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Chapter 6

Abstract

Atherosclerosis is the underlying pathology in a major part of cardiovascular disease,

the leading cause of mortality in developed countries. The infiltration of monocytes into the

vessel walls of large arteries is a key denominator of atherogenesis, making monocytes ac-

countable for the development of atherosclerosis. With the development of high-throughput

transcriptome profiling platforms and cytometric methods for circulating cells, it is now fea-

sible to study in-depth the predicted functional change of circulating monocytes reflected by

changes of gene expression in certain pathways and correlate the changes to disease outcome.

Neuroimmune guidance cues comprise a group of circulating- and cell membrane-associated

signaling proteins that are progressively involved in monocyte functions. Here, we employed

the CIRCULATING CELLS study cohort to classify cardiovascular disease patients and

healthy individuals in relation to their expression of neuroimmune guidance cues in circu-

lating monocytes. To cope with the complexity of human datasets featured by noisy data,

nonlinearity and multidimensionality, we assessed various machine-learning methods. Of

these, the linear discriminant analysis, Näıve Bayesian model and stochastic gradient boost

model yielded perfect or near-perfect sensibility and specificity and revealed that expression

levels of the neuroimmune guidance cues SEMA6B, SEMA6D and EPHA2 in circulating

monocytes were of predictive values for cardiovascular disease outcome.

Keywords

cardiovascular diseases; monocytes; machine-learning methods; neuroimmune guidance

cues
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6.1 Introduction

Cardiovascular diseases (CVD) remain a leading cause of death in the more economi-

cally developed countries, despite improvements in surgical and drug treatments. Much of

the CVD-related mortality and morbidity is attributable to atherosclerosis [1]. Atherosclero-

sis is a systemic chronic inflammatory and immune disease [2,3]. Monocytes and their derived

macrophages play a key role in the development of atherosclerosis. Under conditions of dys-

lipidemia and chronic systemic inflammation, circulating monocytes and the endothelium

become activated, resulting in monocyte infiltration and differentiation into macrophages in

the vessel wall. Upon the excessive uptake of lipids, these macrophages become foam cells

and participate decisively in the development and exacerbation of atherosclerosis, coronary

stenosis and its clinical sequela, such as acute myocardial infarctions [3-7]. Neuroimmune

guidance cues (NGCs) comprise the netrin, semaphorin, ephrin and slit families of proteins of

ligands and receptors, which were originally characterized to direct cell and axon migration

during neural development. In the last two decades, it has become increasingly clear that

these proteins can also play a major role in (pathological) immune responses by directly

regulating leukocyte trafficking and directly impacting the pathogenesis of atherosclerosis

[8-10]. Indeed, numerous studies using murine atherosclerosis models have found multi-

faceted roles of NGCs in the development of atherosclerosis [11-15]. In addition, several

observations also support a role for NGCs in human CVD. For instance, three NGC genes

are located on human chromosome 1, in the locus that has been identified as the premature

myocardial infarction susceptibility locus [16]. In addition, the axonal guidance pathway

is found enriched with genetic variants that have significant associations with CVD, and

several novel genetic risk loci for CVD contain NGCs genes [17,18]. However, whether the

monocytic expression of NGCs is informative for human CVD has not been described yet.

Transcriptomics can reveal key alterations in biological processes causing human diseases,

thereby present novel instruments that are not only useful for the understanding of the

disease mechanisms but, also, for molecular diagnosis and clinical therapy [19]. Since mono-

cytes are among the culprit cells of atherosclerosis development, monocytic expression levels

of NGCs could provide insights into the underlying mechanisms in atherosclerosis develop-

ment and can be used to improve the evidence-based treatment of CVD to reduce the global

burden of this disease. The CIRCULATING CELLS study was designed to study the role

of several cellular mediators of atherosclerosis as biomarkers of CVD to predict the suscep-
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tibility of patients to the progression of CVD [20]. By applying different machine-learning

methods (also known as predictive modeling methods) on the gene expression data of pe-

ripheral monocytes from the CIRCULATING CELLS study cohort, we investigated whether

monocytic NGC expression is informative to distinguish between healthy individuals and

CVD patients. As machine-learning methods are developed to explore complex relationships

between predictors and outcomes, they are suitable tools to tackle the difficulties due to the

complexity of human datasets featured by noisy data, nonlinearity and multidimensionality.

Some machine-learning methods take simplistic approaches and work with linear relation-

ships between features and outcomes, while other methods are more complex and are able

to capture nonlinear patterns and to tolerate a low information-noise ratio, owing to the

difference of their pre-assumptions and learning logics. We compared the performance of

multiple modeling methods to explore the best predicting potential of our dataset. In our

study, we included commonly used models like logistic regression and linear discriminant

analysis, as well as more complex nonlinear models and tree-based models. Linear models,

like partial least square, have supervised dimension reduction functionality, which benefits

model performances in the case of high between-feature correlations. Nonlinear models, like

Näıve Bayesian, make probabilistic calls based on the information provided by the features

independently, possibly performing better in situations when between-feature correlations

are low. In addition to modeling of the data itself, stochastic gradient boost also models

the residuals, thereby increasing the learning ability when the information-noise ratio is low.

We compared the results of the different modeling methods to gain insights on the nature of

the dataset. Altogether, this allowed us to give a proof of concept that the expression of a

small set of functional genes can be a prediction value for complex diseases like CVD.

6.2 Materials and Methods

6.2.1 Study Population

The study population consists of a subgroup of 369 patients from the CIRCULATING

CELLS study cohort [20] (Figure 1). In brief, CIRCULATING CELLS was a prospective

multicenter study in which patients scheduled for coronary angiography due to CVD were

included. For this subgroup, extensive clinical characteristics were recorded (Table 1), and

the transcriptomes of purified circulating CD14+ monocytes were profiled. To minimize the

potential influence of the presence of profound acute myocardial ischemia on monocytic gene

expression profiles, patients with ST-elevation myocardial infarction (STEMI) were excluded.
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Figure 1. Flowchart of predictive modeling using neuroimmune guidance cues (NGCs)

Subjects in the CIRCULATING CELLS cohort were recruited based on inclusion criteria. The

clinical characteristics were collected, peripheral blooded CD14-positive monocytes were isolated,

and their transcriptomes were profiled. The expression of neuronal guidance cues was subset. The

individuals were randomly assigned to the Training Set or Test Set for external assessment of the

model performance. Classification models that were built on the Training Set data and model

performance were internally assessed with cross-validation. Finally, we made comparisons between

the models and gained insights on the choice of model and features.
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Clinical Characteristics All CVD Healthy

Demographic data

Number (male/female) 368 (273/95) 356 (264/92) 12 (9/3)

Age 61.8 (±10.4) 62.2 (±10.3) 49.2 (±6.3)

BMI 27.3 (±4.3) 27.4 (±4.3) 23.7 (±2.3)

Coronary risk factors

Hypertension 231 (63%) 231 (0.65) 0 (0)

Hypercholesterolemia 70 (19%) 65 (0.18) 5 (0.42)

Diabetes 77 (21%) 77 (0.22) 0 (0)

Current smoker 73 (20%) 73 (0.21) 0 (0)

Family MI history 141 (39%) 137 (0.39) 4 (0.33)

Previous MI 112 (30%) 112 (0.31) 0 (0)

Positive family history 157 (43%) 152 (0.43) 5 (0.42)

Therapeutic decision

PTCA 130 (35%) 130 (0.37) 0 (0)

CABG 32 (9%) 32 (0.09) 0 (0)

NYHA Classification

NYHA Class I 248 (67%) 236 (0.66) 12 (1)

NYHA Class II 78 (21%) 78 (0.22) 0 (0)

NYHA Class III 26 (7%) 26 (0.07) 0 (0)

NYHA Class IV 16 (4%) 16 (0.04) 0 (0)

Current medication

β-blocker 228 (69%) 228 (0.72) 0 (0)

Ca-antagonist 95 (29%) 95 (0.30) 0 (0)

Aspirin 260 (79%) 260 (0.82) 0 (0)

Vitamin K antagonist 29 (9%) 29 (0.09) 0 (0)

Low molecular weight heparin 10 (3%) 10 (0.03) 0 (0)

ADP receptor blocker 168 (51%) 168 (0.53) 0 (0)

ACE inhibitor 116 (35%) 116 (0.36) 0 (0)

ATII receptor blocker 71 (22%) 71 (0.22) 0 (0)

Diuretic 76 (23%) 76 (0.24) 0 (0)

Statins 252 (77%) 252 (0.79) 0 (0)

Table 1. Clinical characteristics of the CTMM patient cohort

Values are N ± SD or N (%). Abbreviations: BMI—body mass index, MI—myocardial infarction,

PTCA—percutaneous transluminal coronary angioplasty, CABG—coronary artery bypass graft,

NYHA—New York Heart Association, and CVD—cardiovascular disease.
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Additional exclusion criteria were age ¡ 18 years, inability to give informed consent, suspected

drug or alcohol abuse, serious concomitant disease, serious recent infectious disease in the

last 6 weeks or suspected elevated state of the immune system and noncooperativeness.

The study was approved by the medical ethical committees of the participating centers and

conformed to the Declaration of Helsinki. All patients received oral and written information

about the objectives of the study and provided written informed consent.

6.2.2 Isolation of Peripheral Blood CD14-Positive Monocytes

The full procedures for the isolation of peripheral blood CD14-positive monocytes were

described previously [20]. Briefly, 60 mLof EDTA blood was collected from patients via

the arterial sheath catheter. Peripheral blood mononuclear cells (PBMCs) were isolated by

density gradient centrifugation over Ficollpaque Plus (GE Healthcare, Diegem, the Nether-

lands). For further purification of monocytes, the PBMC fraction was incubated with mag-

netic beads coated with anti-CD14 antibodies (BD Biosciences, Breda, the Netherlands), and

monocytes were purified with a MACS separation system according to the manufacturer’s

instructions (BD Biosciences, Breda, the Netherlands). Cells in CD14-positive fraction were

resuspended, lysed in Trizol and aliquoted. The aliquots were stored at -80 °C for RNA

isolation.

6.2.3 RNA Isolation and Microarray Analysis

Monocyte samples were shipped to Eurofins Genomics for semiautomated extraction of

RNA using RNeasy 96-well plates (Qiagen). RNA samples were quantified using a Beckman

Coulter DTX880 system, and only samples that displayed RIN values > 9 (Agilent Bioana-

lyzer) were included. Labeled RNA was prepared and used on the array for hybridization.

Hybridized chips were scanned by Illumina BeadStation (Illumina, Inc., San Diego, CA,

USA). Raw image analysis and signal extraction was performed with Illumina Beadstudio

Gene Expression software with default settings (no background subtraction). Data were

exported as text files. The gene expression profiling data were integrated and archived using

the self-developed software “Circucel” [20]. The expressions of NGC ligands and receptors

were extracted along with the phenotypic profiles of the patients. We excluded patient

records without the required outcome parameter—in this case, a “confirmed diagnosis”. For

NGC expression profiles, there were no missing values. Therefore, data imputation was not

necessary.
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6.2.4 Statistical Analysis

Univariate correlation of NGC expressions (or other continuous variables) with a cat-

egorical variable was tested by 2 mean Student’s t-tests. p-values were obtained from t-

statistics. Univariate correlation of NGC expressions (or other continuous variables) with

a continuous variable was tested with linear regression. p-values were obtained from the

t-statistic of the coefficient of the variable. Correlation of 2 categorical variables was tested

using Pearson’s chi-squared test of the cross-tabulation. p-values were obtained from the

chi-square statistics. For all the tests, a p-value of less than 0.05 was considered significant.

6.2.5 Model Fitting and Assessment of Model Performance

We used R package “caret” and its multiple dependencies (summarized in Table 2) for

modeling the predicting power of NGCs to the disease status of patients [33]. Performance

statistics for binary classification models were calculated, including accuracy, Cohen’s kappa

(κ), sensitivity and specificity. The Cohen’s kappa (κ) value is given by formula

Pobserved − Pexpected

1 − Pexpected
(6.1)

which indicates the performance gain from the modeling over random guessing (the higher,

the better). Since this data set features a smaller number of healthy individuals, we set the

models to aim for picking up healthy individuals as events. The sensitivity (true positive

prediction) and specificity (true negative prediction) values were also calculated in accord

to this principle. For the external assessment of model performance, data partitions were

created to have a training set (90% of the dataset) and a test set (10% of the dataset).

This was done using the “createDataPartition” function in the “caret” package to ensure

proportional and representative coverage of individuals in both the training and test sets.

Data in the training set were used for model building, and the data in the test set were

held out in the training process and were used to determine the model performance pseudo-

externally by comparing the prediction on the test set with the actual outcome of the test

set. The distributions of NGC expressions in the training set and test set were illustrated

in Figure S3. For the internal assessment of model performance and stability, 10-fold

cross-validations were done, which means 10% of the training data were kept out of each

iteration to evaluate the model generated by the other 90% training data over 10 iterations.

Similar performance statistics were calculated at each iteration. The average values and

standard deviations of the parameters were summarized to assess the model performance and
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stability, respectively. Some models were tuned in ranges of tuning parameters to control

their complexity and adaptivity (Table 2). Tuning parameters giving the best performance

statistics in the cross-validation were chosen as optimal tuning of the model, and a final

model was built using these parameters on the complete training data.

6.3 Results

6.3.1 NGC Expressions in Monocytes and Feature Selections

We made use of the CIRCULATING CELLS study cohort [20] to address the question of

whether NGC expression profiles of circulating blood cells can be related to cardiovascular

health. From 368 subjects out of this cohort (CVD patients and healthy controls), the

transcriptomes of their CD14-positive monocytes were profiled (Figure 1). The individuals

received different treatments and medications, and some of them suffered from other diseases,

resembling the reality of complexity of most human cohorts (Table 1). Next, we aimed

to classify CVD patients and healthy individuals using the differential expression of the

NGC transcripts. To that end, we first sought to include NGCs with high expression levels

and good univariate correlation with the outcome. Figure 2A shows the expression of

NGCs in the cohort. Based on the detection threshold of the profiling platform, NGCs

with signals higher than 6.75 (log2 scale unless specified otherwise) were unconditionally

included in the modeling as potential features. To validate the microarray analysis, we

compared the monocytic NGC expression profile obtained by microarray to that obtained

by real-time PCR. Both methods showed a similar expression profile, with the exception of

SEMA3E (Figure S1). To gain understanding of univariate correlation of the features to

the outcome, violin plots of the NGC expressions were created to compare the distribution

of NGC expression levels in both the CVD group and healthy group (Figure 2B and

Table S1). The ranges of expressions showed overlaps in both groups, suggesting that the

univariate prediction power will be minimal. In addition, with the ranges being widespread,

the information to noise ratio is relatively low in this dataset. To quantify the univariate

correlation of NGC expressions to the disease status, we calculated the p-value with two

mean t-tests between the CVD group and healthy group. A volcano plot was created to

observe the t-test p-value in relation to the fold change (Figure 3A). We identified several

NGC ligands and receptors to be significantly different between CVD patients and healthy

individuals, although with small fold changes. Among the significantly different genes, 10 had

expression signals lower than 6.75. These 10 were added to the modeling procedure despite

145



Chapter 6

Model

Name
Abbr. Type

Best tuning parameter

(Tuning Range)

R Package

Dependency

Boosted

Logistic

Regression

Logit Linear n iter = 41(11, 101) “caTools”

Linear

Discriminant

Analysis

Lda Linear NA “MASS”

Partial Least

Squares
Pls Linear n comp = 1(1, 10) “pls”

Support Vec-

tor Machines
Svm Nonlinear Cost = 0.25(2−2, 2−7) “kernlab”

Nearest

Shrunken

Centroids

Pam Linear Threshold = 0(0, 25) “pamr”

Mixture

Discriminant

Analysis

Mda Nonlinear Subclasses = 11(2, 16) “mda”

Flexible

Discriminant

Analysis

Fda Nonlinear
Degree = 4(1, 5)

n pruning = 5(2, 5)
“earth”, “mda”

k-Nearest

Neighbors
Knn Nonlinear n neighbor = 5(5, 23) “class”

Naive

Bayesian
Nb Nonlinear

Laplacecorrection = 1(1, 3)

Kernalfunction = F (F, T )

BandwidthAdj = 1(1, 3)

“naivebayes”

Bagged

CART
BagCart Tree/Rule-based NA

“ipred”, “plyr”

“e1071”

Random Forest
Rf Tree/Rule-based n param = 2(2, 37) “randomForest”

Stochastic

Gradient

Boosting

Gbm Tree/Rule-based

Interactiondepth = 1(1, 7)

n trees = 450(100, 1000)

Shrinkage = 0.1(0.01, 0.1)

Minnodesize = 5(5, 7)

“gbm”, “plyr”

C5.0 Tree C5 Tree/Rule-based NA “C50”, “plyr”

Table 2. Summary of model names, types and tuning parameters
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their low expression levels. In total, 35 NGC genes were further to be used as features in

subsequent modeling. Finally, to avoid instability caused by between-feature collinearity in

some models, we calculated between-feature correlations of the expressions of selected NGCs

(Figure 3B). No pairwise correlations of NGC expressions exceeded the threshold of 0.75,

suggesting that there would be a minimal influence of collinearity. Therefore, none of the

selected NGCs were eliminated based on between-feature correlations.

6.3.2 Gender and Age are Unlikely to be Confounding Factors in the Current Study

Gender and age are conventional confounding factors in clinical situations when reveal-

ing relationships between measurements of phenotypes and diseases. For machine learning,

if age or gender affect both the features and the outcome, they would be confounding factors

by definition. Firstly, we examined the relationship of age to NGC expressions and disease

outcome. NGC expressions plotted against age in scatterplots with linear fittings showed no

significant correlation between age and the NGC expressions (Figure 4A). The age ranges

of both groups overlap, although the younger age dominates in the healthy group (Figure

4B). These observations suggested that age would add an additional prediction power in

our modeling but would not be a confounding factor, as it does not link directly to NGC

expressions. Next, we examined the relationship of sex to NGC expressions and disease out-

comes. Using violin plots, we compared the distribution of NGC expressions in both sexes

(Figure 5A). The distribution of NGC expressions was barely affected by sex, including the

X-linked PLXNA3, PLXNB3 and EFNB1 genes (Figure 5A). There were six NGCs with

significantly different expressions comparing males to females, albeit with a very small fold

change relative to the variations (Figure 5B). Cross-tabulations of sex and disease outcomes

were made, and the frequency distribution of both genders was similar among CVD patients

and healthy individuals (Figure 5C). Therefore, sex was also unlikely to be a confounding

factor in this study. Regardless, sex and age were included in our modeling process, as it is

common practice to control for these conventional confounding factors.

6.3.3 Performance of Different Models

Different machine-learning methods were applied, and optimal tuning was obtained for

each model listed in Table 2. The performance statistics for each of the models was cal-

culated and summarized in Figure 6. As measurements for model stability, we examined

standard deviations of the cross-validations for accuracies and Cohen’s Kappa. Model per-
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Figure 2. NGC expressions in patients and healthy subjects

(a) Box plots with quartiles were created using NGC expressions from all individuals. Baseline signal

of the platform (6.75) was indicated with the dashed line. (b) Violin plots of all NGC expressions

were created for cardiovascular disease (CVD) patients and healthy individuals. The violin shapes

represent the density distribution of NGC expressions in the groups. The NGC expressions of CVD

patients overlap with those of healthy individuals. Due to the small number of healthy individuals,

their NGC expressions were sometimes not normally distributed.
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Figure 3. Univariate correlation of NGC expressions with disease phenotypes and pair-

wise correlations of NGC expressions

(a) Volcano plot showing the fold changes and the significance of difference in the 2 mean Student’s

t-tests between NGC expressions in CVD patients and healthy individuals. NGCs with significant

differences (p < 0.05) are labeled with gene names and red color. For most NGCs, the univariate

correlation determined by the 2 mean Student’s t-tests with the outcomes is minimal. (b) Pairwise

covariances of NGC expressions were illustrated in the heatmap to examine the between-feature

correlations. Blue color indicates a positive correlation, whereas red color indicates a negative cor-

relation. There are no absolute pairwise covariances higher than 0.75, the common cutoff for highly

correlated features.

149



Chapter 6

Figure 4. Influence of age as a potential confounding factor

(a) Scatter plots of expressions of selected NGCs in relation to age were made to show the influence

of age on NGC expressions. Linear regressions were done with age being the dependent variable

providing the fitted trend line (blue line), the 95% confidence interval of the trend (gray area) and

the regression R-squared. Correlations of NGC expressions and age are minimal, as indicated by the

R-squared values. (b) Boxplot of age distribution in CVD patients and healthy individuals. Young

age dominates in the healthy individuals.
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Figure 5. Inspection of the influence of sex as a potential confounding factor

(a) Violin plots to show the distribution of expressions of selected NGCs in males and females. To

be noticed is that distributions of selected NGC expressions are similar between sexes. (b) A volcano

plot was made showing the fold change and the significance of differences in a 2 mean Student’s

t-tests between NGC expressions in males and females. NGCs with significant differences (p < 0.05)

were labeled with gene names and red color. (c) Contingency table showing that the ratio of sexes

is not biased in relation to the outcomes.
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formance could be categorized in four groups (Figure 6A-D). (1) Partial least squares,

support vector machine and nearest shrunken centroids models failed entirely to model the

informative part of the gene expression data, as was revealed by having bottom-line accuracy

(not better than predicting all the individuals to be CVD) and zero Cohen’s Kappa value in

the cross-validation, training set and test set. (2) Most models—namely, logistic regression,

k-nearest neighbors, mixture discriminant analysis, flexible discriminant analysis, bagged

CART (classification and regression tree), random forest and single C5.0 tree—suffered from

overfitting, as was characterized by far better performances of models in the training set

than in the test set. This can be explained by the modeling process trying to polish these

models to perfectly predict the outcome based on the information in the training dataset.

However, the modeling for the training set could not be generalized to the test set data. (3)

K-nearest neighbors and flexible discriminant models had overall better prediction powers

over random guesses but were still not up to standard. (4) Linear discriminant analysis,

Näıve Bayesian and stochastic gradient boosting models performed best compared with the

other models, within both the training set and test set at an accuracy of more than 0.98

and Cohen’s Kappa more than 0.75 in the test set. These results indicate that the linear

discriminant analysis, Näıve Bayesian and stochastic gradient boosting models were able

to translate the informative part of NGC expression data into disease outcome. The three

best-performing models all reached a sensitivity of 1 in the test set, meaning that they were

able to discriminate healthy individuals from CVD patients (Figure 6C). Cohen’s kappa (κ)

values were 0.79, 0.79 and 1 for the linear discriminant analysis, Näıve Bayesian model and

stochastic gradient boost model, respectively (Figure 6B). The lower Cohen’s kappa (κ) for

the former two models were due to the misclassification of one healthy individual as a CVD

patient (Table 3). In the prediction of the training set, the linear discriminant analysis had

lower sensitivity in the training set due to the misclassification of three healthy individuals

to the CVD group (Table 3). Interestingly, the three misclassified healthy individuals still

had higher modeled probability to be healthy than all but one misclassified CVD patient,

suggesting that the sensitivity problem can be solved by an alternative cutoff value of the

classification probability. When the cutoff value was altered from the original 0.5 to 0.28,

the linear discriminant analysis achieved the same ideal sensitivity as the Näıve Bayesian

model (Figure S2A,B). However, to prove the external efficiency of the alternative cutoff,

another independent test set would be necessary, which is not feasible considering the size

of this study.
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Figure 6. Model performance

(a-d) Model performance metrics—namely, accuracy (a), Cohen’s Kappa (b), sensitivity (c) and

specificity (d)—were illustrated in cross-validations (green dots and error bars), Training Set (black

dots) and Test Set (red dots) for all models. Models are categorized into 4 groups based on their

performances.

Training Reference Test Reference

Model Prediction CVD Healthy Prediction CVD Healthy

Linear Discriminant CVD 284 3 CVD 70 0

Analysis Healthy 1 7 Healthy 1 2

Naive Bayesian CVD 285 0 CVD 70 0

Healthy 0 10 Healthy 1 2

Stochastic Gradient CVD 285 0 CVD 71 0

Boosting Healthy 0 10 Healthy 0 2

Table 3. Confusion matrices of the linear discriminant analysis, Naive Bayesian and

stochastic gradient boosting models
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6.3.4 Features with the Most Importance in the Models

Apart from age, the most important three features determined by the linear discrimi-

nant analysis and Näıve Bayesian model were PLXNC1, DSCAM and DCC, while the most

important three features determined by stochastic gradient boost were SEMA6B, SEMA6D

and EPHA2 (Figure 7A-C). As we noted before, age was determined to be important con-

tributor to the model but was hardly a confounding factor, considering the weak correlation

of age with NGC expressions (Figure 7A-C). The functional relevance of the top features

will be discussed in the Discussion section.

Figure 7. Variable importance of the models

(a-c) Variable importance measured in the linear discriminant analysis (a), Näıve Bayesian model

(b) and stochastic gradient boost model (c). The importance of the most important feature was

scaled to 100.

6.4 Discussion

In this study, we used NGC expressions of peripheral blood monocytes for the predic-

tion of CVD. To reveal the true prediction power of monocytic NGC expression profiles, we

performed cross-validation and validation using a pseudo-external test set with conventional

confounding factors controlled. Of the models, Näıve Bayesian model and stochastic gradient

model had satisfactory discrimination in both the training test and test set. The stochastic

gradient model with a residual modeling mechanism was able to achieve 100% accuracy.

Therefore, we have established the proof of concept that a small set of functional genes,

NGCs, is of sufficient prediction power for the classification of CVD patients and healthy

individuals. There are several challenging factors in the prediction of CVDs using mono-

cytic NGC expressions. Firstly, nonlinearity is common in the biological effect of proteins.
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Taking NTN1 as an example, the repellent effect of NTN1 on monocyte and macrophage

migration has an optimal concentration of around 250 ng/ml; higher or lower concentrations

are both less effective [3,14]. The biological effect also depends on its target, as NTN1 also

has opposite roles acting on smooth muscle cells or macrophages [15]. Secondly, concomitant

physiological processes in certain disease conditions can systemically cancel out the change

of average gene expressions if they alter the gene expression in the opposite direction. In

our case, CVD patients experience changes in the monocyte subpopulations, with increased

lipopolysaccharide receptors and the low-affinity FC γ receptor-positive monocytes, referred

to as intermediate monocytes [21,22]. These intermediate monocytes have been shown to

predict cardiovascular events in subjects referred for elective coronary angiography [23]. At

the same time, there is increased mobilization of lipopolysaccharide receptor-positive and

low-affinity FC γ receptor-negative näıve classical monocytes from bone marrow, a pro-

cess termed monocytosis. For any changes induced by monocyte activation/differentiation,

monocytosis will cancel out the change because of the added näıve classical monocyte popu-

lation. Moreover, human measurements in general can be very heterogenic by nature. Even

proved biomarkers suffer from false positives and false negatives because of large variations

in human measurements. In this study, we sought to tackle these problems by applying

multiple modeling methods, each of which incorporates special features in the aspects of the

linearity requirements or the learning mechanisms. Machine-learning methods are different

from each other in various ways, including learning mechanisms and the assumptions made

on the features. For a given dataset, choosing a model with suitable learning mechanisms

and proper assumptions of the features can benefit the performance of modeling. In the cur-

rent dataset, the linear discriminant analysis and the Näıve Bayesian model both adopted

the same features, with identical weights on each feature, but the Näıve Bayesian model

had better performance (Figure 6 and 7A,B). As both models are based on multivariate

probability densities, the difference of the model performance should result from the differ-

ent intrinsic assumptions and learning mechanisms of the models. The linear discriminant

analysis assumes a multidimensional Gaussian distribution of the feature data, while the

Näıve Bayesian model works with a more flexible distribution. Instead, the Näıve Bayesian

model makes a strong assumption that all features are independent, so that the conditional

probability of one class will be simply the product of the probability densities of all features.

In addition, Näıve Bayesian could model nonlinear relationships between features and the

outcome. Due to smaller numbers of individuals in the healthy group, distributions were
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sometimes non-normal (Figure 2B). As previously described, the features in this dataset

have relatively low pairwise covariance (Figure 3B), so that the independent-feature as-

sumption required by the Näıve Bayesian model is very likely to be acceptable. Taken

together, the structure in the current dataset favors the Näıve Bayesian model, which ex-

plains its better performance. The top 10 important NGCs chosen in the linear discriminant

analysis and Näıve Bayesian models were all significantly differently expressed in the two

mean t-tests, except NTNG1 (Figure 3A and 7A,B). This suggests that these two models

favored features that have primarily different values in CVD and healthy groups, while the

inclusion of NTNG1 served as a supplement to address the remaining variations that had

not been explained by the other factors. Stochastic gradient boosting got the ideal classifi-

cation of CVD and healthy individuals in both the training set and test set with a superior

discrimination of CVD and healthy probability than the linear discriminant analysis and

Näıve Bayesian model (Figure 6 and Table 2). The stochastic gradient boosting model

is a classification tree-based model that incorporates functionalities that allows iterations

over different choices of features and the modeling of residuals at costs until the residual is

smaller than a certain threshold. From our modeling practice, the complexity of the stochas-

tic gradient boosting paid off in comparison to the other two tree-based models—namely,

the bagged CART model and the random forest model (Figure 6 and Figure S2C-E). The

bagged CART model, which does not iterate among different sets of features, suffered from

a larger variation of predicted probabilities (Figure S2C,D), suggesting that randomized

feature selection did benefit the modeling stability. On the other hand, the random forest

model had the ability to produce probability predictions with less variation but failed to de-

liver a probability above the cutoff in the test set, confirming the extra learning ability made

possible by the gradient boosting process (Figure S2C,E). Notably, the stochastic gradient

boosting model picked considerably different NGCs as features. The most important three

features in this model, SEMA6B, SEMA6D and EPHA2, are not included in the top 10 fea-

tures in the linear discriminant analysis and Näıve Bayesian models (Figure 7). The most

important feature, SEMA6B, was not even significant in the two mean t-tests (Figure 3A).

Variable importance in the stochastic gradient boosting model took both the importance of

a variable in the building of a decision tree and the subsequent modeling of residuals into

account. It is likely that SEMA6B performed well in the modeling of the residual, since the

univariate prediction power of SEMA6B should be minimal. The modeling of residuals often

improves datasets with lower information-to-noise ratios, which is the case in the current
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dataset. The importance of a feature in certain models could sometimes inform us with the

relevance of the feature to the outcome. In the current setup, the importance of an NGC in

the prediction models might suggest the functional importance of NGC in the development of

CVD via monocytes. The linear discriminant analysis and Näıve Bayesian model picked up

PLXNC1 as the most important feature. PLXNC1 mediates monocyte migration, adhesion

and differentiation in response to its ligand SEMA7A [24]. At regions experiencing disturbed

blood flow (atheroprone), an increase of SEMA7A in endothelial cells exacerbates inflamma-

tion and atherosclerotic plaque size [12]. SEMA6D and EPHA2 were chosen as the second

and third most important features in the stochastic gradient boost model. SEMA6D has a

role in immunology as being costimulatory molecule-expressed by dendritic cells [25]. The

function of SEMA6D in monocytes is not known yet. EPHA2 promotes the adhesion and

differentiation of monocytes [26,27]. In an apolipoprotein E knockout murine atherosclerosis

model, the knockdown of EPHA2 using adenovirus-carrying short hairpin RNA resulted in

the attenuation of atherosclerotic lesion development [28]. However, the amount of con-

tribution from EPHA2 knockdown on monocytes could not be distinguished from that of

endothelial cells. A limitation of this study is that the number of individuals is small in the

healthy group, meaning the models were less trained by features of individuals with a healthy

phenotype. This also led to some degree of instability of the models in the cross-validation.

Another limitation is that the healthy individuals were younger than patients in the CVD

group. Although, the ranges of ages in the two groups overlapped, it is to be determined

whether the model could discriminate between the two phenotypes when the age range in

the healthy group is extended. Future studies should recruit more age-matched individu-

als. To fully reveal the prediction power of NGC expressions, future works should focus on

whether NGC expressions could discriminate between classes with more subtle differences,

e.g. between stable and unstable angina. It should also be noted that the pathogenesis of

CVD is rather complex. In this article, we focused on the association of NGC expressions

to CVD, although multiple pathways are involved, leading to the identification of an incom-

plete risk gene set. The complex pathogenesis also dampens our ability to draw conclusions

on causality, since it is possible that mechanisms that are implicated in CVD also alter the

functional states of monocytes, reflected by monocytic gene expressions. In general, the

development of clinical risk prediction models often faces certain hurdles, which could lead

to less-defined results. Some studies only examined the univariate prediction value and ig-

nored the combined prediction value of all features [29], while other studies did examine the
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multivariate prediction value of features but used models that made strong assumptions on

the data structure and covariance between features [30,31]. It is also common that studies

have accessed the models in a descriptive way, but the external prediction potential is not

determined [29,31,32]. In our study, we have incorporated multiple NGCs as features based

on both statistical examinations and biological insights. We assessed the performances with

cross-validation in the training data and independent prediction in the held-out data, thereby

controlling the models on overfitting. Moreover, the models were shown to be not only a

descriptive tool to confirm the correlations between NGC expression and CVD outcome but,

also, a prediction method that can be applied to new datasets. In addition, we applied one

of the complex models, the stochastic gradient boosting, which makes little assumptions on

the characteristics of the data structure and returned a better performance. Taken together,

this study gave the proof of principle on how machine-learning methods could be applied

to the prediction of disease outcomes using the expression of a set of functional genes in

circulating cells and allowed us to identify SEMA6B, SEMA6D and EPHA2 as predictive

genes for CVD in the current cohort.
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