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2 Going global to local: connecting top-down accounting and local impacts, a 

methodological review of spatially explicit input-output approaches 1 

Abstract 

Environmentally Extended Input-Output databases (EEIOs) provide an effective tool for 

assessing environmental impacts around the world. These databases have yielded many 

scientific and policy relevant insights, especially through the national accounting of impacts 

embodied in trade. However, most approaches average out the spatial variation in different 

factors, usually at the level of the nation, but sometimes at the subnational level. It is a natural 

next step to connect trade with local environmental impacts and local consumption. Due to 

investments in earth observation many new datasets are now available, offering a huge potential 

for coupling environmental datasets with economic models such as Multi-Region Input-Output 

(MRIO) models. A key tool for linking these scales are Spatially explicit Input-Output (SIO) 

models, which provide both demand and supply perspectives by linking producers and 

consumers. Here we define an SIO model as a model having a resolution greater than the 

underlying input-output transaction matrix. Given the increasing interest in this approach, we 

present a timely review of the methods used, insights gained, and limitations of various 

approaches for integrating spatial data in input-output modelling. We highlight the evolution of 

these approaches, and review the methodological approaches used in SIO models so far. We 

investigate the temporal and spatial resolution of such approaches and analyze the general 

advantages and limitations of the modelling framework. Finally, we make suggestions for the 

future development of SIO models. 

2.1 Introduction 

Environmentally-Extended Input-Output (EEIO) models have been widely applied and have 

been used to link production and consumption while accounting for the direct and indirect 

relationships between different economic activities 1,51,52. Prominent consumption based studies 

include analyses of air emissions 53–55, waste generation 56, water use 57, land use 58, and 

biodiversity loss 59 around the world 60. Part of the popularity of EEIO databases (EEIOs) is 

due to the steady increase in the level of environmental impacts embodied in trade 1,52. 

Additionally, since these models connect producer and consumer through supply chains 61 

(which are often complex), it is possible to investigate policy interventions from production-

based 62–64, consumption-based 51,65, income-based 66,67, and other, in betweenness-based 

perspectives 68.  

Currently, the vast majority of EEIO applications are based on results at the national level. This 

is acceptable for well-mixed, global environmental stressors such as greenhouse gases, and for 

broader investigations on a national level, but it limits the usefulness of models for stressors 

which have highly local impacts, and for nexus investigations which examine the interaction 

and interdependence of several resources. Particular examples of these types of stressor include 

water use, land use, biodiversity, water pollution, and local air pollution (such as SO2, NOx, 

PM2.5, PM10). Given this, there has been a recent trend to link EEIOs with global environmental 

maps and databases by disaggregating modelled or directly measured production activity by 

sector 69–73. 

Maps and databases of environmental impacts or stressors are typically generated from 

observations by monitoring stations 74 and satellite remote sensing measurements 75. They can 

                                                 

1 This chapter has been published as: Sun, Z., Tukker, A. and Behrens, P., 2018. Going global to local: connecting 

top-down accounting and local impacts, a methodological review of spatially explicit input–output approaches. 

Environmental science & technology, 53(3), pp.1048-1062. 



 

 

 

 

also be modelled by using spatially explicit simulations that often use direct observations as 

model boundary conditions 71,76. Monitoring stations collect environmental information in situ, 

with common examples including air quality (PM2.5, PM10, O3, SO2, CO, NO2) (for example 

see: http://aqicn.org), soil quality 77, and water quality 78. Remote sensing aims to measure 

environmental impacts from a distance, including land use 30,76, water 79, air quality 75, and 

biodiversity 80. Remote sensing may include ground-, sky-, or space-based observation. The 

spatial distribution of environmental impacts derived from these methods can be very accurate 

and are often available over time. For example, fixed monitoring stations record in real time, 

while satellite imagery products for air quality and land use are generally updated annually 29,75. 

Most efforts are carried out by governmental, public research institutions, or some private 

research groups. However, there is always a balance between large-scale, continuous modelling, 

and the scientific resources available to make such global assessments. In response, researchers 

have also used spatially explicit simulation models to estimate the spatial distribution of 

environmental impacts at higher temporal or spatial resolutions. Such examples include: the 

global dynamic vegetation model LPJmL (Lund-Potsdam-Jena managed Land) 81; the global 

freshwater model WaterGAP 82, the dynamical atmospheric Sulphur transport model DEHM 83; 

a variant of this model DEHM-POP to depict transport of persistent organic pollutants (POPs) 
83; and a historic model of environmental impacts (HYDE) to simulate land use and land cover 

change over time 84. These examples depict environmental issues caused by local production, 

but they do not connect local environmental impacts with consumption from other regions. 

Additionally, they do not contain enough sectoral information to provide information on policy 

impacts. 

What we have described so far is the estimation of environmental impacts from a supply 

perspective, that is, in the production of materials for good and services. These data can be 

connected to the consumer in several different ways. We focus on input-output models in this 

review, but there are other methodologies for assessing consumption-side impacts using 

process-based methods to identify spatially explicit environmental impacts 85. For example, 

Hoekstra and Mekonnen et al. estimated the spatial distribution of global water footprints (blue, 

green, and grey water footprints) using a grid-based dynamic water balance model, calculating 

virtual water flow from water embodied in the direct consumption of agricultural and industrial 

commodities 86,87. This approach describes the embodied impacts through direct consumption 

of commodities between two regions, but they omit the complex supply-chain relationships 

between different sectors and different regions.  

With the increasing availability of spatially explicit environmental data disaggregated by sector, 

there have been several efforts to take EEIO analysis to the local level. As yet these approaches 

are disparate and spread across the literature. Given the likely similarities of approaches, the 

diversity of environmental and resource assessments, and the possible utility of such approaches, 

we provide a critical review of the approaches so far, limitations, and future opportunities. 

We start by highlighting recent efforts in SIO modelling and we categorize these analyses by 

the form of disaggregation used in the input-output model. We then provide an overview of 

spatial data sources and their resolution. The need to balance spatial resolution with policy 

recommendations is addressed. We discuss the potential for uncertainty analysis in SIO 

investigations and the possibility for further incorporation with other environmental models. 

Finally, we highlight the major obstacles going forward in developing, utilizing, and extending 

SIO models.  



 

 

 

 

2.2 An expanding field 

Although the term spatially explicit implies a variety of meanings, there is no uniform definition. 

Here we define it as involving a result where the spatial information available from a study is 

at a spatial scale greater than the available IO (input-output) data itself. Studies such as Wang 

et al.88, Ridoutt et al. 89 , Wilting et al. 90, and Verones et al.91, average results to the national 

level, and would fall under the category of input-output modelling not SIO since spatial 

information is not available. Multi-region input-output tables at the regional level, such as those 

using Chinese provincial data also do not conform to the definition above since the IO table is 

already at the spatial scale of the region. These regional MRIOs have been previously been 

reviewed in Ploszaj et al 92 . Ploszaj et al found 42 articles using subnational input-output papers 

based on data from 15 countries between 1980 and 2013. We omit these studies from the review 

herein. 

Interest in incorporating spatially explicit information into EEIO is a relatively new 

development, with fast growth since 2014 (see Figure 2.1, and the Supporting Information for 

how the literature was selected). However, James et al. provided the first methodological 

approach in 1985, by integrating an input-output model with an air pollution dispersion model 
93. It focused on a small region (the Hunter Region, Australia) and traced the spatial diffusion 

of sulphur oxide and fluoride emissions from location-specific production sites given by the 

regional authority as part of the New South Wales Clean Air Act. These emissions were 

calculated based on the output from specific production sites and emission coefficients from a 

regional input-output table. They assumed the same emission coefficient for the specific site as 

the corresponding sectors in the input-output table 93. This early approach showed that the 

spatial distribution of emissions varied with the level of regional economic development.  

It subsequently took 20 years for the next publication of an SIO study, probably due to the 

limited availability of spatial datasets with adequate sectoral resolution along with the 

limitations of computing power. From 2010, there has been a large increase in the number of 

spatially explicit studies. These studies use a variety of different methods and approaches, and 

analyze a number of different environmental pressures. We are currently in a period of 

exponentially increasing citation counts for SIO papers, especially from 2013 onwards. This is 

likely to continue with increasing dataset availability and the fast development of SIO 

approaches. 

 

Figure 2.1 Number of published papers and their citations using SIO approaches 
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2.3 Methodological and spatial categories  

Methodological categories: In total, we identify ten distinct methodological approaches for 

linking spatially explicit data to input-output databases (please see Supporting Information for 

qualitative and mathematical descriptions of each). We then classify these further based on the 

structure of Environmentally Extended Input-Output (EEIO) databases. The canonical structure 

for an EEIO database is a matrix for environmental extensions by sector and region, a final 

demand matrix by sector and region, and a transaction matrix where sectors purchase the output 

from other sectors to produce goods for final demand. We further classify the 10 methods to 3 

categories based on the matrices to which the spatial disaggregation is applied (the studies 

falling into each category are shown in Table 2.1). The categories are enumerated as: 

Category 1:Disaggregation in environmental extensions. Here, environmental extensions 

are disaggregated by mapping the environmental impacts between the production sectors in the 

input output model and impacts identified spatially from the spatial databases. The result is a 

spatially explicit mapping of consumption-based footprints. In this category, analysis mainly 

focuses on hotspot assessment, which can be driven by a specific country, region, or sector. 

Examples of spatial databases that can be used in this way include: WaterGAP 70 for fresh water 

use and consumption; emissions data from EDGAR 69 giving greenhouse gas (CH4, CO2, N2O), 

air pollution (BC, CO, NH3, NOx, PM10, PM2.5, SO2), and toxic pollutants (Mercury); the 

IUCN red list which provides details on threatened species 72,73; and, Aqueduct Global Maps 

which maps water stress 94. The connection between the spatial database and IO tables is usually 

made by assuming proportionality between impacts. That is, the demand for products in an IO 

table is assumed to be proportionally distributed to the production information in the spatially 

explicit database. Some studies have then aggregated these impacts or stressors to the national 

or regional level to build a set of new environmental extensions for the IO model first, and then 

used the same spatial information to allocate consumption-based impacts into grid cells 95,96. 

Others use the existing source data for the environmental extensions provided by the IO datasets 

to calculate consumption-based impacts, and use spatial information to disaggregate to a finer 

scale 97.  

Some studies then perform additional analyses to model the diffusion of a pollutant based on 

the consumption footprint. Typically, these studies use an input-output model to calculate the 

volume of emissions from a region and then apply a physical model to simulate the spatial 

diffusion of emissions (which may also include an atmospheric chemistry model) 98–103. For 

example, the approach (Method 7 in the supporting information) has been used to investigate 

the human health impact in China driven by the overseas consumption of Chinese products (this 

also required the use of a health impact model) 104.  

Category 2: Disaggregation in final demand. Here the final demand matrix is disaggregated 

using regional statistics. These statistics can be derived from household or enterprise surveys 

or from local purchasing data such as electricity bills 105–107. This disaggregation is then used 

as a stimulus vector whereby the disaggregated matrix is used instead of the total national final 

demand (and the traditional Leontief analysis is performed). Note that this approach still uses 

the original national (or multi-regional) input-output transaction matrix and environmental 

extensions to trace upstream environmental impacts. Instead of finding spatially explicit 

hotspots in production driven by overseas and domestic consumption (as in Category 1), this 

approach is used to show the environmental footprints of consumption across regions, for 

example the differences in the environmental impacts of consumers in different subnational 

areas 108,109. For example, Method 6 (see supporting information) was used to show spatially 

explicit consumption footprints in the EU105,110. First, the product classifications used in 

consumer expenditure surveys (CES) were mapped to the sectors available in the MRIO 



 

 

 

 

EXIOBASE using concordance matricies at the country level. Then this combined CES-MRIO 

model was used to calculate subnational environmental impacts according to household 

consumption across the EU. 

Category 3: Disaggregation in the transaction matrix. Here the transaction matrix is 

disaggregated, which by definition requires the spatial disaggregation of final demand and 

environmental extensions also 111,112. As previously stated, this category requires the 

construction of an entirely new IO table in all IO elements, which does not conform to our 

definition above, and has been reviewed elsewhere 92 . As we will discuss later in this paper, 

data limitations preclude doing this for every analysis. Often we have limited information on 

the structure of value chains linking spatially separated production and production 

consumptions. Therefore, we focus mainly on Categories 1 and 2 and reflect on the further 

development of Category 3 studies in the discussion. 

Table 2.1 Categories of SIO linked with the methods and data sources applied 

Category 
Example spatial database or 

model used 
Methods References 

1. Disaggregation in 

environmental 

extensions 

The WaterGAP model 

Methods 1 & 2:  

Identifying hotspots  

 

50,113 

EDGAR emissions data 95,96 

Extent-of-occurrence, from 

IUCN red list and BirdLife 

datasets 

114 

Aqueduct Global Maps for water 

stress 

Method 3: Integrating a 

process-based model with an 

input-output model 

97 

IFA hazardous substance 

database 
Method 4: Integrating an 

MRIO model with production 

location information 

 

115 

Survey data from enterprises 

(SABI, Sistema de análisis de 

balances ibéricos: base de datos) 

116 

Location of volcanic eruptions 

and ash volume (Auckland 

Volcanic Field, from Geology of 

the Auckland urban area) 

Method 5: Quantitative risk 

assessment of economic 

output reduction due to final-

demand perturbations. 

117 

 

GEOS-Chem chemical transport 

model 
Method 7 & 8 : Integrating 

an MRIO model with an air 

pollution dispersion model. 

98–104 

Pollutant dispersion models 

(Smeared Concentration 

Approximation (SCA)) 

93 

Spatially explicit econometric 

model (spatial Regional 

Econometric Input–output 

Model (REIM)) 

Method 9: Integrating an 

econometric model with an 

MRIO model 

118 



 

 

 

 

GIS methods and approaches 

Method 10: Integrating an 

MRIO model with, for 

example, spatial interpolation 

119–122 

2. Disaggregation in 

final demand 

Local statistical data 

Method 6: 

Integrating an MRIO model 

with demand-side 

subnational information. 

123–125 

Consumer Expenditures Survey 

(CES) data  
107,108,134–142,126–133 

Enterprise survey data (Italian 

company information and 

business intelligence (AIDA)) 

106 

Zip code tabulation (U.S. zip 

code tabulation areas (ZCTAs)) 
107,143,144 

Gridded population 107 

Purchasing power index  107 

3. Disaggregation in 

the transaction 

matrix 

Disaggregation all matrices via Non-survey methods (such as 

location quotients (LQs), gravity models, behavior-based models, 

neural networks), survey methods, or hybrid methods 

145–149 

Spatial categories: Summarizing Categories 1 and 2, the inclusion or development of spatially 

explicit data in the literature arises from: 1) synthesis and incorporation of spatial environmental 

extensions data with EEIO (23 of the 48 articles evaluated), and 2) tracing environmental 

footprints using subnational stimulus vector in final demand (25 of the 48 evaluated, see 

supporting information). We found no papers belonging to Category 3 – papers coming closest 

to this represented sub-national MRIO tables at e.g. provincial level, which as discussed above 

we do not see as disaggregated transaction matrices at a high spatial detail but rather special 

cases of regular multi-country IO tables. The spatial resolution varies to a large extent both 

between and within categories. 

Studies falling in Category 1 used a total of 20 different spatial databases or models to trace 

spatial hotspots driven by consumption. These databases originate from different sources; some 

databases are based on remote sensing observations. For example, Moran et al. apply IUCN red 

list and BirdLife data, whose species-specific habitat loss is estimated from remote sensing and 

traces species threat driven by consumption 114. Others use data from WaterGAP 50,113 and 

EDGAR 95,96, or point measurements of impacts, such as the location of volcanic eruptions 117, 

power plants 93, and spatial maps of national enterprises 106,116. Based on these databases and 

models, researchers have explored issues including water consumption 50,113,131, nitrogen and 

phosphorus loading 115, biodiversity loss 96, volcanic eruption risk 117, energy consumption 129, 

greenhouses gas emissions (CO2, CH4) 
95,122,130, and other air pollution emissions (NOx, SO2, 

PM10, PM2.5) 
96,102. The highest spatial resolution used was 0.5°× 0.5° for water consumption 

and 0.1° × 0.1° for greenhouse gas emission and air pollution. All studies are at the temporal 

resolution of a year and range from 1970 to 2008. 

Studies falling in Category 2 used 42 different databases to identify environmental impact 

footprints at local consumption level. These databases are mainly from Consumer Expenditures 

Survey (CES) (26 European countries, plus US, Austria, and Canada) according to the 



 

 

 

 

international COICOP (Classification of Individual Consumption by Purpose) division. For 

example, Ivanova, et al., build EU27 subnational household environmental footprints (carbon, 

land, water, organic materials, non-organic materials) based on CES databases of every country 

(except Croatia, Netherlands, and Sweden) 105. Additionally, other databases source from 

national statistics (such as, Australian Land Use Mapping Program, the National Pollutant 

Inventory, and the Australian Business Register; U.S. zip code tabulation areas (ZCTAs)) 131,143, 

commercial enterprise information (e.g., Italian company information and business intelligence 

(AIDA))) 106, in situ questionnaire survey data 138,142, and regional purchasing power and 

gridded population data 107. These researches explores environmental impacts footprints, 

including greenhouse gas emission 105,126, water and land 105,108, which map to the consumption-

based side of IO analysis. The highest spatial resolution mapped carbon footprints into 250 m 

based on GHS-POP gridded population model 107, and US household carbon footprints at zip 

code tabulation areas (ZCTAs). Most studies are at the temporal resolution of a year and range 

from 1990 to 2015, and even some researches project to 2050 144. 

Studies falling into Category 3 would give spatially explicit information on production 

processes and related extensions, spatially explicit information on consumption patterns, with 

transaction matrices matching this spatial and sectoral disaggregation. The disaggregation of 

transaction matrices is a clear bottleneck. All existing work uses non-survey approaches or 

suffers from other crucial limitations, as illustrated by work on subnational MRIO tables (e.g. 

Australia 150, China 112, Japan 151, Indonesia 146, Spain 152 and Germany 149), the Industrial 

Ecology Virtual Laboratory (IELab) 89,111,146 and the Transparent Supply Chains for Sustainable 

Economies (Trase.earth) project 109,153,154. The IELab 89,111,150,155 includes a lot of detailed 

regional data (especially for Australia), from which customized input-output models can be 

developed based on a specific research question, but it cannot provide a input-output database 

including all sectors and regions due to a lack of computing power (one approach could result 

in over 5 petabytes of data, and impractical computation times)111. Trase.earth 109,153,154 focuses 

on constructing trade flows at finer scale (see Method 11 described in the Supporting 

Information), disaggregating producers on a finer scale, but consumers still at national level. 

None of these examples use directly-measured data or survey-based data for estimating spatially 

explicit transaction matrices. This is natural due to the expense of ad-hoc surveys for 

interregional trade data 111 . Claims such as ‘city X consumes Y beef from pixel Z’ by necessity 

requires estimates of highly estimated and modelled flows. We have found no work yet that 

solves this problem and hence do not discuss this category further in this section. 

We classify studies into 5 further spatial categories: global, regional, national, subnational 

regional, and city, depending on the resolution of the final result. Table 2.2 shows a breakdown 

of the spatial scale and environmental impacts for different studies in the literature. We then 

discuss the major highlights from studies at each of these scales and their policy relevance. 

Table 2.2 Studies analyzing social or environmental impacts at different spatial scales 

Spatial scale Category 1 Category 2 

Global 

Air pollution (SO2, NOx, and PM10, PM2.5, BC, 

CO)96,98,102,104 
 

Greenhouse gases (CO2, CH4)95  Greenhouse gases (CO2)107 

Biodiversity 114  

Water 50,97,113  



 

 

 

 

Global studies: Globalization has served to disconnect commodity consumption with 

production-related impacts 113. High-income countries to some extent have improved their local 

environmental footprints and impacts by outsourcing through the global supply chain 96. 

However, these impacts will impact high-income countries as well. For example, along the US 

West Coast, 3-10% of annual average surface sulfate and 0.5-1.5% of ozone, both of which are 

Grey water 115  

Macro 

Regional 
 

Carbon (EU27; 19 cities around the 

Mediterranean)105,135 

National 

 Water (UK, Australia)131  

Grey water (Spanish)116  

Air pollution (SO2, NOx, and PM2.5, China) 
99,101,103 

 

Atmospheric Mercury (China) 100  

Carbon (Japan)122 

Carbon (Norway, USA. UK. Australia, 

Estonia, China, Germany)124,125,139,143,126–

128,131,132,134,137,138 

 
Natural disasters (earthquakes, floods, 

landslides)(Italy)106 

Subnational 

regional 

 Ecological footprint (15 cities, Canada)133 

 

Carbon (15 cities, Canada; San Francisco 

Bay Area in USA, 20 cities in Finland; 24 

cities in China;  Helsinki Metropolitan 

Area in Finland)133,136,140,142,144 

City 

Air pollution (Hunter region, Australia )93  

COD (chemical oxygen demand) (Changzhou 

City, China)119,120 
 

Volcanic eruptions (Auckland region, New 

Zealand)117 
 

 
Economic loss driven by earthquake 

(Beijing, China)123 

Employment, population (Chicago, USA)118  

Flood (South-Holland, Netherlands)121  

 Energy (Sydney, Australia )129 

 
CO2 (Sydney, Australia; Boston, 

USA )130,141 



 

 

 

 

deleterious to health, arise from the atmospheric transport of Chinese pollution driven by 

exports 98. In another example, Zhang et al., build a global spatial distribution estimate of 

premature mortality driven by PM2.5 in 2007 at 100 km × 100 km resolution, and find that some 

411,100 deaths (12% of total premature mortality) are caused by pollutant transport from one 

location to a more distant location, and 762,400 deaths (22% of total premature mortality) are 

linked indirectly through the supply chain 104. 

A common analysis is the tracing of embodied environmental impacts flowing through global 

supply chains at the national level. Spatially explicit approaches allow for a greater resolution 

in assessing local environmental impacts. We illustrate this using two examples: CO2 emissions, 

and biodiversity threats. Firstly, at the national level, Davis et al. identified national flows of 

CO2 emissions, and identified American imports as having the largest embodied CO2 flows in 

2004 (0.7 Gt net import) 156. By using the EDGAR database, further work made these flows 

spatially explicit, showing that US footprints of CO2, SO2, NOx, PM10 in 2008 are highly 

concentrated, with 90% of the footprints located in only 1.6%, 3.1%, 3.6%, 9.9% of the land 

area, respectively 2008 95,96. Similarly, at the national level, Lenzen et al., find that American 

consumption drives the largest number of biodiversity threats (2424 total threat records, and 

995 from net imports) 59. Further spatially explicit analysis showed that 23.6% of species threats 

were concentrated on just 5% of global land area, and 60.7% of species threats were 

concentrated on 5% of the global marine area 114. The identification of these hotspots may help 

facilitate global policy responses. 

Macro-regional studies: A good example of macro-regional scale applications is the use of 

European Union data to investigate the spatial variation of environmental impacts driven by 

consumption. Ivanova et al. introduced a method for calculating carbon footprints, driven by 

household consumption in 177 regions of the EU27 105. They used this approach (described in 

Method 5 in the supplementary information) to calculate land, water, organic materials, and 

non-organic materials footprints under different kinds of consumption categories—shelter, food, 

clothing, mobility, manufactured products, and services 105.  

National studies: High-income countries and lower-income countries have different 

perspectives for environmental impact research. For the UK, a high-income country with 

relatively large consumption-based impacts, researchers have focused on carbon footprints 
126,127 and water footprints 108 at the scale of the local authority. Some researchers go further, 

attempting to find even higher resolution spatial distributions, for example of the grey footprint 

of Spain 116 and the carbon footprint in Estonia 128. Since some atmospheric pollutants have 

highly local health effects, but can also be transported within the nation, there has been work to 

model the diffusion of pollutants such as PM2.5 and mercury, which also incorporate dynamics 

of international and interprovincial trade 99–101.  

Subnational regional studies: These studies are very useful for interregional management, 

especially for a large country. For example, by linking census data with input-output models, 

researchers were able to show that the lowest Canadian per capita carbon footprint was found 

in metropolitan areas, since they often share goods and services 133. Another study investigated 

the opportunities for high-income and low-income consumers to reduce their carbon footprints 

across California, USA 144, finding that lifestyle modes have a large impact on overall carbon 

levels. 

City studies: Compared with other scales, cities tend to have highly-local measurements of 

environmental impacts, for example via in-situ air or water pollution measurement devices. 

Researchers have used input-output models and local city data to estimate direct economic 

losses to cities from natural hazards, including earthquakes 123, volcanic eruptions 117 and floods 



 

 

 

 

121. Analysis of the energy requirements of cities at suburban scales has also been made 129,130. 

City-based input-output tables are useful for this sort of analysis, and can provide specific 

support for local decision makers. 

Most SIO investigations are on global and national levels. This makes a certain amount of sense 

since global input-output models (WIOD, Eora, GTAP, EXIOBASE) and national input-output 

tables (official statistical publications) have been available for some time now, as have large-

scale, spatially explicit, global models of environmental stressors and impacts  

2.4 Options for enhancing spatial and sectoral resolution  

Theoretically, an MRIO framework could provide arbitrary spatial and sectoral resolution if the 

data and resources are available to those constructing the models. In one sense, at the extreme, 

a full MRIO model could include all interactions of economic activities for very fine spatial 

units, for example, 1 m × 1 m. This sort of model would fall under Category 3 above and is the 

ultimate ideal in developing SIO models (this would involve trillions of data points) because it 

can reveal all sectoral and spatial heterogeneity.  

This approach overcomes the spatial homogeneity assumption, which is an intrinsic 

shortcoming of input-output models (i.e. that each sector and region has specific environmental 

impacts across all products produced by that sector and across regions). However, data and 

computation limitations preclude such an approach for the foreseeable future. SIO models in 

Category 1 and 2 attempt to gain insights that such an approach might yield without the 

significant data and computation challenges. There is a large potential for developing these 

models further. In the following we expand on the opportunities for developments, first from a 

sectoral perspective, and then from a spatial resolution perspective. We then present some 

avenues for the development of approaches for Category 3. 

Enhancing Category 1, the sectoral and spatial resolution of environmental extensions. 

Sectoral resolution: The individual sectors included in analyses are important for further 

environmental and policy insights beyond the total environmental impact. However, it is 

difficult to create spatial maps for each sector, especially in the form of grid-cell data. In general, 

there are a greater variety of spatial data available for primary sectors such as crops 157 and 

livestock 158 . Primary sectors account for most of the land use, water use, and other 

environmental impacts resulting from production, so these sectors receive more research 

attention. Also, the function of land for primary sectors is often unique, so it is generally easier 

for remote-sensing to identify. In contrast, identifying the distribution of secondary and tertiary 

sectors is much more challenging. For example, a particular building could be used as a 

residence, restaurant, school, a company, or several other uses. Many land classification 

schemes do not include factories, refineries, restaurants etc. It is this underlying inability to 

specify land use that causes much of the problem. Some environmentally important industries 

may still be possible to spatially identify, for example, transport and stationary power plants 159. 

The phenomenon is especially evident in spatial distribution of carbon emission from EDGAR 

databases, which have detailed carbon emission for transport sectors, but much more coarse for 

manufacturing and service sectors 69. Given this issue, the environmental impacts of most of 

industries are proportionally allocated into sectors based on their output. For example, for lack 

of sector-specific data Moran et al. mapped all sectors in an input-output table into 11-13 spatial 

maps of air pollution and greenhouse gas emission 95,96. Similarly, for water, in Lutter et al. and 

Holland et al., WaterGAP consumption data was combined with an MRIO model (EXIOBASE 

for Lutter et al, and GTAP for Holland et al.), which was relatively straightforward to link in 

the case of agricultural and electricity sectors, but not directly possible in the manufacturing 



 

 

 

 

sectors 50,113. These difficulties in pinpointing secondary and tertiary sectors are a focus of 

ongoing research for water and energy modelers 71. 

One way to solve this sectoral information problem is to construct a map with a detailed land 

use classification based on current high-resolution map data, for example, Google Earth or 

OpenStreet map, which can identify location of secondary and tertiary sectors precisely. It 

would then be possible to link the sectoral map with spatially explicit environmental models to 

create more accurate spatial distribution of environmental impacts for more sectors in input-

output models. Multi-use buildings will remain a challenge for the foreseeable period; for 

example, one building may include resident households, restaurants, banks and other service. 

The phenomenon is particularly prominent in metropolis areas with high-density population 

and complex industrial structures. While some regions in some datasets have information on 

building-by-building use, the data is currently too patchy and limited for full integration into 

input-output models. 

Spatial resolution: Compared to subnational statistical data, grid-cell data is not limited to 

administrative boundaries, and it has the possibility of depicting spatial variation more 

accurately. But spatial variation still depends on the area of the grid cell. The coarsest resolution 

used in the 48 papers reviewed this study was 2° lon × 2.5° lat (about 60,500 km2 at the equator) 
98, slightly larger than smaller countries such as Netherlands, Switzerland, Slovakia, and 

Belgium. While increasing the spatial resolution of databases may be important for SIO models, 

there is little the input-output practitioner can realistically do about this given that these models 

often result from large research campaigns, for example NASA Earth Observations (NEO)160 . 

For ease of viewing we have presented a non-exhaustive selection of some common spatial 

databases that have the potential to be used in combination with input-output models in Table 

2.3.  

A key issue arises when looking at the spatial resolution of Category 1 studies. All the studies 

in our review use a proportionality assumption in assigning regions for production (which 

fulfills international demand). That is, all regions of production are treated the same whether 

products are used domestically or exported. This means that regions which do not have good 

access to markets and are likely producing goods for local consumption are ‘counted’ as part 

of the footprint of overseas consumers. Studies have suggested that regions with good 

transportation services and access to ports are more likely to be regions which export 

commodities 161,162. It may be possible to use this fact to apply a first-order correction to which 

regions may be producing domestically or exporting goods. Regions where road density is 

highest could be used as the first-priority for export, with the remaining area as the first-priority 

for domestic production and consumption. Similarly, we can allocate environmental impacts in 

the same way. In some cases, the subnational trade data is directly available (for example, at 

the municipal level in Brazil) 163, but is difficult to implement globally due to data limitations. 

Table 2.3. Potential spatial information sources to improve SIO models 

Environmental 

impacts 

Databases 
Sectoral 

resolution 

Temporal 

resolution 

Spatial 

resolution 

Land use and 

land cover 

European Space Agency Climate 

Change Initiative 29,164 

Cropland for crop 

sectors; grassland 

for livestock; 

Each year, 

from 1992 to 

2015 

300 m × 300 

m , global 



 

 

 

 

MODIS land cover 30,76 

forestland for 

forest products; 

urban area for 

manufacturing and 

service sectors 

Each year, 

data from 

2001 to 2012 

5’× 5’ 

minute, 

global 

USGS Global Cropland Area 

Database (GCAD)165 

Detailed cropland 

classification, 

including wheat, 

rice, maize, barley, 

soybean, cotton, 

orchards, 

sugarcane, 

cassava. 

2010 
1 km × 1 

km, global 

2015 
30 m × 30 

m , global 

Annually 

2003 to 2014 

250 m × 250 

m, Africa 

Annually 

2000 to 2015 

250 m × 250 

m , 

Australia 

Annually 

2001 to 2013 

250 m × 250 

m , USA 

Water 

Aqueduct Global Maps 166 

No specific 

mapping 

relationship with 

input-output 

databases, but can 

be combined with 

other spatial 

information, for 

example, crop 

distribution, power 

plants distribution, 

to create mapping 

relationship with 

input output 

databases 

2010 

Shape file 

by water 

basin, 

Global 

12 Global hydrological models 

(HDTM, Macro-PDM, MPI-HM, 

GWAVA, VIC, LaD, WaterGAP, 

PCR-GLOBWB, LPJmL, 

WASMODM, H08, ISBA-TRIP), 

details see 167 

Details for 

agricultural sectors 

and electricity 

sectors; difficult to 

combine with 

other 

manufacturing 

sectors 

Varying, 

from hours to 

month 

Varying, 

from 0.5° × 

0.5° to 2° × 

2°, Global 

Air pollution, 

GHG 

Emissions Database for Global 

Atmospheric Research (EDGAR) 69 

Varying from 7 to 

28 sectors related 

to energy 

consumption. 

Annually, 

1970 to 2012 

0.1° × 0.1°, 

Global  

Pesticides 

USGS, Grids of Agricultural 

Pesticide Use in the Conterminous 

United States 168 

All detailed crop 

sectors for input-

output tables in 

US. 

1992 1 km × 1 km 



 

 

 

 

Biodiversity 

Global Mammal Assessment 169 

Details see 59 

Annually, 

2000 to 2050 

1 km × 1 

km, Global 

IUCN Red List 72 

Annually, 

2009 to 

present 

Shape file 

by 

hydrological 

basins for 

freshwater 

basins; by 

taxonomic 

groups 

(species) for 

territorial 

and marine 

animals 

BirdLife 73  

Annually, 

2007 to 

present 

Shape file 

by 

taxonomic 

groups 

(species) 

Agriculture 

Global Gridded Crop Model 

Intercomparison (GGCMI) 170 
All detailed crop 

sectors for input 

output databases. 

 

Annually, 

1979 to 2010 

0.5° × 0.5°, 

global 

Spatial Production Allocation Model 

(SPAM)171 
2005 

5’× 5’, 

global  

Soil organic 

carbon 

Food and agricultural organization 

(FAO) 172 

No specific 

mapping 

relationship with 

input-output 

databases, but can 

be combined with 

other spatial 

information, for 

example, crop 

distribution to 

create mapping 

relationship with 

input-output 

databases 

2017 
30”× 30”, 

global 

Electricity  

US, environmental protection 

agency, Emissions & Generation 

Resource Integrated Database 

(eGRID) (USEPA, 2018) 
Power generation 

sectors in input-

output databases 

 

Annually, 

1996 to 2016 

Point 

locations, 

global 

Global Energy Observation 

(http://globalenergyobservatory.org/) 

Annually, 

1950 to 

present 

Platts (https://www.platts.com/) 

Quarterly, 

from 1998 to 

present 2017 



 

 

 

 

Going beyond the data sets provided in the Table 2.3, the increasing number of monitoring 

stations provided by local authorities, such as those for air and water quality may also provide 

further data available for analysis 74 

Enhancing Category 2, the sectoral and spatial resolution of final demand. 

Sectoral resolution: typically, commodity classification is more detailed than the products or 

sectors given in input-output models. However, the classification of consumer expenditure 

surveys is based on direct household consumption in mind, rather than economic sectors like 

those included in input-output models and so a conversion has to be applied. In addition, most 

categories within a consumer expenditure survey are food commodities. For example, out of 

the 183 commodities in the Norwegian database, 66 are food-related, but there are only 26 food 

related products in 200 products in high sectoral MRIO databases, EXIOBASE 110. Additionally, 

surveys cannot distinguish domestically made or imported products consumed by households. 

Other import parts, such as government consumption expenditure, and gross fixed capital 

information still lack of research. Blockchain with IoT devices would be a good way to trace 

these final consumptions in the future 173.  

Spatial resolution: From the final demand perspective, the spatial distributions of 

environmental footprints are generally performed at the local authority level – as described by 

Method 6 in the supporting information. This is mainly due to the lack of spatial distribution of 

consumption at any other resolution. Some scholars, for example, Moran, et al., applied global 

gridded population and local per-capita purchasing power databases to spatialize consumption-

based environmental impacts 107. Beyond that, Big Data methodologies have been suggested by 

various researchers as the possibility of collecting detailed human activities consumption with 

geolocation at a very high spatial (as well as sectoral) resolution 174.  

Pathways for moving towards Category 3 SIO’s.  

In an ideal situation, efforts to enhance sectoral and spatial resolution ultimately leads to a 

Category 3 SIO database. That is, spatially explicit information on production processes and 

related extensions, spatially explicit information on consumption patterns, with intermediate 

transaction matrices that match this spatial and sectoral detail. Compiling the intermediate 

transaction matrix is extremely challenging when compared to compiling spatially explicit 

extensions or final demand. Some national statistical institutes may have detailed, sectoral, 

statistical data consistent with international standards 175. But even in these cases it is extremely 

challenging to build spatially explicit input-output databases, since it requires a large amount 

of in-situ surveys. As discussed, studies that provide such transaction information generally do 

so using non-survey methods, leading to highly estimated transaction information. 

The most common non-survey method for constructing intraregional input-output models is to 

compile subnational input-output models and then estimate interregional trade flows separately 
145. However, this approach requires the common assumption that regional production 

technologies and preferences of customers are similar to the national level 145. Clearly this 

introduces uncertainties at the subnational level. Furthermore, interregional trade flows are 

usually estimated using a gravity model that assumes trade is only related to economic size and 

geographical distance of the producing and consuming regions 112,176 (other non-survey models, 

such as entropy and information models, neuronal network models, and behavior-based models 

can also be used 148).  

From above analysis, we find that most studies concentrate on the global or national level since 

national input-output models are readily available, and GMRIO models (e.g. EXIOBASE, 

WIOD, EORA, GTAP) have become increasingly available in recent years. Few studies focus 

at city level, due to a lack of official data. New technologies based on Big Data approaches and 



 

 

 

 

blockchain may offer ways forward in the future. Blockchain is a shared, distributed ledger that 

protects records from deletion, tampering or revision. Some researchers have used distributed 

ledgers combined with IoT devices to trace food supply chains, from plantation to processing 

and to retailers 177. Similarly, if any commodity is labeled with a unique code, it can be traced 

using advanced database approaches. Once a complete network of supply chains is constructed, 

it may be possible to use these data to build a transaction matrix for input-output models. The 

technology may reduce the cost of collecting transaction data, improve the efficiency and 

reliability of databases 173, and provide real-time information. 

Balancing resolution and policy needs: Ideally, finer spatial and sectoral scales will reveal more 

spatial heterogeneity in environmental impacts and will be of increasing relevance to policy 

makers. However, if there are no (reliable) data or reasonable assumptions for downscaling 

some regions, and attempting to do so might introduce unquantifiable uncertainty. Additionally, 

there may be cases where the policy need does not require higher-resolution in the first place. 

From the papers reviewed herein, the resolution of the final result is almost always dependent 

on external spatial information beyond input-output models. For this reason, papers which fall 

under Category 2: the disaggregation of final demand, are focused on American, European, and 

Australian regions since they have more complete local consumption statistics and a high 

availability of household surveys. It’s best if the spatial scale chosen relates to the policy 

relevance of the environmental impact findings. For example, water pollution is regarded as 

local environmental impact, but a river will run through many regions and countries, so local 

and regional water balances need to be considered as well as the linkages to trade through input-

output tables 50. For example, Lutter et al. 50 and Wang et al. 97 study fresh water at the spatial 

resolution of the water basin, which may be more helpful to inform general, sector-based 

policies for water extraction and pollution within a region. Conversely, greenhouse gas (GHG) 

emissions are well-mixed and is an impact suitable for analysis at the national scale. However, 

identifying the spatial distribution of GHG driven by consumption helps connect consumers 

with the impacts of their consumption 95. This is the case for Kanemoto et al. where they develop 

a hotspot analysis of carbon footprints at a global resolution of 0.1° × 0.1° 95.  

A different approach is needed for other types of air pollution such as particulate matter, which 

is very much a local issue and most often driven by point source emission 96. In addition, 

aerosols which remain in the atmosphere for several days, can easily diffuse to other regions 
102. Therefore, locating pollution sources and exploring the spatial distribution of emission 

diffusion embodied in trade is a more appropriate scale to help consumers participate in abating 

targeted air pollution. This also requires additional modelling of emission diffusion and a 

temporal resolution greater than the yearly average as commonly used in studies. 

Increasing the spatial resolution of input-output models may also put pressure on increasing the 

temporal resolution. One of the major drivers of making an IO database spatially explicit is to 

examine the local impacts of resource availability or pollutant emissions, which can sometimes 

vary more temporally than spatially. Since input-output databases are annual aggregations of 

activity, this elides some of the seasonal complexities. For example, the availability for water 

used in the cooling of thermal power plants vary more through the year than across the nation 
178. Some level of temporal resolution may be possible simply by using time-explicit final 

demand vectors, however these data will first have to be collected by national or regional bodies. 

For example, emission transport models need time series data, (hourly, daily, weekly or 

monthly), since aerosols diffuse to other locations on the order of several days. Temporal issues 

may also impact uncertainties, a topic to which we turn next. 



 

 

 

 

2.5 Addressing uncertainties 

Underlying sources of uncertainty: General uncertainties for input-output models arise from 

the source statistical data, sector aggregation, and data allocation approaches 65,179–184. For EEIO 

models, further issues with source data and assumptions about the density of environmental 

impacts also contribute to uncertainties 183,184. SIO analyses add two further, related 

uncertainties: 1) Uncertainty in spatial databases themselves, and 2) uncertainty from spatial 

and sectoral aggregation.  

With respect to uncertainty in spatial databases, this can vary depending on the type of source. 

For remote sensing, sensor quality, image generation, and processing techniques will drive 

uncertainty 185. In local statistical data, uncertainty will be driven mostly by statistical methods 
186. Finally, for modelling approaches, input data, assumptions, and model methodology will 

all drive uncertainties. Furthermore, the spatial resolution in environmental impacts will, on its 

own, result in some uncertainty. For example, the resolution of WaterGAP is 0.5° × 0.5° (about 

50 km × 50 km at the equator), implying that water consumption is the same within a 50 km × 

50 km region.  

Uncertainty will also be introduced when aggregating spatial databases into regions matched 

with input-output databases, especially at the border between regions. Spatial databases often 

have to break down spatial information into different sectors, using assumptions which will 

further drive uncertainty. Often, we can resolve the spatial distribution of primary sectors (e.g. 

food crops and livestock) and some secondary sectors (large power plants, for example). But as 

mentioned above, most manufacturing and service sectors remain difficult to locate.  

As we will see below, it is often hard to obtain a firm grasp of where the largest uncertainties 

may arise. In some cases, researchers have found it is likely that more uncertainty arises from 

additional pollutant modelling and not the input-output models themselves. For example, 

emission transport and health impact models have been found to have more uncertainty than 

the underlying input-output model 98,104. 

Approaches for estimating uncertainty: Uncertainty analysis for EEIO modelling is already 

challenging given the diversity of data 187 and the model structure 188. Approaches have been 

developed to estimate uncertainties 187,189–191 and perform sensitivity analyses 183,192,193, but 

there is still a lot more work to do to fully understand uncertainties. Given these existing 

difficulties, spatially explicit uncertainties add another layer of complexity. Given the variation 

of possible uncertainties, approaches such as Monte-Carlo simulations can be computationally 

prohibitive 100,104,107.  

Still, some researchers have attempted to clarify uncertainties by narrowing down the number 

of uncertainties for sensitivity analysis. For example, Lin et al. ran over 10,000 Monte-Carlo 

simulations 98 for each type of air pollution in their study. Zhang et al. estimate overall 

uncertainty in SIO models by aggregating 4 sources of uncertainty, including uncertainty from 

air pollution (via the spatial database), uncertainty in the MRIO model, uncertainty from 

chemical transport model—GEOS-Chem model using Normalized Root Mean Square 

Deviation (NRMSD) method, and uncertainty from health impact model 104. Lenzen et al., 

simulate standard errors of household factor multipliers, embodied factor multipliers and 

household expenditure, and then integrate all these parts of standard error into a total standard 

error estimate of the entire SIO model using Monte-Carlo simulations. In another example, 

Moran et al., employ a Monte-Carlo approach to build up range of alternative global Lorenz 

curves for carbon emissions 107. These methods inherit approaches used in the uncertainty 

analysis of traditional input-output models 194.  



These examples are all based on conventional Monte-Carlo simulations, extracting a large 

number of samples with assumed distributions, usually normal or log-normal. These 

simulations require an assumption that the extracted data are independent. Rodrigues et al. use 

a Bayesian approach to compare the uncertainties of independent sampling such as this 195, and 

find that this approach underestimates the uncertainty of results 195. Future uncertainty analysis 

could expand this concept to include spatial data, since spatial data are often developed by 

incorporating the same underlying databases as those used in input-output models, resulting in 

non-independent errors. 

2.6 Integration with other environmental models
Future options for SIO models may include integration with other environmental assessment 

models including technology-rich Integrated Assessment Models (IAMs), such as IMAGE 196, 

GCAM 197, AIM/CGE 198, MESSAGE 199, REMIND 200. Generally, IAMs use macroeconomic 

models to downscale the world spatially into 10-30 aggregated regions 201, after which they are 

coupled to earth system models or environmental data using spatially explicit models. The 

environmental impacts are then downscaled to that resolution (Figure 2.2). IAMs have already 

been integrated with other spatially explicit land use models such as the CLUE-s model 202,203, 

the Global Land-use Model 204,205, and the Land Use Land Cover Change (LULCC) model 206, 

and these could be all be combined with input-output approaches. IAMs have also been used to 

make water demand spatially explicit 207,208. For example, the LPJmL land model has been used 

to examine carbon balances 209, the dynamic GLOBIO model for evaluating biodiversity 

impacts 196, the integration of the GLOFRIS model for estimating impacts of flood risks 196, and 

the GISMO model for human development 196. However, IAMs lack physical linkages between 

capital stock and material flows and they cannot trace the entire supply chain, this means IAMs 

are generally not able to assess environmental impacts other than on a production-basis. 

However, input-output models are an effective tool to assess impacts including those impacts 

embodied in the trade 210. 

Generally, input-output models are constructed from historical data and used for historical 

analysis. Given their structure there are no built-in dynamic mechanisms. Conversely, 

technology-rich IAMs are used to project different scenarios for industrial structure, final 

demand, and spatial distribution of environmental impacts, which are the components of input-

output models. It would be possible to establish soft links between IAMs and SIOs 210. IAMs 

could be used to project components of input-output models needed to provide input-data to 

perform scenario-based consumption focused accounting 210–212. 

Human earth system

Macroeconomic models

Natural earth system

Environmental impacts 

Spatial disaggregation

Spatial aggregation

Spatial allocation model

Region or country scale

Grid cell scale

Figure 2.2 Schematic of general structure that integrates macroeconomic models with spatially explicit modes. 



 

 

 

 

2.7 Outlook 

Spatially explicit approaches inherit the advantages of EEIO, linking environmental impacts 

from production to consumption 65, while revealing the spatial variation of local environmental 

impacts. The recent growth in SIO is not necessarily surprising given the extensive role of 

globalization in outsourcing production and the associated environmental impacts of goods and 

services worldwide. Such SIO approaches can allow for a better understanding of the 

distribution of impacts from consumption, and provide data for targeted consumption-based 

mitigation measures.  

We have critically reviewed recent SIO analyses and provided an overview of their 

methodologies and strengths. These analyses can be broadly separated into three approaches: 

1) spatial disaggregation in environmental extensions, 2) spatial disaggregation in final demand, 

and 3) construction of a new input-output table with spatially disaggregated transaction matrices. 

We describe the considerations and issues that are raised when performing these analyses, and 

have presented an overview of specific findings. We have outlined the main challenges and 

limitations in present SIO modelling, including: the availability of spatially explicit data of 

different spatial and sectoral resolutions, the balancing of spatial resolution with research goals 

and policy advice, and the difficulty in assessing uncertainties. We also discuss the possibility 

of incorporating SIO modelling with integrated assessment models.  

We expect that future efforts will focus on several key areas: as further spatial databases become 

available with greater sectoral resolution – especially in secondary and tertiary sectors – more 

options for deeper analysis and linkage with other environmental models will become possible; 

we see the opportunity of temporal analysis for certain resources, such as water, becoming 

increasingly tractable; and, studies that combine both demand-side (Category 1) and 

consumption-side (Category 2) disaggregation will become possible. A major hurdle in 

building accurate Category 3 input-output models at a high level of spatial detail is the lack of 

information about intermediate transactions and the structure of the value chains at this level of 

detail. Issues with uncertainties will likely remain problematic for some time, given the 

difficulties in assessing input-output model uncertainty even without spatial disaggregation. 

However, this is a problem which is not specific to input-output modelling, and is faced by 

many other large-scale environmental model approaches such as IAMs. 
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