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IX A
PROBABILISTIC CONCEPTS

Modern probability is based on measure theory (Appendix A.1). Measure theory will pro-
vide the means to formally describe random variables, random processes, and most gen-
erally, random measures. A model represented by random measures can be fitted to the
data using Bayesian inference (Appendix A.2). We give three typical examples of Bayesian
model compositions, among which an infinite mixture model (Appendix A.3). A number
of processes are described that can be used with (for example as prior distribution) infinite
mixture models (Appendix A.4). We introduce plate notation which visualizes infinite mod-
els particularly well (Appendix A.5). Then we investigate completely random measures and
Lévy measures (Appendix A.6), exchangebility (Appendix A.7), and stick-breaking processes
(Appendix A.8). For mathematically more thorough approaches we refer to the literature
(Halmos, 1974; Rosenthal, 2006; Cohn, 2013).

A.1 Measure Theory

A random variable is a function that assigns values to a set of possible outcomes. The for-
mal definition requires concepts such as “measurable function” and “probability space” from
measure theory (Feller, 1950). Measure theory is used to generalize the notion of a random
variable to that of a “random process”.

Informally, a measure generalizes the concepts of length, area, and volume of an Euclidean
object to a concept of size for sets and subsets. The definition of a measure is based on the
definition of a σ-algebra. A σ-algebra ascribes a value to a sum of individual disjoint sets,
even if they are infinite in number.

È Definition A.1 — σ-algebra

A σ-algebra is a subset Σ ∈ 2X , with X a set and 2X its powerset, with three requirements:

◦ Σ is non-empty: at least one A∈ X is in Σ;

99



100 Appendix A. Probabilistic Concepts

◦ Σ is closed under complementation: if A in Σ, so is its complement Ac;

◦ Σ is closed under countable unions: if A1, A2, . . . in Σ, so is A= A1 ∪ A2 ∪ . . ..

The members of a σ-algebra are called measurable sets. Let X = {1,2, 3,4} and let us define
aσ-algebraΣ = {∅, {1}, {4}, {2, 3}, {1, 4}, {1, 2,3}, {2, 3,4}, {1,2, 3,4}}. Here∅ denotes the
empty set. The complement of A is defined with respect to X : A∪ Ac = X . An example of
closure under complementation: let A1 = {1}, then Ac

1 = {2, 3, 4} and Ac
1 is indeed a member

of Σ: Ac
1 ∈ Σ. An example of closure under countable unions: let A1 = {1} and A2 = {2, 3},

then A1 ∪ A2 = {1, 2,3} and A1 ∪ A2 ∈ Σ.

The notion of a σ-algebra (Fremlin, 2000) can be applied to solve the so-called
Banach-Tarski paradox (Banach and Tarski, 1924). This paradox describes how a
unit-ball in R3 can be partitioned into a finite number of disjoint infinite sets (scat-
tering of points) and then can be reassembled into two unit-balls again. This violates
the intuitive notion of preservation of volume. If the measure µ of the union of two
disjoint sets is equal to the sum of the measures of the two sets, this is called finite
additivity: µ(

⋃N
i=1 Ai) =

∑N
i=1µ(Ai). In probability theory σ-additivity extends this

to infinite disjoint sets: µ(
⋃∞

i=1 Ai) =
∑∞

i=1µ(Ai). Measure theory solves the Banach-
Tarski paradox by only assigning a measure to subsets that are measurable sets (Tao,
2011).

A measure assigns values to measurable sets (as stated before, measurable sets are members
or subsets of Σ).

È Definition A.2 — measure

A measure µ is a function from Σ to [−∞,+∞], with three requirements:

◦ µ is non-negative: µ(A)≥ 0 for ∀A∈ Σ;

◦ µ has a null empty set: µ(∅) = 0;

◦ µ is σ-additive: µ(
⋃

i∈IΣ
Ai) =

∑
i∈IΣ
µ(Ai) for Ai disjoint.

The first statement defines that a measure µ only assigns non-negative values to sets in Σ.
The second statement equals the measure of the empty set ∅ to 0. The third statement
defines that σ-additivity is required. For any two sets in Σ the measure of the union of the
sets equals the sum of the measures of the individual sets. Here IΣ defines an index over
sets in Σ.
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Informally, a measure relates the concepts of sets and subsets to notions of size. A
measure can be seen as a monotonically increasing function. Let the set A in X be the
interval [0, 1), an uncountable (infinite) set of real numbers. Define the σ-algebra
{∅, A}. The empty set has measure 0, the set A has measure 1. Let us define the
σ-algebra {∅, A0,0.5, A0.5,1, A}. The set A0,0.5 corresponds to the interval [0, 0.5) and
A0.5,1 to [0.5, 1). Both sets are assigned measure 0.5 and their union has measure 1.
This examples shows that with σ-additive unions, measures can be assigned to sets
that are uncountable.

A measurable space (X ,Σ) is defined as a pair.

È Definition A.3 — measurable space

A measurable space (X ,Σ) is a pair with:

◦ X a set;

◦ Σ a σ-algebra over X .

A measure space (X ,Σ,µ) is defined as a triple.

È Definition A.4 — measure space

A measure space (X ,Σ,µ) is a triple with:

◦ X a set;

◦ Σ a σ-algebra over X ;

◦ µ a measure from Σ to [−∞,∞].

A finite measure µ assigns a finite real number to all A.

È Definition A.5 — finite measure

A finite measure µ is a measure from Σ to [0,∞):

◦ µ is non-negative: µ(A)≥ 0 for ∀A∈ Σ;

◦ µ has a null empty set: µ(∅) = 0;

◦ µ is σ-additive: µ(
⋃

i∈IΣ
Ai) =

∑
i∈IΣ
µ(Ai) for Ai disjoint;

◦ µ for the whole sample space, X , is finite: µ(X ) = N .

A σ-finite measure allows A to be a countable union of sets with finite measure.
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È Definition A.6 — σ-finite measure

A σ-finite measure µ is a finite measure with:

◦ X is a countable union of sets with finite measures.

We will now define five measures: (A.1.1) the probability measure (Definition A.7), (A.1.2)
the counting measure (Definition A.9), (A.1.3) the Borel measure (Definition A.11), (A.1.4)
the Lebesgue measure (Definition A.16), and (A.1.5) the random measure (Definition A.17).
These measures are important because they are fundamental to different branches of math-
ematics. In probability theory a σ-algebra is interpreted as a collection of events to which
probabilities are assigned. Counting measures play a fundamental role in discrete probabil-
ity distributions. In integration theory a σ-algebra corresponding to the Borel and Lebesgue
measures are relevant for integration in the Euclidean spaceRn. In statistics aσ-algebra for-
mally defines the concept of sufficient statistics and generalizes random variables to random
functions and measures.

A.1.1 Probability Measure

A probability measure, P, is a finite measure that assigns non-negative values P, called prob-
abilities, to sets A, called events (see Definition A.7).

È Definition A.7 — probability measure

A probability measure P is a measure µ with:

◦ P is non-negative: P(A)≥ 0 for ∀A∈ Σ;

◦ P has a null empty set: P(∅) = 0;

◦ P is σ-additive: P(
⋃

i∈IΣ
Ai) =

∑
i∈IΣ
µ(Ai) for Ai disjoint;

◦ P for the whole sample space, X , is unity: P(X ) = 1.

The four requirements are called the Kolmogorov axioms (Kolmogorov, 1933). The prob-
ability measure is an actual measure. It therefore obeys the three requirements: (1) non-
negativity for any set, (2) the existence of a null empty set, and (3) σ-additivity. Here we
note that a probability measure compared to a general measure obeys a fourth requirement,
namely the restriction of the measure for the whole space X to 1. This can be seen as some
kind of normalization. It influences how two probability measures have to be summed to
become again a probability measure.

In Figure A.1 the probability measure is visualized as a mapping from the probability space
to the unit interval [0, 1].
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Figure A.1: A probability measure P mapping the probability space for 3 events to the unit
interval. Left: a turning wheel representing three possible outcomes of which the third is
twice as likely as the other two outcomes. Right: a probability measure P assigned to each
outcome. The empty set, A= ∅, has probability measure 0. The set of encountering either 1
or 2, B = {1,2}, has probability measure 0.5. Taken from Wikipedia.

A probability space (X ,Σ,P) is a measure space (X ,Σ,µ) with the probability measure P as
its measure µ.

È Definition A.8 — probability space

A probability space (X ,Σ,P) is a triple with:

◦ X a set;

◦ Σ a σ-algebra over X ;

◦ P a probability measure from Σ to [0,1].

We will equivalently use the symbols (X ,Σ,P) or (Ω,F,P) for the probability space, also
called probability triple (Rosenthal, 2006). The space X is the event space Ω, the set of
elementary outcomes. The σ-algebra over subsets of Ω is denoted by F. The probability
measure P assigns a value on the unit interval [0, 1] to every event in F.

A.1.2 Counting Measure

The counting measure forms the basis for the definition of discrete probabilities (Schilling,
2005).

È Definition A.9 — counting measure

A counting measure ν on a space X is a measure µ with:

◦ ν is non-negative and integer-valued for ∀A∈ Σ;

◦ ν <∞ for ∀A∈ Σ if A bounded (of finite size);
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◦ ν=∞ if ∃A∈ Σ with A unbounded (infinite).

A counting measure is a measure that is integer-valued. Every set A has a measure that is
a positive integer or zero. The set A is unbounded if and only if its counting measure is
infinite.

A.1.3 Borel Measure

The Borel σ-algebra defines a σ-algebra for the real line R.

È Definition A.10 — Borel σ-algebra

A Borel σ-algebra Bσ on R is the smallest σ-algebra that contains all open subsets of R:

◦ B = Σ(U) with U = U ⊆ R: U is open.

The Borel σ-algebra contains all open subsets of R. The property of closure under comple-
mentation of a σ-algebra means that it also contains the closed subsets of R. If A= (0, 1),
then Ac = {[−∞, 0], [1,∞]}.

A Borel measure assigns values to subsets of Bσ.

È Definition A.11 — Borel measure

A Borel measure µ is a function from Σ = Bσ to [−∞,+∞], with the three measure
requirements:

◦ µ is non-negative: µ(A)≥ 0 for ∀A∈ Σ;

◦ µ has a null empty set: µ(∅) = 0;

◦ µ is σ-additive: µ(
⋃

i∈IΣ
Ai) =

∑
i∈IΣ
µ(Ai) for Ai disjoint.

The Borel space is a measureable space with a Borel σ-algebra rather than a general σ-
algebra.

È Definition A.12 — Borel space

A Borel space (X ,Bσ) is a pair with:

◦ X a set;

◦ Bσ a Borel σ-algebra over X .

A complete measure space is a measure space in which every subset of every null set is mea-
surable.
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È Definition A.13 — complete measure space

A complete measure space (X ,Σ,µ):

◦ S ⊆ N ∈ Σ and µ(N) = 0⇒ S ∈ Σ.

The Borel space is not a complete measure space. There are sets in the Borel σ-algebra that
are of measure zero and that contain subsets that are undefined.

A.1.4 Lebesgue Measure

The Lebesgue measure defines a size to subsets of Rn that completes the Borel measure
(Lebesgue, 1902). It makes use of the notion of an outer measure.

È Definition A.14 — outer measure

An outer measure φ on a space R is a measure µ with:

◦ φ is non-negative and real-valued for ∀A∈ Σ;

◦ φ has a null empty set: φ(∅) = 0;

◦ φ is σ-subadditive: φ(
⋃

i∈IΣ
Ai)<

∑
i∈IΣ
µ(Ai) for ∀Ai;

◦ φ is monotone: A⊆ B implies φ(A)≤ φ(B);
◦ φ is translation-invariant: φ(A+ x) = φ(A) for ∀A∈ Σ and ∀x ∈ R.

An outer measure relaxes σ-additivity of disjoint sets of X to σ-subadditivity for any se-
quence of sets. Intuitively, the outer measure of a set is an upper bound on the size of a
set.

È Definition A.15 — Lebesgue outer measure

A Lebesgue outer measure λ on a space Rn is an outer measure φ with:

◦ λ(A) = inf
�∑∞

k=1 l(Ik) : (Ik)k∈N is a sequence of open intervals with A⊆⋃∞k=1 Ik

	
.

Here A⊆ R is a subset of the real line. The Lebesgue outer measure λ is the infimum (greatest
lower bound) of the sum of the lengths l(I) = b− a of the intervals I = [a, b].

The Lebesgue measure is defined through the Lebesgue outer measure.

È Definition A.16 — Lebesgue measure

A Lebesgue measure m on a space Rn is a Lebesgue outer measure λ with:

◦ m(B) = λ(B ∪ A) +λ(B ∪ Ac).
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A.1.5 Random Measure and Random Process

A measurable function is defined between two measurable spaces.

È Definition A.17 — measurable function

A measurable function f : X → Y fulfills:

◦ f −1(E) ∈ Σ for ∀E ∈ T ,

with both (X ,Σ) and (Y, T ) measurable spaces.

A measurable function preserves the structure of the corresponding measurable spaces
(captured through the σ-algebras).

A random element or (X ,Σ)-valued random variable is a measurable function between two
measurable spaces, with as domain a measurable space that is a probability space.

È Definition A.18 — random element

A random element or (X,Σ)-valued random variable X is a measurable function from
probability space (Ω,F,P) to measurable space (X ,Σ).

An (X ,Σ)-valued random variable is visualized in Figure A.2.

Probability space

Ω

ΩO

X

X
O

X

Σ

0 1

Measurable space

0

μ

Figure A.2: An (X ,Σ)-valued random variable X is a measurable function from (Ω,F,P) (at
the left) to (X ,Σ) (at the right). The planes at the top depict the samples spaces Ω and X .
The planes in the middle depict the σ-algebras F and Σ. The planes at the bottom depict
measures: at the left P, and at the right an induced measure µ. The null set is of measure 0.
The set Ω is a of measure 1.
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For random variables for which we do not specify the codomain explicitly, the choice for the
codomain is the real line R and the corresponding Borel σ-algebra on the reals.

È Definition A.19 — random variable

A random variable X is a measurable function from probability space (Ω,F,P) to the real
line with the Borel σ-algebra (R,BR).

A (R,BR)-valued random variable is also called a real-valued random variable assuming a
natural choice for the σ-algebra, or called a random variable assuming the reals.

Random elements are a generalization of random variables. A complex-valued ran-
dom variable or complex random variable is a measurable function from Ω to C. An
elephant-valued random variable or random elephant is a measurable function from
Ω to a suitable space of elephants (Kingman, 1993).

This allows us to define a measure-valued random variable, a random measure.

È Definition A.20 — random measure

A random measure is a function ξ : Ω×X → [0,+∞] from probability space (Ω,F,P) to
measurable space (X ,Σ) such that ξ(·, X ) is a random variable on (Ω,F,P) and ξ(ω, ·) is
a measure on Σ.

We are now in the position to define a random process (the Dirichlet process in this thesis is
an example of such a process). A random process is an ordered set of random variables. The
set can be a sequence of random variables in a time series. It can be a series of steps in the
spatial domain, called a random field.

È Definition A.21 — random process

A random process X is a collection
�

X t : t ∈ T
	

with X t an (S,Σ)-valued random variable
on Ω and (Ω,F,P) a probability space, (S,Σ) a measurable space, and T a totally ordered
set.

A random process is a probability distribution with a domain that is a set of probability distri-
butions. A random process is a distribution over distributions, a hierarchy over distribution.

Before we close this section, we will introduce two more concepts. The distribution of a
random variable and the probability density function of a random variable.

We have encountered a random variable, and a probability measure P on the original prob-
ability space. Now, one might wonder whether there is a measure that is logically assigned
to elements on the measurable space that is the codomain of this random variable. Is there a
natural measure µ that can transform this measurable space into a measure space? It turns
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out there is. There is a measure induced on this space by the random variable.1 This measure
µ is known as the distribution or law of a random variable (Rosenthal, 2006):

È Definition A.22 — distribution of a random variable

Given a random variable X from (Ω,F,P) to (R,Bσ), the distribution µ of X is the induced
probability measure: µ(B) = P(X−1(B)) for all Borel sets B ∈ Bσ.

The distribution of X is the probability measure µ induced on (R,Bσ). This makes this space
a measurable space (R,Bσ,µ). We will write X as being distributed as µ in the following
shorthand notation:

X ∼ µ. (A.1)

A measure ν is absolutely continuous with respect to a measure λ if, for every set E, λ(E) = 0
implies ν(E) = 0. We also write this as ν� λ. The measure ν is dominated by λ. The Radon-
Nikodym theorem states that for two σ-finite measures one measure can be expressed as an
integral of the other.

È Definition A.23 — Radon-Nikodym theorem

The Radon-Nikodym theorem states that given a measurable space (X ,Σ) and two σ-
finite measures, ν, λ with ν � λ, that there exists a Σ-measurable function f : X →
[0,∞), such that for any measurable set A⊆ X ,

ν(A) =

∫

A
f dλ. (A.2)

This allows us to define the Radon-Nikodym derivative: f = dν
dλ . The probability density

function f of a random variable X is the Radon-Nikodym derivative of the induced measure
(with respect to some base measure, normally the Lebesgue measure).

È Definition A.24 — probability density function

The probability density function f of a random variable X is the Radon-Nikodym deriva-
tive of the induced measure µ on (R,Bσ) with respect to a base measure λ,

f =
dµ
dλ

. (A.3)

For a discrete random variable the counting measure can be used as a base measure. For
continuous random variables the Lebesgue measure is usually chosen as base measure.

1The measure induced on a measurable space by another measurable space by means of a measurable function
is also known as a push-forward measure.
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A.2 Bayesian Inference

Let x be a (S,ΣS ,µS)-valued random variable, y a (T,ΣT ,µT )-valued random variable, then
we can construct z, a (C ,ΣC ,µC)-valued random variable with the latter being a subset of
the product set of x and y: C ∈ S ⊗ T .

È Definition A.25 — product space

A product space (S ⊗ T,ΣS⊗T ) has σ-algebra ΣS⊗T = σ(F ⊗ G : F ∈ ΣS , G ∈ ΣT ) with
(S,ΣS ,µS) and (T,ΣT ,µT ) two σ-finite measure spaces.

È Definition A.26 — product measure

A product measure µS⊗T is a measure µS⊗T (F⊗G) = µS(F)⊗µT (G) with (S,ΣS ,µS) and
(T,ΣT ,µT ) two σ-finite measure spaces.

The joint probability distribution PC is a probability measure on the product σ-algebra ΣC

with C ∈ S⊗T . As function of the random variables x and y the joint probability distribution
is written as X ,Y (x , y), f (x , y), or p(x , y).

A σ-algebra is independent in the following sense.

È Definition A.27 — independent σ-algebra

Let (Ω,F, P) be a probability space and A and B be a sub-σ-algebras of F. A and B are
independent σ-algebras if:

◦ P(A∩ B) = P(A)P(B) ∀A∈ A and B ∈ B.

Two random variables x and y are independent if and only if the σ-algebras that they gen-
erate are independent.

È Definition A.28 — conditional probability distribution

Let (Ω,F, P) be a probability space, G ⊆ F a sub-σ-algebra of F, and X : Ω → R a real-
valued random variable (F-measurable with respect to the Borel σ-algebra Bσ on R).
There exists a function µ : Bσ ×Ω→ R such that µ(·,ω) is a probability measure on Bσ
for each ω ∈ Ω and µ(H, ·) = P(X ∈ H|G) (almost surely) for every H ∈ Bσ. For any
ω ∈ Ω, the function µ(·,ω) : Bσ → R is called a conditional probability distribution of
X given G.
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Informally2, a conditional probability is described with a sub-σ-algebra which only presents
part of the structure of the full σ-algebra. As function of the random variables x and y the
conditional probability distribution of y given x is written as fY |X (y |x), f (y|x), or p(y|x).

A typical conditional probability distribution is that of the data given parameters. Another
often used conditional probability distribution is that of the data given a statistic (summary)
of that data. This statistic can be a so-called sufficient statistic.

È Definition A.29 — sufficient statistic

A conditional probability distribution of the data X given a sufficient statistic t = T (X )
does not depend on parameter θ :

◦ P(x |t,θ ) = P(x |t)

Random variables, or more generally, random elements x and θ define a Bayesian3 model
with observations x and parameters θ .

È Definition A.30 — Bayesian model

A Bayesian model f (x ,θ ) defines a function, a joint probability distribution, over obser-
vations x and parameters θ with both x and θ random elements.

In a supervised learning task both x and θ are known. In an unsupervised learning task
x is known, but θ is unknown. The random variable θ is called a hidden or latent variable.
The random variable θ can be any random element: a random vector, a random matrix, a
random process.

Let the observations x be a sequence x0, x1, . . ., then the observations x i can be independent
and identically distributed.

È Definition A.31 — independent and identically distributed

A collection of random variables x = {x0, x1, . . .} is independent and identically dis-
tributed (i.i.d.) if:

◦ the probability distribution p(x i) is the same for ∀x i ∈ x

◦ each x i is independent with respect to x j with i 6= j.

In other words, random variables having the same distribution are said to be identically
distributed.

2Even more informally, in "254A, Notes 0: A review of probability theory" Tao describes how conditioning
can be seen as removing a partial amount of randomness consistent with the probabilistic way of thinking. By
conditioning a random variable to be fixed, one can turn that random variable into a deterministic one, while
preserving the random nature of other variables.

3A historic perspective on the term Bayesian can be found in (Fienberg et al., 2006).
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The observations x i can be distributed in an exchangeable sequence in which any order is
equally likely.

È Definition A.32 — exchangeable

A sequence of random variables x = {x0, x1, . . .} is exchangeable if for any finite permu-
tation ρ of the indices 0, 1, . . .:

◦ the joint probability distribution of the permuted sequence p(xρ(0), xρ(1), . . .) equals
that of the original sequence p(x0, x1, . . .).

The joint probability distribution of i.i.d. observations given parameters can be written as a
product:

p(x0, . . . , xk−1|θ ) =
k−1∏
i=0

p(x i |θ ). (A.4)

È Definition A.33 — likelihood function

The likelihood function is defined as:

L(θ ; x) = p(x = X |θ ). (A.5)

The likelihood indicates the probability that a particular value x = X is observed when the
parameter is considered to be θ .

The likelihood function allows us to find an optimal set of parameter values given the ob-
servations. We can find those parameters that maximize the likelihood, L(θ ), given the ob-
servations, X , see Aldrich (1997). This maximization method is called maximum likelihood
estimation (MLE).

È Definition A.34 — maximum likelihood estimation

Maximum likelihood estimation is defined as the method optimizing:

θ ∗ ∈ argmax
θ

L(θ ; x). (A.6)

The maximum likelihood method finds the maximum of p(x |θ ) for all possible parameter
values θ . The maximum in maximum likelihood estimation does not need to be unique
(Steel, 1994). The notation makes this explicit by writing θ ∗ as a member (denoted by the
∈ symbol) of the outcomes of the argmax operation (and does not use the equal sign).

In the case we have information about the parameters θ we can model this with a probability
distribution.
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È Definition A.35 — prior probability distribution

A prior probability distribution defines a probability distribution p(θ ) over parameters
θ without a dependency on the observations x .

Given the definition of a prior probability distribution, we can define maximum a posteriori
estimation.

È Definition A.36 — maximum a posteriori

Maximum a posteriori estimation is defined as:

θ ∗ ∈ argmax
θ

k−1∑
i=0

log p(x i |θ ) + log p(θ ). (A.7)

If we are not only interested in the parameter θ ∗ that maximizes p(x |θ ) and p(θ ), but in
the complete distribution for p(θ ) we need Bayes’ theorem described by Laplace (1820).

È Definition A.37 — Bayesian inference

Bayesian inference using Bayes’ theorem is defined as:

p(θ |x) =

likelihood︷ ︸︸ ︷
p(x |θ )

prior︷︸︸︷
p(θ )

p(x)︸︷︷︸
normalization constant

=
p(x |θ )p(θ )∫
p(x |θ )p(θ )dθ . (A.8)

Bayes’ theorem describes the posterior probability p(θ |x) as the likelihood times the prior
probability distribution divided by a normalization constant, also called the evidence. The
normalization constant is not a function of the parameters θ . If a function is known except
for the normalization constant, it is indicated by the “proportional to” symbol∝.

f (θ |x)∝ p(x |θ )p(θ ) (A.9)

In Bayesian inference p(θ |x) is calculated. In contrast, in maximum likelihood and maxi-
mum a posteriori only parts of Eq. A.8 are calculated, respectively p(x |θ ) and p(x |θ )p(θ ).
In Section 2.2 inference methods will be described that approximate Bayesian inference.
Approximation is required in the case closed-form expressions are not available. If the in-
ference task only requires maximum a posteriori, approximation methods are also available
(Daume, 2007), but this is outside of the scope of the current thesis.

It is important to note that Bayes’ rule does not always apply. Recall the definition of the
probability density function (Definition A.24) in Appendix A.1.5 for which we needed the
notion of absolutely continuity. The posterior is not always absolutely continuous with re-
spect to the prior. In particular for nonparametric Bayesian models this is not necessarily
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the case. For example, the Dirichlet process as a prior has a posterior that is typically or-
thogonal to the prior. However, using appropriate care it is still the case that the posterior is
well-defined and one can perform Bayesian inference without using Bayes’ theorem. To read
more on the exact conditions under which this is possible, we refer the reader to (Ghosal
and Van der Vaart, 2017).

There are two supervised learning models, a generative model and a discriminative model.
Below we provide their definitions and in Figure A.3 we give three examples for each model.

È Definition A.38 — generative model

A generative model defines the joint probability distribution p(x ,θ ).

È Definition A.39 — discriminative model

A discriminative model defines the conditional probability distribution p(θ |x) directly.

Figure A.3 shows three generative and three discriminative models. They are chosen for their
structure. From left to right, the structure between the random variables gets enriched. The
first column shows no particular structure. The second column shows a sequence structure.
The third column shows a graph structure. Figure A.3 visualizes three generative models:
(1) the Naive Bayes Model (Russell et al., 1995), (2) the Hidden Markov Model (Baum and
Petrie, 1966), and (3) the Directional Model (Koller and Friedman, 2009). It shows also
three discriminative models: (1) Logistic Regression, (2) Linear-chain Conditional Random
Fields, and (3) general Conditional Random Fields.
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Figure A.3: Generative models: Naive Bayes Model, Hidden Markov Model, and Directional
Model. Discriminative models: Logistic Regression, Linear-chain Conditional Random Fields,
and general Conditional Random Fields. Figure adapted from Sutton and McCallum (2011).

There is no definitive reason to use a generative model rather than a discriminative model or
vice-versa. Here we confine ourselves to two remarks. First, a discriminative model seems
to have a lower asymptotic error, but a generative model seems to approaches its (higher)
asymptotic error faster. This has been studied using a Naive Bayes classifier versus Logistic
Regression (Jordan, 2002). This would mean that a discriminative model would be better for
large datasets, while a generative model would be better for small datasets. However, Xue
and Titterington (2008) doubt the existence of such precisely defined regimes depending
on dataset size. According to them the behaviour seems to stem from the correctness of
the conditional or the joint model specification. Second, the prior p(θ ) in the generative
model provides a principled way to handle missing information, while the direct modeling
of decision boundaries in a discriminative model often leads to better performance in a
classification task (Jaakkola et al., 1999). Apart from generative models and discriminative
models, there are also hybrid models (Bouchard and Triggs, 2004; Raina et al., 2003; Bosch
et al., 2008). In the thesis we will restrict ourselves to generative models.

A.3 Model Composition

A model can be composed out of a set of probability distibutions. We list three of such pos-
sible compositions. The Naive Bayes model is a product of probability distributions with a
prior distribution (Definition A.40). The finite mixture model is a sum over a finite number
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of probability distributions where each one is weighted (Definition A.41). The infinite mix-
ture model is a sum over an infinite number of probability distributions where each one is
weighted (Definition A.42).

È Definition A.40 — naive Bayes model

The naive Bayes model is a product over a finite number k 6=∞ of probability distribu-
tions p(x i |θ ) multiplied by the prior distribution p(θ ):

p(θ |x)∝ p(θ )
k−1∏
i=0

p(x i |θ ). (A.10)

A finite mixture model is a sum over a finite number of probability distributions.

È Definition A.41 — finite mixture model

A finite mixture model is a sum over a finite number k 6=∞ of probability distributions
p(x i), with each distribution weighted by a factor wi with

∑
i wi = 1.

p(x) =
k−1∑
i=0

wi p(x i). (A.11)

The mixture model is finite in the sense that there are only k 6=∞ distributions summed
up. The weights of the individual distributions p(x i) are normalized (sum up to one) such
that the weighted sum over the probability distributions is itself a probability distribution.

An infinite mixture model is a sum over an infinite number of probability distributions.

È Definition A.42 — infinite mixture model

A infinite mixture model is a sum over an infinite number of probability distributions
p(x i), with each distribution weighted by a factor wi with

∑
i wi = 1.

p(x) =
∞∑
i=0

wi p(x i). (A.12)

The infinite mixture model is a sum over an infinite number of probability distributions with
weights that sum up to one. In this way it assigns a finite value to a countably infinite set of
functions.

If the number of probability distributions is uncountable infinite, we speak about a com-
pound distribution.
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È Definition A.43 — compound probability distribution

A compound probability distribution for a probability density function p(θ ) (nonnega-
tive and integrating to 1) is given by

p(x) =

∫

Ω

p(θ )p(x |θ )dθ . (A.13)

Informally, p(θ ) has the same function as the weight in a mixture model. From this presen-
tation it is also clear that a compound distribution is a special case of a marginal distribution.
The joint distribution p(x ,θ ) = p(θ )p(x |θ ). The compound distribution is obtained through
its marginal distribution:

∫
p(x ,θ )dθ . In the thesis we will encounter infinite mixture mod-

els or compound probability distributions in Chapters 3 and 4.

A.4 General Random Elements

In section A.1 random elements were described in general. Random elements can vary from
random vectors, random distributions, random clusters (partitions), to random trees. Ta-
ble A.1 describes the random elements and the corresponding examples of random processes
in the literature. Below we mention them with the appropriate references.

Table A.1: A list of seven mathematical structures and for each of these structures one or more
random processes that can generate the structure. For example, a distribution on distributions
can be generated by a Beta Process, Gamma Process, Dirichlet Process, or a Polya Tree.

Structure Example

Distribution on functions Gaussian Process

Distribution on distributions

Beta Process
Gamma Process
Dirichlet Process
Polya Tree

Distribution on partition assignments
Chinese Restaurant Process
Pitman-Yor Process

Distribution on partition sizes Stick-breaking Process

Distribution on hierarchical partitions
Dirichlet Diffusion Tree
Kingman’s coalescence

Distribution on sparse binary matrices Indian Buffet Process
Distribution on integer-valued matrices Gamma-Poisson Process
Distribution on kd-trees Mondrian Process

The Gaussian Process (Rasmussen and Williams, 2006) describes a distribution on functions.
The Beta Process (Hjort, 1990), the Gamma Process (Ferguson, 1974), the Dirichlet Process
and the Polya Tree (Ferguson, 1973) describe a distribution on distributions. The Chinese
Restaurant Process (Aldous, 1985) and Pitman-Yor Process (Pitman and Yor, 1997) describe
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a distribution on partitions (in the form of cluster assignments). The Stick-breaking Process
describes a distribution on partition sizes (with no information on assignments themselves).
The Dirichlet Diffusion Tree (Neal, 2001) and Kingman’s coalescence (Kingman, 1965) de-
scribe a distribution on hierarchical partitions. The Indian Buffet Process (Ghahramani and
Griffiths, 2005) describes a distribution over sparse binary matrices. The Gamma-Poisson
Process (Titsias, 2008) describes a distribution over integer-valued matrices. The Mondrian
Process (Roy and Teh, 2009) describes a distribution over kd-trees.

A.5 Plate Notation

Random processes and mixture models are visually represented by a method called plate
notation (cf. Buntine, 1994; Koller and Friedman, 2009). Sets of variables are represented
in a plate, a rectangular region (see Figure A.4).

Figure A.4: Top: graphical model of a Naive Bayes, hidden Markov model, and Gaussian
process. Bottom: corresponding plate notation of the Naive Bayes, hidden Markov model,
and Gaussian process. Observed variables are denoted by a circle that is shaded.

Plate notation is a representation that does not preserve all dependencies between vari-
ables. For example, the dependencies between the states in the Hidden Markov Model (e.g.,
between θ0 and θ1) are not represented. The Gaussian process has a potentially infinite
number of parameters. The use of plate notation for nonparametric models can be found in
(Fox et al., 2007).
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A.6 Completely Random Measure and Lévy Measure

Some random process are mathematically represented by a completely random measure
(Kingman, 1967), which is defined as follows.

È Definition A.44 — completely random measure

A completely random measure is a random measure µ : Ω× X → [0,+∞] from proba-
bility space (Ω,F,P) to measurable space (X ,Σ) with

◦ for any collection of disjoint sets A1, . . . , Ak ∈ Σ and Ai ∩ A j = ; for i 6= j a mutual
independency between µ(A1), . . . ,µ(Ak).

Kingman (1967) shows that a completely random measure can be decomposed into three
components:

1. a deterministic function;

2. a countable set of non-negative random masses at deterministic locations;

3. a countable set of non-negative random masses at random locations.

The first component is a deterministic function. The second component has non-negative
random masses, also called atoms, on deterministic locations. The third component is the
one of interest. It has a set of random masses (atoms) that can be represented as a Poisson
random measure on R+ ⊗ X with mean measure ν which is known as the Lévy intensity
measure (Favaro et al., 2013).

Table A.2: Lévy measure of the Beta Process (Wang and Carin, 2012), Gamma Process
(Knowles et al., 2014), the Dirichlet Process (Lijoi and Prünster, 2010) (indirectly through
F = 1− e−ν) .

Random Process Lévy measure

Beta Process ν(da, dw) = H(da)αw−1(1− w)α−1dw
Gamma Process ν(da, dw) = H(da)w−1e−αwdw
Dirichlet Process ν(da, dw) = H(da)e−wα(x ,∞)(1− e−w)−1dw

For Lévy measure decompositions of other processes such as the Indian buffet process, we
refer to Wang and Carin (2012).

A.7 Exchangeability

Here we recall Definition A.32 for exchangeable sequences. De Finetti’s theorem states that
there is parameter θ such that the data x i is conditionally independent given this parameter
for exchangeable sequences (cf. De Finetti, 1937).
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È Definition A.45 — De Finetti’s theorem

A sequence {x0, x1, . . .} of (X ,ΣX )-valued random variables is an infinitely exchangeable
sequence if and only if there exist a measure µ(dθ ) on θ such that

p(x0, . . . , xk−1) =

∫

Ω

k−1∏
i=0

p(x i |θ )µ(dθ ) ∀k ≥ 1. (A.14)

In words, de Finetti’s theorem states that if we have exchangeable data, we have a param-
eter θ , a likelihood p(x |θ ), and some measure µ on θ , such that the data (x0, . . . , xk−1)
is conditionally independent. Hence, although the data is not i.i.d., there are underlying,
unobservable, quantities that are i.i.d. and exchangeable sequences are mixtures of these
quantities. The theorem proofs that if the observations are exchangeable, they must be a
random sample from some model and there must exist a prior probability distribution over
the parameters of that model, hence requiring a Bayesian approach.

The theorem is not limited to exchangeable sequences. In contrast, there are similar theorems
for other exchangeable objects (Orbanz and Roy, 2015). Five examples (see Table A.3) of
exchangeable structures have a theorem describing an underlying measure that can be sam-
pled i.i.d. are: (1) exchangeable sequences (De Finetti, 1930), (2) increments (Bühlmann,
1960), (3) partitions (Kingman, 1978), (4) arrays (Aldous, 1981), and (5) Markov chains
(Diaconis and Freedman, 1980).

Table A.3: Five exchangeable structures and their theorems.

Mathematical Object Theorem

Exchangeable Sequence de Finetti

Exchangeable Increment Bühlmann

Exchangeable Partition Kingman

Exchangeable Array Aldous-Hoover

Exchangeable Markov Chain Diaconis-Freedman

A.8 Stick-breaking Representation

Below we introduce the stick-breaking representation by Freedman and Diaconis (1983), also
known as the residual allocation model (Sawyer and Hartl, 1985; Hoppe, 1986).
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È Definition A.46 — stick-breaking

An infinite sequence of random variables φ = {φ0,φ1, . . .} has a stick-breaking repre-
sentation with parameters α and β denoted by φ ∼ GEM(α,β).

wk
iid∼ Beta(1− β ,α+ kβ) k = 1, . . . , K (A.15)

φk = wk

k−1∏
i=1

(1− wi) (A.16)

The stick-breaking process samples repeatedly from a Beta(1−β ,α+ kβ) distribution. The
result of the process is a vector of k weights φk. The abbrevation GEM stands for Griffiths,
Engen, and McCloskey (Ewens, 1990; Ethier, 1990). There is also a variant of GEM with
a single parameter α which can be obtained by setting β = 0. In that case wk are drawn
from a Beta(1,α) distribution. Note that although wk are sampled i.i.d., the resulting stick
sizes φk are not independent. Stick size φk depends not only on wk, but also on the weights
w1, . . . wk−1 drawn previously.

Figure A.5: The stick-breaking representation. Left: at the first row, the stick is broken at
x0, at the next rows the remaining part of the stick is broken x i with i > 0. Only six iterations
are shown. Right: samples of a stick-breaking process. The first row shows the stick ratios
from the stick-breaking representation at the left. The next rows show other samples from the
same process.

Figure A.5 visualizes the stick-breaking process. A stick of fixed length 1 gets broken at a
position w0 sampled from a Beta distribution. The remainder of the stick is broken again
at position w1(1 − w0). This process continues for an infinite number of times. A stick-
breaking process generates in this manner a sequence of non-negative values that sum up to
one. The stick-breaking representation can on itself give rise to more sophisticated stochastic
processes (Dunson et al., 2012). Computationally it can also fulfill a useful role. Namely, it is
possible to approximate a distribution over partitions by truncating a stick-breaking process.
The stick-breaking procedure is then only performed a limited number of times (Kurihara
et al., 2007).

In Section 2.1 the relevance of the stick-breaking process for the Dirichlet process will be
shown. In that case the values generated by the stick-breaking process represent the weights
of the partitions induced by the Dirichlet Process.
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IMPLEMENTATION

We describe two initialization algorithms. The first algorithm initializes Gibbs sampling over
parameters. The second algorithm initializes Gibbs sampling over clusters.

B.1 Initialization of Gibbs Sampling over Parameters

Algorithm 8 as shown in Section 3.3 does not describe how the parameters are initialized.
The algorithm to initialize the parameters θi is given in Algorithm 15.

Algorithm 15 Gibbs sampling over parameters. The initialization of θi .

1: procedure GIBBS ALGORITHM 1 INITIALIZATION(w,λ0,α) . Accepts points w, hyperparameters
λ0,α and returns k initial line coordinates

2: λ1 = Uup(w1,λ0) . Update hyperparameter with w1 (Eq. 3.21)
3: θ1 ∼ N IG(λ1) . Sample θ1 from NIG (Eq. 3.24)
4: for all i = 2 : N do
5: M = i − 1 . Let M define the number of parameters assigned up to now
6: ri = α

∫
F(wi;θ )dH . Weighted posterior predictive of wi (Eq. 3.29)

7: for all j = 1 : M do
8: Li, j = F(wi;θ j) . Likelihood of a line given an observation (Eq. 3.9)
9: end for

10: p(θnew) =
ri

ri+
∑

i Li, j
. Probability of sampling a new parameter (Eq. 3.31)

11: u∼ U(0,1)
12: if p(θnew)> u then . Sample with probability p(θnew)
13: λn = Uup(wi ,λ0) . Update hyperparameters with wi (Eq. 3.21)
14: θi ∼ N IG(λn) . Sample θi from NIG (Eq. 3.24)
15: else
16: i ∼ Mul t(M , p(θold)) . Sample i from existing parameters, θold
17: θi = θold=i . Pick θi given index i
18: end if
19: end for
20: return initialized θk for k lines
21: end procedure

121
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Let us recall the posterior predictive Eq. 3.28:

θi | θ−i , wi ∼ riHi +
∑
j 6=i

F(wi;θ j)δθ j
. (B.1)

We initialize through:

θ1 | w1 ∼ H1

θi | θ1, . . .θi−1, wi ∼ riHi +
i−1∑
j=1

F(wi;θ j)δθ j
.

(B.2)

Given that j runs up to i − 1, we do not have to specify i 6= j in different lines of the
algorithm (compare with Algorithm 8). The initialization algorithm is so similar from the
Gibbs sampling algorithm itself, that it is recommended to write the implementation in such
a way that the same function can be used.

B.2 Initialization of Gibbs Sampling over Clusters

Algorithm 9 as shown in Section 3.4 requires initialization of the hyperparameters λk per
cluster k. In contrast to Algorithm 15 we need to initialize not just θk, but also the hyperpa-
rameters per cluster. This can be done by calling Eq. 3.21 successively by each observation
wi assigned to cluster k. We also require θk themselves to calculate F(wi;θ j) for j 6= i in
Eq. 3.9 and p(θ−i), or more specific, p(θold).

Algorithm 16 Gibbs sampling over clusters. The initialization of θk and λk.

1: procedure GIBBS ALGORITHM 2 INITIALIZATION(w,λ0,α) . Accepts points w and
hyperparameters λ0 and α, returns k hyperparameters λk and initial parameters θk

2: for all k = 1 : K do
3: mk = 0 . Set number of data points per cluster to 0
4: end for
5: for all i = 1 : N do
6: k = U({1, . . . , K}) . Sample k from discrete uniform distribution
7: cluster(wi) = k . Assign cluster index k to observation wi
8: if mk = 0 then
9: λk = Uup(wi ,λ0) . Set hyperparameter λk with prior pred. given wi

10: else
11: λk = Uup(wi ,λk) . Update hyperparameter λk with posterior pred. given wi
12: end if
13: mk = mk + 1
14: end for
15: for all k = 1 : K do
16: θk ∼ N IG(λk) . Sample θk from N IG with up to date λk
17: end for
18: return initialized parameters θk and hyperparameters λk for k lines
19: end procedure
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