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NONPARAMETRIC BAYESIAN SEGMENT

ESTIMATION

Contents In this chapter, we introduce a Bayesian method to perform inference over
line segments. In this model, infinite segment model (ISM), the prior for
the location is given by a Normal distribution, the prior for the length
of the segment is given by a Pareto distribution. Due to the fact that the
prior and likelihood do not form a conjugate pair, a more general inference
method is used (than the inference methods for the conjugate model in
Chapter 3), namely Gibbs sampling with auxiliary variables.

Published in A.C. van Rossum, H.X. Lin, J. Dubbeldam, and H.J. van den Herik. Non-
parametric Segment Detection. Proceedings of the Eighth European Start-
ing AI Researcher Symposium, STAIRS 2016, the Hague, the Netherlands,
August 26-27, 2016.

Outline Our proposed model is using both a Normal-Inverse-Gamma distribution
and a Normal and Pareto distribution as priors for an individual line seg-
ment (Section 4.1). Inference over the infinite segment model is done
using Gibbs sampling over auxiliary variables (Section 4.2). The results
for inference over line segments are compared with those for lines (Sec-
tion 4.3). Finally, weak aspects of the current MCMC method are estab-
lished (Section 4.4). They will form the basis for new inference methods
in the next chapters.

4.1 Infinite Segment Model

The application we would like to address in this chapter is that of the detection of multiple
segments rather than lines. We will label the model is the infinite segment model. The term
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44 Chapter 4. Nonparametric Bayesian Segment Estimation

infinite relates to the use of a nonparametric Bayesian prior. The term does not reflect the
size of the segments.

Figure 4.1: A mixture of segments. The segments have two more parameters compared to
lines: the length of the segment and its center (or alternatively, the endpoints of the seg-
ment). Analogous to the line detection application, there are n points in 2D space, each point
generated from a segment with parameters θk. The number of segments, k, is not known
beforehand. Compare with Figure 3.1.

We will model the infinite segment model similar to the infinite line model, namely as a
Dirichlet process mixture:

G ∼ DP(α, H),

θi | G iid∼ G,

wi | θi
iid∼ F(wi;θi).

(4.1)

The likelihood function F describes the mapping from parameters θi to observations wi . In
the previous chapter this has been a likelihood function that describes points on lines. In
this chapter the likelihood function describes points on line segments.

Along the same lines as in Chapter 3 we have a base distribution H, a dispersion factor α,
and hyperparameters for the base distribution λ0.

wi θi

α

λ0

F(wi;θi)

N

Figure 4.2: The Dirichlet process mixture with hyperparameter λ0 for the base distribution
H.

For each point wi the segment parameters are given by θi . The parameters θi are not nec-
essarily unique (for i 6= j). When we iterate over unique segments we will use the subscript
k rather than i or we will mention this explicitly.
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4.1.1 Posterior Predictive for a Segment given Other Segments

This follows exactly the same derivation as for the infinite line model in Section 3.2.1. The
posterior predictive is given by (Neal, 2000):

θn | θ1, . . . ,θn−1 ∼
1

α+ n− 1

 
αH +

n−1∑
j=1

δθ j

!
. (4.2)

The prior distribution of parameters θi takes the form of conditional distributions:

θi | θ−i ∼
1

α+ n− 1

 
αH +

∑
j 6=i

δθ j

!
. (4.3)

The notation θ−i describes every other parameter than θi: the set of parameters, θ j , with
j 6= i.

4.1.2 Likelihood of Data given Segment Parameters

The likelihood F(wi ,θi) describes the mapping from parameters θi to observations wi . We
create a likelihood function by the combination of two probability density functions. The
observation wi has x-coordinate x i and y-coordinate yi . We sample x i from a uniform dis-
tribution only giving it nonzero probability on a particular segment on the x-axis:

x i | c, d
iid∼ U(c − d, c + d). (4.4)

This defines a segment on the x-axis centered at c which extends in both directions with
size d. We will use an intercept-slope representation (Chapter 3). Let us define X i = [1, x i]
with x i distributed as in Eq. 4.4. The column vector β = [β0,β1] contains two parameters:
the y-intercept β0 and the slope parameter β1 (compare Section 3.2.2). And we assume a
normally distributed random variable across y−Xβ , the same as in the line model (Eq. 3.5):

yi
iid∼ N(X iβk,σ2

k). (4.5)

The combination of Eq. 4.4 and Eq. 4.5 generates points across a segment on a line.

4.1.3 Prior for a Segment

We postulate a prior that is a combination of Bayesian linear regression with restrictions on
the size of the line:
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wi F(wi;θk)

βk

σk

α

IG (Eq. 4.6)

a0

b0

N (Eq. 4.6)

µ0

Λ0

dk

ck

Par (Eq. 4.8)

L0

k0

N (Eq. 4.10)

µsh

σ2
sh

N

Figure 4.3: The segment parameters for segment k are θk = {σk,βk, dk, ck}. Here σk and
βk are sampled from the same distributions (an Inverse-Gamma, respectively, a Normal dis-
tribution) as in the infinite line model. The extend of the segment, dk, is defined by a Pareto
distribution and its center, ck, by a Normal distribution.

The slope and intercept parameters of the segment are sampled according to a Normal-
Inverse-Gamma distribution (compare Eq. 3.16 for line parameters):

σ2
k ∼ IG(a0, b0),

βk ∼ N(µ0,σ2
kΛ
−1
0 ).

(4.6)

Recall that the data on a line segment is distributed uniformly (Eq. 4.4). This is parametrized
through two parameters, the center of the segment, c, and its extent, d:

x | c, d ∼ U(c − d, c + d). (4.7)

We propose as a prior for the extend of the line segment d, a Pareto distribution (Par):

d | L0, k0 ∼ Par(L0, k0). (4.8)
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The Pareto distribution (Par) is given by:

p(d|L0, k0) =

(
k0 Lk0

0 d−k0−1 i f d ≥ L0,

0 otherwise.
(4.9)

The parameter L0 can be seen as a prior parameter that sets a minimal size to the line
segment. The parameter k0 is the shape parameter of the Pareto distribution.

The center of the segment is sampled from a Normal distribution:

c | µsh,σ2
sh ∼ N(µsh,σ2

sh). (4.10)

The subscript in µsh and σ2
sh stands for shifted. The center of the segment is shifted along

the line.

We will collect all priors and call it a Segment prior, abbreviated to Seg.

θk ∼ Seg(λ0) (4.11)

Writing out all parameters:

βk,σ2
k, dk, ck ∼ Seg(a0, b0,µ0,Λ0, L0, k0,µsh,σ2

sh). (4.12)

This corresponds to:
βk,σ2

k ∼ N IG(a0, b0,µ0,Λ0),

dk ∼ Par(L0, k0),

ck ∼ N(µsh,σ2
sh)

(4.13)

4.1.4 Sampling Segment Parameters given Data

In contrast to the infinite line model there is no conjugacy between prior and likelihood
in the infinite segment model. We have no closed-form updates for hyperparameters given
observed data. Hence, we have to resort to sampling parameters. The proposal distribution,
Q, with which we sample new parameters can be using the current state, θk, or it can sample
from the prior λ0, or a combination thereof:

θk ∼Q(θk,λ0) (4.14)

Observations are sampled independently from line parameters (Section 4.1.2), hence the
likelihood of a set of observations is described by the product.

Lk =
∏

i

p(θk|wi) (4.15)
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We can sample θnew from Seg(λ0 and then accept with probability Lnew/Lk. Alternatively
we can sample using an MCMC proposal distribution around θk:

θk ∼ N(θk,σ2
prop). (4.16)

Alternatively, we can sample in a way that reflects our priors. For example, taking turns
and sample first βk,σ2

k from a NIG distribution keeping dk, ck the same and the other way
around, sample dk, ck from a Pareto-Normal distribution and keep βk,σ2

k the same.

4.2 Inference for the Infinite Segment Model

Let us introduce Gibbs sampling with auxiliary variables (Neal, 2000), see Algorithm 10.

Algorithm 10 Gibbs sampling with auxiliary variables

1: procedure GIBBS ALGORITHM WITH AUXILIARY VARIABLES(w,λ0,α) . Accepts points
w and hyperparameters λ0 and α. Requires also the number of auxiliary variables V , a
proposal distribution Q. Returns k line coordinates.

2: for all t = 1 : T do
3: for all i = 1 : N do
4: for all v = 1 : V do
5: θv ∼ Seg(λ0) . Sample from Eq. 4.11.
6: mv = α/V
7: end for
8: c = cluster(wi) . Get cluster c currently assigned to observation wi .
9: mc = mc − 1 . Adjust cluster size mc (and bookkeeping of K).

10: for all k = 1 : K +m do
11: Lk = mkF(wi;θk) . Calculate likelihood for all θk.
12: end for
13: k ∼ Mul t(K +m, Lk) . Sample k from all clusters (weighed by mk cq mv).
14: θi = θk . Set θi to sampled cluster.
15: mk = mk + 1 . Increment mk (set to 1 for mv , and adjust K).
16: end for
17: for all k = 1 : K do
18: θprop ∼Q(θk,λ0) . Sample from proposal distribution (Eq. 4.14).
19: Lprop =

∏
i F(wi;θprop) . Likelihood for all i at θprop.

20: Lk =
∏

i F(wi;θk) . Likelihood for all i at θk.
21: u∼ U(0,1)
22: if (Lprop/Lk)> u then . Accept/reject.
23: θk = θprop
24: end if
25: end for
26: end for
27: return summary on θk for k line segments.
28: end procedure
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This Gibbs algorithm1 has been described before in the context of a Dirichlet process mix-
ture, without particular likelihoods or priors in mind (see algorithm 8 in Neal, 2000). The
sampling process proposes V new values for the parameters from the hyperparameters. The
V values are called auxiliary parameters. Now, to establish to which cluster a certain ob-
servation wi needs to be assigned, the likelihood of each existing and new clusters alike
are compared. The weight of an old cluster is defined through the number of data points
assigned to it. The weight of a new cluster is defined through α/V . After every data item
is assigned a cluster, the cluster parameters themselves are updated given the assigned data
items.

4.3 Results

We show a drop in performance for segment detection compared to line detection in Sec-
tion 4.3.1. Some examples of difficult to assign segments are given in Section 4.3.2. We
visualize (the lack of) convergence in Section 4.3.3.

4.3.1 Clustering Performance

The results over a larger dataset can be measured with clustering metrics as visualized in
Figure 4.4. The clustering performance of the segment detection algorithm, measured by
the clustering index, such as the Rand Index, the Adjusted Rand Index, and the Hubert
metric, show all reduced performance (see Figure 4.4) compared to line detection (without
constraints on segment size).

(a) Segment detection. (b) Line detection.

Figure 4.4: Segment detection performs worse than line detection across all three clustering
performance indicators. Perfect clustering is indicated by 1.0 for Rand Index, Adjusted Rand
Index, and Hubert.

1The implementation can be found at https://code.annevanrossum.nl/dpm in the folder inference (gibb-
sDPM_algo8), written such that it is compatible with octave.
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4.3.2 Examples

In Figure 4.5 we show four Bayesian point estimates of the sampling process. These are
examples that demonstrate the type of errors that are made in the inference process. In
example (a) the segments are correctly sampled. In (b) the type of error is that of recognizing
multiple segments where there is only one segment to the human observer. In (c) the error
is due to the fact that some segments contain very few points. In (d) the error stems from
line segments being chosen orthogonal to the actual segment.

(a) There is an outlier right of the center. Also, the
line segments that have fewer points, have end-
points that are recognized less "tight" (to be ex-
pected given the Pareto prior).

(b) The single line segment is incorrectly recog-
nized as multiple segments.

(c) The segments with fewer observations are rec-
ognized poorly.

(d) Line segments are (incorrectly) chosen to be
orthogonal to the lines.

Figure 4.5: Bayesian point estimates of the sampling process with varying types of sampling
errors. The descriptions indicate what type of sampling error is visualized per subfigure.
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4.3.3 Trace Plots

To study the convergence of parameters in the infinite segment model, we use trace plots.

(a) This plot traces three points that are assigned
to clusters (limited to around 30). Two of the
points are assigned to one cluster. The other point
to the cluster at the bottom. The plot only shows
accepted assignments. The acceptance of a new
assignment takes rarely hold.

(b) This plot traces a segment parameter belong-
ing to point wi . It exhibits exploratory behavior
around a particular value (in this case 0.5). Com-
pared to Figure 3.14 the variance is quite large.

Figure 4.6: Two examples of trace plots. Left: a trace plot of the assignment of points to
cluster (it changes not so often). Right: a trace plot of one of the parameter values assigned
to wi .

4.4 Chapter Conclusions

From Chapter 3 we know that segment estimation is a much harder problem than line es-
timation. In this chapter we used an advanced method, namely Gibbs sampling with auxil-
iary variables to perform inference over an infinite set of line segments (Van Rossum et al.,
2016c). The auxiliary variable Gibbs sampling method converges faster than the ordinary
Metropolis-Hastings sampling algorithm by postulating multiple segments rather than only
one.

This chapter contributes to answering our first research question.

RQ 1 How can we estimate the number of objects simultaneously with the
fitting of these objects?

To estimate the number of objects simultaneously with the fitting of those objects, we have
used a Bayesian method (as in the previous chapter). In this chapter, the prior and likeli-
hood for the line segment model does not form a conjugate pair. Hence, different sampling
methods had to be used to perform inference for the introduced Bayesian model.
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However, the segment estimation problem remains a challenge for the inference method
in this chapter. The target probability density has modes that each needs to be found and
tend to be separated by very low probability regions. In Chapter 5 we will introduce new
sampling methods that will cope with this challenge.


