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Abstract 
Disease-suppressive soils protect plants against soil-borne fungal pathogens that would 
otherwise cause root infections. Soil suppressiveness is, in most cases, mediated by the 
antagonistic activity of the microbial community associated with the plant roots. 
Considering the enormous taxonomic and functional diversity of the root-associated 
microbiome, identification of microbial genera and mechanisms underlying this phenotype 
is challenging. One approach to unravel the underlying mechanisms is to identify metabolic 
pathways enriched in the disease-suppressive microbial community, in particular pathways 
that encode natural products with antifungal properties. An important class of these natural 
products are peptides produced by Non-Ribosomal Peptide Synthetases (NRPSs). Here, we 
adopted functional amplicon sequencing of NRPS-associated Adenylation domains (A-
domains) to a collection of eight soils that are suppressive or nonsuppressive (i.e., 
conducive) to Fusarium culmorum, a fungal root pathogen of wheat. To identify functional 
elements in the root-associated bacterial community, we developed an open-source 
pipeline, referred to as dom2BGC, for amplicon annotation and putative gene cluster 
reconstruction through analyzing A-domain co-occurrence across samples. We applied this 
pipeline to rhizosphere communities from four disease-suppressive and four conducive soils 
and found significant similarities in NRPS repertoires between suppressive soils when 
compared to conducive soils. Specifically, several siderophore biosynthetic gene clusters 
were consistently associated with suppressive soils, hinting at competition for iron as a 
potential mechanism of suppression. Finally, to validate dom2BGC and to allow more 
unbiased functional metagenomics, we performed 10X metagenomic sequencing of one 
suppressive soil, leading to the identification of multiple gene clusters potentially associated 
with the disease-suppressive phenotype.  

Importance 
Soil-borne plant pathogenic fungi continue to be a major threat to agriculture and 
horticulture. The genus Fusarium in particular is one of the most devastating groups of soil-
borne fungal pathogens for a wide range of crops. Our approach to develop novel 
sustainable strategies to control this fungal root pathogen is to explore and exploit an 
effective, yet poorly understood naturally occurring protection, i.e. disease-suppressive 
soils. After screening 28 agricultural soils, we recently identified four soils that were 
suppressive to root disease of wheat caused by Fusarium culmorum. We also confirmed, via 
sterilization and transplantation, that the microbiomes of these soils play a significant role 
in the suppressive phenotype. By adopting NRPS functional amplicon screening of 
suppressive and conducive soils, we here show how computationally driven comparative 
analysis of combined functional amplicon and metagenomic data can unravel putative 
mechanisms underlying microbiome-associated plant phenotypes. 
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Introduction  
Cereals are a staple food for the human population, with wheat as the most widely 
consumed cereal crop worldwide. It is estimated that up to 40% of crop yields are lost due 
to weeds, pests and diseases (“Food and Agriculture Organisation of the United Nations,” 
2020). Pathogenic fungi are one of the major threats to agriculture. The genus Fusarium in 
particular is one of the most devastating groups of pathogens for a wide range of crops, 
including wheat (Dean et al., 2012; Valverde-Bogantes et al., 2019). Fusarium culmorum 
causes root rot and head blights in wheat and barley. It can kill plants at early stages of 
development or reduce their fitness and contaminate the grain with an arsenal of 
mycotoxins.  Intriguingly, in some agricultural soils, root rot caused by Fusarium culmorum 
does not occur or only little (5). This so-called soil disease suppressiveness is a phenomenon 
where plants show strongly reduced disease symptoms despite the presence of a virulent 
pathogen and conditions favourable for disease development (Hornby, 1983). It is now well 
established that the soil and root microbiome are essential for disease suppressiveness. In 
recent work, we performed an extensive screening of 28 soils for their suppressiveness to 
F. culmorum (Ossowicki et al., 2020). We identified and confirmed, via sterilization and 
transplantation, that in four tested soils the microbiome is associated with suppressiveness 
to F. culmorum. Subsequent comparative taxonomic analysis of the root-associated 
bacterial communities, aimed to identify differences in abundance or absence/presence 
patterns of specific genera, revealed only limited commonalities between the four 
suppressive soils. The overall aim of this study was to adopt a functional approach to 
generate hypotheses regarding putative mechanisms associated with the disease-
suppressive phenotype. 
 
Many microbe-microbe interactions are mediated by specialized metabolites with diverse 
functions, including inhibition of fungal growth (Raaijmakers and Mazzola, 2012). The 
production of these bioactive compounds is often encoded by biosynthetic gene clusters 
(BGCs): groups of physically clustered genes that encode molecular machineries such as 
Non-Ribosomal Peptide Synthetases (NRPSs) and PolyKetide Synthases (PKSs), which 
enzymatically assemble complex metabolites. Importantly, these BGCs are often 
discontinuously distributed across taxa due to high rates of horizontal gene transfer 
(Medema et al., 2014). Additionally, there may be functional redundancy, due to 
overlapping biological activities between the products of different BGCs. Therefore, looking 
at BGC distribution patterns may help explain microbiome-associated phenotypes for which 
no clear taxonomic associations are identified. PKS and NRPS enzymes are often organized 
in multi-domain modules, which each contain a set of enzymatic domains that extend the 
growing peptide or polyketide chain with a specific monomer during enzymatic assembly. 
Functional amplicon sequencing can target such domains using oligoprimers to amplify DNA 
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from BGCs. Because the sequencing is highly selective, even BGCs from lowly abundant 
microorganisms can be detected by this technology (Hover et al., 2018; Owen et al., 2013).  
 
Here, we use NRPS amplicon screening for comparative functional analyses of a set of four 
suppressive and four conducive agricultural soils in the presence and absence of the 
pathogen F. culmorum. To facilitate this analysis, we introduce dom2BGC, a pipeline for 
extensive annotation of BGC-related amplicons (2020). The amplicons are annotated based 
on similarity to domains in MIBiG and antiSMASH-DB, two large natural product BGC 
databases. For NRPS adenylation (A) domains, substrate specificities are predicted based on 
a newly built random forest classifier trained on the amplified region of these domains. 
When multiple samples are available, dom2BGC creates a co-occurrence network to aid in 
detection of groups of amplicons that jointly originate from known or related BGCs. We 
apply dom2BGC and validate the annotation and clustering results with the high-quality 
metagenome of a selected sample enhanced using 10X-based read clouds. The results show 
siderophore BGCs as key candidates associated with disease suppressiveness of the soils 
against F. culmorum. The linked-read metagenomic dataset further revealed several 
additional BGCs that, based on their predicted functions, may be involved in the disease-
suppressive phenotype. This study exemplifies how computationally driven analysis of 
combined functional amplicon and metagenomic data can unravel new candidate BGCs for 
further investigation and help to develop new hypotheses regarding the mechanisms 
underlying important microbiome-associated phenotypes.  
 
Materials and Methods  
Soil collection 
Eight soil samples: S01, S03, S08, S11, S14, S15, S17 and S28 were collected from 3-meter 
squares located at the centre of each agricultural field in January-April 2017. In this area, 
topsoil cores of approximately 30 cm deep were collected. Soils were air-dried at room 
temperature, homogenized, sieved through a 4mm mesh sieve and stored at 4°C. Soil S28 
was additionally flaked after drying using a jaw-crusher (Type BB-1, Retsch, Germany). 
Detailed descriptions of the soil samples are included in our previous study (Ossowicki et 
al., 2020). 
 
Disease suppressiveness assay and A-domains amplification 
Wheat growth conditions, pathogen inoculation, the suppressiveness assay, A-domains 
amplification and sequencing are described in detail in supplementary methods. Briefly, 
wheat seedlings were transferred to substrate containing one of the eight tested soils and 
challenged with pathogenic Fusarium culmorum PV. After three weeks, wheat plants were 
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inspected for disease symptoms together with rhizosphere DNA isolation. NRPS adenylation 
domains were amplified using 3F and A7R primers (Ayuso-Sacido and Genilloud, 2005).  
 
A-domain amplicon preparation 
Barcoding and sequencing of the A-domain amplicons was performed at BaseClear (Leiden, 
the Netherlands) using Illumina MiSeq, which generated 843,536 paired-end reads of 250 
bp in length per read. Sequences were de-multiplexed and adapters trimmed using Qiime2 
(Bolyen et al., 2019, p. 2). Quality filtering and denoising was done with Dada2 (Benjamin J 
Callahan et al., 2016). Nucleotide sequences were translated to amino acid sequences with 
transeq from the EMBOSS suite (Rice et al., 2000). Forward sequences were aligned with 
the AMP-binding domain hidden Markov model (HMM) profile PF00501 from the pfam 
database [version 27] (El-Gebali et al., 2019) using hmmsearch from the HMMer package 
[version 3.1] (Wheeler and Eddy, 2013). The output table was parsed to retain only the 
conserved amino acids in the sequence corresponding to “match” states with the HMM 
profile. Protein sequences shorter than 66 amino acids were discarded. The resulting pre-
aligned amplicon sequences from the natural source are referred to as nAMPs (natural 
amplicons) to distinguish them from the in silico amplicons used for their annotation. 
 
10X metagenome  
DNA extraction, sequencing and the assembly are described in detail in the supplementary 
methods. Briefly, 10X Genomics Chromium was used to generate a read cloud library from 
high quality rhizosphere DNA and subsequently sequenced on an Illumina NovaSeq 6000.  
 
Feature extraction from amplicons for substrate specificity prediction  
These methods, including substrate specificity prediction model training and tuning, are 
described in detail in the supplementary methods. 
 
Dom2BGC pipeline - Generation of in silico amplicons 
To generate a reference dataset of NRPS functional amplicons, A-domain sequences were 
extracted from BGCs from a variety of reference databases. Hmmsearch with default 
parameters was used to detect the A-domains, and the domain regions targeted by the 
oligoprimers were extracted from the matched sequences using HMM profile match 
coordinates. This process creates in silico amplicons which are pre-aligned to the nAMPs, 
which allows for quick matching between nAMPs and in silico AMPs using pairwise identity. 
Annotations available for in silico amplicons are stored to be transferred to any nAMPs 
matching with it. Currently supported annotations include, where available, the taxonomy 
of the source organism, the BGC type annotation based on antiSMASH predictions, and the 
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name of the natural product for which the production is encoded in the BGC (for domains 
extracted from MIBiG entries, (Kautsar et al., 2020) ). 

Dom2BGC pipeline - Amplicon matching and annotation 
Each nAMP is matched to an in-silico amplicon if it shares 90% or more of its amino acid 
sequence with the reference. For nAMPs matching to multiple in-silico AMPs within a 
reference database, all entries are recorded. In case of multiple nAMPs matching an 
individual in-silico amplicon, all matched nAMPs are grouped for evaluation of presence-
absence patterns and abundance of the in-silico amplicon. 

In dom2bgc, amplicons are taxonomically annotated at the lowest rank available. In case of 
annotation to a reference BGC with a different taxonomic annotation, dom2BGC assigns the 
amplicon to the lowest common ancestor of the matching references. In addition, 
information from the reference cluster on the gene cluster family is passed on to the 
matching amplicon. This annotation is based on antiSMASH classification rules for predicted 
gene clusters. Possible annotations include NRPS, lipopeptides, hybrid PKS and more. In 
case of an amplicon matching with reference clusters belonging to different gene cluster 
families, dom2BGC reports all matches.  

Dom2BGC pipeline - Co-occurrence network creation and analysis 
Pairwise co-occurrence patterns of nAMPs are calculated using Spearman rank correlation 
of presence-absence patterns using numpy meshgrid. To filter out spurious relationships, 
the correlation network contains only the strongest correlations in the 99th percentile 
among abundant nAMPs. In the resulting network, amplicons are nodes and edges are 
drawn based on co-occurrence. Clustering within the network to define BGC hubs is 
performed with DBscan. These BGC hubs, comprising highly correlated nAMPs, are 
inspected for nAMP annotation enrichment. Cluster nodes and first-degree neighbors 
annotated to the same reference gene cluster are further selected as putative gene clusters. 
Networks are visualized in Cytoscape (Shannon et al., 2003) and putative clusters are 
reported in a separate tab separated file.  
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Figure 1. Disease index of 
Fusarium root rot disease 
of wheat grown in eight 
different agricultural 
soils. Four soils (S01, S03, 
S11, S28) were classified 
as disease suppressive 
and four soils (S08, S14, 
S15, S17) as disease 
conducive. Dark blue - 
inoculated with 
F. culmorum, light blue – 
non-inoculated, sterile BS 
dune soil was used as a 
control. The bar indicates 
the average disease 
index, with the error bars 
representing the standard 
error of the mean (n=12). 

 
Results and Discussion  
Identification of disease- suppressive agricultural soils  
In our previous study (Ossowicki et al., 2020), we tested 28 diverse field soils from the 
Netherlands and Germany for disease suppressiveness against F. culmorum root rot of 
wheat. Based on these results we selected four disease-suppressive (S01, S03, S11 and S28) 
and four disease-conducive (S08, S14, S15 and S17) soils for further analysis. For the 
amplicon-based analyses of the rhizosphere microbiome, we again performed disease 
suppressiveness assays on these eight soils. We observed no disease symptoms in two 
inoculated suppressive soils (S11 and S28), and only low levels of disease in the other two 
inoculated suppressive soils (S01 and S03). This clearly contrasts with the four conducive 
soils, where disease levels varied from moderate (S08) to high (S14, S15 and S17, Fig.1). In 
two of the conducive soils (S14 and S17), we also identified some mild disease symptoms in 
treatments without addition of the pathogen, indicating the presence of indigenous 
populations of F. culmorum or of other pathogens causing similar disease symptoms (Fig. 1, 
light blue bars). Altogether, these results confirm and extend the results of our previous 
study and show a clear distinction in phenotype between the four suppressive and the four 
conducive soils.  
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Functional amplicon sequencing uncovers novel NRPS domains from low-abundant 
bacteria in rhizosphere microbial communities 
As our previous 16S rRNA-based analysis of taxonomic similarities and differences between 
and across conducive and suppressive soils revealed that no taxa were unequivocally linked 
to disease suppression (Ossowicki et al., 2020), we turned to functional amplicon 
sequencing to assess whether this could point to metabolites or classes of metabolites 
associated with the suppressive phenotype. The selective amplification of functional 
domains allows capturing biosynthetic diversity found within a complex soil sample. 
Specifically, we used PCR amplification of A-domains of NRPSs, which are involved in the 
production of several types of bioactive molecules that have been previously linked to 
disease suppression, such as lipopeptides and siderophores. In NRPSs, the role of A-domains 
is to recognise and activate amino acid substrates that are incorporated into the growing 
peptide (Martínez-Núñez and López, 2016). Based on their sequence, it is possible to predict 
their amino acid specificity and match them to databases of known or predicted BGCs. 

Functional amplicon sequencing of adenylation domains across the four suppressive and 
four conducive soils produced 4,181,437 raw reads across all samples, which were used to 
identify association patterns of A-domains across suppressive and conducive soils. One 
replicate from suppressive soil S28 (FC.1, supplementary Fig.S1) was removed from further 
analysis, because it produced significantly fewer reads compared to other samples (12,380 
reads while the rest of the samples average 61,132 reads). Processing of the reads resulted 
in 3,396,393 reads mapping to 51,912 unique domains. Rarefaction analysis revealed that 
for most samples, diversity was sufficiently covered at ~30,000 reads per sample 
(Supplementary Table.S1). 

To facilitate linking amplicon sequences to specific BGCs, we generated a high-quality 
shotgun metagenome assembly of one sample from the rhizosphere microbiome of plants 
grown in soil S11. This soil was chosen because of its strong disease suppression in this study 
as well as in our previous experiments (Ossowicki et al., 2020). To increase assembly 
contiguity, we made use of 10X linked read sequencing technology, which is able to 
generate much more contiguous contigs compared to what is possible with conventional 
metagenomics with comparable coverage. We used the dedicated cloudSPAdes 10X linked 
reads assembler on these data, which resulted in an assembly size of 2.2Gb and an N50 of 
2.8Kb for contigs above 1Kb, with the largest contig measuring 1.3 Mb. Compared to the 
metaSPAdes equivalent assembly, which does not make use of the linked read information, 
we observed a considerable improvement in the N50 and assembly size for contigs above 
5Kb (7.3Kb for regular metaSPAdes assembly and 20.2Kb for cloudSPAdes) which makes the 
cloudSPAdes assembly more suited to obtain complete NRPS BGCs  (Meleshko et al., 2019). 
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Functional amplicon sequencing of A-domains can achieve better coverage of domains from 
rare BGCs compared to metagenomics with the same sequencing volume. This is reflected 
by the higher diversity of domains found in natural amplicons (nAMPs), with 40,005 unique 
amplicons at the protein level, compared to the shotgun assembly that yielded 8,762 unique 
in silico amplicons. Remarkably, we observed that the number of unique sequences present 
in all our samples surpasses the diversity contained in antiSMASH-DB (24,085 AMPs) - the 
largest available annotated database for natural product-encoding BGCs that contains 
sequence data for 32,548 BGCs from 24,776 microbial genomes. To highlight the 
importance of environmental sampling efforts, we further matched the nAMP sequences to 
in silico amplicons from antiSMASH-DB. We found that most sequences could be matched 
at or above 70% identity. However, there are 162 instances of A-domains with < 30% amino 
acid sequence identity to their closest representative in the database. These domains, while 
still matching the Pfam domain, can potentially harbor novel functions, such as 
incorporation of different amino acids, or may simply belong to rare and uncharted BGCs. 
The percentage identity of nAMPs to the closest antiSMASH-DB AMP follows a normal 
distribution, with a peak to the right accounted for by (near-)perfect matches to previously 
sequenced clusters (Fig. 2A).  
 
To evaluate the impact of the primer bias on the observed amplicon diversity, we performed 
an inverse analysis by identifying the closest match of in silico amplicons from antiSMASH-
DB to the nAMPs from the soil, as the first is not affected by primer bias. The results revealed 
a bimodal distribution (Fig. 2B and supplementary table S2). The leftmost mode includes 
amplicons not present in the samples, as well as amplicons that might be present in the 
samples but absent in the nAMPs set because of their poor match to the primer sequences. 
Still, the majority of the in silico amplicons from antiSMASH-DB had a match in our sample 
above 60% sequence identity. This indicated that the primer bias, despite being present, 
does not prevent the majority of the known sequence diversity of adenylation domains to 
be represented in the functional amplicon data. These results confirm the high value of 
functional amplicon sequencing studies in charting the biosynthetic potential of 
environmental niches. Based on these results we see that with limited primer bias we can 
still get substantial coverage of nAMPs.  
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Figure 2. Sequence distance between nAMPs and antismash-DB in silico amplicons. A) 
Histogram showing the distribution of best matches (as in highest percentage identity at 
protein level) between each nAMP and the antiSMASH-DB in silico amplicon database. 
B) Histogram showing the distribution of best matches (as in highest percentage identity 
at protein level) between each antiSMASH-DB in silico amplicon and the nAMPs. 

The dom2BGC pipeline facilitates automated annotation and networking of functional 
amplicons  
Current tools for the annotation of functional amplicons (eSNaPD (Reddy et al., 2014), 
NaPDoS (“The Natural Product Domain Seeker NaPDoS: A Phylogeny Based Bioinformatic 
Tool to Classify Secondary Metabolite Gene Diversity,” n.d.)) have limited applications or 
rely on laborious processes which require expensive laboratory automation of BAC clone 
library approaches (CONKAT-seq (Libis et al., 2019)). To harness the potential of A-domain 
functional amplicons in soils, we developed dom2BGC, a pipeline to add taxonomical, 
functional and product annotation to amplicon sequences and validate some of the 
predicted clusters using shotgun metagenomics assembly data. Within dom2BGC (Fig. 3), 
amplicons are matched to antiSMASH-DB and MIBiG, two natural product BGC databases, 
and annotations are transferred to the query amplicons when hits are reported above a 
user-set threshold (default: 95% identity). Diversity measurements and community 
structure relationships between samples are calculated and visualized in a series of 
automatically generated figures (examples: Fig.2, Fig.5 - network). Finally, a co-occurrence 
network of amplicons across the samples is created. Neighboring amplicons mapping onto 
domains of known clusters from antiSMASH-DB or MIBiG are considered as domains which 
potentially belong to the same original cluster. This information can then be used in 
designing further experiments to validate the putative functions of the identified clusters. 
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Figure 3. The dom2BGC annotation pipeline and validation process. Amplified sequences 
from the rhizosphere are translated to nAMPs as per methods section and have been 
annotated through comparison with in silico amplicons from MiBIG and antiSMASH 
databases. Richness and community composition measures are used to assess their 
associations with phenotype and treatments. Co-occurrence patterns of amplicons which 
share similarity to the same reference BGCs were used to predict presence of 
(homologues of) known BGCs. Finally, in this study, a shotgun metagenomic assembly 
from one of the soil samples was used to confirm the presence of these predicted gene 
clusters from the amplicon data. 
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To identify known natural product BGCs in the microbial communities, a total of 3,239 in 
silico amplicons were generated from MIBiG products entries (MAMPs – MIBiG amplicons). 
1,312 unique nAMPs, corresponding to 8% of the total, were matched and associated to a 
BGC for a known natural product. Notably, the most abundant known BGC annotated 
encodes the biosynthesis of pyoverdine; this NRPS gene cluster is widespread among 
Pseudomonas species which are also common members of the rhizosphere. Still, even for 
MIBiG entries with a perfect match and consistent coverage across samples, not all the A-
domains present in the reference cluster could be amplified. This illustrates how functional 
amplicon sequencing provides deep coverage of biosynthetic diversity across microbiome 
samples, but also misses certain domains because of mismatches between oligo-primers 
and the target sequence or other PCR biases. This is partially balanced by the fact that most 
NRPS gene clusters encode multiple A-domains, which increases the chance that at least 
one of these regions is amplified. As for database coverage, 119 out of 860 entries with an 
adenylation domain in MIBiG had at least one amplicon from our data mapping to one of 
its domains above 90% amino acid identity. This is testament to the extensive natural 
product potential of soil microbial communities. 
To investigate the taxonomical and gene cluster class distributions of nAMPS, a total of 
40,211 in silico amplicons were generated from antiSMASH-DB BGCs (aSAMPs) and used to 
annotate 5,531 nAMPs (corresponding to 29,9% of total reads), linking them to 1,443 
different BGCs. This annotation rate constitutes about a 4-fold increase compared to the 
numbers of nAMPs that could be annotated using MIBiG as reference.  

Disease-suppression is not associated with increased adenylation domain diversity but 
shows distinct community structure 
There is great need for diagnostic tools to assess the disease-suppressive potential of 
agricultural soils based on their microbial and functional composition. In a recently 
published paper, Yuan et al. (Yuan et al., 2020) explored in a meta-analysis the potential of 
16S and ITS amplicons as predictors of disease occurrence. Since A-domain functional 
amplicon data showed more distinctive patterns than 16S data between soils with 
conducive and suppressive phenotypes (5), we set out to explore if it might be feasible to 
use functional amplicon sequencing as a diagnostic tool of disease suppressiveness.  To test 
the possible association of within-sample amplicon diversity measures with the suppressive 
phenotype, we calculated within-sample richness, evenness and phylogenetic diversity for 
all samples based on observed unique amplicons, Simpson-e and Faith-PD, respectively. 
Wilcoxon rank-sum tests showed no significant association of alpha diversity measures with 
the presence of the pathogen nor with the suppressive phenotype for any of these metrics 
(Fig.4A).  
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Figure 4. Community diversity and composition. A) Adenylation domain richness across 
suppressive (orange bars) and conducive (blue bars) soils, calculated as unique 
sequences. B) Visualization of the adenylation domain community composition with 
multidimensional scaling.   

Several studies have associated overall microbial species richness or evenness in the soil 
and rhizosphere with disease suppressiveness (Chaparro et al., 2012; Garbeva et al., 2004; 
Janvier et al., 2007; Larkin, 2015; van Bruggen et al., 2015).  In other studies, however, this 
was not the case, and suppressiveness was associated with the abundance/enrichment of 
specific genera or functions (Carrión et al., 2019; Mendes et al., 2011). Here, we note that 
suppressive soils were both among the most and least diverse in terms of NRPS A-domains, 
which highlights the importance of availability of samples from multiple sources that share 
the same phenotype before drawing conclusions on the role of community diversity in 
disease suppression.  
In a multi-dimensional scaling (MDS) analysis, suppressive soils did form a distinct group 
based on their community profile (Fig.4, panel B) with significant grouping, suggesting that 
similar community NRPS profiles can indeed be associated with the suppressive phenotype 
based on unweighted Unifrac (PERMANOVA, p-value=0.010; ANOSIM, p-value=0.010). This 
could indicate that the observed phenotype is caused by a single or limited number of 
pathway(s), not detectable with overall richness or abundance measurements, that directly 
interfere with a pathogen’s ability to colonize the rhizosphere, initiate root penetration and 
disease.  
Thus, it appears that sequencing A-domain community composition has the potential to 
become a predictive tool for diagnosing soil suppressiveness. Nevertheless, we should 
emphasize that our study is based on only one host-pathogen system (wheat and Fusarium 
culmorum) and a collection of eight soils. Still, the fact that the production of compounds 
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by NRPS and PKS enzymes play crucial roles in other disease-suppressive soils (Carrión et 
al., 2019; Duijff et al., 1999, 1994; Hayden et al., 2018; Kinkel et al., 2012; Michelsen et al., 
2015; Raaijmakers and Weller, 1998; Scher M., 1982; Weller et al., 2002a; Zhao et al., 2018) 
supports this proposition. This method has to be further developed and validated in the 
future through the inclusion of more host-pathogen systems and soils suppressive to other 
soil-borne fungal pathogens. 

Suppressive soils are enriched in cyclic-peptide-associated A-domains  
Adenylation domains activate and incorporate specific amino acids in the growing 
nonribosomal peptide during synthesis by an NRPS assembly line. The substrate specificity 
for different A-domains is determined by a restricted number of residues in their sequence 
(Stachelhaus et al., 1999). A-domains incorporate a large variety of both proteogenic and 
non-proteogenic amino acids, which facilitate the structural diversity of the final peptide 
products. We reasoned that prediction of the substrate specificities of the domain 
amplicons detected in suppressive and conducive rhizosphere samples could provide new 
insights into the abundance and diversity of different products, and trained a classifier to 
predict these specificities (see Methods). Intriguingly, we found predicted threonine-
specific domains to be significantly more common in suppressive soils versus conducive 
(rank-sum test p-value<0.001, full result table in Supplementary table S3). This is particularly 
interesting as threonine is an amino acid commonly involved in lactone ring formation of 
cyclic and branched cyclic (lipo)peptides. Such peptides have a large variety of natural 
functions, which encompass, among others, the induction of systemic resistance in plants 
to fungal infection and direct antifungal activity (Cawoy et al., 2015; Geudens and Martins, 
2018; Kruijt et al., 2009; Mm et al., 2014; Omoboye et al., 2019b, 2019a, p. 3; Oni et al., n.d.; 
Raaijmakers et al., 2010; Raaijmakers and Mazzola, 2012). 

Reconstruction of 31 gene clusters from amplicon data using domain annotation and co-
occurrence pattern analysis 
Co-occurrence of domains across the soil samples was used to build a pairwise co-
occurrence matrix as described in methods. A strict filter was applied to remove spurious 
correlations, creating in a co-occurrence network containing 1,618 amplicons. Associations 
of co-occurring amplicons into putative BGCs were predicted only for co-occurring 
amplicons which share annotation to one or multiple references; this resulted in the 
reconstruction of 31 gene clusters (supplementary table S4). These clusters belonged to 
multiple taxonomical groups, namely Pseudomonas, Delftia, Streptomyces, Variovorax, 
Burkholderia and Collimonas. In order to validate putative network clusters, we generated 
8,762 in silico amplicons from our 10X shotgun metagenome-assembly as described above. 
Two of the 31 reconstructed gene clusters could be matched to known gene cluster 
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products predicted from the metagenome: the BGCs for nunamycin and delftibactin from 
Pseudomonas and Delftia respectively, as shown in Figures 5 and 6.  

 

 

Figure 5. Domain co-occurrence network showing clusters associated with soil 
suppressiveness. For each of the four clusters (5, 6, 10 and 11), a heatmap shows 
distribution of A-domains across the samples. The heatmap colour scale represents the 
number of replicates in which the A-domain occurs (from dark blue – absent to red – 
present in all four replicates. Upper colour bars in the heatmaps describes samples – light 
grey – non-inoculated, dark grey – inoculated with pathogen and disease 
suppressiveness – orange – suppressive, blue - conducive. The left side of each heatmap 
shows which A-domains were annotated using the MiBIG or antiSMASH databases with 
colour bars. Colour of the bars indicate a compound or compound class shown in the 
legend.              

 
Overview of the BGCs associated with suppressive soils 
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Next, we identified in more detail the BGCs detected in the wheat rhizosphere microbiome 
from suppressive soil S11. To this end, we used antiSMASH to identify BGCs in the 10X 
shotgun metagenome assembly of this soil. This resulted in 991 predicted BGCs from 
multiple GCFs associated with various known compounds. Notable compounds include 
siderophores like turnerbactin, delftibactin, fimsbactin, xanthoferrin and amonabactin, 
lipopeptides like nunamycin/nunapeptin and brabantamide (Barghouthi et al., 1989; Bohac 
et al., 2019; Han et al., 2013; Michelsen et al., 2015, 2015; Pandey et al., 2017; Schmidt et 
al., 2014; Tejman-Yarden et al., 2019), and known antifungal compounds like 2,4-
diacetylphloroglucinol (Raaijmakers and Weller, 1998). This array of candidate clusters 
offered an initial insight into putative mechanisms associated with the disease-suppressive 
phenotype, in which one or multiple compounds may inhibit simultaneously or sequentially 
the growth of the invading pathogen and suppress root infection.  

Figure 6.   Selection of known BGCs predicted in the rhizosphere metagenome of 
suppressive soil S11. Arrows represent predicted genes and are colour-coded based on 
their annotated function. AMP-binding domains matching to functional amplicons are 
highlighted as described in the legend. 
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Analysis of siderophores and lipopeptides associated with observed phenotypes  
As expected, our MIBiG-based annotations show that a considerable portion of the 
amplicons (955 out of 5,531) mapped to Pseudomonas A-domains. A-domains from this 
study could be mapped to BGCs belonging to 68 different genera and 208 bacterial species 
(Supplementary table S2). With these taxonomic annotations obtained from dom2BGC, it 
was possible to identify taxonomic patterns of adenylation domains associated with soil 
disease suppressiveness. Multiple species known for their biosynthetic potential and for 
involvement in disease suppressiveness in other systems were significantly enriched in 
suppressive soils at high taxonomical resolution (Supplementary table S4). This suggests 
that these bacteria, which were previously found to exhibit antifungal activity, might also 
play a role in the disease suppressiveness against F. culmorum in wheat.    
DBscan clustering of the A-domain co-occurrence network produced 16 clusters. Among 
these clusters, 4 were associated with at least one suppressive soil. The most interesting 
subnetwork (Fig. 5, cluster 6) has amplicons associated with suppressive soil S11 and 
partially with soil S01, with some amplicons present across three suppressive soils. Three 
separate domain clusters were reconstructed within this subnetwork, with all three 
matching BGCs encoding the production of known siderophores, namely pyoverdine from 
Pseudomonas, scabichelin from Streptomyces and delftibactin from Delftia. All of these 
were associated with suppressive soil S11 and the last one with suppressive soil S01 as well. 
Siderophores are a group of secondary metabolites produced by microorganisms in iron-
limited environments like soil. These metabolites form complexes with insoluble iron, 
facilitating the uptake of this iron by microorganisms. Often, competition for iron is a central 
process in soil systems with neutral to high pH  (Haas and Défago, 2005; Kloepper et al., 
1980; Kramer et al., 2020; Lemanceau et al., 1993; Saha et al., 2016). Siderophores and 
competition for iron were found to be involved in soil disease suppression mechanisms 
against Fusarium wilt (Alabouvette, 1986; Baker et al., 1986; Duijff et al., 1999, 1994; Scher 
M., 1982) , take-all disease in wheat (Lemanceau et al., 2009; Verbon et al., 2017) and 
damping-off of sugar beet (Carrión et al., 2019). 
 
The concentration of soluble iron in eight tested soils, as assayed in our previous study 
(Ossowicki et al., 2020), ranged from 0.01 mg/kg in soil S17 to 0.11 mg/kg in soil S11 with 
the exception of soil S03, where the concentration was much higher and reached 0.45 
mg/kg. The high iron concentration in soil S03 can be explained by its low pH (5.28), which 
increases the solubility of oxidized iron. All other soils have a neutral pH (7.13 to 7.82) or 
are only slightly acidic (soils S01 and S08, pH 6.22 and 6.87, respectively) (supplementary 
table S5 and (Ossowicki et al., 2020)). We observe that the broad presence of siderophores 
is not limited to environments with a low availability of iron. Those results do not indicate 
a simple connection between the concentration of soluble iron and soil disease 
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suppressiveness against F. culmorum. Nevertheless, the production of siderophores is so 
widespread among microorganisms is soil systems that we can consider it as primary 
process in ecosystem functioning consequently indispensable for soil disease 
suppressiveness. 

The network hub associated with suppressive soil S03 (Fig. 5, cluster 10) contains three 
predicted reconstructed gene clusters taxonomically assigned to Burkholderia, Collimonas 
and Pseudomonas. The Burkholderia and Collimonas clusters matched to multimodular 
NRPSs with no known associated natural product, while the reconstructed cluster from 
Pseudomonas matched to the syringafactin BGC. Finally, the pyoverdine BGC from 
Pseudomonas was recovered from a smaller amplicon subnetwork (Fig. 5, cluster 11). While 
the consistent recovery of the pyoverdine BGC in multiple hubs is expected given its 
ubiquity in rhizosphere-associated pseudomonads, the recovery of the delftibactin and 
scabichelin BGCs and their association to two suppressive soils emphasize the contribution 
of different kinds of siderophores in disease suppression. Our results were further 
confirmed by the prediction of a delftibactin BGC in the associated shotgun metagenome 
assembly from soil S11 with antiSMASH, which has an almost perfect match with the 
delftibactin BGC in MiBIG (Fig.6). The largest suppressive-sample-associated subnetwork by 
number of amplicons (Fig. 5, cluster 5) possesses an individual cluster matching the 
scabichelin BGC from Streptomyces scabies. This siderophore has been found to be 
produced by previously reported Fusarium-suppressive strains (del Barrio-Duque et al., 
2019). The reconstruction of separate instances of the same BGC suggest that the 
underlying amplicons belong to variants of the scabichelin cluster present in different 
rhizosphere communities.  
All in all, the results suggest an association of siderophore BGCs with the disease-
suppressive phenotype across the soils studied. They also point to a possible functional 
redundancy that should be validated in future work: in some soils, a suppressive function 
might be mediated through the production of some siderophores (e.g., delftibactin), while 
in other soils the same function might be mediated by other natural products (e.g., 
scabichelin).  

Based on the MIBiG database, 15 lipopeptides were annotated in our samples. Figure S2 
presents the distribution of these compounds among suppressive and conducive soils. 
Interestingly, most annotated lipopeptides are much more abundant in conducive soils, 
especially in soil S17. Many of these lipopeptides are connected to bacterial plant pathogens 
and act like pathogenicity factors (for example: syringafactin, tolaasin, sessilin), while others 
have been implicated in soil disease suppressiveness and antagonistic interactions with 
fungi (for example: nunamycin and thanamycin) or breaking down bacterial biofilms (for 
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example: WLIP, entolysin, putisolvin and xantholysin A). Many of the A domains that are 
part of NRPS BGCs of plant pathogenic bacteria are also part of NRPS BGCs of non-
pathogenic bacteria (Girard et al., 2020). Isolation of the bacteria harbouring these BGCs 
and subsequent genetic, genomic, transcriptomic and mutational analyses will be needed 
to determine the identity as well as any functional significance of these BGCs in 
suppressiveness. 
 
Conclusions  
Our study provides novel insights into the NRPS AMP-binding domain diversity of 
agricultural rhizosphere samples. Remarkably, the set of unique amplicons from this 
rhizosphere collection equals the level of diversity of adenylation domains found across all 
publicly available genomes. Annotation rates for nAMPs were generally low, which 
highlights the incredible potential of plant-associated microbiomes for discovering novel 
natural products. We report significant community structure overlap among suppressive 
rhizobacterial adenylation domains profiles, and generated new hypotheses regarding 
possible roles for siderophores in disease suppression against Fusarium culmorum. We also 
developed a pipeline for taxonomic and functional annotation of NRPS amplicons without 
the requirement of a BAC-clone library. The dom2BGC pipeline can be extended to and 
currently supports annotation of any natural product-associated domain that occurs 
multiple times within a BGC, and to some extent for any BGC-associated domain. We 
validated the amplicon clustering results by reconstructing the delftibactin BGC, a 
siderophore associated with suppressive soils using a combination of amplicon sequencing 
and novel 10X genomics shotgun metagenomics sequencing. We conclude that combining 
functional amplicon sequencing and shotgun metagenomics highlighted represents a 
powerful approach to probe complex microbiome-associated plant phenotypes and to 
generate new hypotheses on the functional roles of microbial metabolites in microbe-
microbe and microbe-host interactions.  

 
Data availability 
Raw sequence data that support the findings of this study have been deposited in NCBI 
under project number PRJNA670155. 
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Supplementary material 
 

Table S1. Read counts per sample table pre and post filtering. 
Sample-ID Raw 

counts 
Filtered 
counts 

S01-30-C-1_38060-A01 61522 56356 
S01-30-C-2_38060-B01 69249 63627 
S01-30-C-3_38060-C01 93329 86633 
S01-30-C-4_38060-D01 88579 81528 
S01-30-FC-1_38060-E01 73573 68386 
S01-30-FC-3_38060-G01 59679 54557 
S01-30-FC-4_38060-H01 54754 50564 
S03-30-C-1_38060-A02 49444 45627 
S03-30-C-2_38060-B02 59744 55266 
S03-30-C-3_38060-C02 45294 42639 
S03-30-C-4_38060-D02 55966 51235 
S03-30-FC-1_38060-E02 69574 66177 
S03-30-FC-2_38060-F02 72277 66783 
S03-30-FC-3_38060-G02 56285 51549 
S03-30-FC-4_38060-H02 54935 49470 
S08-30-C-1_38060-A05 57233 53380 
S08-30-C-2_38060-B05 66362 61590 
S08-30-C-3_38060-C05 64633 60426 
S08-30-C-4_38060-D05 82370 77089 
S08-30-FC-1_38060-E05 68239 64447 
S08-30-FC-2_38060-F05 89136 82245 
S08-30-FC-3_38060-G05 69234 63569 
S08-30-FC-4_38060-H05 56346 51398 
S11-30-C-1_38060-A03 56932 53328 
S11-30-C-2_38060-B03 72236 67006 
S11-30-C-3_38060-C03 60323 56541 
S11-30-C-4_38060-D03 76486 72089 
S11-30-FC-1_38060-E03 65674 62059 
S11-30-FC-2_38060-F03 69165 63976 
S11-30-FC-3_38060-G03 61222 57484 
S11-30-FC-4_38060-H03 62399 58216 
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S14-30-C-1_38060-A06 65009 60765 
S14-30-C-2_38060-B06 70802 65514 
S14-30-C-3_38060-C06 64070 59514 
S14-30-C-4_38060-D06 54727 50559 
S14-30-FC-1_38060-E06 72434 66960 
S14-30-FC-2_38060-F06 81112 71312 
S14-30-FC-3_38060-G06 59644 55225 
S14-30-FC-4_38060-H06 64895 58831 
S15-30-C-1_38060-A07 59465 53857 
S15-30-C-2_38060-B07 68717 62513 
S15-30-C-3_38060-C07 75261 69264 
S15-30-C-4_38060-D07 74238 68226 
S15-30-FC-1_38060-E07 83840 77529 
S15-30-FC-2_38060-F07 85701 77805 
S15-30-FC-3_38060-G07 60580 56114 
S15-30-FC-4_38060-H07 69506 63197 
S17-30-C-1_38060-A08 56302 51984 
S17-30-C-2_38060-B08 78187 67847 
S17-30-C-3_38060-C08 85159 76649 
S17-30-C-4_38060-D08 80787 74714 
S17-30-FC-1_38060-E08 73688 69596 
S17-30-FC-2_38060-F08 76891 70879 
S17-30-FC-3_38060-G08 63541 59126 
S17-30-FC-4_38060-H08 61208 56702 
S28-30-C-1_38060-A04 54744 49232 
S28-30-C-2_38060-B04 72221 65227 
S28-30-C-3_38060-C04 48818 43892 
S28-30-C-4_38060-D04 69285 63359 
S28-30-FC-1_38060-E04 14606 12380 
S28-30-FC-2_38060-F04 85430 78041 
S28-30-FC-3_38060-G04 54205 50309 
S28-30-FC-4_38060-H04 54170 49003 
Total: 3459604 3396393 
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Table S2. Statistic tests for Figure 2B 
Phenotype, permanova 
method name PERMANOVA 
test statistic name pseudo-F 
sample size 63 
number of groups 2 
test statistic 4.9766 
p-value 0.0010 
number of permutations 999 
Name: PERMANOVA results, dtype: object 
Treatment, permanova 
method name PERMANOVA 
test statistic name pseudo-F 
sample size 63 
number of groups 2 
test statistic 0.8660 
p-value 0.6890 
number of permutations 999 
Name: PERMANOVA results, dtype: object 
Phenotype, anosim 
method name ANOSIM 
test statistic name R 
sample size 63 
number of groups 2 
test statistic 0.3529 
p-value 0.0010 
number of permutations 999 
Name: ANOSIM results, dtype: object 
Treatment, anosim 
method name ANOSIM 
test statistic name R 
sample size 63 
number of groups 2 
test statistic -0.0008
p-value 0.4030 
number of permutations 999 
Name: ANOSIM results, dtype: object 

Table S3. Cumulative relative abundance of predicted amino acid substrates in suppressive 
and conducive rhizosphere soils. Rank sum statistics is calculated using relative counts of 
appearances of amplicons annotated to the monomer for calculating ranks. 
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Substrate 
specificity 

Cumulative 
relative 
abundance 
suppressive 

Cumulative 
relative 
abundance 
conducive 

Rank 
sums 
statistic 

Rank 
sums  

  p-value 

ala 0,1136 0,1355 0,8383 -2,3834 0,0203 

asn 0,0077 0,0064 1,2166 -0,5024 0,6172 

asp 0,0013 0,0004 3,5484 2,2128 0,0307 

cys 0,0810 0,0864 0,9370 -3,3174 0,0015 

dab 0,0006 0,0005 1,0138 2,5104 0,0148 

gln 0,0341 0,0373 0,9149 2,5214 0,0144 

glu 0,0009 0,0011 0,8449 -2,9170 0,0050 

gly 0,2195 0,2234 0,9825 -0,8890 0,3776 

leu 0,0122 0,0065 1,8587 3,4547 0,0010 

phe 0,0015 0,0015 1,0138 0,1616 0,8722 

pro 0,0271 0,0238 1,1377 -0,1885 0,8512 

ser 0,2781 0,2843 0,9782 -1,2785 0,2060 

thr 0,2103 0,1817 1,1569 4,8296 9,83E-06 

tyr 0,0122 0,0109 1,1152 0,6348 0,5280 

 
Table S4 Annotated MIBig clusters with counts in all suppressive and all conducive soils 

cluster suppressive counts conducive counts 
BGC0000438_AAF99707.2 5499 58 
BGC0000438_AAO72425.1 4836 47 
BGC0000437_AAY37655.1 4834 47 
BGC0001416_KPN93063.1 4367 86 
BGC0001416_KPN90376.1 4417 234 
BGC0001721_AUD11994.1 3824 0 
BGC0000984_ABX37383.1 2021 167 
BGC0000984_ABX37382.1 1987 137 
BGC0001346_AOA33122.1 1503 72 
BGC0000438_AAO72424.1 1493 78 
BGC0000437_AAY37654.1 1482 78 
BGC0000437_AAY37653.1 1443 55 
BGC0001842_ABA73955.1 1668 409 
BGC0001980_QDF82255.1 1698 474 
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BGC0001509_WP 1987 800 
BGC0000435_AAO56329.1 925 0 
BGC0001567_WP 1142 473 
BGC0001312_CAY48788.1 418 208 
BGC0001416_KPN93064.1 276 76 
BGC0000305_BAC67535.1 376 263 
BGC0001752_ctg1 409 308 
BGC0001984_QED55423.1 76 3 
BGC0001519_WP 105 35 
BGC0000305_BAC67536.1 142 77 
BGC0001331_WP 37 0 
BGC0001332_WP 31 6 
BGC0000443_AED90003.1 26 3 
BGC0000429_AEA30273.1 27 5 
BGC0001999_WP 42 23 
BGC0000425_AFH75321.1 96 78 
BGC0001806_APU91750.1 96 78 
BGC0001330_WP 24 6 
BGC0000425_AFH75320.1 98 81 
BGC0000429_AEA30272.1 18 1 
BGC0000447_CCJ67639.1 100 83 
BGC0000447_CCJ67638.1 100 83 
BGC0001389_AHZ34242.1 96 80 
BGC0001389_AHZ34241.1 96 80 
BGC0000371_BAH33409.1 34 20 
BGC0000431_EFE73312.1 14 0 
BGC0000315_CAB38518.1 13 0 
BGC0001370_ALV82356.1 13 0 
BGC0000437_AAY37647.1 14 2 
BGC0001192_AJM89738.1 19 8 
BGC0001153_AEZ51520.1 19 8 
BGC0001192_AJM89735.1 19 8 
BGC0000408_ACA97580.1 19 8 
BGC0000403_AFJ14794.1 19 8 
BGC0000408_ACA97576.1 19 8 
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BGC0001153_AEZ51516.1 19 8 
BGC0002014_WP 13 2 
BGC0001715_CUX79061.1 16 6 
BGC0001715_CUX79060.1 16 6 
BGC0000429_AEA30274.1 13 4 
BGC0001657_BAV56270.1 9 0 
BGC0000461_AEP18655.1 5 0 
BGC0000461_AEP18656.1 4 0 
BGC0001042_ACY06285.1 20 16 
BGC0001370_ALV82384.1 3 0 
BGC0000315_CAB38517.1 3 0 
BGC0001763_BBA20967.1 5 2 
BGC0001620_ASX95241.1 5 2 
BGC0001214_AJV88375.1 2 0 
BGC0001984_QED55421.1 2 0 
BGC0000418_AIE77059.1 1 0 
BGC0002001_WP 5 5 
BGC0000311_CAC48361.1 4 5 
BGC0000955_CCA29203.1 0 1 
BGC0000341_ABD65958.1 0 2 
BGC0000359_AAZ55900.1 0 2 
BGC0000385_AEH59099.1 0 2 
BGC0000385_AEH59100.1 0 2 
BGC0001462_OLZ52457.1 0 2 
BGC0000419_AIG79241.1 0 2 
BGC0001416_KPN90369.1 0 2 
BGC0001459_OKA09423.1 0 2 
BGC0001460_EME52990.1 0 2 
BGC0000311_CAC48360.1 0 2 
BGC0001460_EME52989.1 0 3 
BGC0000326_AAK81826.1 0 3 
BGC0001975_QBG38784.1 2 5 
BGC0001459_OKA09424.1 1 5 
BGC0000354_CAM56770.1 31 35 
BGC0000393_ABF87031.1 0 4 
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BGC0000455_AEI58866.1 0 5 
BGC0001792_WP 0 8 
BGC0000463_AGM14934.1 11 28 
BGC0000333_ABW00331.1 0 22 
BGC0000447_CCJ67637.1 131 156 
BGC0001368_WP 1 26 
BGC0000289_CAD91212.1 3 31 
BGC0000440_CAE53352.1 2 31 
BGC0000441_CAG15011.1 2 31 
BGC0001178_AGS77309.1 2 31 
BGC0001806_APU91751.1 22 52 
BGC0000425_AFH75322.1 15 50 
BGC0000413_AAY93356.2 5 41 
BGC0000413_AAY93354.1 5 41 
BGC0001389_AHZ34243.1 31 73 
BGC0000344_CAK15814.1 41 89 
BGC0000463_AGM14933.1 41 89 
BGC0000344_CAK15815.1 41 89 
BGC0001838_AFJ23826.1 38 89 
BGC0000439_AHH53506.1 0 66 
BGC0001838_AFJ23825.1 15 82 
BGC0000411_ABW17377.1 51 119 
BGC0000411_ABW17376.1 47 139 
BGC0001842_ABA73956.1 279 417 
BGC0001980_QDF82259.1 325 477 
BGC0001767_ctg1 2438 2651 
BGC0000325_CAB53322.1 100 342 
BGC0001312_CAY48789.1 124 400 
BGC0000389_ABH06369.2 159 444 
BGC0000423_CBG75492.1 2445 2741 
BGC0000349_CAM02313.1 2291 2589 
BGC0000389_ABH06368.2 268 611 
BGC0001211_WP 2448 2820 
BGC0000413_AAY93445.1 52510 73141 
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Table S5. Chemical properties of tested soils   
S01 S03 S11 S28 

pH 6,22 SD 0,17 5,28 SD 0,27 7,28 SD 0,19 7,13 SD 0,07 
OM [%] 3,46 SD 0,35 5,49 SD 0,68 3,48 SD 0,47 3,29 SD 0,12 
Fe [mg/kg] 0,09 SD 0 0,45 SD 0,06 0,11 SD 0 0,02 SD 0 
K [mg/kg] 34 SD 0,92 59,95 SD 2,29 68,77 SD 1,1 71,36 SD 0,44 
Mg [mg/kg] 163,19 SD 1,75 56,74 SD 2,11 56,43 SD 0,58 160,26 SD 2,7 
P [mg/kg] 1,4 SD 0,01 2,69 SD 0,08 5,43 SD 0,04 0,79 SD 0,02 
S [mg/kg] 1,29 SD 0,08 2,6 SD 0,16 1,17 SD 0,15 1,74 SD 0,24 
C [%] 2,31 SD 0,18 3,77 SD 1,13 1,99 SD 0,88 1,52 SD 0,01 
N [%] 0,14 SD 0,01 0,26 SD 0,1 0,16 SD 0,07 0,17 SD 0 
C:N 16,5 14,5 12,44 8,94 

   
S08 S14 S15 S17 

pH 6,87 SD 0,06 7,61 SD 0,05 7,82 SD 0,05 7,75 SD 0,06 
OM [%] 2,81 SD 0,51 5,04 SD 0,35 3,77 SD 0,63 4,23 SD 0,79 
Fe [mg/kg] 0,08 SD 0 0,04 SD 0 0,02 SD 0 0,01 SD 0 
K [mg/kg] 181,54 SD 3,76 82,49 SD 4,08 45,83 SD 0,53 87,17 SD 2,45 
Mg [mg/kg] 109,68 SD 1,7 98,91 SD 4,04 60,6 SD 0,52 74,54 SD 0,8 
P [mg/kg] 16,23 SD 0,05 0,7 SD 0,06 0,9 SD 0,05 1,03 SD 0,04 
S [mg/kg] 1,14 SD 0,05 8,61 SD 0,08 5,95 SD 0,06 2,27 SD 0,06 
C [%] 1,94 SD 0,24 2,35 SD 0,14 1,91 SD 0,08 2,63 SD 0,05 
N [%] 0,16 SD 0,01 0,15 SD 0,01 0,11 SD 0,01 0,15 SD 0 
C:N 12,13 15,67 17,36 17,53 
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Figure S1. Rarefaction analysis of rhizosphere A-domain amplicons. Samples 
rarefaction analysis showing number of unique amp-binding domains (ordinate) at 
different rarefaction points (abscissa). One sample was clearly an outlier (pink arrow on 
the bottom) and was removed from the analysis. 
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Figure S2. – Phylogeny tree of the natural amplicons analyzed in this study. On the 
outer ring, colors represent predicted amino acid specificity and amino acid group 
specificity as detailed in supplementary material. 




