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ABSTRACT

Sample preparation is often reported as the main bottleneck of analytical processes. To meet the re-
quirements of both high-throughput and high sensitivity, improved sample-preparation methods
capable of fast analyte preconcentration are urgently needed. To this end, a new three-phase electro-
extraction (EE) method is presented that allows for ultrafast electroextraction hyphenated to flow-
injection analysis mass spectrometry (FIA-MS). Four model compounds, i.e., propranolol, amitriptyline,
bupivacaine, and oxeladin, were used to optimize and evaluate the method. Within only 30 s extraction
time, enrichment factors (EF) of 105—569 and extraction recoveries (ER) of 10.2%—55.7% were achieved
for these analytes, with limits of detection (LODs) ranging from 0.36 to 3.21 ng mL~', good linear
response function (R? > 0.99), low relative standard deviation (0.6%—17.8%) and acceptable accuracy (73
—112%). Finally, the optimized three-phase EE method was successfully applied to human urine and
plasma samples. Our three-phase electroextraction method is simple to construct and offers ultrafast,
online extraction of trace amounts of analytes from biological samples, and therefore has great potential

for high-throughput analysis.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

* Corresponding author. Einsteinweg 55, 2333, CC, Leiden, the Netherlands.

1. Introduction

In the past few decades, the field of analytical chemistry has
seen unprecedented development in detection and separation
techniques, including ultrahigh-resolution mass spectrometry,
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matrix-assisted laser desorption/ionization, multi-dimensional
liquid chromatography, ultra-performance liquid chromatography,
and capillary electrophoresis—mass spectrometry. Sample prepa-
ration plays a crucial role in the removal of interferents, and the
enrichment of analytes concentration in the bio-analytical work-
flow. However, contemporary sample-preparation methods often
still form a bottleneck for the entire analytical workflow [1—6]. This
is especially the case for high-throughput and low concentration
level analysis [7—10] as they are time- and labor-intensive [1,11—13]
and offer relatively low enrichment [14]. An ideal sample-
preparation method should provide speed, simplicity, efficiency,
high enrichment factors, and should be environmentally friendly
[1,7,15,16].

Liquid-liquid extraction (LLE) is one of the most commonly-used
sample preparation techniques [17], and solid-phase extraction
(SPE) has been increasingly used in recent decades [4,18]. However,
both techniques are time consuming, and use large volumes of toxic
solvent [7]. In the last two decades, electro-driven extraction has
gained attention for its simplicity, fast extraction, high analyte
enrichment, and low sample consumption [19—22]. Electro-driven
extraction is based on the active migration of charged analytes in an
applied electric field. Since electro-migration of analytes is a fast
one-step process, electro-driven extraction offers faster extraction
and enrichment compared to LLE and SPE. The two main variants of
electro-driven extraction are electroextraction (EE) and electro-
membrane extraction (EME), with the main difference being the
addition of a membrane in the latter. EME was first reported in
2006 by Pedersen-Bjergaard et al. [23] and uses a membrane with
organic solvent held in its pores, between the aqueous sample and
an acceptor solution. EE was first developed for analytical purposes
in 1994 by Van der Vlis et al. [24], but was not used for bioanalysis
until 2010 by Lindenburg et al. [25]. Due to the omission of a
membrane, EE is more straightforward in operation and necessary
equipment [26]. Depending on the number of phases, EE can be
categorized as two-phase or three-phase EE. In two-phase EE, the
phases consist of an organic phase and an aqueous acceptor phase,
and analytes have to be dissolved in the organic phase before
extraction [25]. In three-phase EE, the donor phase consists of the
aqueous sample and is separated from the aqueous acceptor phase
by an organic phase [27]. Typically, the time needed for the three-
phase electro-driven extraction process ranges from 2.5 min to
33.3 min [19,27—36]. To make electro-driven extraction more
suitable for high-throughput analytical platforms, the extraction
time should be further reduced.

In this study, a new online three-phase EE setup coupled to mass
spectrometry was developed by using a switching valve, a syringe
pump, an LC pump, a power supply with an electrode. A digital
video-camera was utilized to record the EE process. The solvent
type and composition of the organic phase, the composition of the
acceptor phase and the aqueous sample, and the extraction voltage
and time were optimized for four commonly used model com-
pounds, i.e., propranolol, amitriptyline, bupivacaine, and oxeladin.
Finally, the three-phase EE setup was successfully applied to human
urine and plasma samples. This study provides an ultrafast, simple
online sample preparation setup with high enrichment factors,
which has great potential for high-throughput sample analysis.

2. Experimental section
2.1. Chemicals

Propranolol, amitriptyline, bupivacaine, and oxeladin were all
purchased from Sigma-Aldrich (Steinheim, Germany). Deionized

(DI) water was obtained from a Millipore high-purity water
dispenser (Billerica, MA, USA). Formic acid (FA) was purchased from
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Acros Organics BVBA (Geel, Belgium). Methanol, ethyl acetate, and
toluene were purchased from Biosolve Chimime SARL (Dieuze,
France). Cyclohexane, n-hexane, and n-butanol were purchased
from Sigma-Aldrich (Steinheim, Germany). Bis(2-ethylhexyl)
phosphate (DEHP) and tributyl phosphate (TBP) were purchased
from Sigma-Aldrich (Steinheim, Germany). All solvents were HPLC
grade or higher.

2.2. Standard and sample solutions

Stock solutions of all compounds (100 pg mL~') were prepared
in 1:1 MeOH: H,O0. Standard solutions were prepared by diluting
stock solutions to a concentration of 500 ng mL™" in 4% FA, unless
stated otherwise. To evaluate the method in human plasma and
urine samples, 50 ng mL~! of propranolol, amitriptyline, bupiva-
caine, and oxeladin were firstly spiked to pure urine and plasma
samples, and then 5-fold diluted samples [37—40]. Human urine
samples (pooled from healthy donors) and EDTA-treated plasma
samples (Sanquin, Leiden, The Netherlands) were kept frozen
at —80 °C until analysis and were thawed at room temperature
directly before use.

2.3. Electroextraction setup

Fig. 1A schematically depicts the online EE-MS setup, and a
video of a three-phase extraction (Video 1) can be found in the
Supporting Information. The installation consists of four parts: 1)
an LC pump (Agilent 1200-series, Waldbronn, Germany) for FIA-MS
solvent delivery; 2) a quadrupole-time-of-flight (Q-TOF) mass
spectrometer (Agilent 6530 Accurate-Mass Q-TOF LC/MS, Wald-
bronn, Germany) for analyte detection; 3) a syringe pump (KD
Scientific LEGATO 270, Holliston, MA, USA) for infusion and with-
drawal of the acceptor phase droplet; and 4) the three-phase EE
setup, detailed in Fig. 1B. At the heart of the system is a two-
position ten-port switching valve (IDEX Health & Science, Lake
Forest, IL, USA) to connect the parts. The connecting tubing consists
of 120 mm fused silica (200 pm ID, 360 um OD) between syringe
pump and valve, and 200 mm PEEK tubing (150 um ID, 360 pm OD)
from the valve to the negative electrode.

Supplementary video related to this article can be found at
https://doi.org/10.1016/j.aca.2021.338204

The three-phase electroextraction was performed inside a
0.5 mL Eppendorf tube. A 250 nL droplet of aqueous acceptor phase
is suspended from the tip of a fused silica capillary (100 um ID,
365 um OD, 70 mm length) in 300 pL of organic phase, which is on
top of 200 pL of an aqueous sample. A platinum wire (280 pm
diameter) with a polytetrafluorethylene (PTFE) insulating sleeve is
inserted through the organic layer into the donor phase as the
electrode. The tip of the electrode protrudes approximately 1 mm
from the sleeve. The negative electrode was connected to a stainless
steel union between two sections of fused silica capillary. The
extraction voltage was delivered by a DC power supply (FUG HCN
140—3500 DC, FuG Elektronik GmbH, Schechen, Germany). The
extraction process and droplet stability were monitored and
recorded with a USB pen camera and Debut Video Capture (NCH
Software, Greenwood Village, CO, USA).

2.4. Extraction procedure

For the three-phase EE procedure, the valve was first set in
position 1 as depicted in Fig. 1C. The platinum electrode and fused
silica capillary were inserted manually into the Eppendorf tube
containing the organic phase and the aqueous sample. The organic
phase was saturated with water to avoid the dissolution of the
acceptor droplet [27]. A 250 pL syringe (Hamilton, Bonaduz,


https://doi.org/10.1016/j.aca.2021.338204

Y. He, P. Miggiels, B. Wouters et al.

Analytica Chimica Acta 1149 (2021) 338204

Fused silica
capillary
n (A) (B)
i ‘ 2 HY
=k =1 +
P W . Aqueous
| accepter
Part 1 o Part 2 H phase
LC pump = 2 MS
= Y| p—
e = Organic
phase
Valve
$ — : Aqueous
E i sample
L / Three-phase EE
Part 3 ; Camera Power supply
Syringe pump Par|t 4

In position 1

In position 2

Fig. 1. (A) The schematic diagram of the online three-phase EE setup, (B) detail of the three-phase EE process inside an Eppendorf tube, and (C) the positions of the switching valve,
in which position 1 is the extraction, position 2 is the injection to FIA-MS. (Schematic Video 1 can be found in SI).

Switzerland) and the programmable syringe pump were used to
infuse the aqueous acceptor phase (20% MeOH and 4% FA, unless
stated otherwise) to form a 0.25 pL droplet in the organic phase
layer (ethyl acetate with 1% TBP, unless otherwise indicated).
Subsequently, the extraction voltage was applied by manually
switching on the high-voltage source to extract and concentrate
analytes from the aqueous sample into the aqueous acceptor
droplet. After the extraction time, the voltage was disconnected,
the acceptor droplet was aspirated into the fused silica capillary,
and the Eppendorf tube was replaced manually with a vial with the
same solvent as the acceptor phase, and the droplet was further
aspirated into the 1 uL sample loop, after which the valve was
switched to the inject position (Fig. 1C, position 2). The sample plug
was transferred to the MS by the continuous flow (0.4 mL min~!) of
the flow-injection solvent. When withdrawing the droplet, ethyl
acetate from the organic phase layer is at risk of being withdrawn
too. However, this would be negligible compared to the volume of
the acceptor phase.

2.5. MS methods

The EE setup was hyphenated online with an Agilent 6530
quadrupole-time-of-flight mass spectrometer (Q-TOF/MS) equip-
ped with an Agilent Jet Stream (AJS) ESI source. Electrospray ioni-
zation was operated in the positive mode. The source parameters
were: drying gas temperature 350 °C, drying gas flow 8 L min~},
nebulizer gas pressure 35 psi, sheath gas temperature 350 °C,
sheath gas flow 11 L min~!, capillary voltage 3500 V, and nozzle
voltage 1500 V. The mass range of the MS experiments was
100—500 my/z, with an acquisition rate of 2 spectra s~'. Data

acquisition and instrument control were monitored using Mass
Hunter version B.06.01 (Agilent, Waldbronn, Germany). MS data
were processed with Mass Hunter Quantitative Analysis for Q-TOF
(version B.07.00 SP1).

2.6. Data analysis and calculation

All MS data was collected with Agilent Masshunter Workstation
Data Acquisition, analyzed with Agilent Masshunter Quantitative
Analysis (for QTOF) and R (version 3.6.1). The enrichment factor
(EF) [20,27] and extraction recovery (ER) [20,33] were used to
evaluate the extraction performance of analytes under different
conditions. EF and ER were calculated according to Equations (1)
and (2):

[Acceptor phase] g gr

EF= (1)

[Aqueous SamPple] pegyre e

ER(%) = EF x V4.100% )
Vs

Where V; is the volume of the aqueous acceptor phase droplet.
Since the acceptor phase contains 20% methanol (unless stated
otherwise), part of the droplet will dissolve in the ethyl acetate.
Here, we assume the worst case, i.e. 20% methanol was totally
dissolved in the organic phase, leading to a corrected droplet vol-
ume of 0.2 uL instead of 0.25 uL Vs is the volume of the aqueous
sample, i.e., 200 pL.
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3. Results and discussion
3.1. Qualification of EE

The three-phase EE method was first visually assessed using
50 ng mL~! of the cationic dye crystal violet as a sample. The
acceptor phase droplet colored dark blue within a few seconds after
starting the extraction and remained stable for over 360 s (Video 2
in Supporting Information). The aspiration rate and volume of the
syringe pump were then optimized to ensure the complete transfer
of the acceptor droplet to the sample loop via aspiration (aspiration
volume 7.0 pL, flow rate 7.5 pL min~!). The transparent PTFE sample
loop allowed for visual confirmation of positioning the extracted
sample in the loop. For this, a series of crystal violet extractions was
performed. Under the optimized conditions, 10 consecutive ex-
tractions were carried out and it was observed that extracted
crystal violet zone was positioned in the middle of the sample loop
each time. No carryover was observed on the electrode and fused
silica capillary after washing with isopropanol:water (1:1, v/v).
Additionally, no carryover was detected for the four model com-
pounds, hence demonstrating that the capillary and electrode can
be reused.

Supplementary video related to this article can be found at
https://doi.org/10.1016/j.aca.2021.338204

3.2. Optimization of the EE method

To optimize the three-phase EE method, the following four pa-
rameters were studied: 1) the solvent type of the organic phase, 2)
the composition of the organic phase, 3) the percentage of MeOH
and FA in the aqueous acceptor phase and the aqueous sample, and
4) the applied extraction voltage and time.

3.2.1. The selection of the solvent type for the organic phase

During extraction, the analytes selectively pass through the
organic phase layer, based on properties such as polarity, electrical
conductivity, or viscosity. Five common organic solvents (solubility
in water), i.e. ethyl acetate (83 g L), n-butanol (73 g L™ 1), cyclo-
hexane (immiscible), n-hexane (9.5 mg L7!), and toluene
(0.52 g L) were studied as the organic phase.

As shown in Table 1, the EF of the four model compounds with
ethyl acetate as the organic layer was significantly higher than
those in the other tested solvents (P < 0.05). This might be due to
the relatively higher electrical conductivity and lower viscosity of
ethyl acetate (Table S1 in SI) [41], which allowed for faster migra-
tion of analytes through the organic layer. Thus, ethyl acetate was
selected as the organic phase for subsequent experiments.

3.2.2. Modulation of the composition of the organic phase

The influence of the polarity of the organic phase on the
extraction performance has been reported in several studies
[22,27,42,43]. To further modulate the organic phase, two organic
solvents were added to ethyl acetate; the well-known ion-pair re-
agent, di (2-ethylhexyl) phosphate (DEHP), and the more recently
discussed tributyl phosphate (TBP) [42]. These two organic solvents

Table 1
The influence of the organic phase solvent on the EF of different compounds (n = 3).

Propranolol  Amitriptyline Bupivacaine Oxeladin

ethyl acetate  61.33 +8.67 73.67 + 10.17 456.67 + 68.04 148.33 + 21.94

n-butanol 0.06 + 0.03  0.12 + 0.01 0.40 + 0.10 0.14 + 0.01
cyclohexane 0.29 +0.09 0.28 + 0.06 1.20 + 0.37 0.29 + 0.07
n-hexane 0.06 + 0.01 0.22 + 0.07 0.44 + 0.15 030 +0.14
toluene 0.06 + 0.05 2.04 +0.16 1.15 + 040 0.64 + 0.01
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were mixed with ethyl acetate in 1%, 3%, 5%, and 10%, respectively.

Fig. 2A shows that the addition of DEHP negatively affects the
extraction performance. A probable cause is that its addition
modulates the organic phase more favorable towards polar analytes
[27], while the analytes of interest are non-polar. Also, the ionic
nature of DEHP resulted in excessively high current of over 180 pA,
compared to 15 nA normally during the extraction, which can
induce electrolysis and an increase in pH at the cathode, i.e., the
acceptor phase [42,44]. The pKa of the four non-polar compounds
ranges from 8.10 to 9.42, hence the increased pH decreases the
charged state and increases their affinity for the organic solvent.
Therefore, the non-ionic solvent TBP was applied to adjust the
polarity of the organic phase.

Fig. 2 B shows that for all compounds, the enrichment factor was
reduced with the addition of more than 1% TBP. Propranolol,
amitriptyline, and bupivacaine showed the best extraction perfor-
mance at 1% TBP, whereas for oxeladin, there was no significant
difference between 0% or 1% TBP (Fig. 2B). Similar to DEHP, addition
of TBP to the organic phase increases the polarity, which adjusts the
selectivity towards more polar compounds. The polarity of 1% TBP
in ethyl acetate may provide the best organic phase selectivity for
the four compounds in this experiment. Additionally, the non-ionic
nature of TBP did not induce a high current and excessive elec-
trolysis during electroextraction. A similar result was reported in a
previous publication [42]. In this study, the addition of 1% TBP was
used for subsequent experiments.

3.2.3. Effects of FA and MeOH in the acceptor phase and the
aqueous sample on the EF

The EF of the model compounds was at its highest with 4% FA in
the acceptor phase and the aqueous sample (Fig. 3A). The addition
of FA to the acceptor phase and the sample reduces the pH, which
increases the charge state and migration of the non-polar model
analytes. Higher percentages of FA in the acceptor phase would
most likely be beneficial, as further reduction of the pH increases
the solubility of the compounds [42,44]. However, with more than
4% FA, the acceptor droplet was unstable during the extraction,
most likely due to excessive positive charge in the droplet and, as a
consequence, electrostatic repulsion. Therefore, all further experi-
ments were conducted with 4% FA in the acceptor phase and the
sample. Furthermore, the addition of MeOH to the acceptor droplet
enhanced evaporation and ionization in the ESI source and also
increased the Galvani potential difference between phases [27],
hence improved extraction performance. Fig. 3B shows that the
optimum point was at 20% MeOH in the acceptor phase, which was
used in subsequent experiments.

3.2.4. Effects of the applied voltage and extraction time on EF

The applied voltage and extraction time are two critical pa-
rameters of electroextraction and were studied thoroughly. Four
extraction voltages (100, 300, 600, and 900 V) at eight extraction
times (15s,305,455,605,905s,120 5,180 s, and 360 s) were studied
to find the optimal combination of these parameters. Since the
extraction profiles are similar for all four compounds, only the data
for propranolol is shown here. The results (Fig. 4 and Figs. S1-3 in
the SI) showed that an extraction time with maximum EF was
reached for each compound, independent of the voltage applied.
This maximum was reached faster as the voltage was increased.
However, at extraction voltages over 900 V the acceptor droplet
became unstable, and extractions regularly failed. The profile
showed a declining trend if the extraction was continued after
reaching the maximum EF. This can be explained by a change in pH
due to electrolysis during the extraction process [22]. The acceptor
droplet acts as the cathode, and the pH increases on this side as an
effect of electrolysis. As a result, the charge state equilibrium of the
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Fig. 2. The effects of DEHP (A) and TBP (B) in the organic phase on the EF of four compounds (n = 3). Extraction conditions: applied voltage, 900 V; extraction time, 30 s; organic
phase, ethyl acetate; acceptor phase, 20% MeOH with 4% FA; aqueous sample, 4% FA with 500 ng mL~! analyte.
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analytes shifts towards a more neutral state, reducing their polarity
and giving rise to back-extraction into the organic phase. The
competition between extraction and back-extraction leads to an
optimum point in accordance with observations from various
publications [19,27,28].

The optimum extraction time of 30 s for propranolol (at 900 V) is
much shorter than the 2.5—33.3 min reported in other publications
[19,27—36]. Despite that the ER values are lower for some com-
pounds (from 10.2% to 55.7%, Table S2), the EF of the four com-
pounds (105—569) is higher than comparable non-polar and basic

compounds in other studies. For instance, the EF of apolar carni-
tines ranged from 6 to 25 [27], and from 69 to 363 for atenolol and
betaxolol [34]. The biggest improvement of this method with
respect to the three-phase EE method described in Ref. [27] is the
improved fast extraction time from 3 min to 30 s, and higher EF for
the compounds, from 6 to 25 to 105—569. The shorter extraction
time and higher extraction performance of the model compounds
might be due to the higher extraction voltage and the small-volume
droplet as the acceptor phase. Spherical droplets have a high
surface-area-to-volume-ratio and the electric field is denser around
the droplet perimeter, which all contribute to fast migration of the
analytes. Avelar et al. reported a novel multiphase electroextraction
setup in which a chromatographic paper was located in the
aqueous acceptor phase, allowing for direct coupling with paper
spray mass spectrometry. They demonstrated the setup by
extracting five tricyclic antidepressants from saliva and obtained
extraction efficiencies ranging from 42 to 63% and low matrix ef-
fect. The extraction efficiency is probably enhanced by the high
absorption performance of the chromatographic paper and thor-
ough desorption of the extracted analytes [45]. The total time for
the extraction procedure is 2—3 min, including adding the sample
and organic phase, forming acceptor droplet and injecting.3 min,
including adding the sample and organic phase, forming acceptor
droplet and injecting.

3.3. Application of the three-phase EE method to human urine and
plasma samples

3.3.1. Performance of EE method in urine and plasma samples
To further evaluate the EE method with biological samples, the
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Table 2
The EF of compounds before and after ion suppression correction in pure and diluted

urine and plasma samples (n = 3).

Propranolol ~ Amitriptyline  Bupivacaine  Oxeladin
Urine Pure 35+02 29+0.1 28712 13.1 £ 0.5
Diluted 18.8 + 1.8 147 £ 0.9 87.1 +3.5 282 +0.1
Plasma  Pure 4.0+ 0.7 25+08 n.a. 119+ 21
Diluted 22.6 +0.1 148 + 1.0 156.6 + 2.2 649 + 3.8
After ion suppression correction (EF.)
Urine Pure 28.6 225 330.1 76.4
Diluted 61.4 60.0 400.7 98.7
Plasma  Pure 19.6 9.7 n.a. 35.9
Diluted 58.3 37.0 423.7 108.2

Note: n.a. means nothing was detected.

model compounds were spiked at therapeutic concentrations
(50 ng mL~1) into pure and 5-fold diluted samples of human urine
and plasma (with 4% FA added, no precipitation) [37—44]. The mass
spectra of the model compounds can be found in Fig. S4 of the
Supporting Information. The EF in pure urine and plasma was
significantly lower than that in diluted samples (P < 0.05), as shown
in Table 2. These pure matrices suffered from severer ion sup-
pression than diluted samples in the MS analysis. This was
confirmed by comparing to the academic sample (50 ng mL™!
model compounds with 4% FA in MilliQ water), which showed
significantly higher EF and ER (Table S2), and do not suffer from ion
suppression.

3.3.2. Ion suppression evaluation and correction

A continuous-flow injection analysis was set up to qualitatively
assess and quantitively correct the ion suppression effects. The
model compounds (50 ng mL~!) were added in the FIA carrier flow
and the EE acceptor phase. This provides a continuous high signal
for the model compounds. The optimized EE method was then
applied to an academic sample, diluted and pure urine and plasma
samples, without addition of the model compounds. The ion sup-
pression effect can then be quantified as the decrease in signal of
the model compounds. As shown in Fig. 5 and S5 — 7, the ion

x105
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071
0.6
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suppression effect increases with the concentration of the urine
and plasma samples. This observation confirms the hypothesis that
the decreased EF of the compounds from urine and plasma is
mainly caused by ion suppression in the MS source, and not by
lower extraction efficiency.

The corrected enrichment factor (EF;) is then calculated by
dividing the enrichment factor (EF) by the ion suppression ratio (R),
ergo EF. = EF /R [46]. The R here is defined as the lowest point of the
model compound’s spectrum in the biological matrix over the
baseline signal of model compound (in percentage, Fig. 5 and S5 —
7). Also, the extraction recovery of the analytes was corrected by EF,
and Equation (2). The high EF. (Table 2) and corrected ER results
(Table S2) showed good enrichment and recovery of analytes from
urine and plasma samples, demonstrating that the developed EE
method is suitable to the analysis of plasma and urine samples. The
results demonstrate that dilution increases the EF and ER, which
was consistent with [47]. However, the gain in EF is lower than the
dilution factor, thus there is still a net loss of signal, and it can be
concluded that diluting the biological samples improves the
extraction recovery, but is not advantageous for reducing the ma-
trix effect.

3.4. Validation of the EE method

Higher EF and ER results indicate better performance of the EE
method in 5-fold diluted samples. Therefore, the performance of
the EE method in diluted plasma and urine were evaluated by
determining the response function, limits of detection (LODs),
limits of quantification (LOQs), intra- and inter-day EF. All com-
pounds showed good linear response (R?> > 0.9903) within a con-
centration range of two orders of magnitude, from 10 to
1000 ng mL~! (Table 3). The LODs and LOQs of the four compounds
were in the range of 0.36—3.21 ng mL~! and 1.20—10.71 ng mL™},
respectively. The accuracy (73—112%), obtained intra- and inter-day
EF and RSD (Table 3), and all the validated results indicate the
robustness, stability and sensitivity of the EE method in both
plasma and urine samples.
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Table 3

Analytica Chimica Acta 1149 (2021) 338204

Calibration curve and precisions (RSD) of the model compounds in diluted plasma and urine samples by using the optimized EE method (n = 3).

Linear range (ng mL™') R? LODs (ng mL™1) LOQs (ng mL™1) Accuracy (%) EF (RSD) (50 ng mL™ 1)
[ 1 1
SN =3) (N7 =10) (50 ng mL~ 1) Intraday Interday

Propranolol Plasma 10—1000 0.9953 1.6 53 86 22.6 (0.8%) 21.0 (10.1%)

Urine 10—1000 0.9996 3.2 10.7 100 18.8 (6.0%) 17.4 (17.8%)
Amitriptyline Plasma 10—-1000 0.9986 0.6 2.0 96 14.8 (9.8%) 13.7 (1.5%)

Urine 10—-1000 0.9950 14 48 107 14.7 (9.0%) 14.0 (16.7%)
Bupivacaine Plasma 10—1000 0.9924 1.7 5.6 112 156.6 (2.0%) 142.4 (11.9%)

Urine 10—-1000 0.9954 1.9 6.5 86 87.1 (5.7%) 80.8 (17.3%)
Oxeladin Plasma 10—-1000 0.9915 04 1.2 90 64.9 (8.3%) 58.4 (6.3%)

Urine 10—1000 0.9903 0.7 2.4 73 28.2 (0.6%) 27.3 (5.2%)

4. Conclusion

A three-phase EE setup was developed and optimized with
propranolol, amitriptyline, bupivacaine, and oxeladin in aqueous
samples. For the first time, the extraction time can be as short as
30 s while achieving enrichment factors of 105—569 and LODs of
360 pg/mL. The optimized three-phase EE method was successfully
applied to human urine and plasma samples, with enrichment
factors ranging from 37 to 424 and extraction recovery from 3.7% to
42.4% in diluted samples with good accuracy (73—112%). Future
research will be focused on integrating a separation method, i.e.
ultra-high pressure liquid chromatography (UHPLC), to reduce ion
suppression effects.

In summary, we provided a fast, simple, and online three-phase
EE setup with high enrichment factors. For future perspectives, the
setup can be automated to increase the throughput. We believe that
this technique has great potential to overcome the sample prepa-
ration bottleneck to enable high-throughput bioanalysis
workflows.
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