit distinction between ‘drug’ and ‘system’ parameters. System specific parameters 
typically include organ/tissue blood flow rates, receptor expression, internalization rates and 
turnover rates, cell lifespans, and homoeostatic feedback mechanisms. Ideally, these parameters 
should be available from the literature or from prior experiments. Drug-specific parameters 
typically include PK parameters, such as intrinsic clearance and volume of distribution and 
pharmacologic parameters, such as in vivo target affinity and intrinsic efficacy of compounds and 
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are usually estimated from PK/PD data gathered for the drug [6]. A QSP modeling approach is 
particularly useful to answer more mechanistic questions for complex biotherapeutic modalities 
in oncology, which have intricate mechanisms of action and can require multiscale predictions.  

In this thesis, the use of modeling and simulation, spanning the continuum from  PK/PD to QSP 
modeling, was explored to help with quantitative decision making in oncology drug discovery and 
development. The type of model used in each case was dependent upon on the question asked 
(introduced in Chapter 1). For example, a more statistical population-pharmacokinetic (pop-PK) 
modeling approach was used for analysis of a large mAb PK dataset with quantitation of 
variability (Chapter 2). Pharmacokinetic/ pharmacodynamic (PK/PD) modeling was used for data 
driven interpolation of in vitro and in vivo datasets with limited extrapolation (Chapters 3 & 4). 
Quantitative systems pharmacology (QSP) modeling was used to answer more complex 
mechanistic questions, involving integration of data from disparate sources (literature, in vitro, 
in vivo and the clinic), linkage of drug pharmacology to biological systems and disease, and multi-
scale predictions (Chapters 4, 5, 6 & 7). Several key observations and learnings were made, which 
are discussed further in the sections below.  
 
Reviews _ POST 

8.2 Use of mechanistic modeling to reduce animal use 

An important finding was that use of modeling and simulation can reduce animal 
experimentation. In Chapter 2, a population PK analysis was completed on 27 mAbs in humans, 
cynomolgus monkey and in hFcRn transgenic (Tg32) mice and showed that a single set of typical 
linear PK parameters could be estimated across species with values similar to endogenous IgG 
[8]. These parameters could be used to inform initial parameters for PK/PD modeling and for 
simulations to optimize in vivo and first-in-human study designs. Importantly, knowledge of these 
parameters across species could be used to avoid unnecessary in vivo PK studies. Different 
translational strategies were also investigated for prediction of human linear PK of mAbs. Use of 
‘typical’ human PK parameters gave good prediction accuracy for the majority of the mAbs in this 
study and for a test set of different mAbs with linear PK in the clinic. Allometric exponents were 
estimated within the pop-PK model and also gave good predictions, from both Tg32 mouse and 
cynomolgus monkey to human. Outliers with higher than typical clearance were found to have 
non-specific interactions in an affinity-capture self-interaction nanoparticle spectroscopy assay, 
offering a potential tool to screen out these mAbs at an early stage. The strategies presented call 
into question the value of completing extensive in vivo preclinical PK for mAbs with linear CL and 
encourage refinement of PK strategies consistent with the ‘3Rs’, i.e., the reduction, refinement 
and replacement of animal use in research, testing and teaching [9]. This analysis provides 
alternatives to the use of cynomolgus monkey for PK prediction, including allometric scaling from 
Tg32 mouse, or use of human pop-PK parameters as a replacement to animal-based methods [8]. 
As such, it has the potential to reduce the numbers of cynomolgus monkey PK studies completed.  
 
In Chapter 3, a PK/PD modeling approach was used to establish in vitro to in vivo correlations 
(IVIVC) for antibody drug conjugates (ADCs) [10]. In vitro cytotoxicity assays and mouse tumor 
xenograft models are the most widely used experimental systems in the preclinical development 
of oncology drugs. These experiments are very informative to determine drug potency and 
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efficacy, but no subsequent attempt has been made to integrate the information from these two 
systems to establish IVIVC for chemotherapeutic drugs. This is exacerbated by the fact that the 
in vitro and in vivo experiments are completed under different conditions, with different 
endpoints measured. To establish IVIVC, we determined in vitro efficacy of 19 ADCs using a 
kinetic cell cytotoxicity assay and determined the viability of cancer cells at multiple timepoints 
after incubation with various concentrations of ADCs. The data was fitted using a semi-
mechanistic PK/PD model, and a secondary parameter called the in vitro tumor static 
concentration was estimated (TSCin vitro), representing the concentration of ADC which would 
result in the cancer cells neither proliferating or decreasing, but held in stasis.  The in vivo efficacy 
of ADCs was evaluated using tumor growth inhibition (TGI) studies performed on human tumor 
xenograft bearing mice. The TGI and PK data obtained from in vivo studies were characterized 
using a PK/PD model, parameter estimates from which were used to derive the in vivo TSC (TSCin 

vivo), which was the concentration of ADC which would result in the tumor in the mouse neither 
growing nor regressing. The TSCin vitro and TSCin vivo values were found to correlate with a 
Spearman’s rank correlation co-efficient of 0.82. On average TSC in vivo was found to be 
approximately 27 times higher than TSC in vitro, which roughly accounts for tumor penetration. 
The reasonable IVIVC for ADCs suggests that in vitro efficacy data was correctly able to 
differentiate ADCs for their in vivo efficacy. Thus, IVIVC can be used as a tool to triage ADC 
molecules in the discovery stage, thereby preventing unnecessary in vivo testing of ADCs. An 
ability to predict the concentration of ADC that is efficacious in vivo using the in vitro data can 
also help in optimizing the experimental design of preclinical efficacy studies. As such, the novel 
PK/PD modeling method presented here to establish IVIVC for ADCs holds promise for anticancer 
agents. 
 
Key Learnings: 

1. Think before doing the in vivo experiment! 
2. Modeling can be a useful tool to reduce animal experimentation, by enabling in vitro to in 

vivo correlations or use of simulation to replace experimental methodologies. 
 
8.3 Use of mechanistic modeling for preclinical to clinical translation 

One of the key themes explored in this thesis was the use of modeling to translate from preclinical 
studies to the clinic. One reason to translate to human is to ensure that the best drug, in terms 
of predicted efficacy and safety, is being progressed to clinical trials. Another important reason 
is to ensure the most efficient design of clinical dose escalation studies, with the objective of 
minimizing risk to trial participants while acknowledging the need to quickly escalate to 
pharmacologically active doses.  
The workhorse preclinical model in oncology is the mouse xenograft model, which comprises 
subcutaneous implantation of a human cell line or tumor into immune compromised host mice 
[11]. The xenograft model represents extreme simplification of human cancer, as it does not 
account for complexities of tumor metastasis, host immunity, tumor heterogeneity, and the 
development of treatment resistance that is routinely observed in cancer patients [12]. However, 
the drug exposure response relationship derived from these models is useful for understanding 
efficacy and if accompanied by rigorous quantitative analysis such as mathematical modeling, 
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can be used to translate from mouse to human to predict clinical anti-tumor response [13, 14]. A 
rigorous unifying preclinical to clinical translational framework could facilitate oncology clinical 
development by better identifying translational strategies, patient selection criteria and 
appropriate biomarkers to measure [15]. 
 
In Chapter 4, a PK/PD modeling and simulation approach was used for quantitative comparison 
of a new generation HER2 antibody drug conjugate (ADC, PF-06804103) with the clinical-
standard-of-care trastuzumab-DM1 (T-DM1), to ensure that PF-06804103 would provide benefit 
if progressed to the clinic [16]. To compare preclinical efficacy, the PK/PD relationship of PF-
06804103 and T-DM1 was determined across a range of mouse tumor xenograft models, using a 
tumor growth inhibition model. A secondary parameter, tumor static concentration (TSC), was 
calculated from the model parameters and defined as the minimal efficacious concentration. 
From comparison of TSCs, PF-06804103 was concluded to be more potent than T-DM1 across the 
cell lines studied, with TSCs ranging from 1.0 to 9.8 µg/mL (n = 7) for PF-06804103 and from 4.7 
to 29 µg/mL (n = 5) for T-DM1. In addition, two experimental models which were resistant to T-
DM1, responded to PF-06804103 treatment.  
To translate to the clinic, first a mechanism-based target mediated drug disposition (TMDD) 
model was used to predict the human PK of PF-06804103. This model was constructed and 
validated based on T-DM1 which has non-linear PK at doses administered in the clinic, driven by 
binding to shed HER2. The predicted PK was incorporated into the mouse model and used to 
perform simulations of tumor regression at different dose levels for PF-06804103 and T-DM1. 
The model simulations accurately predicted the efficacious dose of T-DM1 and predicted efficacy 
at lower doses for PF-06804103 in the clinic. In this case, a fit-for-purpose translational strategy 
was deemed applicable to predict efficacy of two drugs with the same target and mechanism of 
action, which had been studied in the same experimental models. In addition, the availability of 
clinical data for T-DM1 was used to validate the modeling and to de-risk translation of PF-
06804103 [16]. 
 
In Chapters 5 and 6 more mechanistic QSP strategies are applied for translating from preclinical 
studies to the clinic, for ADCs and CD3 bispecific antibodies, respectively. In Chapter 5, a 
mechanistic QSP model was developed and used for preclinical to clinical translation of 
inotuzumab, a CD22 targeting ADC for B cell malignancies including non-Hodgkin’s lymphoma 
(NHL) and acute lymphocytic leukemia (ALL) [17]. The model incorporates more of the 
mechanistic steps in the causal pathway between drug administration and efficacy compared to 
the model described in Chapter 4. These included (1) a plasma PK model characterizing 
disposition and clearance of inotuzumab and its released payload N-Ac-γ-calicheamicin DMH, (2) 
a tumor disposition model describing ADC diffusion into the tumor extracellular environment, (3) 
a cellular model describing inotuzumab binding to CD22, internalization, intracellular payload 
release, binding to DNA, or efflux from the tumor cell, and (4) tumor growth and regression driven 
by payload concentration. Preclinical data in mouse xenograft models for NHL and ALL, were 
modeled first and then translated to the clinic by incorporating human PK for inotuzumab and 
clinically relevant tumor volumes, tumor growth rates, and values for CD22 expression in the 
relevant patient populations. Clinical trial simulations were performed with 1000 patients 
simulated per dose level, incorporating variability in model parameters representing different 
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drug, patient, and disease characteristics.  The resulting stochastic models predicted progression-
free survival (PFS) rates for inotuzumab in patients comparable to the observed clinical results. 
The more mechanistic nature of the model meant that it could be used for specific quantitative 
questions, including optimization of dosing regimens for NHL and ALL, and to examine sensitive 
parameters impacting efficacy in the clinic which could be used to inform clinical diagnostics or 
potential biomarkers [17]. 
 
In Chapter 6, a translational QSP model was presented for CD3 bispecific molecules, which 
integrates in silico, in vitro and in vivo data in a mechanistic framework, to quantify and predict 
efficacy across species [18]. CD3 bispecific antibodies bind to CD3 on the surface of T cells and a 
tumor associated antigen on the surface of tumor cells to form a trimolecular complex (hereafter 
trimer), which mimics an immune synapse. Trimer formation triggers T cell activation, release of 
perforin and granzyme B which results in cytotoxicity. The proposed QSP model was capable of 
predicting trimer formation and linking it to tumor cell killing. The model was used to quantify 
the PK/PD relationship of a CD3 bispecific antibody targeting P-cadherin (PF-06671008). It 
describes the disposition of PF-06671008 in the central compartment and tumor in mouse 
xenograft models, including binding to target and T cells in the tumor to form the trimer. The 
model incorporates T cell distribution to the tumor, proliferation, and contraction. PK/PD 
parameters were estimated for PF-06671008 and a tumor stasis concentration (TSC) was 
calculated as an estimate of minimum efficacious trimer concentration. The model was 
translated to the clinic by incorporating predicted PF-06671008 human PK, including binding to 
soluble P-cadherin, and clinically relevant system parameters such as CD3 and P cadherin 
receptor expressions, numbers of T cells and tumor cells. The model was used to predict clinical 
PK and efficacy, and to determine sensitive parameters affecting clinical efficacious doses[18]. 
 
Key Learnings: 

1. When dealing with complex biological systems with multiple variables and pathways, it 
is advisable to build a mathematical model of the system, capable of integrating and 
interpreting preclinical data and providing a quantitative framework for translation to 
the clinic. 

2. Choose the appropriately sized model and level of translational strategy for the question 
asked.  

3. It is possible to translate from mouse xenograft studies to the clinic, if accompanied by 
rigorous, systematic quantitative analysis, which accounts for differences between the 
mouse experimental system and the clinic, as afforded by mathematical modeling. 

4. Mechanistic QSP types of models are an investment in terms of data requirements and 
development time; however, they offer a high return of investment with respect to the 
granularity of the questions answered. 

5. Deterministic models can be combined with stochastic simulations (e.g. virtual patient 
simulations) to predict efficacy endpoints such as RECIST criteria. 

 
8.4 Use of mechanistic modeling to optimize clinical dosing regimens 
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An important topic explored in this thesis was the use of mechanistic modeling and simulation to 
optimize the design of clinical dosing regimens. This included selection of clinical starting dose 
using a minimal anticipated biological effect level (MABEL) approach, prediction of clinical 
efficacious dose and regimen and identification of factors impacting variability in efficacious 
dose. As discussed above, in Chapters 5 and 6, mechanistic QSP models were developed and used 
to predict efficacious doses for an ADC (inotuzumab) and a CD3 bispecific molecule (P-cad LP-
DART), respectively. For inotuzumab, different versions of the model were developed for treating 
hematological tumors such as ALL and solid tumors such as NHL, differing in their description of 
tumor disposition, and also in the typical tumor characteristics such as tumor growth rates and 
initial tumor volumes. The model was ultimately used to recommend a fractionated dosing 
regimen for ALL, which was predicted to be more tumor regressive compared to the standard 
Q4w regimen that was used to treat NHL [17]. 
 
In Chapter 7, a QSP modeling approach to select minimal anticipated biological effect level 
(MABEL)-based clinical starting dose of bispecific antibodies (bsAbs) was introduced. The 
approach is based on tumor trimer concentrations driving efficacy and normalizes for differences 
between in vitro experimental conditions and the clinic. The method was used to predict clinical 
starting doses of a P-cadherin/ CD3 bsAb. First, a mechanistic in vitro model was constructed 
which linked predicted trimer concentration and in vitro T cell kinetic and cytotoxicity 
experiments to determine EC20 of trimer driving T cell proliferation and tumor cell killing. The 
model was able to capture in vitro data at various E:T ratios using the same EC20 value. This in 
vitro MABEL was then translated to the in vivo MABEL to predict human MABEL dose, by 
incorporation of predicted human PK (including binding to soluble P-cadherin) and physiological 
parameters (described above). The MABEL human dose was determined as the predicted average 
tumor trimer concentration at steady-state equal to the in vitro MABEL (EC20, trimer). This 
method was compared to orthogonal approaches, including PK based methods and receptor 
occupancy. The QSP-based approach was concluded to give the most appropriate starting dose 
to balance safety and efficacy, which was independent of experimental conditions [19]. 
 
Key Learnings: 

1. QSP modeling can be used to predict optimal dose and regimens for different oncology 
indications such as hematological versus solid tumors. 

2. QSP modeling provides an alternative method to predict MABEL-based clinical starting 
doses which is less dependent on experimental conditions. 

 
8.5 Use of mechanistic modeling to address precision medicine questions 

Another theme explored in this work, was the use of QSP modeling to investigate factors which 
may impact drug dosing and scheduling in oncology and to identify patients who may best 
respond to a therapy. Consistent with a precision medicine-based approach this information 
could be fundamental in the selection of suitable diagnostics and biomarkers to explore in the 
clinic to optimize therapeutic strategies in oncology [20].  
In Chapter 5, a QSP model was developed for inotuzumab, a CD22-targetting ADC for B-cell 
malignancies [17]. The model was used for preclinical to clinical translation and to optimize doses 



193 
 

and regimens for a new indication being explored (ALL) versus the original indication (NHL). 
Development of inotuzumab for r/r NHL had recently been terminated due to lack of superiority 
versus standard of care. A sensitivity analysis was performed to give insight into the parameters 
defining, or even limiting, efficacy of inotuzumab versus NHL. CD22 receptor expression, 
calicheamicin efflux rate, inotuzumab PK (clearance rate), and tumor growth rate were selected 
as relevant parameters to vary in the model. Tumor growth rate was found to be the most 
sensitive parameter and suggested that for the more aggressive NHL sub-types like diffuse large 
B cell lymphoma (DLBCL) patients would require significantly higher doses for efficacy, compared 
with slower growing NHL sub-types such as follicular lymphoma. Calicheamicin efflux from the 
tumor cell was a sensitive parameter, which is important as N-Ac-γ-calicheamicin DMH is known 
to be a substrate for MDR1, an efflux transporter which is upregulated on many tumor-cell types. 
The least sensitive parameter was CD22 receptor expression which indicated the suitability of 
this receptor as an ADC target due to its high expression across B cells and rapid internalization 
rate. These findings suggest that MDR1 status in patients would be a more useful diagnostic of 
efficacy than CD22 receptor expression. 
 
A similar approach was taken in Chapter 6, where a sensitivity analysis was used to determine 
key parameters impacting predicted clinical efficacious dose for P-cad LP-DART, a CD3 bispecific 
antibody [18]. The analysis showed that P-cad expression was a sensitive parameter with a higher 
dose required for patients exhibiting low P-cadherin expression. T cell number in the tumor was 
also a sensitive parameter with a higher predicted dose required for efficacy at low effector: 
target cell ratios. In conclusion, use of mathematical modeling and the strategies discussed 
above, can facilitate decisions on the most appropriate drugs for a given patient, help optimize 
dosing and combination regimens, and propose alternative and improved schedules of 
administration.  
 
Key Learnings: 

1. QSP modeling can be used, via sensitivity analysis and simulations, to identify key 
parameters impacting outcome in the clinic. 

 
8.6 Platforms models for biotherapeutic modalities 

Two models described in this thesis: the ADC QSP model (Chapter 5) and the CD3 bispecific model 
(Chapter 6) are potential platform models for specific biotherapeutic modalities in oncology. 
These are QSP models which provide a common integrated quantitative knowledge repository 
for continued preclinical and clinical evaluation [21]. They are not specific to a particular drug 
and therefore can be re-applied, providing a mechanistic framework for predicting efficacy 
distinct from other pharmacometrics strategies [21]. They are often multiscale and modular, and 
can be used to characterize in vitro, preclinical in vivo and clinical data. As such,  they can be used 
to support program decision from exploratory research through to late-stage clinical trials. 
Platform models can be an investment in terms of data requirements, but they offer a high return 
of investment with respect to the granularity of the questions answered. 
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The ADC QSP model describes the intricate mechanism of action of ADCs including 
characterization of ADC and payload disposition at the cellular and physiological level to predict 
the clinical outcome of ADCs [17].  The model describes (1) plasma PK including disposition and 
clearance of ADC and released payload, (2) a tumor disposition model describing ADC and 
payload diffusion into the tumor extracellular environment, (3) a cellular model describing ADC 
binding to its target on tumor cells, internalization, intracellular payload release, payload binding 
to its target, payload efflux from the tumor cell, and (4) tumor growth and inhibition in mouse 
xenograft models as a function of tumor payload concentration.  
The CD3 bispecific antibody (bsAb) model is a potential platform model for immune cell engaging 
bsAbs which act to cross-link a tumor cell with an immune effector cell to redirect cytotoxicity 
against the tumor cell [18]. The current model was used to characterize a bispecific molecule 
binding to CD3 on T cells and P-cadherin on tumor cells (Pcad-LP-DART) [18]. The model describes 
(1) plasma PK, including bsAb binding to soluble target and circulating T cells in the systemic 
circulation (2) a tumor disposition model describing bsAb diffusion into the tumor (3) binding of 
the bsAb to T cells and tumor cells to form dimers and trimers (4) T cell distribution to the tumor, 
proliferation, and contraction and (5) tumor growth and inhibition in mouse xenograft models as 
a function of tumor trimer concentration.  
 
These platform models can be used for diverse purposes such as: 

1. Optimizing design of ADCs or CD3 bsAbs at early stages to enable maximal chances of 
success. 

2. Design and interpretation of preclinical in vitro and in vivo experiments for efficient and 
effective lead selection. 

3. Translation of preclinical data to the clinic to predict clinical efficacious dose and regimen. 
4. Prediction of drug response (e.g. tumor growth inhibition, RECIST criteria) and 

optimization of dose and regimen for different oncology indications.  
5. Understanding variability to drug response in the clinic and use of this information for 

selection of suitable diagnostics to inform patient selection and clinical biomarkers to 
monitor for earlier signs of efficacy. 

6. Comparison against clinical standard of care. 
 

In addition, the current model structures have the potential to be expanded to predict toxicities 
associated with the mechanism of action. For example, the ADC model could be expanded to 
describe ADC uptake and release of payload in megakaryocytes and platelets to quantify typically 
observed ADC toxicities such as neutropenia and thrombocytopenia. The CD3 bsAb model could 
be expanded to relate trimer formation to cytokine release to predict cytokine release syndrome. 
Finally, both models could be extended to predict combination therapy treatments. For example, 
this could include addition of an immunotherapy model to predict combination with checkpoint 
inhibitors such as anti-PD1 mAbs. 
 
Key Learnings: 
 

1. Platform QSP models are amenable to reuse and repurposing to support diverse decisions 
from early drug discovery through to clinical studies.  
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8.7 Conclusions and future perspectives 

In this thesis, mathematical modeling and simulation was applied as a tool to inform quantitative 
decision making in oncology drug discovery and development. Modeling based approaches were 
shown to be useful to understand the mechanism of action and deconvolve the complexities of 
novel biotherapeutic modalities being used to treat cancer, including monospecific and bispecific 
monoclonal antibodies and antibody drug conjugates. Several key observations and learnings 
were made. For example, modeling was shown to be a useful method to reduce animal 
experimentation, by enabling in vitro to in vivo correlations or use of simulation to replace 
experimental methodologies. Mechanism based modeling and simulation was found to be a 
useful means to translate from preclinical studies to the clinic to ensure progression of the best 
drug to clinical trials. These models could then be used to optimize design of clinical studies from 
selection of starting doses to recommended efficacious doses for pivotal trials. Modeling was 
shown to be beneficial to understand variability in the clinic and to identify factors impacting 
drug response in individual patients,  paving the way for precision medicine strategies, informing 
clinical diagnostics, biomarkers, and doses for different oncology indications. Finally, the ADC 
QSP and CD3 bsAb models were identified as potential platform models amenable to reuse and 
repurposing to support diverse decisions across the drug discovery and development continuum.  
 
Oncology drug discovery and development will get more complex, as we continue to unveil more 
of the intricate aspects of tumor biology and the pleiotropic role of the immune system. In 
parallel, the complexity of biological therapies will continue to evolve, with the introduction of 
multi-specific antibodies targeting several receptors and modulating different pathways, novel 
cell therapies, and multiple drug combinations leading to novel biological effects and synergies. 
As a result, mechanistic modeling and simulation will become an essential cornerstone of 
oncology drug discovery and development, to understand the often-non-intuitive processes and 
to aid in rational decision making. To facilitate this process, it will be imperative to apply modeling 
and simulation earlier in the drug discovery process to facilitate success and ensure reduced 
attrition rates later in clinical studies. There will be increasing opportunities to combine QSP 
modeling with emerging technologies. Undoubtedly integration of big data technology and data 
science (including crowd sourcing and machine learning) with QSP modeling will play an 
important role in the application of mathematical modeling for decision making within oncology 
drug research. Thus, the wealth of emerging genomics and biomarker data will be applied to 
maximize the power of QSP modeling to help ensure patients get the best possible treatment. 
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9.1 Het gebruik van mechanistische modellen in oncologieonderzoek 

Aangezien in het biomedisch onderzoek de hoge ontwikkelkosten van nieuwe geneesmiddelen 
en lage succespercentages een grote uitdaging vormen, zijn nieuwe benaderingen nodig om tot 
een efficiënter en effectiever proces te komen [1]. Dit geldt met name voor de ontwikkeling van 
oncologiegeneesmiddelen, het therapeutische gebied dat het allerlaagste succespercentage 
kent [2]. De behandeling van kanker heeft met de komst van immuuntherapieën een revolutie 
doorgemaakt; de biologie erachter is echter zeer complex en laat zich moeilijk vertalen, waardoor 
momenteel slechts een minderheid van de patiënten ervan profiteert. Tegelijkertijd gaan de 
ontwikkelingen op het gebied van eiwitengineering razendsnel, wat heeft geleid tot een 
explosieve toename van het aantal te onderzoeken biologische modaliteiten [3], waaronder een 
groeiend aantal celtherapieën [4]. Er wordt momenteel actief onderzoek gedaan naar 
combinatietherapie als middel om de heterogeniteit van de ziekte aan te pakken tussen zowel 
verschillende patiënten als in een individuele patiënt, en om het risico op terugval tijdens de 
therapie te verlagen. Combinatietherapie wordt echter bij patiënten gezien als een 'trial-and-
error’-proces. Uit een recent rapport blijkt dat er momenteel ongeveer 4.000 immuno-
oncologische geneesmiddelen in ontwikkeling zijn, en dat er ruim 5.000 klinische studies 
lopen [5]. Er is een systematischere aanpak nodig om meer patiënten te laten profiteren en het 
aantal klinische successen te vergroten. 

Het is aangetoond dat een wiskundig-modelmatige aanpak zowel de productiviteit op het gebied 
van geneesmiddelenontwikkeling als de besluitvorming ten goede komt. In een recente 
publicatie van de Amerikaanse Food and Drug Administration (FDA) staat dat het gebruik van 
kwantitatieve farmacologiemodellen en simulatie van cruciaal belang is om de 
geneesmiddelenontwikkeling te versnellen en te helpen bij het nemen van regulatoire 
beslissingen [1]. In de laatste 20 jaar is het gebruik van modellen en simulatie veranderd. Waar 
het eerst een instrument was dat voornamelijk werd ingezet in de latere fase van klinisch 
onderzoek, speelt het nu ook in de vroege klinische ontwikkeling (fase-I-studies) een belangrijke 
rol, en wordt het sinds kort zelfs gebruikt in preklinisch onderzoek naar nieuwe 
geneesmiddelen [6]. Als gevolg daarvan zijn de verschillende modellering- en 
simulatiebenaderingen doorontwikkeld om translationele voorspellingen over systemen en 
soorten heen te ondersteunen. Empirische farmacokinetische-farmacodynamische 
(pharmacokinetic-pharmacodynamic, hierna PKPD) modellen zijn in het preklinische en klinische 
onderzoek erg bruikbaar gebleken om zoveel mogelijk informatie uit in vivo experimenten te 
benutten met zo weinig mogelijk middelen. Deze modellen zijn eenvoudig te ontwikkelen en te 
gebruiken. Bovendien is hun portabiliteit goed, en zijn ze zeer geschikt voor extrapolatie binnen 
een beperkt gegevensgebied, voor verschillende doseringen en subpopulaties [7]. De modellen 
zijn echter minder geschikt om de werkzaamheid en veiligheid voor de verschillende targets en 
biomarkers te voorspellen. Als gevolg daarvan wordt nu vaker mechanistische modellering en 
simulatie ingezet om de bijzonderheden van de farmacologie en het werkingsmechanisme van 
een geneesmiddel te begrijpen in de translatie van in vitro experimenten naar het laboratorium 
en uiteindelijk naar de mens. In deze modellen kunnen meer data worden geïntegreerd, 
waardoor de blootstelling aan een medicijn (of aan een combinatie van medicijnen) gekoppeld 
kan worden aan de modulatie van farmacologische targets, fysiologische netwerken en 
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ziektesystemen. De modellen kunnen ingezet worden om een eenduidig begrip te ontwikkelen 
van de data die zijn verzameld in de verschillende fasen van geneesmiddelenontwikkeling, en ze 
bieden als zodanig een kwantitatief kader voor geneesmiddelenonderzoek [6]. Deze 
mechanistische modellen worden 'kwantitatieve systeemfarmacologie-modellen' genoemd 
(quantitative systems pharmacology, hierna QSP) [7]. Een belangrijk kenmerk van deze 
QSP-modellen is dat er expliciet onderscheid wordt gemaakt tussen systeem- en 
geneesmiddelparameters. Onder systeemspecifieke parameters vallen doorgaans de 
bloedstroomsnelheid in organen en weefsels, receptor expressie, internalisatie- en 
omloopsnelheden, de levensduur van cellen, en homeostatische terugkoppelingsmechanismen. 
Idealiter worden deze parameters uit de literatuur of uit eerdere experimenten verkregen. 
Geneesmiddelspecifieke parameters omvatten doorgaans zowel PK-parameters (bijvoorbeeld 
klaring en distributievolume), als farmacologische parameters (bijvoorbeeld in vivo 
targetaffiniteit en intrinsieke werkzaamheid van verbindingen). Deze parameters worden 
gewoonlijk geschat op basis van bestaande PKPD-data voor het geneesmiddel [6]. Het gebruik 
van QSP-modellen is vooral nuttig voor het beantwoorden van meer mechanistische vragen op 
het gebied van complexe biotherapeutische modaliteiten in de oncologie. Deze modaliteiten 
hebben ingewikkelde werkingsmechanismen en kunnen multischaalvoorspellingen vereisen. 

In dit proefschrift zijn de mogelijkheden van modellering en simulatie – van PKPD tot QSP – 
verkend om de kwantitatieve besluitvorming op het gebied van onderzoek en ontwikkeling van 
oncologiegeneesmiddelen te ondersteunen. Welk model werd gebruikt, was afhankelijk van de 
gestelde vraag (geïntroduceerd in hoofdstuk 1). Zo is bijvoorbeeld de meer statistische 
populatie-farmacokinetiek (pop-PK) modelbenadering gebruikt voor de analyse van een grote 
mAb-PK dataset waarin de variabiliteit gekwantificeerd werd (hoofdstuk 2). PKPD-modellering 
werd ingezet voor datagestuurde interpolatie van in vitro en in vivo datasets met beperkte 
extrapolatie (hoofdstuk 3 & 4). QSP-modellering werd gebruikt om complexere mechanistische 
vragen te beantwoorden, waarbij data uit verschillende bronnen werden samengevoegd 
(literatuur, in vitro, in vivo en de kliniek), farmacologie aan biologische systemen en ziekten werd 
gekoppeld, en multischaalvoorspellingen werden gedaan (hoofdstuk 4, 5, 6 & 7). De 
voornaamste bevindingen en lessen worden in de volgende paragrafen worden besproken. 
 
Reviews _ POST 

9.2 Het gebruik van mechanistische modellering om het aantal dierproeven te 
verminderen 

Een belangrijke bevinding was dat door het gebruik van modellering en simulatie het aantal 
dierproeven kan worden verminderd. In hoofdstuk 2 werd een pop-PK-analyse uitgevoerd op 27 
mAbs in mensen, Java-apen en hFcRn transgene (Tg32) muizen. Deze analyse wees uit dat een 
enkele set van typisch lineaire PK-parameters kon worden geschat voor alle soorten met waarden 
die vergelijkbaar zijn met endogene gamma-immunoglobuline (IgG) [8]. Deze parameters kunnen 
worden gebruikt als basis voor de initiële parameters voor PKPD-modellering. In simulaties konden 
ze worden gebruikt om in vivo en ‘first-in-human’-studies te verbeteren. Een belangrijk punt is dat 
kennis van deze parameters over de verschillende soorten heen gebruikt kan worden om onnodige 
in vivo PK-studies te vermijden. Ook zijn verschillende translationele strategieën onderzocht voor 
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de voorspelling van een humaan lineair PK-profiel van mAbs. De 'typisch' humane PK-parameters 
voorspelden nauwkeurig de meerderheid van de mAbs in deze studie, en een testset van 
verschillende mAbs met lineaire PK in de kliniek. Allometrische exponenten werden geschat 
binnen het pop-PK-model, en deze gaven ook goede voorspellingen, uit zowel Tg32-muizen, Java-
apen als mensen. Uitschieters met een hogere klaring dan normaal bleken niet-specifieke 
interacties te hebben in een affinity-capture self-interaction nanoparticle spectroscopy assay. 
Hierdoor is het mogelijk om deze mAbs er in een vroeg stadium uit te filteren. De hier 
gepresenteerde strategieën stellen het nut van uitgebreide in vivo preklinische PK voor mAbs met 
lineaire klaring (CL) ter discussie, en stimuleren de verfijning van PK-strategieën in 
overeenstemming met de '3V’s': vervanging, vermindering en verfijning van het gebruik van dieren 
in onderzoek, bij testen en in het onderwijs [9]. Deze analyse biedt alternatieven voor het gebruik 
van Java-apen voor het doen van PK-voorspellingen – waaronder de allometrische schaling vanuit 
Tg32-muizen – of het gebruik van humane pop-PK-parameters ter vervanging van dierproeven [8]. 
Hierdoor kan het aantal PK-studies met Java-apen worden verminderd. 

In hoofdstuk 3 werd PKPD-modellering gebruikt om in vitro naar in vivo correlaties (IVIVC) vast 
te stellen voor antilichaam-geneesmiddelconjugaten (ADC's) [10]. In de preklinische ontwikkeling 
van oncologische geneesmiddelen zijn de in vitro cytotoxiciteitstests en muismodellen met 
getransplanteerde tumorcellen (xenograft) de meest gebruikte experimentele systemen. Deze 
experimenten leveren zeer veel informatie voor het bepalen van de potentie en werkzaamheid 
van een medicijn, maar er is nooit geprobeerd om de informatie uit deze twee systemen te 
integreren om IVIVC voor chemotherapeutische medicijnen vast te stellen. Dit wordt bemoeilijkt 
door het feit dat de in vitro en in vivo experimenten onder verschillende omstandigheden worden 
uitgevoerd, waarbij verschillende eindpunten worden gemeten. Om IVIVC vast te stellen hebben 
we de in vitro werkzaamheid van 19 ADC's bepaald met behulp van een kinetische 
celcytotoxiciteitstest. Daarnaast bepaalden we de levensvatbaarheid van kankercellen op 
meerdere tijdstippen na incubatie met verschillende concentraties ADC's. Met behulp van een 
semi-mechanistisch PKPD-model hebben we de data geanalyseerd, en een secundaire parameter 
geschat – de in vitro tumor statische concentratie (TSCin vitro). Dit is de concentratie ADC die tot 
gevolg heeft dat de kankercellen tot stilstand komen, en niet toe- of afnemen. De in vivo 
werkzaamheid van ADC's is geëvalueerd met behulp van tumorgroeiremmingsstudies (TGI) 
uitgevoerd op muizen met getransplanteerde menselijke tumorcellen (xenograft muismodellen). 
De TGI en PK-data verkregen uit in vivo studies werden in kaart gebracht met behulp van een 
PKPD-model, waarvan parameterschattingen werden gebruikt om de in vivo TSC (TSCin vivo) af te 
leiden – de concentratie ADC die tot gevolg zou hebben dat de tumor in de muis niet groeit of 
afneemt. De TSCin vitro and TSCin vivo -waarden bleken te correleren met een Spearman's 
rangcorrelatiecoëfficiënt van 0,82. Gemiddeld bleek de TSCin vivo ongeveer 27 keer hoger dan de 
TSCin vitro, wat de verminderde tumorpenetratie in vivo grofweg verklaart. Door de redelijk 
aanvaardbare IVIVC voor ADC’s mag worden aangenomen dat de in vitro effectiviteitsdata in 
staat waren om ADC’s in te delen naar in vivo werkzaamheid. IVIVC kan dus worden ingezet als 
hulpmiddel om ADC-moleculen in de onderzoeksfase te beoordelen, waardoor onnodige in vivo 
tests van ADC’s voorkomen kunnen worden. Het vermogen om de effectieve in vivo concentratie 
ADC te voorspellen met behulp van de in vitro data kan ook helpen bij het verbeteren van de 
experimentele opzet van preklinische effectiviteitsstudies. De nieuwe PKPD-
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modelleringsmethode die hier wordt voorgesteld om IVIVC voor ADC's vast te stellen, is dus 
veelbelovend voor antikankermiddelen. 
 
Belangrijkste lessen: 

1. Denk na voordat je het in vivo experiment start! 
2. Modellering kan dierproeven verminderen doordat het in vitro naar in vivo correlaties en 

simulaties mogelijk maakt om experimentele methoden te vervangen. 
 
 
9.3 Het gebruik van mechanistische modellering voor preklinische naar klinische 
translatie 

Een hoofdthema in dit proefschrift is het gebruik van modellering voor de translatie van 
preklinische studies naar de kliniek. Een van de redenen hiervoor is te garanderen dat het beste 
medicijn wat betreft voorspelde werkzaamheid en veiligheid op mensen getest gaat worden. Een 
andere belangrijke reden is dat klinische dosis-escalatiestudies zo efficiënt mogelijk ontworpen 
moeten worden, om het risico voor de proefpersonen zo klein mogelijk te houden, maar 
tegelijkertijd een snelle escalatie naar farmacologisch actieve doses mogelijk te maken. 
Het meest beproefde preklinische model in de oncologie is het ‘xenograft’ muismodel: het 
onderhuids implanteren van een menselijke cellijn of tumor in immuungecompromitteerde 
muizen [11]. Het xenograftmodel is een extreme vereenvoudiging van kanker in het menselijk 
lichaam, omdat het geen rekening houdt met de complexiteit van tumormetastases, 
gastheerimmuniteit, tumorheterogeniteit en het ontstaan van resistentie tegen de behandeling, 
iets wat regelmatig wordt waargenomen bij kankerpatiënten [12]. De blootstelling-
responsrelatie die uit deze modellen kan worden afgeleid, helpt echter om de werkzaamheid te 
begrijpen en kan, mits vergezeld van een nauwgezette kwantitatieve analyse zoals wiskundige 
modellering, worden gebruikt om de klinische anti-tumorrespons van muis naar mens te 
voorspellen [13, 14]. Het klinische oncologieonderzoek zou gebaat zijn bij een strikt, 
overkoepelend preklinisch naar klinisch kader, waarmee translationele strategieën, criteria voor 
patiëntenselectie en geschikte meetbare biomarkers beter bepaald kunnen worden [15]. 
 
In hoofdstuk 4 werd PKPD-modellering en simulatie gebruikt voor een kwantitatieve vergelijking 
van een nieuwe generatie HER2 antilichaam-geneesmiddelconjugaat (ADC, PF-06804103) met de 
standaardbehandeling trastuzumab-DM1 (T-DM1), om er zeker van te zijn dat PF-06804103 
voordeel zou opleveren in de kliniek [16]. Om het preklinische effect te vergelijken werd de PKPD-
relatie van PF-06804103 en T-DM1 bepaald over een reeks xenograft muismodellen, met behulp 
van een tumorgroeiremmermodel. We hebben een secundaire parameter, de tumor static 
concentration (TSC), berekend uit de modelparameters en gedefinieerd als de minimale 
effectieve concentratie. Uit de vergelijking van TSC's werd geconcludeerd dat PF-06804103 
krachtiger is dan T-DM1 over de onderzochte cellijnen, met TSC's variërend van 1,0 tot 9,8 µg/mL 
(n = 7) voor PF-06804103, en van 4,7 tot 29 µg/mL (n = 5) voor T-DM1. Bovendien reageerden 
twee experimentele modellen die resistent waren tegen T-DM1, op de behandeling met 
PF-06804103. 



202 
 

Voor de translatie naar de kliniek werd eerst een op mechanisme gebaseerd target mediated 
drug disposition (TMDD) model gebruikt om de humane PK van PF-06804103 te voorspellen. Dit 
model werd samengesteld en gevalideerd op basis van T-DM1, waarbij sprake was van niet-
lineaire PK bij doseringen die klinisch toegepast worden door binding aan afgescheiden HER2. De 
voorspelde PK werd toegevoegd aan het muismodel en gebruikt om tumorregressie te simuleren 
bij verschillende dosisniveaus voor PF-06804103 en T-DM1. De modelsimulaties voorspelden 
nauwkeurig de effectieve dosis T-DM1, en voorspelden het effect bij lagere doses voor 
PF-06804103 in de kliniek. In dit geval werd een fit-for-purpose translationele strategie van 
toepassing geacht om de werkzaamheid te voorspellen van twee geneesmiddelen die hetzelfde 
target en werkingsmechanisme hebben, en die in dezelfde experimentele modellen waren 
bestudeerd. Daarnaast werden de beschikbare klinische data voor T-DM1 gebruikt om de 
modellering te valideren en het risico van translatie van PF-06804103 te verlagen [16]. 
 
In hoofdstuk 5 en 6 zijn meer mechanistische QSP-strategieën toegepast voor de translatie van 
preklinische studies naar de kliniek, voor respectievelijk ADC's en CD3-bispecifieke antilichamen. 
In hoofdstuk 5 werd een mechanistisch QSP-model ontwikkeld en toegepast voor de preklinische 
naar klinische translatie van inotuzumab. Dat is een ADC dat CD22 aanvalt op B-celmaligniteiten, 
zoals non-hodgkinlymfoom (NHL) en acute lymfatische leukemie (ALL) [17]. Dit model omvat 
meer mechanistische stappen op het causale pad tussen toediening en effect van het medicijn, 
in vergelijking met het model dat in hoofdstuk 4 is beschreven. Deze stappen omvatten:  
1. een plasma-PK-model waarmee de dispositie en klaring van inotuzumab en de afgifte van N-

Ac-γ-calicheamicine DMH in kaart wordt gebracht; 
2. een tumordispositiemodel dat ADC-diffusie in het extracellulaire milieu van de tumor 

beschrijft; 
3. een celmodel dat beschrijft hoe inotuzumab zich bindt aan CD22, internalisatie, intracellulaire 

vrijgave van N-Ac-γ-calicheamicine DMH, binding aan DNA, en efflux uit de tumorcel; 
4. tumorgroei en -regressie afhankelijk van de concentratie N-Ac-γ-calicheamicine DMH. 

Preklinische data in xenograft muismodellen voor NHL en ALL werden eerst gemodelleerd, 
waarna de translatie naar de kliniek volgde door gebruik te maken van humane PK voor 
inotuzumab en klinisch relevante tumorvolumes, tumorgroeisnelheden, en CD22-
expressiewaarden in de relevante patiëntenpopulaties. Klinische studiesimulaties werden 
uitgevoerd met 1000 gesimuleerde patiënten per dosisniveau, waarbij in de modelparameters 
gevarieerd werd met verschillende geneesmiddel-, patiënt- en ziektekenmerken. De 
resulterende stochastische modellen voorspelden voor inotuzumab bij patiënten progressievrije 
overlevingspercentages (progression-free survival, PFS) die vergelijkbaar waren met de 
waargenomen klinische resultaten. Door de meer mechanistische aard kan het model worden 
gebruikt voor specifieke kwantitatieve vragen, zoals de optimalisatie van de doseringsschema's 
voor NHL en ALL. Ook kan het gebruikt worden om sensitieve parameters te onderzoeken die 
mogelijk van invloed zijn op de werkzaamheid in de kliniek en die gebruikt kunnen worden voor 
klinische diagnostiek en potentiële biomarkers [17]. 
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In hoofdstuk 6 werd een translationeel QSP-model gepresenteerd voor CD3-bispecifieke 
moleculen, dat in silico, in vitro en in vivo data samenvoegt in een mechanistisch kader, om het 
effect voor de verschillende soorten te kwantificeren en te voorspellen [18]. CD3-bispecifieke 
antilichamen binden zich aan CD3 op het oppervlak van T-cellen en een tumorgeassocieerd 
antigeen op het oppervlak van tumorcellen, om een trimeer te vormen (een molecuul dat is 
opgebouwd uit drie dezelfde eenheden), waarmee een immunologische synaps wordt 
nagebootst. De vorming van trimeren zet aan tot activatie van T-cellen en het vrijkomen van 
perforine en granzyme B, wat leidt tot cytotoxiciteit. Het voorgestelde QSP-model kon de 
vorming van trimeren voorspellen en deze koppelen aan het doden van tumorcellen. Het model 
werd gebruikt om de PKPD-relatie van een CD3-bispecifiek antilichaam te kwantificeren dat zich 
richt op P-cadherine (PF-06671008). Het beschrijft de dispositie van PF-06671008 in het centrale 
compartiment en de tumor in xenograft muismodellen, inclusief binding aan het target en aan 
T-cellen in de tumor om het trimeer te vormen. Het model omvat T-celdistributie naar de tumor, 
proliferatie en krimp. PKPD-parameters werden geschat voor PF-06671008 en een 
tumorstasisconcentratie (TSC) werd berekend als een schatting van de minimale effectieve 
trimeerconcentratie. De translatie naar de kliniek werd gemaakt door het opnemen van de 
voorspelde PF-06671008 humane PK, met inbegrip van binding aan oplosbare P-cadherine, en 
klinisch relevante systeemparameters zoals CD3 en P-cadherine receptor expressie, en het aantal 
T-cellen en tumorcellen. Het model werd gebruikt om de klinische PK en de werkzaamheid te 
voorspellen en om sensitieve parameters te bepalen die van invloed zijn op klinisch effectieve 
doses [18]. 
 
Belangrijkste lessen: 

1. In het geval van complexe biologische systemen met meerdere variabelen en netwerken is 
het raadzaam om een wiskundig systeemmodel te bouwen dat in staat is om preklinische 
data te integreren en te interpreteren, en dat een kwantitatief kader biedt voor de translatie 
naar de kliniek. 

2. Kies het juiste formaat model en het juiste translationele strategieniveau in relatie tot de 
gestelde vraag.  

3. De translatie van xenograft muisstudies naar de kliniek is mogelijk, mits vergezeld van een 
nauwgezette, systematische kwantitatieve analyse waarin rekening wordt gehouden met 
de verschillen tussen het muisexperimentele systeem en de kliniek, zoals door de wiskundige 
modellering mogelijk wordt gemaakt. 

4. Mechanistische QSP-modellen vergen een investering op het gebied van datavereisten en 
ontwikkeltijd, maar leveren veel gedetailleerde antwoorden op. 

5. Deterministische modellen kunnen worden gecombineerd met stochastische simulaties 
(bijvoorbeeld virtuele patiëntensimulaties) om werkzaamheidseindpunten zoals RECIST-
criteria te voorspellen. 

 
9.4 Het gebruik van mechanistische modellering voor de optimalisatie van 
klinische doseringsschema's 

Een belangrijk onderwerp in dit proefschrift was het gebruik van mechanistische modellering en 
simulatie om de opzet van klinische doseringsschema's te optimaliseren. Dit omvatte 



204 
 

achtereenvolgens de selectie van de klinische startdosis met behulp van een minimaal te 
verwachten biologisch effectniveau (minimal anticipated biological effect level, hierna MABEL), de 
voorspelling van de klinisch effectieve dosis en het doseringsschema, en het identificeren van 
factoren die van invloed kunnen zijn op variaties in de effectieve dosis. Zoals hiervoor besproken, 
werden in hoofdstuk 5 en 6 mechanistische QSP-modellen ontwikkeld en ingezet om effectieve 
doses te voorspellen voor respectievelijk een ADC (inotuzumab) en een CD3-bispecifiek molecuul 
(P-cad LP-DART). Voor inotuzumab werden verschillende versies van het model ontwikkeld voor 
de behandeling van hematologische tumoren (bijvoorbeeld ALL) en vaste tumoren (bijvoorbeeld 
NHL). Deze versies verschillen in de beschrijving van tumordispositie en in typische 
tumorkenmerken zoals tumorgroeisnelheid en initiële tumorvolumes. Het model werd uiteindelijk 
gebruikt voor de aanbeveling van een gefractioneerd doseringsschema voor ALL, dat 
tumorregressiever zou zijn dan het standaard Q4W-schema voor de behandeling van NHL [17]. 

In hoofdstuk 7 werd een QSP-modelleringsaanpak geïntroduceerd om een MABEL-gebaseerde 
klinische startdosis van bispecifieke antilichamen (bsAbs) te selecteren. Deze aanpak is 
gebaseerd op tumor-trimeerconcentraties die de werkzaamheid bevorderen, en corrigeert 
verschillen tussen in vitro experimentele condities en de kliniek. De methode werd gebruikt om 
de klinische startdosis van een P-cadherine/CD3-bsAb te voorspellen. Eerst werd een 
mechanistisch in vitro model gemaakt dat de voorspelde trimeerconcentratie koppelde aan de in 
vitro T-celkinetische en cytotoxiciteitsexperimenten, om de EC20 van het trimeer te bepalen die 
zorgt voor de T-celproliferatie en het doden van de tumorcellen. Het model was in staat om in 
vitro data te verzamelen bij verschillende E:T-verhoudingen met dezelfde EC20-waarde. Dit in 
vitro MABEL werd vervolgens vertaald naar het in vivo MABEL om de humane MABEL-dosis te 
voorspellen, door de voorspelde humane PK (en binding aan oplosbaar P-cadherine) en de 
hiervoor beschreven fysiologische parameters hierin mee te nemen. De humane MABEL-dosis 
werd gesteld als de voorspelde gemiddelde tumor-trimeerconcentratie in evenwichtstoestand 
gelijk aan het in vitro MABEL (EC20, trimeer). Deze methode werd vergeleken met benaderingen 
vanuit andere invalshoeken, zoals PK-gebaseerde methoden en receptorbezetting. De 
QSP-benadering leverde de meest geschikte startdosis, die onafhankelijk van de experimentele 
omstandigheden veiligheid en effect combineerde [19]. 
 
Belangrijkste lessen: 

1. QSP-modellering kan worden gebruikt om de optimale dosis en doseringsschema’s voor 
verschillende indicaties te voorspellen, zoals hematologische versus vaste tumoren. 

2. QSP-modellering biedt een alternatieve methode voor het voorspellen van MABEL-
gebaseerde klinische startdoses die minder afhankelijk is van experimentele 
omstandigheden. 

 
 
9.5 Het gebruik van mechanistische modellering voor precisiemedicijnkwesties  

Een ander thema in dit proefschrift was het gebruik van QSP-modellering om uit te vinden welke 
factoren de dosering en planning van oncologiegeneesmiddelen kunnen beïnvloeden, en om te 
bepalen welke patiënten het beste reageren op een bepaalde therapie. In overeenstemming met 
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een precisiemedicijnbenadering zou deze informatie van groot belang kunnen zijn bij de selectie 
van geschikte diagnostica en biomarkers die in de kliniek onderzocht kunnen worden, om zo de 
therapeutische strategieën in de oncologie te optimaliseren [20].  

In hoofdstuk 5 werd een QSP-model ontwikkeld voor inotuzumab, een ADC dat CD22 aanvalt op 
B-cel maligniteiten [17]. Het model werd gebruikt voor preklinische naar klinische translatie, en 
om doses en doseringsschema's te optimaliseren voor een nieuw te onderzoeken indicatie (ALL) 
versus de oorspronkelijke indicatie (NHL). De ontwikkeling van inotuzumab voor r/r NHL is onlangs 
beëindigd omdat het niet superieur was ten opzichte van de zorgstandaard. Een uitgevoerde 
sensitiviteitsanalyse gaf inzicht in de parameters die het effect van inotuzumab versus NHL 
definiëren of zelfs beperken. Relevante parameters waarmee in het model werd gevarieerd waren: 
CD22 receptor expressie, mate van calicheamicine efflux, inotuzumab PK (klaringssnelheid) en 
tumorgroeisnelheid. De tumorgroeisnelheid bleek de meest sensitieve parameter. Hieruit komt 
naar voren dat patiënten voor de agressievere NHL-subtypes zoals diffuus grootcellig 
B-cellymfoom (DLBCL) significant hogere doses zouden moeten krijgen om effect te hebben, in 
vergelijking met langzamer groeiende NHL-subtypes zoals folliculair lymfoom. Calicheamicine 
efflux uit de tumorcel was ook een sensitieve parameter. Dat is van belang omdat N-Ac-γ-
calicheamicine DMH een substraat is voor MDR1, een effluxtransporter die op veel tumorceltypes 
is opgereguleerd. De minst sensitieve parameter was CD22 receptor expressie. Hieruit bleek de 
geschiktheid van deze receptor als een ADC-target, vanwege de hoge expressie in B-cellen en de 
hoge internalisatiesnelheid. Deze bevindingen suggereren dat de MDR1-status bij patiënten een 
betere indicatie van de werkzaamheid is dan de CD22 receptor expressie. 

In hoofdstuk 6 werd een soortgelijke benadering gevolgd. Hierin werden met behulp van een 
sensitiviteitsanalyse de belangrijkste parameters bepaald die van invloed zijn op de voorspelde 
klinisch effectieve dosis voor P-cad LP-DART, een CD3-bispecifiek antilichaam [18]. Uit de analyse 
kwam naar voren dat P-cad expressie een sensitieve parameter was, waaruit bleek dat er een 
hogere dosis nodig is voor patiënten met een lage P-cadherine expressie. Het aantal T-cellen in 
de tumor was ook een sensitieve parameter, die aangaf dat een hogere voorspelde dosis nodig 
is voor de werkzaamheid bij lage verhoudingen effector : doelcel. Concluderend kunnen 
wiskundige modellen en de hiervoor besproken strategieën helpen bij het bepalen welke 
geneesmiddelen het meest geschikt zijn voor een patiënt. Daarnaast kunnen ze gebruikt worden 
om doserings- en combinatieschema’s te optimaliseren en om alternatieve en verbeterde 
toedieningsschema’s voor te stellen. 
 
Belangrijkste les: 

Met behulp van sensitiviteitsanalyse en simulaties kan QSP-modellering worden gebruikt 
om essentiële parameters te identificeren die het resultaat van klinische studies kunnen 
beïnvloeden. 

 
9.6 Platformmodellen voor biotherapeutische modaliteiten 

Het ADC QSP-model (hoofdstuk 5) en het CD3-bispecifieke model (hoofdstuk 6) zijn mogelijke 
platformmodellen voor specifieke biotherapeutische modaliteiten in de oncologie. Deze 
QSP-modellen vormen een geïntegreerde kwantitatieve gemeenschappelijke kennisbank voor 
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verdere preklinische en klinische evaluatie [21]. Ze zijn niet specifiek voor een bepaald 
geneesmiddel en kunnen daarom breed worden toegepast. Ze bieden een mechanistisch kader 
voor het voorspellen van de werkzaamheid, waardoor ze zich onderscheiden van andere 
farmacometrische strategieën [21]. Het zijn vaak zowel multischaalmodellen als modulaire 
modellen, die kunnen worden gebruikt om in vitro, preklinische in vivo en klinische data in kaart 
te brengen. Als zodanig kunnen ze worden gebruikt om beslissingen tijdens 
onderzoeksprogramma’s te ondersteunen, van verkennend onderzoek tot de laatste klinische 
testfasen. Platformmodellen vergen een investering op het gebied van datavereisten, maar 
leveren veel gedetailleerde antwoorden op. 
 
Het ADC QSP-model beschrijft het complexe werkingsmechanisme van ADC's, zoals de 
beschrijving van ADC en payloaddispositie op zowel celniveau als fysiologisch niveau, om de 
klinische resultaten van ADC's te voorspellen [17]. Het model beschrijft:  

a. plasma PK inclusief dispositie en klaring van ADC en vrijgekomen payload;  
b. een tumordispositiemodel voor ADC en payloaddiffusie in de extracellulaire omgeving van 

de tumor; 
c. een celmodel dat beschrijft hoe ADC zich bindt aan zijn target op tumorcellen, 

internalisatie, intracellulaire payloadvrijgave, hoe de payload zich bindt aan zijn target, en 
de payload-efflux uit de tumorcel;  

d. tumorgroei en -remming in xenograft muismodellen als functie van de tumor-
payloadconcentratie. 

 
Het CD3-bsAb-model is een mogelijk platformmodel voor bsAbs die immuuncellen binden, waarbij 
tumorcellen worden gekoppeld aan een immuuneffectorcel, zodat cytotoxiciteit wordt gericht 
tegen de tumorcel [18]. Het huidige model werd gebruikt om een bispecifiek molecuul te 
omschrijven dat zich bindt aan CD3 op T-cellen en P-cadherine op tumorcellen (P-cad LP-
DART) [18]. Het model beschrijft: 

1. plasma PK, waaronder bsAb-binding aan oplosbare targetcellen en circulerende T-cellen in 
de systemische circulatie; 

2. een tumordispositiemodel dat de bsAb-diffusie in de tumor beschrijft; 
3. binding van het bsAb aan T-cellen en tumorcellen om dimeren en trimeren te vormen; 
4. T-celdistributie naar de tumor, proliferatie en krimp; 
5. tumorgroei en -remming in xenograft muismodellen gerelateerd aan de tumor-

trimeerconcentratie. 
 
Deze platformmodellen kunnen voor een aantal doeleinden worden gebruikt: 

7. optimalisatie van het ontwerp van ADC's of CD3-bsAbs in het vroege onderzoek, voor een 
maximale kans op succes; 

8.  ontwerp en interpretatie van preklinische in vitro en in vivo experimenten voor de 
efficiënte en effectieve selectie van veelbelovende verbindingen (lead compounds); 

9. translatie van preklinische data naar de kliniek om de klinisch effectieve dosis en dosering 
te voorspellen; 
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10. voorspelling van de werking van een geneesmiddel (bijvoorbeeld tumorgroeiremming, 
RECIST-criteria) en optimalisatie van dosis en dosering voor oncologische indicaties; 

11. inzicht in de verschillen in respons op een medicijn in de kliniek, en het gebruik van deze 
informatie voor de bepaling van geschikte diagnostische criteria voor patiëntenselectie 
en klinische biomarkers, om zo een vroeg beeld te krijgen van de werkzaamheid; 

12. vergelijking met de klinische zorgstandaard. 
 

Bovendien kunnen de huidige modelstructuren worden uitgebreid om toxiciteiten te voorspellen 
die in verband worden gebracht met het werkingsmechanisme. Zo kan het ADC-model worden 
uitgebreid met de beschrijving van de ADC-opname en -afgifte in megakaryocyten en 
bloedplaatjes, om ADC-toxiciteit die doorgaans wordt waargenomen te kwantificeren, zoals 
neutropenie en trombocytopenie. Het CD3-bsAb-model kan worden uitgebreid om de vorming 
van trimeren in verband te brengen met cytokineafgifte om het cytokine release syndroom te 
voorspellen. Verder zouden beide modellen kunnen worden uitgebreid om het effect van 
combinatietherapieën te voorspellen. Zo zou bijvoorbeeld een immuuntherapiemodel kunnen 
worden toegevoegd om de combinatie met checkpointremmers zoals anti-PD1 mAbs te 
voorspellen. 
 
Belangrijkste les: 

De QSP-platformmodellen kunnen in aangepaste vorm opnieuw worden gebruikt om 
beslissingen tijdens onderzoeksprogramma’s te ondersteunen, van verkennend onderzoek 
tot de laatste klinische testfasen. 

 
9.7 Conclusies en perspectieven 

In dit proefschrift is wiskundige modellering en simulatie toegepast als een instrument om 
weloverwogen kwantitatieve beslissingen te nemen in het onderzoek naar en de ontwikkeling 
van oncologiegeneesmiddelen. Modelmatige benaderingen blijken nuttig te zijn om het 
werkingsmechanisme te begrijpen en de complexiteit van nieuwe biotherapeutische 
modaliteiten voor de behandeling van kanker te ontrafelen, zoals monospecifieke en bispecifieke 
monoklonale antilichamen en antilichaam-geneesmiddelconjugaten. Er zijn een aantal conclusies 
getrokken. Zo is bijvoorbeeld aangetoond dat modellering een nuttige methode is om 
dierproeven te verminderen, door correlaties van in vitro naar in vivo mogelijk te maken, en door 
gebruik te maken van simulatie ter vervanging van experimentele methodes. Modellering en 
simulatie op basis van mechanismen blijkt nuttig voor de translatie van preklinische studies naar 
de kliniek, om zo te garanderen dat het beste geneesmiddel doorgaat naar klinische studies. Deze 
modellen kunnen vervolgens worden gebruikt om het ontwerp van klinische studies te 
optimaliseren, van de selectie van startdoses tot de aanbevolen effectieve doses voor fase-III-
studies. De modellen kunnen helpen om de variabiliteit in de kliniek beter te begrijpen, en om 
factoren te identificeren die van invloed zijn op de respons bij individuele patiënten. Hierdoor 
wordt de weg vrijgemaakt voor precisiemedicijnstrategieën, en de bepaling van de klinische 
diagnostiek, biomarkers en doses voor de verschillende oncologische indicaties. Tot slot blijken 
de ADC QSP-en CD3-bsAb-modellen potentiële platformmodellen die in aangepaste vorm verder 
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kunnen worden gebruikt ter ondersteuning van uiteenlopende beslissingen in het hele spectrum 
van geneesmiddelenonderzoek en -ontwikkeling. 
 
Het onderzoek en de ontwikkeling van oncologiegeneesmiddelen zal complexer worden 
naarmate we meer te weten komen over de details van de tumorbiologie en de pleiotrope rol 
van het immuunsysteem. Tegelijkertijd zullen biologische therapieën steeds complexer worden, 
door de multispecifieke antilichamen die zich kunnen richten op verschillende receptoren en die 
verschillende netwerken kunnen beïnvloeden, en door nieuwe celtherapieën en 
geneesmiddelencombinaties die leiden tot nieuwe biologische effecten en synergie. 
Mechanistische modellering en simulatie zullen hierdoor een essentiële methode worden in het 
onderzoek naar en de ontwikkeling van oncologische geneesmiddelen, om de vaak niet-intuïtieve 
processen te begrijpen en het nemen van rationele beslissingen te ondersteunen.  
Om dit proces mogelijk te maken is het noodzakelijk om modellering en simulatie eerder in het 
geneesmiddelenonderzoek toe te passen, teneinde in latere klinische studies het 
succespercentage te verhogen. Er zullen steeds meer mogelijkheden komen om QSP-modellering 
te combineren met nieuwe technologieën. Ongetwijfeld zal de integratie van big data en 
datawetenschap (onder andere crowdsourcing en machinaal leren) met QSP-modellering een 
belangrijke rol gaan spelen bij de toepassing van wiskundige modellering voor de besluitvorming 
binnen het oncologiegeneesmiddelenonderzoek. Op deze manier kan de schat aan gegevens uit 
biomarkers en de genomica worden toegepast om de voordelen van QSP-modellering ten volle 
te benutten, zodat patiënten uiteindelijk de optimale behandeling zullen krijgen. 
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