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DEEP LEARNING OF POINT CLOUDS

Contents In the preceding chapters we have used sampling (MCMC methods) to
perform inference. We extend here our point cloud datasets in 2D to much
larger point cloud datasets in 3D. This requires a speed up in our inference
methods.

Outline We introduce deep learning, and in particular variational autoencoders,
ordinary autoencoders, sparse autoencoders, and convolutional autoen-
coders (Section 6.2). We show how they perform well on the MNIST
dataset. We also show they do not perform well on the task of recon-
structing 2D lines. We then introduce an autoencoder based on a model
known in the literature as PointNet (Section 6.3). This autoencoder uses
earth mover’s distance (EMD) to reconstruct dense point clouds of single
objects. In contrast, our dataset contains multiple objects that are sparse,
such as squares and cubes. We show that the autoencoder does not learn
a proper latent representation for those objects. We introduce two new
metrics, the shifted earth mover’s distance (SEMD) and the partitioning
earth mover’s distance (PEMD), to be used for datasets with objects on
unknown positions or datasets with multiple objects in a single sample
(Section 6.4). We test the new EMD on our dataset with multiple 3D
cubes on different locations (Section 6.5). Finally, we provide the chapter
conclusions and we describe some ways to improve structured autoen-
coders (Section 6.6).

6.1 Data-driven Methods

The previous chapter concluded with a suggestion to look into data-driven methods to accel-
erate inference even further than with the models described until then. One particular way
in which we incorporate knowledge about the data we operate on, is by introducing nonlin-
ear functions before we perform inference. These nonlinear functions we adapt to the data
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68 Chapter 6. Deep Learning of Point Clouds

by a learning process. A neural network can represent such a function. If a stack of neural
networks is used, this becomes the field of deep learning (LeCun et al., 2015; Schmidhuber,
2015).

An autoencoder consists of two of those deep neural networks that each contains multiple
layers. The encoder has layers of decreasing size and maps to the code, a layer of latent
variables. The decoder has layers of increasing size and maps from the code to the same
dimension as the input. A loss function can be used to quantity the difference between the
input of the autoencoder and its output. The calculated loss is used to adjust the weights in
the neural networks through error propagation.

Figure 6.1: Left: the data x is used to train a (semi)autoencoder. Middle: the results of
the autoencoder are used to create a data-driven prior for a Bayesian classifier. Right: the
performance is measured with performance metrics like purity, rand index, as in previous
chapters.

In Fig. 6.1 the autoencoder is embedded in a larger architecture The first block depicts an
autoencoder that can efficiently represent 3D point cloud data. The second gets information
from the autoencoder and uses this as a data-driven prior to perform classification. Typically,
it is a Bayesian classifier as encountered in the previous chapters. The third block defines
the performance of the autoencoder-classifier tandem.

In Section 6.2 we describe different types of autoencoders. In Section 6.3 we describe the
earth mover’s distance (EMD), a loss that can be used for the robotic vision domain of point
clouds. We show the results of using this loss on the robotic vision task of fitting 3D cubes.
We also visualize the latent representation of the autoencoder using this loss. In Section 6.4
we introduce a semi-autoencoder and introduce two generalizations of the EMD, the shifted
earth mover’s distance (SEMD) and the partitioning earth mover’s distance (PEMD). In Sec-
tion 6.5 we use the PEMD in combination with the triadic sampler of the previous chapter
to perform inference over point clouds consisting of 3D cubes. We provide the chapter con-
clusions in Section 6.6.

6.2 Autoencoders

We introduce four autoencoders: a variational autoencoder (Section 6.2.1), an ordinary
autoencoder (Section 6.2.2), a sparse autoencoder (Section 6.2.3), and a convolutional au-
toencoder (Section 6.2.4). We show how they perform on the MNIST dataset. We also show
how they perform on a second dataset used in the previous chapter with 2D lines made out
of 2D points. We will refer to the latter dataset as Lines100.
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6.2.1 Variational Autoencoder

Variational autoencoders (Kingma and Welling, 2014; Rezende et al., 2014) are ordinary
autoencoders with additional constraints on the latent variables. The latent variables in
autoencoder parlance are called the code. In a variational autoencoder the latent variables
are forced to approximately describe a standard Normal (or unit Gaussian) distribution. The
autoencoder is trained using a loss function that is composed out of (1) a generative loss,
a mean squared error that measures how accurately the network reconstructs its input, and
(2) a latent loss, a KL-divergence that measures how closely the latent variables match a
unit Gaussian. This loss is summed over all samples (and reconstructions), L =

∑
i li(F, G).

li(F, G) = −Eh∼qF (h|x i)
[log(pG(x i |h)] +KL(qF (h|x i)||p(h)) (6.1)

To optimize the KL divergence a reparameterization trick is applied. The encoder does not
generate a vector with real values, but generates a vector with means and standard devia-
tions instead.

Figure 6.2: Left: qF (h|x) maps the data x to (hidden) random variables h. Middle: pG(x |h)
maps the hidden random variables to reconstructed data x ′. Right: L(x , x ′) measures the
similarity between x and x ′.

The results are presented in the following manner. First, we visually inspect the reconstruc-
tion of the items in the dataset. Second, the test samples are encoded into the latent variable
representation. The latent variables are then presented in a 2D scatterplot. Third, there is a
sweep over the latent variable values to generate digits. The second and third presentations
are especially useful if the encoder has only two latent variables. In that case the presenta-
tion in a 2D scatterplot does not require a dimensionality reduction step. The sweep over
only two latent variables is also very easy to represent in 2D.

The MNIST digits are reconstructed by a variational autoencoder as shown in Fig. 6.3.
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Figure 6.3: Reconstruction of MNIST data by a variational autoencoder. Top: the input,
images with single hand-drawn digits. Bottom: the output, the images reconstructed by the
autoencoder. During the training process the network weights are adjusted precisely so that
the reconstruction loss between the output and the input is minimized. The variational au-
toencoder minimizes at the same time also the KL-divergence between the latent variables and
a prior.

The scatterplot of the latent variable representation of the test set. It can be seen that similar
digits are mapped to similar values in the latent space.

Figure 6.4: Scatterplot of latent variable representations of test samples in a variational
autoencoder. There are two latent variables. The values of one latent variable are on the
horizontal axis. The values of the other latent variables are on the vertical axis. The digits
of the MNIST task are plotted with different color shades. For example, the digit zero is
represented by values of around 0 of the "horizontal" latent variable and values around 3 of
the "vertical" latent variable. Those are the whitest dots. The variables do not necessarily have
(easily identifiable) semantics and are therefore not labeled.

Note that not every digit occupies the same amount of space in the latent variable layer. The
amount of space emerges from the learning process.
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Figure 6.5: Latent variable sweep of test samples in a variational autoencoder. The two latent
variables are both given values and the decoder calculates the output. This output is depicted
as an image (a reconstructed "digit"). Here you see 20x20 images reconstructed starting from
values at the top-left of around (0, 0) to the bottom-right of around (560,560). It is clearly
visible that if the values of the latent variables change only slightly, that the reconstruction is
also changed only slightly.

6.2.2 Ordinary Autoencoder

An "ordinary" autoencoder (Rumelhart et al., 1986) has been trained with a latent variable
layer of 32 nodes (rather than 2 as in the variational autoencoder above). It only minimize
the reconstruction error and has no constraints1 on the latent layers. We show the represen-
tation of the ordinary autoencoder after that of the variational autoencoder, so we can see
how the representation is less structured.

li(F, G) = −Eh∼qF (h|x i)
[log pG(x i |h)] (6.2)

The reconstruction is similar to that of the variational autoencoder if we just use visual
inspection (see Fig. 6.6). This means that the ordinary autoencoder learns to reconstruct
the digits just as the variational autoencoder.

1The size of the layer can be seen as a constraint, but it is not yet a regularization technique.



72 Chapter 6. Deep Learning of Point Clouds

Figure 6.6: Reconstruction of MNIST data by an ordinary autoencoder.

The difference between the ordinary and the variational autoencoder shows when we start
to study the latent representation. If we use a scatterplot for two of the latent variable nodes,
there is not much structure to observe (see Fig. 6.7).

Figure 6.7: Scatterplot of latent variable representations of test samples in a ordinary au-
toencoder. The two axes represent only two nodes of in total 32 nodes in the latent layer. In
contrast to the variational autoencoder (Fig. 6.4) there are no easily distinguishable clusters
representing particular digits.

We might perform dimensionality reduction and for example use t-SNE (Van Der Maaten
et al., 2009) to map to a 2D space. However, this is much more indirect than in the case that
there are only two latent variables. If there is still no structure observed, it might be just an
artifact of how t-SNE performs dimensionality reduction (not indicating the quality of the
latent variable representation).

Let us use the ordinary autoencoder to reconstruct point clouds. In this case the reconstruc-
tion of 2D lines.
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Figure 6.8: Top: the input, multiple lines per sample. Bottom: the output, the reconstructed
2D point cloud by the autoencoder. Clearly, the reconstruction fails for the ordinary autoen-
coder. In particular, the autoencoder seems not to be able to reconstruct the correlations
between the x and y coordinates.

In Fig. 6.8 the reconstruction of the 2D lines are shown. The ordinary autoencoder is not
able to reconstruct the lines.

6.2.3 Sparse Autoencoder

A sparse autoencoder (Hosseini-Asl et al., 2015) is similar to the ordinary autoencoder, but
enforces sparsity through an "activity regularizer":

li(F, G) = −Eh∼qF (h|x i)
[log pG(x i |h)] +KL

�
qF (h|x i)||p(h)

�
+ J(h). (6.3)

The activation in the hidden layer can be regularized by an L1 loss function, J(h) = λ
∑

j |h j |,
or by enforcing the average activation of a node to be close to zero (averaged over all m
training samples). This can be achieved for example by setting J(h) = β

∑
jKL(ρ||ρ̂ j) with

ρ̂ j =
1
m

∑m
r [h j(xr)]. The sharpness of the reconstructions can be tuned by the factors λ or

β or both if both regularizers are used at the same time.

The reconstruction of digits (see Fig. 6.9) by a sparse autoencoder is a bit less sharp than
reconstruction by an ordinary autoencoder (compare Fig. 6.6).

Figure 6.9: Reconstruction of MNIST data by a sparse autoencoder. The results are a bit less
sharp than that of the ordinary autoencoder.

The scatterplot in Fig. 6.10 shows that only a few of the latent variables have non-zero
values. The sparsity in the latent variables layer is achieved.
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Figure 6.10: Scatterplot of latent representations in a sparse autoencoder. The two axes
represent only two nodes in the latent layer. In contrast to the ordinary autoencoder (Fig. 6.7)
is clear that inputs are mostly represented by either one or the other latent variable with a value
that is nonnegative.

For most digits at least one of the first two nodes in the latent layer are zero (Fig. 6.10).
We do not show the reconstruction of lines. The sparse autoencoder is failing in a similar
manner as the ordinary autoencoder (Fig. 6.8).

6.2.4 Convolutional Autoencoder

The results for the dataset with multiple lines (Lines100) was shown for the ordinary autoen-
coder in Fig. 6.8. This dataset is also impossible to reconstruct for the variational and sparse
encoder (not shown). The likely reason for this is that 2D data is inherently correlated. The
(x , y) coordinates are dependent.

A convolutional autoencoder (Masci et al., 2011) is an autoencoder architecture that can
operate on this type of data. It differs in its connectivity between the nodes in the autoen-
coder rather than in the loss function. The nodes are subdivided into layers. The layers are
sparsely connected with each other, by convolutions. A stack of such layers has been given
the name "deep neural network".
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Figure 6.11: The reconstruction of lines (top row) starts to work for the convolutional au-
toencoder (results in bottom row). The reconstructions are blurry, but recognizable.

The convolutional autoencoder works on the 2D dataset if the lines are first mapped to a
2D grid. To use the same strategy in 3D, would mean that we have to create a voxel space.
Rather than points like (x , y, z) we need to create a matrix of Lx M xN , which becomes
really large for increasing granularity. Although, the convolutional autoencoder shows that
reconstructions are possible, we need something more sophisticated. In the next section we
introduce autoencoders that are dedicated to point clouds.

6.3 Autoencoders on Point Clouds

Point cloud data has only recently been directly fed into deep neural networks. PointNet (Qi
et al., 2017) is the first implementation of a deep network for segmentation and classifica-
tion that directly operates on point clouds. In (Section 6.3.1) we describe an autoencoder
from the literature which uses an architecture similar to PointNet as an encoder. The qual-
ity of this autoencoder will be assessed by visual inspection of the reconstruction quality
(Section 6.3.2) and by a latent variable sweep from one representation to another (Sec-
tion 6.3.3).

6.3.1 Earth Mover’s Distance

The autoencoder (Achlioptas et al., 2018) architecture builds on PointNet. We refer to (Qi
et al., 2017) for further details on PointNet. The autoencoder uses PointNet for the en-
coder. It accepts a point cloud with 2048 points (a 2048 x 3 matrix). It is constructed out
of convolutional layers. The layers have kernel size 1 and an increasing number of features
(representing the "neighborhood" of a point). The last layer is formed by a symmetric func-
tion, which is permutation invariant. The permutation invariance is required due to the
exchangeability of points.

In a bit more detail, there are five convolutional layers, each is followed by a rectified lin-
ear unit (Nair and Hinton, 2010) and a batch-norm layer (Ioffe and Szegedy, 2015). The
permutation invariant function takes a maximum (per feature) and forms a latent vector.

The decoder in this autoencoder is formed by three fully-connected layers with the first two
followed by a ReLU and as output a 2048 x 3 matrix, the reconstructed point cloud.

One of the permutation-invariant objectives employed is the so-called earth mover’s distance.
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The earth mover’s distance (EMD) is also known as the 1st Wasserstein distance. It can be
considered an optimal transport problem. The concept has been first introduced in the 18th
century (Monge, 1781). If there is an amount of sand and a pit where it has to go, how do
we optimal transport the sand to the pit? The quantity that has to be minimized for this is
called the earth mover’s distance.

È Definition 6.1 — earth mover’s distance

The earth mover’s distance (EMD) between S1, S2 ∈ R3 of equal size |S1|= |S2| is defined
as:

dEM D(S1, S2) = min
φ:S1→S2

∑
x∈S1

||x −φ(x)||2

with φ : S1→ S2 a bijection.

In the next section we apply this autoencoder using the earth mover’s distance on 3D point
clouds.

6.3.2 Reconstruction of 3D point clouds

The autoencoder properly reconstructs not just 2D lines, but complete point clouds. In Fig-
ure 6.12 the autoencoder uses the earth mover’s distance as loss function to reconstruct the
original cubes.
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Figure 6.12: Reconstruction of a point cloud consisting of multiple cubes. The autoencoder
uses the earth mover’s distance. Left: the original point cloud. Right: the reconstructed point
cloud. The reconstruction is not perfect. The cubes are recognizable though.
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6.3.3 Quality of Latent Representation

To assess the quality of the latent representation we interpolate linearly between two latent
variable representations that belong to two different cube configurations. Fig. 6.13 visualizes
reconstructions of latent representations using the earth mover’s distance. The results of the
Chamfer distance are similar (not shown here).
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(a) Reconstruction of latent
representation corresponding
to sample 1.
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(b) Reconstruction of the latent
representation linearly interpo-
lated between latent represen-
tations of sample 1 and 2.

x

y

z

l

l

l

ll

l
l

l

l

l

ll

ll
l

l

l

l
l

l l

l

l

ll

l

l l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lll
l

l

l

l

l

l

ll

l

l llll
l

l

l
l

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l

l

l

l

l
ll l

l

l

l l

l

l

l

l

l

l

l

l

l l

l

l

ll
l

l

l

l

l

l
l

l

l

l

l

l l

l

l

ll

l

ll
l

l
l

l

lll

l

l

ll
l

l

l
l

l

l

l
l

l

l
l

lll

l

ll

l
ll

l
l ll l

l l
l l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l

ll

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l
l

l
l

l
l
l
l

l

l

l

l

l

l

ll
l

l

l

l
l

l

l

l
l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll
l

l

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l
ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

ll

ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

ll
ll

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l l

ll

l
l

l
l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
l l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

ll

l

l l

l

l

l

l

ll
l

l

ll l

l

l
l

l

l

l

l

ll
l

l

l l

l

l

l
l

l

l

l

l
l

l

l

ll

l
l

l

l

l

l ll

l

l

l
l

l

l

l
l

l

l

l
l

l

l
l

ll

l

l

l
l

l

l

l
l

l

l

l l

l

l

l

l

ll
l

l

lll

l

l

ll

ll l
l

l

l
l l

l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l
l

l

l

l

l

l
l

l

l

l l

l

l
l

l

l

l

l

l

l

ll

l

l l
ll

l l
l

l

l

ll

l
l

l

l

l

l
ll

l

l

l

l

ll
l

l

l

l

l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

ll

l

l
l

l

l

l

l

l
l

l

l

l

l

l

l
l

l
l

l

l

l

l

l

l
l
l

l

l

l l
l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l
l

l

l

l

l

l

l

l ll

l

l

l

l

l

l

l

l

l

ll
l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l
l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l l

l

l
l

l

l

l

l l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l
l

l

l

ll

l

l

ll
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l ll

ll

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l
l

l

l

l

l

l

l

l

l l
l

l

l

l

l

l

l

l l l

l

l

l

l

l

ll

l

l

l
l

l

l
l

l

l

l

ll

l

l
ll

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l l

l

l

lll

l l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l l l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

ll

l

l

l

l

ll

l

l

l

l

l
l

l
l

l

l

l
l

l l
l

l

l

l

l

l

l
ll

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

ll

l

l

l

l

l

l
ll

l

l
l

l

ll

l

l

l

l
l l

l
l

l
l

l
l

l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l l

l

l

l
l

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l
ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

ll
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l
ll l

l

l

l

l l
l

l

l

l

l

l

l
l

l

l
l

l

l
l

l
l

l

l

l

l

l

l
l

l

l

l

l

l

l

ll

l

l

l

l
l

l

l

l

l
l

l
l

ll

l

l
l

l ll

l

l
l

l l
l

l

l

l

l

l

l

l

l

l

l
l

l l

ll l

l

l

l

l

l

l

l

l

lll

l

l

l

l

l

l

l

l

l

ll

ll

l

l

l

l

l l

l

ll

l

l

l

l

ll

l

l

l

l

l

l

l
l

ll
l

l

l

l

l

l

l l

l

ll
l

ll

l

l ll
l

l

l
lll

l

l

l

l

l

l

l

l

l
l l

l
l l

l

l

l

l
l

l

l

l

l

l

l lll

l

l

l

l

ll

l
l

l

l l

l

l
l

l
l

l

l

l

l

l l

l

l
l

l

l

l

l
l

l

l

l

ll

l
l

l

ll

ll

l

l

l

l

l

l

l

l l

l

l

l
l

l
l

l
ll

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

ll

l

l
l

ll
l

l
ll
l

l

l

l

l

ll

l

l
l

l

l

l

ll

l

l

l

l

l

l

l
l

l

l

l

l
l

l

l

l

ll

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l
l

l

ll

l
l

l

l

ll
l

l

l

ll

l

l

ll

l

l

l

l
ll

l l

l

l
l

l

l

l
l

l

l
l

l

l

l

l

(c) Reconstruction of latent
representation corresponding
to sample 2.

Figure 6.13: Reconstruction of point clouds. This uses the earth mover’s distance as a re-
construction loss. The representation in the center is generated by interpolating between two
latent representations of actual samples. The reason that this is shown is to demonstrate that
this latent representation is not generating geometric objects that are cubes. In contrast, it is a
more general point cloud. This provides a hint that the autoencoder did not learn the concept
of a cube. If it would, the intermediate representation more likely would have represented
cubes at intermediate locations.

Remarkably, the objects at the interpolated steps do not resemble cubes 2. The interpolation
shows that the internal structure is not maintained. In between the two cube configurations,
there is an unstructured point cloud, like Gaussian distributed blobs.

6.4 Semi-Autoencoders on Point Clouds

This section will address the limitations by the autoencoders and distance measures of the
previous section. First we will explain limitation of the EMD with respect to uniformity (Sec-
tion 6.4.1). We describe a first generalization of EMD called shifted earth mover’s distance
which addresses uniformity (Section 6.4.2). This is not able to cope with multiple objects for
which we describe a second generalization called partitioning earth mover’s distance (Sec-
tion 6.4.3). This distance will then be used to create a semi-autoencoder (Section 6.4.4).

2A video can be seen at https://bit.ly/2G2gyE2
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6.4.1 Limitations of the Earth Mover’s Distance

The earth mover’s distance defines a transportation map. Although the name optimal trans-
port might suggest that there is a single optimal map, there are multiple maps possible.
Depending on the implementation a particular map can be found. For example, if single
grains of dirt are positioned at x = 0, x = 1 and need to be transported to x = 2, x = 3, it
is possible to move one grain from x = 0→ 2 and the other to x = 1→ 3 or to move one
grain from x = 0→ 3 and the other x = 1→ 2. The total distance traveled in both cases is
4. In the first case the moves are more uniform than in the second case.

Figure 6.14: This figure shows that EMD is not unique. There are multiple maps possible and
one map can be more "uniform" than another. Left: a map where each grain is moved with the
same distance (of two). This is "uniform". We can achieve this with a global coordinate frame
shift of two. Right: a map where one grain is moved over a larger distance (three versus one).
This is not "uniform". Important to note, the total distance for both maps sums to four. The
EMD can not distinguish between those cases!

The uniformity in a transportation map corresponds in the case of robotic vision with objects
that are spatially translated. The transportation map that is not uniform does not correspond
to a recognizable geometric operation.

In Fig. 6.15 we see at the left how we have the non-uniform transportation plan and on the
right a uniform transportation plan.
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(a) A non-uniform transportation plan. The
square at the top-right is transported to the one at
the origin. The points close to the origin are trans-
ported to the top-left of the square at the origin.
Only the largest transport values are shown.

(b) A uniform transportation plan. A uniform
transportation plan. The points in the square at
the top-right are transported to the square at the
origin in such a way that e.g. the points in a corner
of the right square map to the points in the "same"
corner of the other square. The map is uniform.

Figure 6.15: Earth mover’s distance implementations. Both figures show "before" and "after"
of the transportation map.

In Section 6.4.2 we describe an improvement on EMD which takes into account spatial trans-
lations. In Section 6.4.3 we describe a further generalization that takes into account multiple
objects.

6.4.2 Shifted Earth Mover’s Distance

The particular version of the earth mover’s distance that is implemented is a shifted version
of the EMD, the Shifted earth mover’s distance. Suppose, in analogy with the original pos-
tulation of the problem by Mongei, that there is a small landslide such that the center of the
source distribution becomes exactly on top of the center of the target distribution. The dirt
now only has to be moved on a smaller scale.

The SEMD is calculated by shifting both pointsets such that they are centered around the
origin. Note, that for datasets where the objects are already centered around the origin this
will not make any difference. However, our dataset is definitely not centered around the
origin, so this has a large effect (see again Fig. 6.15).

6.4.3 Partitioning Earth Mover’s Distance

The SEMD is an improvement on EMD for single objects. However, for multiple objects
the shift to the origin needs to be different for each object. PEMD partitions the space and
couples each subset with its own shift operator. We visualize such a map in Fig. 6.16.
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Figure 6.16: This figure demonstrates partitioning earth mover’s distance (PEMD) with an
example. Shown are two maps which are equivalent for EMD. Left: a possible SEMD map,
the grains are moved by {2, 1,1,−1,−1,−2} steps (sum of absolute values is 8). Right: the
PEMD map, the grains are moved by {2, 2,2,−2,−2,−2} steps (sum of absolute values is 12).
The PEMD preserves the "structure" of the three grains in a cluster. The PEMD is larger than
the SEMD.

For our robotic vision problems of identifying point clouds this can be visualized as well (see
Fig. 6.17). Note that the object is a square and that there are multiple identical objects are
to be recognized. This is the purpose of deploying the PEMD distance. It minimizes the
distance to a "prototypical" object. In our autoencoder application, the result will be such a
"prototype" object. The autoencoder will not reconstruct the complete input, it will construct
a single copy of multiple identical objects that are present in the input. This is the property
we use of this semi-autoencoder. We use the constructed output in Section 6.5 as input for
our sampler.

(a) Shifted earth mover’s distance visualization.
The objects at (−4,5) and (2, 2) are mapped to the
object in the center. The (uniform) mapping of
SEMD does not distinguish between the squares.
It is not preserving the structure of the individual
squares.

(b) Partitioning earth mover’s distance visualiza-
tion. The objects at (−4,5) and (2,2) are mapped
to the object in the center. The mapping maps both
squares on top of the center square. It preserves
the structure of the individual squares.

Figure 6.17: Earth mover’s distance implementation on three objects. Left: SEMD. Right:
PEMD.

The PEMD needs to find partitions. This is actually a clustering problem on its own. Given
a pointset and a repeated structure, can we divide this pointset into that structure and the
number of times this structure occurs?
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We solve this by the following optimization procedure. We search for local modes using a
conventional algorithm, in our case mean-shift. After we have found the local modes, we
use the means of the data points we found to translate the objects in both point clouds to
the origin. We then perform EMD on the entire (normalized) dataset.

In Fig. 6.17 the difference can be seen in the transportation plan between a global shift
(left) and shifts per partition (right). The shifts per partition shows a transportation map
that preserves the local structure.

6.4.4 Semi-autoencoder

There are examples of generalizations of an autoencoder where the dimensions of the input
and the output does not have to be identical (Zhang et al., 2017). However, the discrepancy
between input and output can purely rise from the distance function used as well. If the
distance function is truly translation invariant, the output gives rise to the object searched
for. It is not a matter of reconstructing one of the input objects. A proper autoencoder
would reconstruct a single object using information from all those duplicate objects in the
input. This map can be seen as a generalized reconstruction objective. Alternatively, it can
be seen as a general encoder-decoder network where we search for transformations of the
input rather than the identity operation (Worrall et al., 2017).

The semi-autoencoder can be seen as a system that separates the object’s shape (the "what")
from the object’s position (the "where") tailored to a situation where there are many identical
objects. Separation between object shape and position through separate pathways seems
ubiquitous in the (mammalian) brain (Ungerleider and Haxby, 1994; Rauschecker and Tian,
2000). Even more relevant to our architecture, there is brain-imaging evidence that the
pathways for object identity and numerosity (the number of objects) are separated (Izard
et al., 2008). Moreover, the ability to represent numerosity seems just as ubiquitous as the
what-where pathways and can for example be found in mosquitofish (Agrillo et al., 2011)
and honeybees (Bortot et al., 2019).

In this context, the semi-autoencoder fulfills the role of object identification. Given an object
there is another pathway that is able to reason with these objects. In our case we will use a
triadic sampler to perform class assignments. When points are assigned to multiple objects
we have indirectly also represented counting those objects. In other words we have a second
pipeline to establish numerosity. Note, that in contrast with subitizing autoencoders (Wever
and Runia, 2018; Pecyna et al., 2019) our objective is not counting itself but clustering: the
proper assignment of 3D points to multiple 3D objects.

6.5 Results

In Section 6.5.1 we describe a few implementation details for the autoencoder. In Sec-
tion 6.5.2 we analyze the performance of the classifier that uses the results of the autoen-
coder for the task of assigning points to cubes in point clouds.
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6.5.1 Implementation

The autoencoder using the partitioning earth mover’s distance3 is based on an autoencoder
implementation using PointNet (Achlioptas et al., 2018). It uses Tensorflow and the metrics
and their gradients have been implemented for the CPU (python3) and for the GPU (CUDA).
The implementation for the GPU aims to improve the speed of the operations.
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Figure 6.18: Left: the input, a sample with multiple 3D cube objects. Right: a reconstructed
cube. The autoencoder uses partitioning earth mover’s distance as a metric. The reconstruc-
tion creates a single object. Each cube in the original input contributes to the representation
in the output. The output reflects the invariance in number of objects and their locations.

In Fig. 6.18 one of the reconstructed samples is visualized. The input, the set of cubes, is at
the left. The output, the single cube at the origin, is at the right. This is a to be expected
result from the reconstruction process. The loss function does not take into account the
actual position of the cubes: it is on purpose invariant to these positions. This means that
the generation process yielding a unity cube will have a very low loss associated to it.

6.5.2 Clustering Performance

The reconstruction of the autoencoder is used as a reference object for a triadic MCMC
sampler (Chapter 5). The MCMC sampler compares the reference object with the current
sample. Each point is compared with its nearest neighbor in the reference set and its match
is defined through a normal distribution. The datasets are subsampled to 200 points.

More specific, it is common to compare two objects using pairwise Euclidean distances be-
tween (correspondence) points (Boutin and Kemper, 2004). We will use a Dirichlet Process
with a multivariate normal distribution as base distribution, H, centered at the origin and
with scalar noise (σ = 1). During the inference process the sampler will generate 3D lo-
cations, µi , for the hypothesized objects and we will calculate the difference between the

3Implementation at https://github.com/mrquincle/latent_3d_points.
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hypothesized object with the reference object using the Euclidean kernel. In our implemen-
tation the objects do not have to have the same number of points. We sum the distances of
the closest point (also with respect to the Euclidean distance). This means that the reference
object can be much denser than the hypothesized object.

We can describe the Dirichlet process in the usual manner:

G ∼ DP(α, H),

µi | G iid∼ G,

wi | µi , r ∼ F(w;µ, r).

(6.4)

The likelihood function has a bit of a complicated structure:

F(wi |µ, r) = D(wi , g(wi , f (r,µ))). (6.5)

The reference point cloud r is undergoing an operation through f (r,µ), in this case a simple
shift f (r j ,µ) = r j − µ for each j in the point cloud r. The function g is nonlinear and finds
the point closest to wi in r, which we define as r ′. Then the distance is calculated between
wi and r ′ through D, the Euclidean distance.

The results of the triadic sampler can be found in Table 6.1.

Table 6.1: The purity, rand index, and adjusted rand index establishing the quality of the
clustering method for line estimation (Chapter 5) and cube estimation (this chapter). The
more complex dataset results in to be expected lower performance levels, but a significant
number of assignments are correct. The results with the other types of samplers are not re-
peated for the cube dataset considering that they underperformed the triadic sampler already
in the line estimation task.

Dataset Purity Rand Index Adjusted Rand Index

Line estimation (Chapter 5) 0.86405 0.87188 0.71067

Cube estimation 0.8367 0.8359 0.6524

The spread over the samples is displayed in Figure 6.19 as a violin plot. Note that there
might be still room for improvement. For some data samples an adjusted rand index of 0
corresponds to chance. Yet, it does not necessarily mean that the sampler can be improved.
If there are two cubes generated at exactly the same location the "correct" cube becomes
unidentifiable.
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Figure 6.19: Performance of the triadic sampler on 3D cubes.

Figure 6.20 shows an assignment for a particular sample from the dataset. The cubes are
properly identified as separate entities. There are also a few points that are accidentally
assigned to those cubes as well.
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Figure 6.20: One of the samples as classified by the triadic sampler. The assignments of
points to cubes is indicated by colors. It is visualized how some of the points are misclassified.
In this case this happens mainly for cubes with only a few points.

6.6 Chapter Conclusions

The previous chapters went to great lengths to use Bayesian inference methods to given prior
and likelihood optimally infer lines, line segments, squares, and other primitive geometrical
objects. In this chapter we deployed deep learning methods to be able to reason about less
primitive objects: cubes. A naive application of state-of-the-art deep learning methods for
point clouds is not sufficient. Compared to dataset in the literature the objects in our dataset
are shifted, and importantly, there are multiple objects in a single frame. The neural network
needs to learn multiple objects at once.

The chapter introduced two new metrics for autoencoders based on earth mover’s distance
or Wasserstein. First, a SEMD or Shifted Wasserstein metric that can be used on dataset
where objects are not centered at the origin. Second, a PEMD or Partitioning Wasserstein
metric that can be used for datasets where individual frames do have multiple objects.
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The results show that it is indeed possible to create a variant of an autoencoder that learns
to reconstruct a particular object when there are multiple copies in its input. It is a semi-
autoencoder, not an exact autoencoder. The purpose is not to exactly regenerate the in-
put, but to represent the duplicate objects as one single object. It uses the same encoding-
decoding structure as an autoencoder.

The model in this chapter is able to:

◦ Perform inference on multiple objects by using a partitioning earth mover’s distance.
Inference over multiple objects simultaneously is not part of recent optimal transport
literature (Alvarez-Melis et al., 2018, 2019). The ability to perform inference over
multiple objects is neither part of translation-aware work such as transforming au-
toencoders (Hinton et al., 2011) and capsule networks (Hinton et al., 2018).

◦ Perform inference on multiple objects without defining the number beforehand. This
goes beyond e.g. the work on so-called barycenters (Forrow et al., 2018, 2019).

This chapter demonstrated how to perform inference on more complex volumetric objects.
It showed how naive application of autoencoders - even autoencoders especially designed
for point clouds - fails for inference of multiple objects.

New metrics and a new type of autoencoder is developed to take this type of structure into
account. Such an autoencoder can then be used for a prior for a Bayesian model. This model
can be sampled with the techniques of the previous chapters.

This chapter answers our third research question.

RQ 3 How can we recognize more general 3D objects?

First we use modern deep learning techniques to create data-driven priors. These priors can
be very complex, learned - over many iterations of the data - by an autoencoders with many
layers. Second, given these data-driven priors we perform inference using a nonparametric
Bayesian model to detect general 3D objects. This bridges the field of deep learning with
that of nonparametric Bayesian methods.


