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Contents In this chapter the nonparametric Bayesian models from the literature
(Chapter 2) are applied to perform inference over point clouds. The point
cloud under study will be a point cloud distributed over lines in a two-
dimensional space. Traditionally, RANSAC and the Hough transform have
been used to perform inference over such lines. We use a nonparametric
Bayesian model to perform inference over a countably infinite number
of lines. Given a prior with respect to the noise and the distribution of
points over the lines, Bayesian inference describes the optimal procedure
to perform line fitting.

Published in A.C. van Rossum, H.X. Lin, J. Dubbeldam, and H.J. van den Herik. Non-
parametric Bayesian Line Detection. International Conference on Pattern
Recognition and Methods, ICPRAM 2016, Rome, Italy, February 24-26,
2016. Best paper award in theory and methods track.
A.C. van Rossum, H.X. Lin, J. Dubbeldam, and H.J. van den Herik. Fun-
damentals of Nonparametric Bayesian Line Detection. Springer, 2017.

Outline The infinite line model describes a collection of lines with a Dirichlet pro-
cess as prior (Section 3.2). Inference in the infinite line model is per-
formed through Gibbs sampling (Section 3.3). As is known, Gibbs sam-
pling over parameters converges slowly, however it can be accelerated
through sampling over clusters (Section 3.4). The results by the infer-
ence method are assessed using clustering performance measures (Sec-
tion 3.5). The chapter summarizes the findings (Section 3.6) and intro-
duces extensions which will be handled in the next chapters.
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24 Chapter 3. Nonparametric Bayesian Line Detection

3.1 Four Problems with Line Detection

In computer vision and particularly in robotics, traditionally the task of line detection has
been performed through sophisticated, but ad-hoc methods. Here we mention two examples
of such methods, RANSAC and the Hough transform. RANSAC (Bolles and Fischler, 1981)
is a method that iteratively tests a hypothesis. A line is fitted through a subset of points.
Then other points that are in consensus with this line (according to a certain loss function)
are added to the subset. This procedure is repeated till a certain performance level is ob-
tained. The Hough transform (Hough, 1962) is a deterministic approach which maps points
in the image space to curves in the so-called Hough space of slopes and intercepts. A line is
extracted by getting the maximum in the Hough space.

There are four main problems with these methods. First, the extension of RANSAC or Hough
to the detection of multiple lines is nontrivial (Chen et al., 2001; Zhang and Kǒsecká, 2007;
Gallo et al., 2011). Second, the noise level is hard-coded into model parameters and it is not
possible to incorporate knowledge about the nature of the noise. Third, it is hard to extend
the model to hierarchical forms, for example, to lines that form more complicated structures
such as squares or volumetric forms. Fourth, there are no results known with respect to any
form of optimality of the mentioned algorithms.

In this chapter we postulate a method to perform inference over the number of lines and over
the fitting of points on that line using the nonparametric Bayesian methods from chapter 2.
The method aims at overcoming the four main problems mentioned above.

3.2 Infinite Line Model

The application we would like to address in this chapter is that of the detection of multiple
lines.

Figure 3.1: A mixture of lines. There are n points in 2D space, each point generated from a
line with parameters θk. The number of lines k is not known beforehand.

The Dirichlet process has been previously described as prior for a mixture distribution (in
Figure 2.2, see Section 2.1). It will be used in our model as a prior for the distribution of
points over a countably infinite set of lines. From now on we will refer to this model as the
infinite line model (ILM).
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wi θi G
DP

α

H
F(wi;θi)

N →∞

Figure 3.2: For the infinite line model we will use a Dirichlet process mixture. This visu-
alization uses a combination of a so-called factor graph with plate notation. Compare the
visualization with Eq. 3.1. The observations wi are generated by line parameters θi (which do
not have to be unique). The parameters θi are distributed according to G which is sampled
from a Dirichlet process with base measure H and dispersion parameter α.

The Dirichlet process mixture nature of the infinite line model is visualized in Figure 3.2
using plate notation (see Appendix A.5). The line parameters θi with i = 1,2, . . . are sam-
pled from a distribution G. This distribution is sampled from the base distribution H with
dispersion parameter α. The representation should not be seen as suggesting a form for
factorization. The Dirichlet process as a prior for a mixture model we summarize as follows
(compare with Figure 3.2):

G ∼ DP(α, H),

θi | G iid∼ G,

wi | θi
iid∼ F(wi;θi).

(3.1)

Eq. 3.1 represents a mixture model due to the fact that parameters {θi ,θ j} can be identical
for j 6= i. In that case yi and y j are considered to belong to the same cluster characterized
by parameter θi = θ j (see Section 2.1.3). Here X ∼ S means that X has the distribution S.
Independence properties, such as observation yi given parameter θi being independent of
other observations, are written down explicitly in Eq. 3.1. They might be silently assumed
further on.

We will consider models where G is integrated out, the details of which, will follow in this
chapter. We also introduce hyperparameters to the base distribution H.

wi θi

α

λ0

F(wi;θi)

N →∞

Figure 3.3: The Dirichlet process mixture with the realizations G integrated out and with a
hyperparameter λ0 for the base distribution H.

We will later on see that the base measure H will be the so-called Normal-Inverse-Gamma
(NIG) distribution with hyperparameters λ0. We will also create more detailed figures to
emphasize particular aspects of the model.

As mentioned before the parameters θi and θ j can be identical for i 6= j. We can equivalently
express the Dirichlet process mixture using only k clusters and running the index k over
unique clusters.
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wi

F(wi;θk)
θk

α

λ0

M

K

Figure 3.4: The Dirichlet process mixture over clusters with the index, k, ranging over the
number of clusters. Here there are Mk observations per cluster k.

In this chapter, both θi and θk will be used. If the parameter is written as θi the index i runs
over as many (non-unique) parameters as there are observations. If the parameter is written
as θk the index k runs over (unique) lines.

In Section 3.2.1 it is described how θi is sampled from H and α. In Section 3.2.2 it is
described how wi is sampled from θi . In Section 3.2.3 the prior H(λ0) for θi is described.
In Section 3.2.4 it is described how the hyperparameters λ0 can be updated given the data
wi to define the posterior predictive for the line parameters, θi .

3.2.1 Posterior Predictive for a Line given Other Lines

The Dirichlet process (DP) is described in Section 2.1. The Dirichlet process generates a dis-
tribution G ∼ DP(α, H) with H the so-called base distribution and α, a scalar, the dispersion
parameter.

wi θi
Eq. 4.3

θ j
H

α

λ0

N − 1

Figure 3.5: The Dirichlet process mixture highlighting the posterior predictive for the pa-
rameter θi given the other parameters θ−i . Resampling parameters θ−i is governed by Eq. 4.3.
The observations w j with j 6= i with respect to θ−i are not visualized.

The posterior for the Dirichlet process base distribution and dispersion parameter is a Dirich-
let process with adjusted parameters:

G | θ1, . . . ,θn ∼ DP

 
α+ n,

α

α+ n
H +

n
α+ n

∑n
j=1δθ j

n

!
. (3.2)

The posterior distribution G is a weighted average between the prior base distribution H and
the empirical distribution n−1∑n

j=1δθ j
with the weights respectively α and n (normalized).

The dispersion parameter α is updated to α+ n.
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The posterior predictive for a new parameter θn has the form (see Section 2.1):

θn | θ1, . . . ,θn−1 ∼
1

α+ n− 1

 
αH +

n−1∑
j=1

δθ j

!
. (3.3)

Due to the exchangeability property, any other parameter update can be written down equiv-
alently (Neal, 2000). The prior distribution of parameters θi takes the form of conditional
distributions:

θi | θ−i ∼
1

α+ n− 1

 
αH +

∑
j 6=i

δθ j

!
. (3.4)

The notation θ−i describes every other parameter than θi: the set of parameters, θ j , with
j 6= i. This representation with G marginalized has no independent draws anymore. The
draws θi depend on previous draws θ−i . This representation is known as the Pólya urn
scheme (Blackwell and MacQueen, 1973). It lends itself well to Gibbs sampling (Eq. 2.16)
as can be found in the literature (Escobar, 1994; Escobar and West, 1995).

3.2.2 Likelihood of Data given a Line

Each point in our point cloud wi = (x i , yi)we map into a intercept-slope representation using
X i = [1; x i]. A line k we model using ordinary linear regression with slope βk,0, intercept
βk,1, and standard deviation σk. Thus, the line is parametrized by θk = {βk,0,βk,1,σk} or,
equivalently, θk = {βk,σk}. The noise is normally distributed with the standard deviation
σk as in ordinary least squares.

wi θk

F(wi;θk)

Figure 3.6: This section describes the likelihood of an observation wi given line parameters
θk. The likelihood is as in ordinary least squares and can be found in Eq. 3.5.

yi
iid∼ N(X iβk,σ2

k). (3.5)

We can collect all data points wi = (x i , yi) on a line k, yi − X iβk for i = 1, . . . , n:

y − Xβk =




y1

y2
...
yn


−




1 x1

1 x2
...

...
1 xn



�
βk,0

βk,1

�
. (3.6)

This allows us to write down the likelihood function as:
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p(y | X ,βk,σk)∝ σ−n
k exp

�
− 1

2σ2
k

(y − Xβk)
T (y − Xβk)

�
. (3.7)

Or equivalently, given the points are drawn i.i.d. from the line parameters:

p(yi | X i ,βk,σk)∝ σ−n
k exp

�
− 1

2σ2
k

(yi − X iβk)
T (yi − X iβk)

�
. (3.8)

The likelihood of a data point wi = (x i , yi) given a line k with parameters θk is denoted
F(wi;θk) and is the ordinary linear regression model.

F(wi;θk) = p(yi | X i ,βk,σ2
k). (3.9)

We will draw the line parameters θk from a prior distribution. This makes this model a
Bayesian linear regression model as can be found in the literature for single lines (Box and
Tiao, 2011).

3.2.3 Conjugate Prior for a Line

We postulate the same prior as done before in the literature (Box and Tiao, 2011) for βk

and σk in Eq. 3.9. Those priors are defined on p(σ2
k) rather than p(σk) which are related

through a square root operation. First, we write out the joint probability as a product of the
conditional probability and the marginal probability as follows:

wi σk

α

βk

IG (Eq. 3.11)

N (Eq. 3.13)

b0

a0

µ0

Λ0

N →∞

Figure 3.7: The conjugate Normal (N) and Inverse-Gamma (IG) priors for the infinite line
model model. The parameter θk that parametrizes a line contains a slope βk and standard
deviation σk. The main text makes precise how σk or more specific, σ2

k, will be sampled.

p(βk,σ2
k) = p(βk | σ2

k)p(σ
2
k). (3.10)
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The standard deviation σk is sampled from an Inverse-Gamma (IG) distribution:

σ2
k ∼ IG(a0, b0). (3.11)

In particular, we sample from a distribution IG(a0, b0) with hyperparameters a0 = ν0/2 and
b0 = ν0s2

0/2, see e.g. Mariotto (1989):

p(σ2
k)∝ (σ2

k)
−(ν0/2+1) exp(− 1

2σ2
k

ν0s2
0). (3.12)

The conditional with respect to the line coefficients has a normal distribution as prior:

βk ∼ N(µ0,σ2
kΛ
−1
0 ). (3.13)

Written out:

p(βk | σk)∝ σ−n
k exp

�
− 1

2σ2
k

(βk −µ0)
TΛ0(βk −µ0)

�
. (3.14)

The NIG is a distribution that combines a Normal and an Inverse Gamma distribution and
can be used as a shorthand for the above exposition. Let us define λ0 = {Λ0,µ0, a0, b0} and
recall that θk = {βk,σk}, we have now a description for our base distribution H of which
we can sample θk:

H = N IG(λ0). (3.15)

Summarized, the standard deviation (or more precisely, the variance, σ2
k) is sampled from

the Inverse Gamma distribution and the line line coefficients, βk, are sampled from a Normal
distribution:

σ2
k ∼ IG(a0, b0),

βk ∼ N(µ0,σ2
kΛ
−1
0 ).

(3.16)

The hyperparameters are λ = {Λ0,µ0, a0, b0}. Given that we chose the NIG prior to be con-
jugate to the likelihood (Section 3.2.2), we can write down the prior predictive distribution:

p(wi) =

∫
F(wi;θk)p(θk)dθk,

p(yi) =

∫
p(yi |X i ,βk,σ2

k)p(βk,σ2
k)dβkdσ2

k,

=

∫
N(X iβk,σ2

k)N IG(Λ0,µ0, a0, b0)dβkdσ2
k.

(3.17)
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This can be written in closed form using a multivariate t-distribution (MVSt):

p(yi) = MVSt2a0
(X iµ0,

b0

a0
(I + X iΛ0X T

i )). (3.18)

A detailed derivation can be found in Banerjee (2008).

3.2.4 Posterior Predictive for a Line given Data

In Eq. 3.17 and Eq. 3.18 we find the probability of an observation given the prior on the
hyperparameters. Similarly, we want to have an expression for the probability of an ob-
servation wi given previous observations w j (with j 6= i) and the same hyperparameters
λ0:

p(wi |w j) =

∫
F(wi;θk)p(θk|w j)dθk (3.19)

We will see that we arrive at an expression similar to Eq. 3.18.

wi θi λ0

F(wi;θi)

N

Figure 3.8: The posterior predictive can be calculated by updating the sufficient statistics
λ0→ λn.

The NIG is a conjugate prior with respect to the normal distribution (with unknown mean
and variance). Hence, we have a simplified description for updating the hyperparameters,
given a set of observations. Recall, the observation wi = (x i , yi) can be equivalently de-
scribed as (X i , yi) or, generalized for more observations, (X , y). The hyperparameters are
updated1 according to (cf. Denison, 2002; Walter and Augustin, 2010):

Λn = Λ0 + X T X ,

µn = Λ
−1
n (Λ0µ0 + X T y),

an = a0 + n/2,

bn = b0 + 1/2(y T y +µT
0Λ0µ0 −µT

nΛnµn).

(3.20)

Let us define λ = {Λ0,µ0, a0, b0} and λ∗ = {Λn,µn, an, bn}. Denote a new observation by
wi , then the update for the hyperparameters λ→ λ∗ can be summarized as:

λ∗ = Uup(λ, wi). (3.21)

1In comparison with the notation of Denison (2002), we update Λ rather than V = Λ−1 and subsequently
use Λn at the right-hand side to simplify the notation for µn and bn.
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Removing observations does lead to similarly looking updates (which are at times called
“downdates”2 in the literature, see e.g. Wulsin (2013)) for the hyperparameters:

Λn = Λ0 − X T X ,

µn = Λ
−1
n (Λ0µ0 − X T y),

an = a0 − n/2,

bn = b0 − 1/2(y T y +µT
nΛnµn −µT

0Λ0µ0).

(3.22)

The downdate for the hyperparameters can then be summarized as:

λ∗ = Udown(λ, wi). (3.23)

Hence, we can sample from p(θk | λ0, wi) by sampling from a Normal-Inverse Gamma dis-
tribution with updated hyperparameters, N IG(λn). Sampling of N IG(λn) is as in Eq. 3.16,
but with λn rather than λ0:

σ2
k ∼ IG(an, bn),

µk ∼ N(µn,σ2Λ−1
n ).

(3.24)

The posterior predictive for observation wi given other observations w j and the line’s hyper-
parameters becomes:

p(wi |w j) =

∫
F(wi;θk)p(θk)dθk,

p(yi |y j , X j) =

∫
p(yi |X i ,βk,σ2

k)p(βk,σ2
k)dβkdσ2

k,

=

∫
N(X iβk,σ2

k)N IG(Λn,µn, an, bn)dβkdσ2
k.

(3.25)

This can be written in closed form using a multivariate t-distribution (MVSt):

p(yi |y j , X j) = MVSt2an
(X iµn,

bn

an
(I + X iΛnX T

i )). (3.26)

A detailed derivation can again be found in Banerjee (2008).

2The terminology might have originated from the literature on rank-one updates and downdates on the
Cholesky decomposition.
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3.3 Inference for the Infinite Line Model

The prior distribution of the parameters can be represented in terms of successive conditional
distributions as given in Eq. 4.3 is:

θi | θ−i ∼
1

α+ n− 1

 
αH +

∑
j 6=i

δθ j

!
. (3.27)

The conditional prior of θi given the parameters θ j with j 6= i and observation wi is described
by (Escobar, 1988; Escobar and West, 1995; MacEachern and Müller, 1998; Neal, 2000):

θi | θ−i , wi ∼ riHi +
∑
j 6=i

F(wi;θ j)δθ j
. (3.28)

We use mainly the notation by Neal (2000), also compare Theorem 5.3 in Ghosal and Van der
Vaart (2017). The α-weighted posterior ri defines the probability that a new cluster will be
sampled:

ri = α

∫
F(wi;θ )dH(θ ;λ0). (3.29)

In the case of the infinite line model the probability of an observation wi given the hyper-
parameter λ0 is given by Eqs. 3.17 and 3.18. In Eq. 3.29 we multiply the posterior with α
which will govern the probability of a new cluster being created.

The distribution Hi is the posterior distribution for the parameter θ given base distribution H
and a single observation wi . We do not need to have calculate the probability for particular
parameter values, we only have to sample them from this distribution. Sampling from Hi

must be feasible.
θi ∼ Hi . (3.30)

We can sample from Hi by performing a single update of the hyperparameters λ in Eq. 3.21
with observation wi (n= 1, an = a0 + 1/2, and so on) and then sampling from N IG(λn=1),
see Eq. 3.24.

The probability of sampling a new parameter is given by3:

p(θnew) =
ri

ri +
∑

j 6=i F(wi;θ j)
. (3.31)

This Gibbs algorithm4 has been described before in the context of a Dirichlet process mix-
ture, without particular likelihoods or priors in mind (see algorithm 1 in Neal, 2000). As
shown in Algorithm 8 after initialization5, we perform a loop in which for T iterations each

3This can be derived from Neal (2000) by
∑

i 6= j bF(yi ,θi)+ bα
∫

F(yi;θ j)dG0(θ ) = 1, which gives an expres-
sion for the normalization factor b, which can be found as denominator in Eq. 3.31.

4The implementation can be found at https://code.annevanrossum.nl/dpm in the folder inference (gibb-
sDPM_algo2), written such that it is compatible with octave.

5Initialization details can be found in Appendix B.
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Algorithm 8 Gibbs sampling over parameters θi

1: procedure GIBBS ALGORITHM 1(w,λ0,α) . Accepts points w, hyperparameters λ0,α and
returns k line coordinates

2: θi = GIBBS ALGORITHM 1 INITIALIZATION(w,λ0,α) . See Algorithm 15.
3: for all t = 1 : T do
4: for all i = 1 : N do
5: ri = α

∫
F(wi;θ )dH . Weighted posterior predictive of wi (Eq. 3.29)

6: for all j = 1 : N , j 6= i do
7: Li, j = F(wi;θ j) . Likelihood of a line given an observation (Eq. 3.9)
8: end for
9: p(θnew) =

ri

ri+
∑

j 6=i Li, j
. Probability of sampling a new parameter (Eq. 3.31)

10: u∼ U(0, 1)
11: if p(θnew)> u then . Sample with probability p(θnew)
12: λn = Uup(wi ,λ0) . Update hyperparameters with wi (Eq. 3.21)
13: θi ∼ N IG(λn) . Sample θi from NIG (Eq. 3.24)
14: else
15: i ∼ Mul t(N , p(θold)) . Sample i from existing parameters, θold
16: θi = θold=i . Pick θi given index i
17: end if
18: end for
19: end for
20: return summary on θk for k lines
21: end procedure

θi belonging to observation wi is updated in succession. The loop consists of four steps.
First, the posterior predictive for wi given the hyperparameters p(wi | λ0) is calculated. Sec-
ond, the likelihood F(wi;θ j) for all θ j given wi (with j 6= i) is calculated. Third, the fraction
with ri defines the probability for θi to be sampled from a new or existing cluster. Fourth,
depending on the probability u, (1) a new cluster is sampled, the hyperparameters are up-
dated with information on wi and thereafter θ is sampled from a Normal-Inverse-Gamma
distribution with the updated hyperparameters, or (2) an existing cluster is sampled.

3.4 Accelerating Inference for the Infinite Line Model

In the previous section we sampled over individual parameters. It is possible to iterate only
over the clusters. The derivation takes a few steps (Neal, 2000) but leads to a simple update
for the component indices that only depends on the number of data items per cluster, the
parameter α, and the available data.

The probability to sample from an existing cluster depends on the number of items in that
cluster (the current data item excluded). This is expressed in equation 3.32.

p(ci = c and ci = c j and i 6= j | c−i , wi ,α,θ )∝ nc,−i

α+ n− 1
F(wi;θi). (3.32)

The probability to sample a new cluster only depends on α and the total number of data
items. This is formally described in equation 3.33.
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Algorithm 9 Gibbs sampling over clusters ck

1: procedure GIBBS ALGORITHM 2(w,λ0,α) . Accepts points w and hyperparameters λ0 and α,
returns k line coordinates

2: θk,λc = GIBBS ALGORITHM 2 INITIALIZATION(w,λ0,α) . See Algorithm 16
3: for all t = 1 : T do
4: for all i = 1 : N do
5: c = cluster(wi) . Get cluster c currently assigned to observation wi
6: λc = Udown(wi ,λc) . Adjust cluster hyperparameters on removing wi (Eq. 3.23)
7: mc = mc − 1 . Adjust cluster size mc (and bookkeeping of K)
8: for all k = 1 : K do
9: Lk = mk F(wi;θk) . Likelihood for cluster k given wi (Eq. 3.34)

10: end for
11: ri = α

∫
F(wi;θ )dH . Weighted posterior predictive of wi (Eq. 3.29)

12: p(θnew) =
ri

ri+
∑

k Lk
. Calculate probability of a new parameter

13: u∼ U(0, 1)
14: if p(θnew)> u then . Sample with probability p(θnew)
15: k = K + 1 . New cluster index (and bookkeeping of K , K = K + 1)
16: λk = Uup(wi ,λ0) . Set hyperparameter λk with prior pred. given wi
17: θi ∼ N IG(λk) . Sample θi from NIG
18: else
19: k ∼ Mul t(K , Lk) . Sample k from existing clusters (weighed by mk)
20: λk = Uup(wi ,λk) . Update hyperparameter k with post. pred. given wi
21: end if
22: mk = mk + 1 . Increment cluster size mk
23: end for
24: for all k = 1 : K do
25: θk ∼ N IG(λk) . Sample θk from N IG with up to date λk
26: end for
27: end for
28: return summary on θk for k lines
29: end procedure

p(ci ∈ Ω(c) and ci 6= c j and i 6= j | c−i ,α)∝
α

α+ n− 1

∫
F(wi;θi)dH(θ ). (3.33)

Here Ω(c) denotes all admitted values for ci . The importance of conjugacy is obvious from
Eq. 3.33, it will lead to an analytic form of the integral. The inference method using Eqs. 3.32
and 3.33 is described in Section 3.2.

One benefit of iterating over clusters rather than non-unique parameters is that we can
calculate the likelihood by multiplying it with the number of observations at that cluster
(rather than per parameter). If we write the number of observations as nc,−i = mk, we can
update the likelihood on a cluster level like this:

Lk = mkF(wi;θk). (3.34)

Directly sampling over the clusters is described in its general form (see algorithm 2 in Neal,
2000). Rather than updating each θi per observation wi , an entire cluster θk is updated.
In Algorithm 8 the update of a cluster would require a first observation to generate a new
cluster at θ j and then moving all observations of the old cluster θi to θ j . In contrast, in
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Algorithm 9 when a data item either is added or deleted from a cluster, the cluster parameters
are updated for all data items in that cluster at once. For this algorithm this means that when
wi is excluded from calculating the likelihood we have to6 “downdate” the corresponding
hyperparameters (as described in Eq. 3.23). In Algorithm 9 after all observations have been
iterated over and assigned the corresponding cluster k, an outer loop iterates over all clusters
to obtain new parameters θ from the NIG prior.

3.5 Results

The infinite line model (see Section 3.2) is able to fit an infinite number of lines through a
point cloud in two dimensions. These lines are no line segments, but infinite lines. However,
to test the model a variable number of lines are generated of a length that is considerably
larger compared to the spread caused by the standard deviation of points from that line.

As described before, Gibbs sampling leads to correlated samples. Our choice is to get the
Maximum A Posterior estimates for the clusters by picking the median values for all the
parameters involved. In Section 3.5.1 we discuss the clustering performance, in Section 3.5.2
we compare with the Hough transform, in Section 3.5.3 we provide two clustering examples,
and in Section 3.5.4 we inspect visually if the model converges through trace plots.

3.5.1 Clustering Performance

The results of the clustering algorithms are measured using conventional metrics. Let us
first define the contingency table (see Table 3.1).

Table 3.1: Contingency table. The overlap between clusters X and Y is characterized by
the numbers ni j with each number denoting the number of objects common to X and Y :
ni j = |X i ∩ Yj |.

X�
Y Y1 Y2 . . . Ys Sums

X1 n11 n12 . . . n1s a1
X2 n21 n22 . . . n2s a2
...

...
...

. . .
...

...
X r nr1 nr2 . . . nrs ar

Sums b1 b2 . . . bs

(3.35)

6We don’t strictly have to “downdate”. However, this would become quickly computationally intensive. At
first sight, we might consider storing a tree of hyperparameters, with a branch for each sequence of observations
that we explore. Removal of an observation assigned to a particular cluster would then correspond to backtrack-
ing. We go up the the parent node in the tree and get its previously calculated λ value. However, on reaching
a leaf through adding observation wi , we might need to update the hyperparameters by removing observation
w j . This means we need to calculate updates for λn for all permutations of θi we encounter (permutations, not
sequences).
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There are basically four types of object pairs possible.

◦ A pair of points that are placed in the same class in X and in the same class in Y .

◦ A pair of points that are placed in a different class in X and in a different class in Y .

◦ A pair of points that are placed in a different class in X and in the same class in Y .

◦ A pair of points that are placed in the same class in X and in a different class in Y .

Here X can be considered the ground truth, Y the inferred cluster assignment. Note that
there is no mention of the indices of those classes (they are exchangeable). The first and
second type can be considered "agreements". The third and fourth type can be seen as
"disagreements". Let us define, the total number of distinct point pairs:

T =
�

n
2

�
= n(n− 1)/2. (3.36)

The agreements can be counted as (Brennan and Light, 1974):

A=
�

n
2

�
+

r∑
i=1

s∑
j=1

ni j −
1
2

 
r∑

i=1

a2
i +

s∑
j=1

b2
j

!
. (3.37)

We will use four performance metrics, the Rand Index, the Mirkin index, the Hubert index,
and the Adjusted Rand Index,

Let us first define the Rand Index. It describes the accuracy of cluster assignments (Rand,
1971) as a the ratio of agreements with respect to the total number of possible pairs.

È Definition 3.1 — Rand index

The Rand index RI is defined by:

RI =
A
T

. (3.38)

The Mirkin index (Mirkin and Cherny, 1970) is a metric for disagreement.

È Definition 3.2 — Mirkin index

The Mirkin index M I is defined by:

M I =
T − A

T
. (3.39)

The Hubert index (Hubert, 1977) is a metric takes into account the difference between
agreement and disagreement.
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È Definition 3.3 — Hubert index

The Hubert index HI is defined by:

HI =
A− (T − A)

T
. (3.40)

However, if we randomly assign points to clusters there is a chance that we assign some of
the points correctly. The adjusted Rand index (Hubert and Arabie, 1985) is a "corrected-
for-chance" version of the Rand index. The correction calculates the expected index given
that X and Y are chosen from a generalized hypergeometric contribution (given number of
classes and objects in each):

E =
n(n2 + 1)
2(n− 1)

− n+ 1
2(n− 1)

 
r∑

i=1

a2
i +

s∑
j=1

b2
j

!
+

2
2n(n− 1)

 
r∑

i=1

a2
i

s∑
j=1

b2
j

!
. (3.41)

We can then define the correction to the Rand index by making sure that A = E maps to 0
and that A= T maps to 1.

È Definition 3.4 — Adjusted Rand index

The Adjusted Rand index AR is defined by:

AR=
A− E
T − E

(3.42)

The clustering performance is quite different from the line estimation performance. If the
points are not properly assigned, the line will not be estimated correctly. Due to the fact
that line estimation has this secondary effect, line estimation performance is not taken into
account. Moreover, from lines that generated only a single, or very few points, we can ex-
tract point assignments, but line coefficients are impossible to derive. In fact, any derivation
would lead to introducing a threshold for the number of points per cluster. Then the perfor-
mance would need to be measured by weighting the fitting versus the assignment.

The performance of Algorithm 8 can be seen in Figure 3.9 and is rather disappointing. On
average the inference procedure agrees upon the ground truth for 75% of the cases consid-
ering the Rand Index. Even worse, if we adjust for chance as with the Adjusted Rand Index,
the performance would then drop to only having 25% correct cases!

Algorithm 9 leads to stellar performance measures (Figure 3.10). Apparently, updating en-
tire clusters at once with respect to their parameter values leads at times to perfect clustering,
bringing the performance metrics close to their optimal values (see also Van Rossum et al.,
2016b).

The lack of performance of Algorithm 8 is not only caused by slow mixing. Even when
allowing it ten times the number of iterations of Algorithm 8, it does not reach the same
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Figure 3.9: The performance of Algorithm 8 with respect to clustering is measured using the
Rand Index, the Adjusted Rand Index, the Mirkin metric, and the Hubert metric. A score of 1
means perfect clustering for all metrics, except Mirkin’s where 0 denotes perfect clustering.

Figure 3.10: The performance of Algorithm 9 with respect to clustering is measured using
the Rand Index, the Adjusted Rand Index, the Mirkin metric, and the Hubert metric. A score of
1 means perfect clustering for all metrics, except Mirkin’s where 0 denotes perfect clustering.

performance levels. A line seems to form local regions of high probability, making it difficult
for points to postulate slightly changed line coordinates.
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3.5.2 Hough Transform

A full Bayesian method, in contrast to ad-hoc methods such as the Hough transform, means
optimal inference given the model and noise definition. In practice, the model might be
misspecified or the actual realization of lines might not have enough data points to benefit
from the Bayesian approach. Nevertheless, it is interesting to compare with the Hough
transform.

Figure 3.11: The results of the Hough transform on the same dataset. The performance of
the Hough transform is slightly worse than line estimation using Neal’s second MCMC sampler
(Figure 3.10).

The implementation details of the Hough transform are irrelevant to the thesis7. We briefly
summarize here the key points. The random Hough transform takes two points at random,
fits a line between those points, and establishes slope and intercept of this line. A discrete
object, the accumulator, exists of, in this case, 100 by 100 cells. Each cell represents an
interval of slope and intercept values. For each two points, the accumulator increments a
counter per cell. After running over (many or) all point pairs, those cells with large accumu-
lated values are considered to be the detected lines. What constitutes large is determined
by a threshold that is application specific.

3.5.3 Two Examples

First, we show two examples of line estimations as we would expect them (see Fig. 3.12).

In contrast to the pictures of Fig. 3.12, we show two examples with typical mistakes. These
examples can guide us to understand the inference process better. The first example in seen

7Implementation can be found at https://code.annevanrossum.nl/hough
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Figure 3.12: Examples of the line estimation process. Apart from slightly different angles
and perhaps a few misclassifications the assignments look good.

in Figure 3.13a. It shows the assignment of two lines to a series of points that originated
from a single line in the ground truth. Such an assignment can happen after a single Gibbs
step in Algorithm 8 or after a long run as final assignment if the system does not convergence
to underlying correct assignment.

There is a single line that is represented by two clusters. Algorithm 8 does not have merge
or split steps to perform inference about sets of data points, it thus has to move each data
point one by one. In passing we mention that there are split-merge algorithms that take
these more sophisticated Gibbs steps into account (Jain and Neal, 2004) and we will see
these in the following two chapters.

(a) This shows a mistake where a single line is fit-
ted by two separate lines. One of the lines, the
horizontal one in the center has been assigned to
multiple clusters.

(b) This shows that outliers are no problem for
this type of estimation. An outlier (see the purple
point), even if it is a single point, can be assigned
its own line.

Figure 3.13: Examples of incorrect assignments in line estimation.
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The second example (Figure 3.13b) shows that a single point as an outlier is not a problem
for our method. A single point might throw off Bayesian linear regression, but because
there are multiple lines to be estimated in our Infinite Line Mixture Model, this single point
is assigned its own line.

The extension to more points as outliers would, of course, require us to postulate a distri-
bution for these outlier points as well. For instance, a uniform distribution might be used in
tandem with the proposed model. However, this would lead to a non-conjugate model and
hence it would require different inference methods.

3.5.4 Trace Plots

To study the convergence of parameters in an MCMC model, one of the visual aids that is in
use, are so-called trace plots. A trace plot does plot values over the course of the simulation
run. If we study the trace plot of individual assignments of points over lines, they are not
assigned very often to other lines.

(a) This plot traces three points that are assigned
to clusters (limited to around 30). Two of the
points are assigned to one cluster. The other point
to the cluster at the bottom. The plot only shows
accepted assignments. The acceptance of a new
assignment takes rarely hold.

(b) This plot traces a line parameter βi belong-
ing to point wi . It exhibits exploratory behavior
around a particular value (in this case 1). So now
and then it shows other points (probably from wi
being assigned to a different line, compare with
the plot at the right).

Figure 3.14: Two examples of trace plots. Left: a trace plot of the assignment of points to
cluster (it changes not so often). Right: a trace plot of a parameter value βi assigned to wi .

In Figure 3.14 there are two trace plots. The first plot shows the trace plot of assignments
themselves. The MCMC chain steadily assigns the same parameter to the visualized observa-
tions. At the start there is a burn-in period visible in which the assignment is more variable.
After the burn-in period there are still reassignments, but they are rare. The second plot
shows the trace plot of a value of one of the parameters to which on observation has been
fitted.
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3.6 Chapter Conclusions

The infinite line model proposed in this chapter extends the familiar Bayesian linear regres-
sion model to an infinite number of lines using a Dirichlet Process as prior. The model is a
full Bayesian method to detect multiple lines. A full Bayesian method, in contrast to ad-hoc
methods such as RANSAC or the Hough transform, means optimal inference (Zellner, 1988)
given the model and noise definition.

Results in section 3.5 show high values for different performance metrics for clustering,
such as the Rand Index, the Adjusted Rand Index, and other metrics (Van Rossum et al.,
2016a,b). The Bayesian model is solved through two types of algorithms. Algorithm 8
iterates over all observations and suffers from slow mixing. The individual updates make
it hard to reassign a large number of points at the same time. Algorithm 9 iterates over
entire clusters. This allows updates for groups of points leading to much faster mixing. We
note that even optimal inference may occasionally result in misclassifications. The dataset
is generated by a random process. Hence, occasionally two lines are generated with almost
the same slope and intercept. Points on these lines are impossible to assign to the proper
line.

This chapter contributes to answering our first research question.

RQ 1 How can we estimate the number of objects simultaneously with the
fitting of these objects?

We use a Bayesian method that we demonstrate on line objects. Its nonparametric nature
allows for simultaneous establishing the number of lines as well as their fit.

The essential contribution of this chapter is the introduction of a fully Bayesian method to
infer lines. For such a model, it holds that there are two ways in which it can to be extended
for full-fledged inference in computer vision as required in robotics. First, the extension of
lines in 2D to planes in 3D. This is an extension that does not change anything of the model
except for the dimension of the data points. Second, somehow a prior needs to be incorpo-
rated to cut the lines (of infinite length) to line segments. It means that we need to restrict
the points on the line to a uniform distribution of points over a line segment. A symmetric
Pareto distribution can be used as prior for the end points of the line segment (see next
Chapter). Modeled in this manner, this would subsequently allow for a hierarchical model
in which the end points of the line segment are on their turn part of more complicated ob-
jects. Hence, the Infinite Line Mixture Model is an essential step towards the use of Bayesian
methods (and thus properly formulated priors) for robotic computer vision.


