

Universiteit Leiden

The handle http://hdl.handle.net/1887/3170176 holds various files of this Leiden University dissertation.

Author: Rossum, A.C. van
Title: Nonparametric Bayesian methods in robotic vision Issue date: 2021-06-03

Nonparametric Bayesian Segment

Estimation

Abstract

Contents In this chapter, we introduce a Bayesian method to perform inference over line segments. In this model, infinite segment model (ISM), the prior for the location is given by a Normal distribution, the prior for the length of the segment is given by a Pareto distribution. Due to the fact that the prior and likelihood do not form a conjugate pair, a more general inference method is used (than the inference methods for the conjugate model in Chapter 3), namely Gibbs sampling with auxiliary variables.

Published in A.C. van Rossum, H.X. Lin, J. Dubbeldam, and H.J. van den Herik. Nonparametric Segment Detection. Proceedings of the Eighth European Starting AI Researcher Symposium, STAIRS 2016, the Hague, the Netherlands, August 26-27, 2016.

Outline Our proposed model is using both a Normal-Inverse-Gamma distribution and a Normal and Pareto distribution as priors for an individual line segment (Section 4.1). Inference over the infinite segment model is done using Gibbs sampling over auxiliary variables (Section 4.2). The results for inference over line segments are compared with those for lines (Section 4.3). Finally, weak aspects of the current MCMC method are established (Section 4.4). They will form the basis for new inference methods in the next chapters.

4.1 Infinite Segment Model

The application we would like to address in this chapter is that of the detection of multiple segments rather than lines. We will label the model is the infinite segment model. The term
infinite relates to the use of a nonparametric Bayesian prior. The term does not reflect the size of the segments.

Figure 4.1: A mixture of segments. The segments have two more parameters compared to lines: the length of the segment and its center (or alternatively, the endpoints of the segment). Analogous to the line detection application, there are n points in 2D space, each point generated from a segment with parameters θ_{k}. The number of segments, k, is not known beforehand. Compare with Figure 3.1.

We will model the infinite segment model similar to the infinite line model, namely as a Dirichlet process mixture:

$$
\begin{align*}
G & \sim D P(\alpha, H), \\
\theta_{i} \mid G & \stackrel{i i d}{\sim} G \tag{4.1}\\
w_{i} \mid \theta_{i} & \stackrel{i i d}{\sim} F\left(w_{i} ; \theta_{i}\right) .
\end{align*}
$$

The likelihood function F describes the mapping from parameters θ_{i} to observations w_{i}. In the previous chapter this has been a likelihood function that describes points on lines. In this chapter the likelihood function describes points on line segments.

Along the same lines as in Chapter 3 we have a base distribution H, a dispersion factor α, and hyperparameters for the base distribution λ_{0}.

Figure 4.2: The Dirichlet process mixture with hyperparameter λ_{0} for the base distribution H.

For each point w_{i} the segment parameters are given by θ_{i}. The parameters θ_{i} are not necessarily unique (for $i \neq j$). When we iterate over unique segments we will use the subscript k rather than i or we will mention this explicitly.

4.1.1 Posterior Predictive for a Segment given Other Segments

This follows exactly the same derivation as for the infinite line model in Section 3.2.1. The posterior predictive is given by (Neal, 2000):

$$
\begin{equation*}
\theta_{n} \mid \theta_{1}, \ldots, \theta_{n-1} \sim \frac{1}{\alpha+n-1}\left(\alpha H+\sum_{j=1}^{n-1} \delta_{\theta_{j}}\right) . \tag{4.2}
\end{equation*}
$$

The prior distribution of parameters θ_{i} takes the form of conditional distributions:

$$
\begin{equation*}
\theta_{i} \left\lvert\, \theta_{-i} \sim \frac{1}{\alpha+n-1}\left(\alpha H+\sum_{j \neq i} \delta_{\theta_{j}}\right) .\right. \tag{4.3}
\end{equation*}
$$

The notation θ_{-i} describes every other parameter than θ_{i} : the set of parameters, θ_{j}, with $j \neq i$.

4.1.2 Likelihood of Data given Segment Parameters

The likelihood $F\left(w_{i}, \theta_{i}\right)$ describes the mapping from parameters θ_{i} to observations w_{i}. We create a likelihood function by the combination of two probability density functions. The observation w_{i} has x-coordinate x_{i} and y -coordinate y_{i}. We sample x_{i} from a uniform distribution only giving it nonzero probability on a particular segment on the x -axis:

$$
\begin{equation*}
x_{i} \mid c, d \stackrel{i i d}{\sim} U(c-d, c+d) . \tag{4.4}
\end{equation*}
$$

This defines a segment on the x -axis centered at c which extends in both directions with size d. We will use an intercept-slope representation (Chapter 3). Let us define $X_{i}=\left[1, x_{i}\right]$ with x_{i} distributed as in Eq. 4.4. The column vector $\beta=\left[\beta_{0}, \beta_{1}\right]$ contains two parameters: the y-intercept β_{0} and the slope parameter β_{1} (compare Section 3.2.2). And we assume a normally distributed random variable across $y-X \beta$, the same as in the line model (Eq. 3.5):

$$
\begin{equation*}
y_{i} \stackrel{i i d}{\sim} N\left(X_{i} \beta_{k}, \sigma_{k}^{2}\right) . \tag{4.5}
\end{equation*}
$$

The combination of Eq. 4.4 and Eq. 4.5 generates points across a segment on a line.

4.1.3 Prior for a Segment

We postulate a prior that is a combination of Bayesian linear regression with restrictions on the size of the line:

Figure 4.3: The segment parameters for segment k are $\theta_{k}=\left\{\sigma_{k}, \beta_{k}, d_{k}, c_{k}\right\}$. Here σ_{k} and β_{k} are sampled from the same distributions (an Inverse-Gamma, respectively, a Normal distribution) as in the infinite line model. The extend of the segment, d_{k}, is defined by a Pareto distribution and its center, c_{k}, by a Normal distribution.

The slope and intercept parameters of the segment are sampled according to a Normal-Inverse-Gamma distribution (compare Eq. 3.16 for line parameters):

$$
\begin{align*}
\sigma_{k}^{2} & \sim I G\left(a_{0}, b_{0}\right) \\
\beta_{k} & \sim N\left(\mu_{0}, \sigma_{k}^{2} \Lambda_{0}^{-1}\right) \tag{4.6}
\end{align*}
$$

Recall that the data on a line segment is distributed uniformly (Eq. 4.4). This is parametrized through two parameters, the center of the segment, c, and its extent, d :

$$
\begin{equation*}
x \mid c, d \sim U(c-d, c+d) \tag{4.7}
\end{equation*}
$$

We propose as a prior for the extend of the line segment d, a Pareto distribution (Par):

$$
\begin{equation*}
d \mid L_{0}, k_{0} \sim \operatorname{Par}\left(L_{0}, k_{0}\right) \tag{4.8}
\end{equation*}
$$

The Pareto distribution (Par) is given by:

$$
p\left(d \mid L_{0}, k_{0}\right)= \begin{cases}k_{0} L_{0}^{k_{0}} d^{-k_{0}-1} & \text { if } d \geq L_{0} \tag{4.9}\\ 0 & \text { otherwise }\end{cases}
$$

The parameter L_{0} can be seen as a prior parameter that sets a minimal size to the line segment. The parameter k_{0} is the shape parameter of the Pareto distribution.

The center of the segment is sampled from a Normal distribution:

$$
\begin{equation*}
c \mid \mu_{s h}, \sigma_{s h}^{2} \sim N\left(\mu_{s h}, \sigma_{s h}^{2}\right) . \tag{4.10}
\end{equation*}
$$

The subscript in $\mu_{s h}$ and $\sigma_{s h}^{2}$ stands for shifted. The center of the segment is shifted along the line.

We will collect all priors and call it a Segment prior, abbreviated to Seg.

$$
\begin{equation*}
\theta_{k} \sim \operatorname{Seg}\left(\lambda_{0}\right) \tag{4.11}
\end{equation*}
$$

Writing out all parameters:

$$
\begin{equation*}
\beta_{k}, \sigma_{k}^{2}, d_{k}, c_{k} \sim \operatorname{Seg}\left(a_{0}, b_{0}, \mu_{0}, \Lambda_{0}, L_{0}, k_{0}, \mu_{s h}, \sigma_{s h}^{2}\right) \tag{4.12}
\end{equation*}
$$

This corresponds to:

$$
\begin{align*}
\beta_{k}, \sigma_{k}^{2} & \sim N I G\left(a_{0}, b_{0}, \mu_{0}, \Lambda_{0}\right), \\
d_{k} & \sim \operatorname{Par}\left(L_{0}, k_{0}\right), \tag{4.13}\\
c_{k} & \sim N\left(\mu_{s h}, \sigma_{s h}^{2}\right)
\end{align*}
$$

4.1.4 Sampling Segment Parameters given Data

In contrast to the infinite line model there is no conjugacy between prior and likelihood in the infinite segment model. We have no closed-form updates for hyperparameters given observed data. Hence, we have to resort to sampling parameters. The proposal distribution, Q, with which we sample new parameters can be using the current state, θ_{k}, or it can sample from the prior λ_{0}, or a combination thereof:

$$
\begin{equation*}
\theta_{k} \sim Q\left(\theta_{k}, \lambda_{0}\right) \tag{4.14}
\end{equation*}
$$

Observations are sampled independently from line parameters (Section 4.1.2), hence the likelihood of a set of observations is described by the product.

$$
\begin{equation*}
L_{k}=\prod_{i} p\left(\theta_{k} \mid w_{i}\right) \tag{4.15}
\end{equation*}
$$

We can sample $\theta_{\text {new }}$ from $\operatorname{Seg}\left(\lambda_{0}\right.$ and then accept with probability $L_{\text {new }} / L_{k}$. Alternatively we can sample using an MCMC proposal distribution around θ_{k} :

$$
\begin{equation*}
\theta_{k} \sim N\left(\theta_{k}, \sigma_{p r o p}^{2}\right) \tag{4.16}
\end{equation*}
$$

Alternatively, we can sample in a way that reflects our priors. For example, taking turns and sample first $\beta_{k}, \sigma_{k}^{2}$ from a NIG distribution keeping d_{k}, c_{k} the same and the other way around, sample d_{k}, c_{k} from a Pareto-Normal distribution and keep $\beta_{k}, \sigma_{k}^{2}$ the same.

4.2 Inference for the Infinite Segment Model

Let us introduce Gibbs sampling with auxiliary variables (Neal, 2000), see Algorithm 10.

```
Algorithm 10 Gibbs sampling with auxiliary variables
    procedure Gibbs Algorithm with auxiliary variables \(\left(w, \lambda_{0}, \alpha\right) \quad \triangleright\) Accepts points
    \(w\) and hyperparameters \(\lambda_{0}\) and \(\alpha\). Requires also the number of auxiliary variables \(V\), a
    proposal distribution \(Q\). Returns \(k\) line coordinates.
        for all \(t=1: T\) do
            for all \(i=1: N\) do
                for all \(v=1: V\) do
                    \(\theta_{v} \sim \operatorname{Seg}\left(\lambda_{0}\right) \quad \triangleright\) Sample from Eq. 4.11.
                    \(m_{v}=\alpha / V\)
            end for
                \(c=\operatorname{cluster}\left(w_{i}\right) \quad \triangleright\) Get cluster \(c\) currently assigned to observation \(w_{i}\).
                \(m_{c}=m_{c}-1 \quad \triangleright\) Adjust cluster size \(m_{c}\) (and bookkeeping of \(K\) ).
                for all \(k=1: K+m\) do
                    \(L_{k}=m_{k} F\left(w_{i} ; \theta_{k}\right) \quad \triangleright\) Calculate likelihood for all \(\theta_{k}\).
                end for
                \(k \sim \operatorname{Mult}\left(K+m, L_{k}\right) \quad \triangleright\) Sample \(k\) from all clusters (weighed by \(m_{k}\) cq \(m_{v}\) ).
                \(\theta_{i}=\theta_{k} \quad \triangleright\) Set \(\theta_{i}\) to sampled cluster.
                \(m_{k}=m_{k}+1 \quad \triangleright\) Increment \(m_{k}\) (set to 1 for \(m_{v}\), and adjust \(K\) ).
            end for
            for all \(k=1: K\) do
                \(\theta_{\text {prop }} \sim Q\left(\theta_{k}, \lambda_{0}\right) \quad \triangleright\) Sample from proposal distribution (Eq. 4.14).
                \(L_{\text {prop }}=\prod_{i} F\left(w_{i} ; \theta_{\text {prop }}\right) \quad \triangleright\) Likelihood for all \(i\) at \(\theta_{\text {prop }}\).
                \(L_{k}=\prod_{i} F\left(w_{i} ; \theta_{k}\right) \quad \triangleright\) Likelihood for all \(i\) at \(\theta_{k}\).
                \(u \sim U(0,1)\)
                if \(\left(L_{\text {prop }} / L_{k}\right)>u\) then \(\quad \triangleright\) Accept \(/\) reject.
                    \(\theta_{k}=\theta_{\text {prop }}\)
                end if
            end for
        end for
        return summary on \(\theta_{k}\) for \(k\) line segments.
    end procedure
```

This Gibbs algorithm ${ }^{1}$ has been described before in the context of a Dirichlet process mixture, without particular likelihoods or priors in mind (see algorithm 8 in Neal, 2000). The sampling process proposes V new values for the parameters from the hyperparameters. The V values are called auxiliary parameters. Now, to establish to which cluster a certain observation w_{i} needs to be assigned, the likelihood of each existing and new clusters alike are compared. The weight of an old cluster is defined through the number of data points assigned to it. The weight of a new cluster is defined through α / V. After every data item is assigned a cluster, the cluster parameters themselves are updated given the assigned data items.

4.3 Results

We show a drop in performance for segment detection compared to line detection in Section 4.3.1. Some examples of difficult to assign segments are given in Section 4.3.2. We visualize (the lack of) convergence in Section 4.3.3.

4.3.1 Clustering Performance

The results over a larger dataset can be measured with clustering metrics as visualized in Figure 4.4. The clustering performance of the segment detection algorithm, measured by the clustering index, such as the Rand Index, the Adjusted Rand Index, and the Hubert metric, show all reduced performance (see Figure 4.4) compared to line detection (without constraints on segment size).

Figure 4.4: Segment detection performs worse than line detection across all three clustering performance indicators. Perfect clustering is indicated by 1.0 for Rand Index, Adjusted Rand Index, and Hubert.

[^0]
4.3.2 Examples

In Figure 4.5 we show four Bayesian point estimates of the sampling process. These are examples that demonstrate the type of errors that are made in the inference process. In example (a) the segments are correctly sampled. In (b) the type of error is that of recognizing multiple segments where there is only one segment to the human observer. In (c) the error is due to the fact that some segments contain very few points. In (d) the error stems from line segments being chosen orthogonal to the actual segment.

(a) There is an outlier right of the center. Also, the line segments that have fewer points, have endpoints that are recognized less "tight" (to be expected given the Pareto prior).

(c) The segments with fewer observations are recognized poorly.

(b) The single line segment is incorrectly recognized as multiple segments.

(d) Line segments are (incorrectly) chosen to be orthogonal to the lines.

Figure 4.5: Bayesian point estimates of the sampling process with varying types of sampling errors. The descriptions indicate what type of sampling error is visualized per subfigure.

4.3.3 Trace Plots

To study the convergence of parameters in the infinite segment model, we use trace plots.

(b) This plot traces a segment parameter belonging to point w_{i}. It exhibits exploratory behavior around a particular value (in this case 0.5). Compared to Figure 3.14 the variance is quite large.

Figure 4.6: Two examples of trace plots. Left: a trace plot of the assignment of points to cluster (it changes not so often). Right: a trace plot of one of the parameter values assigned to w_{i}.

4.4 Chapter Conclusions

From Chapter 3 we know that segment estimation is a much harder problem than line estimation. In this chapter we used an advanced method, namely Gibbs sampling with auxiliary variables to perform inference over an infinite set of line segments (Van Rossum et al., 2016c). The auxiliary variable Gibbs sampling method converges faster than the ordinary Metropolis-Hastings sampling algorithm by postulating multiple segments rather than only one.

This chapter contributes to answering our first research question.

RQ 1 How can we estimate the number of objects simultaneously with the fitting of these objects?

To estimate the number of objects simultaneously with the fitting of those objects, we have used a Bayesian method (as in the previous chapter). In this chapter, the prior and likelihood for the line segment model does not form a conjugate pair. Hence, different sampling methods had to be used to perform inference for the introduced Bayesian model.

However, the segment estimation problem remains a challenge for the inference method in this chapter. The target probability density has modes that each needs to be found and tend to be separated by very low probability regions. In Chapter 5 we will introduce new sampling methods that will cope with this challenge.

[^0]: ${ }^{1}$ The implementation can be found at https://code. annevanrossum.nl/dpm in the folder inference (gibbsDPM_algo8), written such that it is compatible with octave.

