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1 General Introduction 

1.1 Background 

In an era of increasing globalization, supply chains have become tightly interconnected and 

complex1. Given the depth of integration and the importance of international trade in sometimes 

helping to improve resource efficiencies, facilitating socio-economic development, and 

promoting human welfare, today’s complex supply chains have been called the lifeblood of the 

global economy 2. This is especially true in the food system where international trade plays a 

critical role in safeguarding nutrient and food security 3,4. Indeed, globally traded food calories 

have more than doubled since the 1980s, and around one-fourth of global food production is 

traded on international markets 5,6. Increasing linkages among trade partners could help mitigate 

climatic impacts on local food production and have knock-on impacts for reducing hunger risk 

and improving the resilience of the food supply chain 4,7,8.  

However, international trade has not only revolutionized the way that commodities are 

produced, exchanged, and consumed, but has also altered the sites and scale of social and 

environmental impacts1. Depending on the indicator considered, between 10% -70% of 

environmental pressures (e.g. land use and greenhouse gas (GHG) emissions) or impacts (e.g. 

biodiversity loss) are embodied in international trade. That is, the consumption of a product in 

one location can lead to environmental pressures across supply chains geographically located 

across many distant locations on the planet 1. The social and environmental impacts embodied 

in international trade have been increasing with globalization. For example, CO2 emissions 

from fossil fuel embodied in the global supply chain increased from 5 Gt in 1995 to 10 Gt in 

2011, and the share of embodied carbon accounting for total carbon emission increased from 

27% in 1995 to 37% in 2011 9. Similarly, agricultural production embodied in international 

trade has been increasing due to globalization. For example, the area of cropland embodied in 

the global supply chain increased from 178 Mha in 1987 to 272 Mha in 2008, accounting for 

15% and 21% of the total global cropland area respectively 10. The amount of cropland 

embodied in trade increased further to 350 Mha in 2016 11.  

Affluence is a primary driver of social and environmental impacts along international supply 

chains 1,12–14. While organizations such as the United Nations Environmental Program (UNEP) 

advocates a decoupling of economic growth from environmental impacts 15, high-income 

countries have been displacing environmental impacts to middle- and low-income countries 
1,14,16. Such displacement often increases overall social and environmental impacts because 

production in middle- and low-income nations is more environmentally intensive and faces 

fewer regulations1. Consumers, who ultimately drive economic demand and hence global trade, 

generally show a greater desire to reduce environmental and social impacts locally rather than 

distant impacts through the supply chain 14. For example, Europe restored territorial forests by 

9% (~ 13 Mha) while outsourcing 11 Mha deforestation due to crop displacement from 1990 to 

2014 17. Furthermore, the outsourced deforestation is located in climate-vulnerable regions with 

incomparable biodiversity and carbon stocks 17–19.  

It is important to understand how consumption and production are linked via supply chains, and 

how final consumption drives social and environmental impacts of production processes in 

these value chains. In the last 15 years, Global Multi-Regional Input-Output (GMRIO) tables 

have become an important tool to map such relations between production and consumption20. 

In short, a (national) input-output table divides a national economy into numerous economic 

sectors. A consumer demand is met by a set of production relationships between sectors which 

ultimately require primary natural resources. Such tables are typically available at the national 

level from National Statistical Institutes. By combining tables from different countries, and 



 

 

 

 

using the information on imports and exports by sector, a GMRIO table can be constructed that 

maps global value chains in the form of transactions between different economic sectors and 

different countries, including actors responsible for final demand. If the primary resource use 

and emissions are calculated for each economic sector by country, then these can be added to 

the GMRIO table as so-called environmental extensions. The result is an Environmentally 

Extended (EE) GMRIO model. Such EE GMRIO models can trace environmental impacts 

associated with production and consumption of commodities, following the full downstream 

and upstream value chain 20 (see Box 1 for more details). These GMRIO tables play a critical 

role in analyzing social and environmental impacts embodied in international trade 20.  

 

Box 1. An introduction to GMRIO analysis 

A global multi-regional input-output (GMRIO) table provides the input-output relationships 

of economic sectors within and between nations 20. They can take two different forms: 

product-by-product or industry-by-industry. Product-by-product tables divide the economy 

into multiple products, describing the amount of a product used to produce each product 

regardless of the industry 21. Similarly, industry-by-industry tables divide the economy into 

multiple industries, describing input-output relationships of industries irrespective of the 

product. The following chapters employ product-by-product tables. Adding environmental 

pressures (e.g. primary resource extraction, land use, water use, emissions) due to production 

to each economic sector generates an Environmentally Extended GMIRO (EE GMIRO) table 
20. The structure of an EE GMRIO table is illustrated below in product-by-product format. 

The figure shows that every product links with environmental pressures associated with its 

production and these pressures are then embodied in economic flows via the transaction 

matrix. For example, soybeans produced in Brazil, which are exported to feed cattle in China, 

which are then exported to South Korea for final consumption in the form of beef. The 

production of each intermediate product from each different country results in environmental 

pressures (e.g. carbon emissions) that in turn cause environmental impacts (e.g. biodiversity 

loss) along the supply chain. EE GMRIO can estimate all pressures related to beef 

consumption (a consumption-based footprint). The example is only for one product, but 

GMRIOs cover in a similar way all product and service categories traded between economic 

sectors and nations.  

The structure of the global economy as depicted by a GMRIO table is shown in Figure 1.1 

for a product-by-product table. In a monetary product-by-product GMRIO table, the 

interdependencies (i.e. input requirements per unit of output) between products and regions 

are expressed as a matrix (known as transaction matrix, technical coefficients matrix or 

matrix A in Figure 1.1). The A matrix describes the direct input-output relationship or 

production recipe between products and nations where products can be regarded as inputs to 

produce other products. However, since the products used to produce another product 

themselves have a production recipe, the total requirements of all upstream production has to 

be computed. This is calculated by a solution called the Leontief inverse matrix given by L 

= (I - A)-1.  

The EE GMRIO approach inherits an economic consistency from the GMRIO approach, 

which means direct environmental pressures generated from production cannot be "lost" in 

the calculation along the global supply chain 20. The total pressures due to production shown 

in an EE GMRIO, by definition are equal to the total environmental footprints of 

consumption. Given its consistency, EE GMRIO tables are widely used to trace 

environmental pressures embodied in the global supply chain.  



 

 

 

 

Total output (x )

Product 1 Product …Product n Product 1 … Product n Product 1 … Product n

Product 1

Product … Domestic table in Country 1

Product n

Product 1

Product …

Product n

Product 1

Product … Domestic table in Country m

Product n

v Value added

x' Total Input

E
Environmental 

Extensions

Total output

imported 

prodcuts

C
o

u
n

tr
y

 …
C

o
u

n
tr

y
 m

Final demand (Y )Transaction Matrix (Ax )

Country 1 … Country m

domestic 

products

Country 1 Country … Country m
C

o
u

n
tr

y
 1

…

domestic 

products

  

Figure 1.1. The structure of an EE GMRIO table. The transaction matrix is given by A, the final demand (the consumption 

of goods and services by different sectors of society) by F, the extension row vectors to the bottom of the table by E. The 

latter can describe economic extensions such as the value added required to produce a product, social extensions such as the 

hours of labor required, or environmental extensions such as emissions.  

1.2 The heterogeneity of social and environmental impacts, especially in food systems 

The number of EE GMRIO studies has been increasing rapidly in recent years, resulting in 

many country-level social and environmental footprint assessments1. They have focused on 

many different social and environmental pressures and impacts, including climate change (e.g. 

CO2, N2O, CH4), air pollution (e.g. PM2.5, PM10, NOx, SO2), biodiversity loss, and employment 
1. However, as indicated, GMRIO tables are usually only available at country level and 

represent the average information of an economic sector for a country. The implication is that 

while the GMRIO approach is capable of calculating footprints of consumption, the hotspots 

contributing to these footprints at best can be identified at the level of sectors in a specific 

country. However, local social and environmental impacts of the same sector can be spatially 

very heterogeneous. This issue is prominent in some large countries (e.g. the US, Brazil, and 

China). In addition, drivers of environmental pressures from both a production and consumption 

perspective can be spatially concentrated. This is due the fact that different human production 

and consumption activities are often concentrated in specific geographical areas. For example, 

more than 90% of the Chinese population and most production and consumption activities of 

Chinese people concentrate on the east of Heihe-Tengchong Line (also known as Hu 

Huanyong-Line), which only accounts for 40% of China’s area. Overall only 1% of China’s 

land area accounted for three-quarters of carbon emissions driven by global consumption in 

China 22.  

The need for spatially explicit assessments is particularly relevant for the agri-food system. The 

type of agricultural production in a specific area is determined by a variety of biophysical (e.g. 

climate conditions, land topography, and soil property) and socioeconomic variables (irrigation, 

population density, access to market, and cultural convention) 23. For example, more than 90% 

of global oil palm is planted in Indonesia and Malaysia in relation to the specific climatic 

conditions in these countries 24. In addition, there is also huge spatial heterogeneity of 

agricultural production and associated social and environmental impacts within a nation. For 

example, the US contributes to about 40% of global soybean and corn production, with 85% of 

this production being located in the "Corn Belt" 25. However, agricultural production is 

commonly shown at provincial or country-level administrative units, which masks local 

diversity and spatial patterns 26.  



 

 

 

 

With the development of remote sensing technologies and hyperspectral image-processing 

methods, an increasing number of high-resolution global land cover maps are available (e.g. 

Copernicus Global Land Service 27, GlobeLand30 28, ESA-CCI-LC 29, MODIS 30, Global Food 

Security-Support Analysis Data31). These datasets are widely used to study local social and 

environmental impacts associated with crop and livestock production. The results of such 

analyses show that social and environmental impacts due to local production are spatially 

heterogeneous 32. At the same time, production- and consumption-based analysis with 

traditional GMRIO tables misses this spatial heterogeneity, since they usually cover rather 

aggregated economic sectors (including agricultural sectors) with average data for whole 

countries.  

1.3 Global spatially-explicit multi-regional input-output analysis 

To trace the pathways of local social and environmental impacts along international supply 

chains or to identify local impact hotspots driven by global consumption, a new approach is 

emerging: global spatially-explicit multi-regional input-output analysis (SMRIO). There are 

three main options in which the spatial resolution of GMRIO models can be increased. The 

three options are related to the three main matrices pictured in Box 1 (E, A, and F): 

 Spatially explicit environmental or social extensions. That is, a spatially explicit picture 

is provided of the resources, emissions or land use related to production within a specific 

economic sector (represented by matrix E). 

 Spatially explicit final demand. That is, a spatially explicit picture of the consumption 

of households, businesses or governments in different locations is provided, 

representing for example the consumption baskets of cities vs rural consumers 

(represented by matrix F). 

 Spatially explicit transaction matrices (represented by matrix A). Such matrices describe 

value chain linkages between production and consumption activities at a high spatial 

resolution (and usually require information on points 1 and 2 above, too. We make this 

differentiation, since some SMRIO approaches just give spatially explicit information 

on production, or consumption, without making the transaction matrix spatially explicit). 

The data requirements, already significant in the classic GMRIO approach, would be 

overwhelming if the approach was to include all three aspects. A more tractable approach would 

be to exclude points 2 and particularly 3. While in principle the intermediate inputs and outputs 

for a product, as given in the transaction matrix, could differ by location, as a first proxy the 

assumption could be made that similar production processes have similar, national average 

inputs and outputs. This reduces the complexity of constructing SMRIOs to combining 

information from GMRIOs with spatially explicit information of production activities. Such an 

approach would still help identify local social and environmental impacts hotspots driven by 

global consumption of goods and services, and which actors are involved in specific supply 

chains 33,34.  

In the domain of agriculture and food there are several datasets that can be used in support of 

such a SMRIO approach. These include crop-specific land use maps such as EarthStat 35 and 

the Spatial Production Allocation Model 26. Another useful dataset is the recently developed 

Food and Agriculture Biomass Input-Output (FABIO) table36. FABIO is an annual table at an 

unprecedented level of detail in agricultural and forestry products by country, covering 191 

countries and 130 agriculture, food, and forestry products from 1986 to 2013 36. By linking the 

national data provided by FABIO to spatially explicit agricultural production maps it becomes 

possible to develop highly product- and location-specific details of social and environmental 



pressures associated with agricultural production and consumption along the international 

supply chain 36. While a limitation of FABIO is that it does not cover the total economy, 

compared to existing GMRIOs it gives an unprecedented detail in transactions related to 

agriculture, food and forestry products.  

1.4 Priorities in sustainable development – a focus on agriculture 

The agricultural system currently occupies ~43% of global ice- and desert-free land. The food 

system is a major driver of biodiversity loss37. This is a critical issue since the earth is entering 

a sixth mass extinction. That is, current species extinction rates are 100-1000 times higher than 

the background extinction rate 38,39. Around 25% of all species face extinction within decades, 

and the species extinction rate may even accelerate without any further increase in the drivers 

of biodiversity loss 40,41. Around 26% of human GHG emissions are created along the 

global food supply chain, predominately via direct agricultural production (e.g. fertilizer 

use and enteric fermentation of ruminants) and indirect via land-use change (e.g. 

deforestation) 42. Most GHG emissions from the food system are related to the production and 

consumption of animal products. For example, about one-third of global cereal production 

(which accounts for 40% of global cropland) is used to feed livestock 43. This is somewhat 

unsurprising when we consider that the energy feed-to-food conversion efficiency of animal 

products is low and varies from 3% for beef to 17% for eggs within animal products 44. In 

addition, consumption of animal products, especially unprocessed red meat and processed 

meat, increases the risk of some diseases (e.g. cancer, cardiovascular disease, diabetes, and 

stroke) 45,46.  

Next to these significant environmental pressures we are seeing increasing concerns related to 

food security around the world. Yield growth has been slowing or even stagnating; average 

global crop yields for the 174 crops covered in FAOSTAT increased by 56% in the first stage 

of the Green Revolution (from 1965 to 1985), but only 20% in the post-Green Revolution 

(from 1985 to 2005)47,48. The world is off-track to achieve targets related to food security 

and the number of hungry and malnourished people has been increasing in past years 49. 

Furthermore, agricultural production caused numerous serious social and environmental 

impacts because the present agricultural system is resource- and labor-intensive and 

consuming a large amount of natural capital 37. 

On top of these issues, food systems are also highly spatially heterogeneous globally. Few 

studies have investigated local agricultural production and associated social and 

environmental impacts along the global supply chain. There are exceptions, for example 

studies that map local freshwater pressure driven by global consumption, but these are at 

a rather coarse spatial resolution (e.g. basin level) and discern just a few agricultural 

sectors50. One of the reasons is that the agricultural sectors are highly aggregated in the 

present GMRIO tables. Therefore, we chose the food and agricultural system as a focus in this 

thesis. We build an SMRIO framework to examine three key issues in sustainable food 

production in the following chapters—food security, biodiversity loss driven by global land 

use, and the carbon emission and sequestration implications of dietary changes. Each of these 

issues relates to different drivers and pressures or problems in the production stage, and 

requires hence a somewhat different approach in the SMRIO analysis. 

1.5 Aims and research questions 

This thesis investigates the global SMRIO method and its use in assessing 

environmental pressures and impacts. The thesis uses the food system as an application 

area, given the fact that food consumption is a driver of major environmental issues, such as 

biodiversity loss and 



 

 

 

 

carbon emissions. The analysis of such problems related to the agri-food system can benefit 

greatly from a spatially explicit approach. The overall research question is:  

How can spatially explicit multi-regional input-output approaches be used to evaluate 

sustainability in the global agri-food system?  

This main research question is addressed via the following sub-questions discussed in the 

following chapters (see Figure 1): 

Question 1: What is the current status of spatially explicit input-output analyses? (Chapter 2) 

Question 2: What are the local production hotspots of crops and livestock driven by global 

consumption and how does this impact food security through trade? (Chapter 3) 

Question 3: How does land use driven by final consumption affect global biodiversity within 

key biodiversity areas? (Chapter 4) 

Question 4: What are the global interactions between carbon emissions and carbon 

sequestration driven by diets and diet changes in high-income nations? (Chapter 5) 

1.6 Outline of this thesis  

This thesis is composed of 6 chapters. This chapter gives a general introduction, and Chapters 

2 to 5 address the above research questions. Chapter 6 summarizes and synthesizes the main 

findings of this thesis, and discusses limitations. In short, the principal content of each chapter 

is as follows: 

Chapter 1 introduces recent developments in the assessment of social and environmental 

impacts embodied in international trade based on GMRIO analysis, and shows that GMRIOs 

overlook spatial heterogeneity of such pressures and impacts at local scale. It shows that 

SMRIO is an approach that can overcome this limitation, and that spatially explicit analyses are 

particularly relevant for the agri-food system. It also identifies three priorities (food security, 

biodiversity, climate change), which are applied to case studies in the following chapters. 

Chapter 2 reviews the state of the art of spatially explicit input-output analyses, diagnoses the 

mechanisms connecting global consumption with local environmental impacts and identifies 

research gaps. It proposes a theoretical framework of the global spatially explicit multi-regional 

input-output approach by analyzing previous studies and provides methodological support to 

the following chapters.  

Chapter 3 explores the importance of primary crop hotspots in international trade and food 

security. It uses the road network to allocate between domestic consumption and export, 

identifies hotspots (the most significant regions for production) for primary crops and livestock 

driven by international consumption, and compares per-capita primary crop and livestock 

consumption with an illustrative target safe operating space for every nation.  

Chapter 4 assesses global biodiversity loss caused by anthropogenic land use within key 

biodiversity areas (KBAs) driven by final consumption. The assessment is performed by 

combining the Food and Agriculture Biomass Input-Output (FABIO) and EXIOBASE input-

output databases with spatially explicit agricultural production maps. The biodiversity loss 

calculation is based on the land use area driven by global consumption and characterization 

factors (i.e. global species-equivalents potentially lost per area of land use) under different land 

use types and intensities.  



 

 

 

 

Chapter 5 estimates a ‘double dividend’ of reduced GHG pressures by dietary changes in high-

income countries from both (1) reduced direct agricultural production emissions and (2) carbon 

sequestration via land sparing whereby agricultural lands can revert to other uses.  

Chapter 6 answers research questions, discusses broader insights, provides some policy 

implications, and provides recommendations for the development of spatially explicit input-

output analysis. 
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Figure 1.2. Outline of this thesis. 
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2 Going global to local: connecting top-down accounting and local impacts, a 

methodological review of spatially explicit input-output approaches 1 

Abstract 

Environmentally Extended Input-Output databases (EEIOs) provide an effective tool for 

assessing environmental impacts around the world. These databases have yielded many 

scientific and policy relevant insights, especially through the national accounting of impacts 

embodied in trade. However, most approaches average out the spatial variation in different 

factors, usually at the level of the nation, but sometimes at the subnational level. It is a natural 

next step to connect trade with local environmental impacts and local consumption. Due to 

investments in earth observation many new datasets are now available, offering a huge potential 

for coupling environmental datasets with economic models such as Multi-Region Input-Output 

(MRIO) models. A key tool for linking these scales are Spatially explicit Input-Output (SIO) 

models, which provide both demand and supply perspectives by linking producers and 

consumers. Here we define an SIO model as a model having a resolution greater than the 

underlying input-output transaction matrix. Given the increasing interest in this approach, we 

present a timely review of the methods used, insights gained, and limitations of various 

approaches for integrating spatial data in input-output modelling. We highlight the evolution of 

these approaches, and review the methodological approaches used in SIO models so far. We 

investigate the temporal and spatial resolution of such approaches and analyze the general 

advantages and limitations of the modelling framework. Finally, we make suggestions for the 

future development of SIO models. 

2.1 Introduction 

Environmentally-Extended Input-Output (EEIO) models have been widely applied and have 

been used to link production and consumption while accounting for the direct and indirect 

relationships between different economic activities 1,51,52. Prominent consumption based studies 

include analyses of air emissions 53–55, waste generation 56, water use 57, land use 58, and 

biodiversity loss 59 around the world 60. Part of the popularity of EEIO databases (EEIOs) is 

due to the steady increase in the level of environmental impacts embodied in trade 1,52. 

Additionally, since these models connect producer and consumer through supply chains 61 

(which are often complex), it is possible to investigate policy interventions from production-

based 62–64, consumption-based 51,65, income-based 66,67, and other, in betweenness-based 

perspectives 68.  

Currently, the vast majority of EEIO applications are based on results at the national level. This 

is acceptable for well-mixed, global environmental stressors such as greenhouse gases, and for 

broader investigations on a national level, but it limits the usefulness of models for stressors 

which have highly local impacts, and for nexus investigations which examine the interaction 

and interdependence of several resources. Particular examples of these types of stressor include 

water use, land use, biodiversity, water pollution, and local air pollution (such as SO2, NOx, 

PM2.5, PM10). Given this, there has been a recent trend to link EEIOs with global environmental 

maps and databases by disaggregating modelled or directly measured production activity by 

sector 69–73. 

Maps and databases of environmental impacts or stressors are typically generated from 

observations by monitoring stations 74 and satellite remote sensing measurements 75. They can 

                                                 

1 This chapter has been published as: Sun, Z., Tukker, A. and Behrens, P., 2018. Going global to local: connecting 

top-down accounting and local impacts, a methodological review of spatially explicit input–output approaches. 

Environmental science & technology, 53(3), pp.1048-1062. 



 

 

 

 

also be modelled by using spatially explicit simulations that often use direct observations as 

model boundary conditions 71,76. Monitoring stations collect environmental information in situ, 

with common examples including air quality (PM2.5, PM10, O3, SO2, CO, NO2) (for example 

see: http://aqicn.org), soil quality 77, and water quality 78. Remote sensing aims to measure 

environmental impacts from a distance, including land use 30,76, water 79, air quality 75, and 

biodiversity 80. Remote sensing may include ground-, sky-, or space-based observation. The 

spatial distribution of environmental impacts derived from these methods can be very accurate 

and are often available over time. For example, fixed monitoring stations record in real time, 

while satellite imagery products for air quality and land use are generally updated annually 29,75. 

Most efforts are carried out by governmental, public research institutions, or some private 

research groups. However, there is always a balance between large-scale, continuous modelling, 

and the scientific resources available to make such global assessments. In response, researchers 

have also used spatially explicit simulation models to estimate the spatial distribution of 

environmental impacts at higher temporal or spatial resolutions. Such examples include: the 

global dynamic vegetation model LPJmL (Lund-Potsdam-Jena managed Land) 81; the global 

freshwater model WaterGAP 82, the dynamical atmospheric Sulphur transport model DEHM 83; 

a variant of this model DEHM-POP to depict transport of persistent organic pollutants (POPs) 
83; and a historic model of environmental impacts (HYDE) to simulate land use and land cover 

change over time 84. These examples depict environmental issues caused by local production, 

but they do not connect local environmental impacts with consumption from other regions. 

Additionally, they do not contain enough sectoral information to provide information on policy 

impacts. 

What we have described so far is the estimation of environmental impacts from a supply 

perspective, that is, in the production of materials for good and services. These data can be 

connected to the consumer in several different ways. We focus on input-output models in this 

review, but there are other methodologies for assessing consumption-side impacts using 

process-based methods to identify spatially explicit environmental impacts 85. For example, 

Hoekstra and Mekonnen et al. estimated the spatial distribution of global water footprints (blue, 

green, and grey water footprints) using a grid-based dynamic water balance model, calculating 

virtual water flow from water embodied in the direct consumption of agricultural and industrial 

commodities 86,87. This approach describes the embodied impacts through direct consumption 

of commodities between two regions, but they omit the complex supply-chain relationships 

between different sectors and different regions.  

With the increasing availability of spatially explicit environmental data disaggregated by sector, 

there have been several efforts to take EEIO analysis to the local level. As yet these approaches 

are disparate and spread across the literature. Given the likely similarities of approaches, the 

diversity of environmental and resource assessments, and the possible utility of such approaches, 

we provide a critical review of the approaches so far, limitations, and future opportunities. 

We start by highlighting recent efforts in SIO modelling and we categorize these analyses by 

the form of disaggregation used in the input-output model. We then provide an overview of 

spatial data sources and their resolution. The need to balance spatial resolution with policy 

recommendations is addressed. We discuss the potential for uncertainty analysis in SIO 

investigations and the possibility for further incorporation with other environmental models. 

Finally, we highlight the major obstacles going forward in developing, utilizing, and extending 

SIO models.  



 

 

 

 

2.2 An expanding field 

Although the term spatially explicit implies a variety of meanings, there is no uniform definition. 

Here we define it as involving a result where the spatial information available from a study is 

at a spatial scale greater than the available IO (input-output) data itself. Studies such as Wang 

et al.88, Ridoutt et al. 89 , Wilting et al. 90, and Verones et al.91, average results to the national 

level, and would fall under the category of input-output modelling not SIO since spatial 

information is not available. Multi-region input-output tables at the regional level, such as those 

using Chinese provincial data also do not conform to the definition above since the IO table is 

already at the spatial scale of the region. These regional MRIOs have been previously been 

reviewed in Ploszaj et al 92 . Ploszaj et al found 42 articles using subnational input-output papers 

based on data from 15 countries between 1980 and 2013. We omit these studies from the review 

herein. 

Interest in incorporating spatially explicit information into EEIO is a relatively new 

development, with fast growth since 2014 (see Figure 2.1, and the Supporting Information for 

how the literature was selected). However, James et al. provided the first methodological 

approach in 1985, by integrating an input-output model with an air pollution dispersion model 
93. It focused on a small region (the Hunter Region, Australia) and traced the spatial diffusion 

of sulphur oxide and fluoride emissions from location-specific production sites given by the 

regional authority as part of the New South Wales Clean Air Act. These emissions were 

calculated based on the output from specific production sites and emission coefficients from a 

regional input-output table. They assumed the same emission coefficient for the specific site as 

the corresponding sectors in the input-output table 93. This early approach showed that the 

spatial distribution of emissions varied with the level of regional economic development.  

It subsequently took 20 years for the next publication of an SIO study, probably due to the 

limited availability of spatial datasets with adequate sectoral resolution along with the 

limitations of computing power. From 2010, there has been a large increase in the number of 

spatially explicit studies. These studies use a variety of different methods and approaches, and 

analyze a number of different environmental pressures. We are currently in a period of 

exponentially increasing citation counts for SIO papers, especially from 2013 onwards. This is 

likely to continue with increasing dataset availability and the fast development of SIO 

approaches. 

 

Figure 2.1 Number of published papers and their citations using SIO approaches 
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2.3 Methodological and spatial categories  

Methodological categories: In total, we identify ten distinct methodological approaches for 

linking spatially explicit data to input-output databases (please see Supporting Information for 

qualitative and mathematical descriptions of each). We then classify these further based on the 

structure of Environmentally Extended Input-Output (EEIO) databases. The canonical structure 

for an EEIO database is a matrix for environmental extensions by sector and region, a final 

demand matrix by sector and region, and a transaction matrix where sectors purchase the output 

from other sectors to produce goods for final demand. We further classify the 10 methods to 3 

categories based on the matrices to which the spatial disaggregation is applied (the studies 

falling into each category are shown in Table 2.1). The categories are enumerated as: 

Category 1:Disaggregation in environmental extensions. Here, environmental extensions 

are disaggregated by mapping the environmental impacts between the production sectors in the 

input output model and impacts identified spatially from the spatial databases. The result is a 

spatially explicit mapping of consumption-based footprints. In this category, analysis mainly 

focuses on hotspot assessment, which can be driven by a specific country, region, or sector. 

Examples of spatial databases that can be used in this way include: WaterGAP 70 for fresh water 

use and consumption; emissions data from EDGAR 69 giving greenhouse gas (CH4, CO2, N2O), 

air pollution (BC, CO, NH3, NOx, PM10, PM2.5, SO2), and toxic pollutants (Mercury); the 

IUCN red list which provides details on threatened species 72,73; and, Aqueduct Global Maps 

which maps water stress 94. The connection between the spatial database and IO tables is usually 

made by assuming proportionality between impacts. That is, the demand for products in an IO 

table is assumed to be proportionally distributed to the production information in the spatially 

explicit database. Some studies have then aggregated these impacts or stressors to the national 

or regional level to build a set of new environmental extensions for the IO model first, and then 

used the same spatial information to allocate consumption-based impacts into grid cells 95,96. 

Others use the existing source data for the environmental extensions provided by the IO datasets 

to calculate consumption-based impacts, and use spatial information to disaggregate to a finer 

scale 97.  

Some studies then perform additional analyses to model the diffusion of a pollutant based on 

the consumption footprint. Typically, these studies use an input-output model to calculate the 

volume of emissions from a region and then apply a physical model to simulate the spatial 

diffusion of emissions (which may also include an atmospheric chemistry model) 98–103. For 

example, the approach (Method 7 in the supporting information) has been used to investigate 

the human health impact in China driven by the overseas consumption of Chinese products (this 

also required the use of a health impact model) 104.  

Category 2: Disaggregation in final demand. Here the final demand matrix is disaggregated 

using regional statistics. These statistics can be derived from household or enterprise surveys 

or from local purchasing data such as electricity bills 105–107. This disaggregation is then used 

as a stimulus vector whereby the disaggregated matrix is used instead of the total national final 

demand (and the traditional Leontief analysis is performed). Note that this approach still uses 

the original national (or multi-regional) input-output transaction matrix and environmental 

extensions to trace upstream environmental impacts. Instead of finding spatially explicit 

hotspots in production driven by overseas and domestic consumption (as in Category 1), this 

approach is used to show the environmental footprints of consumption across regions, for 

example the differences in the environmental impacts of consumers in different subnational 

areas 108,109. For example, Method 6 (see supporting information) was used to show spatially 

explicit consumption footprints in the EU105,110. First, the product classifications used in 

consumer expenditure surveys (CES) were mapped to the sectors available in the MRIO 



 

 

 

 

EXIOBASE using concordance matricies at the country level. Then this combined CES-MRIO 

model was used to calculate subnational environmental impacts according to household 

consumption across the EU. 

Category 3: Disaggregation in the transaction matrix. Here the transaction matrix is 

disaggregated, which by definition requires the spatial disaggregation of final demand and 

environmental extensions also 111,112. As previously stated, this category requires the 

construction of an entirely new IO table in all IO elements, which does not conform to our 

definition above, and has been reviewed elsewhere 92 . As we will discuss later in this paper, 

data limitations preclude doing this for every analysis. Often we have limited information on 

the structure of value chains linking spatially separated production and production 

consumptions. Therefore, we focus mainly on Categories 1 and 2 and reflect on the further 

development of Category 3 studies in the discussion. 

Table 2.1 Categories of SIO linked with the methods and data sources applied 

Category 
Example spatial database or 

model used 
Methods References 

1. Disaggregation in 

environmental 

extensions 

The WaterGAP model 

Methods 1 & 2:  

Identifying hotspots  

 

50,113 

EDGAR emissions data 95,96 

Extent-of-occurrence, from 

IUCN red list and BirdLife 

datasets 

114 

Aqueduct Global Maps for water 

stress 

Method 3: Integrating a 

process-based model with an 

input-output model 

97 

IFA hazardous substance 

database 
Method 4: Integrating an 

MRIO model with production 

location information 

 

115 

Survey data from enterprises 

(SABI, Sistema de análisis de 

balances ibéricos: base de datos) 

116 

Location of volcanic eruptions 

and ash volume (Auckland 

Volcanic Field, from Geology of 

the Auckland urban area) 

Method 5: Quantitative risk 

assessment of economic 

output reduction due to final-

demand perturbations. 

117 

 

GEOS-Chem chemical transport 

model 
Method 7 & 8 : Integrating 

an MRIO model with an air 

pollution dispersion model. 

98–104 

Pollutant dispersion models 

(Smeared Concentration 

Approximation (SCA)) 

93 

Spatially explicit econometric 

model (spatial Regional 

Econometric Input–output 

Model (REIM)) 

Method 9: Integrating an 

econometric model with an 

MRIO model 

118 



 

 

 

 

GIS methods and approaches 

Method 10: Integrating an 

MRIO model with, for 

example, spatial interpolation 

119–122 

2. Disaggregation in 

final demand 

Local statistical data 

Method 6: 

Integrating an MRIO model 

with demand-side 

subnational information. 

123–125 

Consumer Expenditures Survey 

(CES) data  
107,108,134–142,126–133 

Enterprise survey data (Italian 

company information and 

business intelligence (AIDA)) 

106 

Zip code tabulation (U.S. zip 

code tabulation areas (ZCTAs)) 
107,143,144 

Gridded population 107 

Purchasing power index  107 

3. Disaggregation in 

the transaction 

matrix 

Disaggregation all matrices via Non-survey methods (such as 

location quotients (LQs), gravity models, behavior-based models, 

neural networks), survey methods, or hybrid methods 

145–149 

Spatial categories: Summarizing Categories 1 and 2, the inclusion or development of spatially 

explicit data in the literature arises from: 1) synthesis and incorporation of spatial environmental 

extensions data with EEIO (23 of the 48 articles evaluated), and 2) tracing environmental 

footprints using subnational stimulus vector in final demand (25 of the 48 evaluated, see 

supporting information). We found no papers belonging to Category 3 – papers coming closest 

to this represented sub-national MRIO tables at e.g. provincial level, which as discussed above 

we do not see as disaggregated transaction matrices at a high spatial detail but rather special 

cases of regular multi-country IO tables. The spatial resolution varies to a large extent both 

between and within categories. 

Studies falling in Category 1 used a total of 20 different spatial databases or models to trace 

spatial hotspots driven by consumption. These databases originate from different sources; some 

databases are based on remote sensing observations. For example, Moran et al. apply IUCN red 

list and BirdLife data, whose species-specific habitat loss is estimated from remote sensing and 

traces species threat driven by consumption 114. Others use data from WaterGAP 50,113 and 

EDGAR 95,96, or point measurements of impacts, such as the location of volcanic eruptions 117, 

power plants 93, and spatial maps of national enterprises 106,116. Based on these databases and 

models, researchers have explored issues including water consumption 50,113,131, nitrogen and 

phosphorus loading 115, biodiversity loss 96, volcanic eruption risk 117, energy consumption 129, 

greenhouses gas emissions (CO2, CH4) 
95,122,130, and other air pollution emissions (NOx, SO2, 

PM10, PM2.5) 
96,102. The highest spatial resolution used was 0.5°× 0.5° for water consumption 

and 0.1° × 0.1° for greenhouse gas emission and air pollution. All studies are at the temporal 

resolution of a year and range from 1970 to 2008. 

Studies falling in Category 2 used 42 different databases to identify environmental impact 

footprints at local consumption level. These databases are mainly from Consumer Expenditures 

Survey (CES) (26 European countries, plus US, Austria, and Canada) according to the 



 

 

 

 

international COICOP (Classification of Individual Consumption by Purpose) division. For 

example, Ivanova, et al., build EU27 subnational household environmental footprints (carbon, 

land, water, organic materials, non-organic materials) based on CES databases of every country 

(except Croatia, Netherlands, and Sweden) 105. Additionally, other databases source from 

national statistics (such as, Australian Land Use Mapping Program, the National Pollutant 

Inventory, and the Australian Business Register; U.S. zip code tabulation areas (ZCTAs)) 131,143, 

commercial enterprise information (e.g., Italian company information and business intelligence 

(AIDA))) 106, in situ questionnaire survey data 138,142, and regional purchasing power and 

gridded population data 107. These researches explores environmental impacts footprints, 

including greenhouse gas emission 105,126, water and land 105,108, which map to the consumption-

based side of IO analysis. The highest spatial resolution mapped carbon footprints into 250 m 

based on GHS-POP gridded population model 107, and US household carbon footprints at zip 

code tabulation areas (ZCTAs). Most studies are at the temporal resolution of a year and range 

from 1990 to 2015, and even some researches project to 2050 144. 

Studies falling into Category 3 would give spatially explicit information on production 

processes and related extensions, spatially explicit information on consumption patterns, with 

transaction matrices matching this spatial and sectoral disaggregation. The disaggregation of 

transaction matrices is a clear bottleneck. All existing work uses non-survey approaches or 

suffers from other crucial limitations, as illustrated by work on subnational MRIO tables (e.g. 

Australia 150, China 112, Japan 151, Indonesia 146, Spain 152 and Germany 149), the Industrial 

Ecology Virtual Laboratory (IELab) 89,111,146 and the Transparent Supply Chains for Sustainable 

Economies (Trase.earth) project 109,153,154. The IELab 89,111,150,155 includes a lot of detailed 

regional data (especially for Australia), from which customized input-output models can be 

developed based on a specific research question, but it cannot provide a input-output database 

including all sectors and regions due to a lack of computing power (one approach could result 

in over 5 petabytes of data, and impractical computation times)111. Trase.earth 109,153,154 focuses 

on constructing trade flows at finer scale (see Method 11 described in the Supporting 

Information), disaggregating producers on a finer scale, but consumers still at national level. 

None of these examples use directly-measured data or survey-based data for estimating spatially 

explicit transaction matrices. This is natural due to the expense of ad-hoc surveys for 

interregional trade data 111 . Claims such as ‘city X consumes Y beef from pixel Z’ by necessity 

requires estimates of highly estimated and modelled flows. We have found no work yet that 

solves this problem and hence do not discuss this category further in this section. 

We classify studies into 5 further spatial categories: global, regional, national, subnational 

regional, and city, depending on the resolution of the final result. Table 2.2 shows a breakdown 

of the spatial scale and environmental impacts for different studies in the literature. We then 

discuss the major highlights from studies at each of these scales and their policy relevance. 

Table 2.2 Studies analyzing social or environmental impacts at different spatial scales 

Spatial scale Category 1 Category 2 

Global 

Air pollution (SO2, NOx, and PM10, PM2.5, BC, 

CO)96,98,102,104 
 

Greenhouse gases (CO2, CH4)95  Greenhouse gases (CO2)107 

Biodiversity 114  

Water 50,97,113  



 

 

 

 

Global studies: Globalization has served to disconnect commodity consumption with 

production-related impacts 113. High-income countries to some extent have improved their local 

environmental footprints and impacts by outsourcing through the global supply chain 96. 

However, these impacts will impact high-income countries as well. For example, along the US 

West Coast, 3-10% of annual average surface sulfate and 0.5-1.5% of ozone, both of which are 

Grey water 115  

Macro 

Regional 
 

Carbon (EU27; 19 cities around the 

Mediterranean)105,135 

National 

 Water (UK, Australia)131  

Grey water (Spanish)116  

Air pollution (SO2, NOx, and PM2.5, China) 
99,101,103 

 

Atmospheric Mercury (China) 100  

Carbon (Japan)122 

Carbon (Norway, USA. UK. Australia, 

Estonia, China, Germany)124,125,139,143,126–

128,131,132,134,137,138 

 
Natural disasters (earthquakes, floods, 

landslides)(Italy)106 

Subnational 

regional 

 Ecological footprint (15 cities, Canada)133 

 

Carbon (15 cities, Canada; San Francisco 

Bay Area in USA, 20 cities in Finland; 24 

cities in China;  Helsinki Metropolitan 

Area in Finland)133,136,140,142,144 

City 

Air pollution (Hunter region, Australia )93  

COD (chemical oxygen demand) (Changzhou 

City, China)119,120 
 

Volcanic eruptions (Auckland region, New 

Zealand)117 
 

 
Economic loss driven by earthquake 

(Beijing, China)123 

Employment, population (Chicago, USA)118  

Flood (South-Holland, Netherlands)121  

 Energy (Sydney, Australia )129 

 
CO2 (Sydney, Australia; Boston, 

USA )130,141 



 

 

 

 

deleterious to health, arise from the atmospheric transport of Chinese pollution driven by 

exports 98. In another example, Zhang et al., build a global spatial distribution estimate of 

premature mortality driven by PM2.5 in 2007 at 100 km × 100 km resolution, and find that some 

411,100 deaths (12% of total premature mortality) are caused by pollutant transport from one 

location to a more distant location, and 762,400 deaths (22% of total premature mortality) are 

linked indirectly through the supply chain 104. 

A common analysis is the tracing of embodied environmental impacts flowing through global 

supply chains at the national level. Spatially explicit approaches allow for a greater resolution 

in assessing local environmental impacts. We illustrate this using two examples: CO2 emissions, 

and biodiversity threats. Firstly, at the national level, Davis et al. identified national flows of 

CO2 emissions, and identified American imports as having the largest embodied CO2 flows in 

2004 (0.7 Gt net import) 156. By using the EDGAR database, further work made these flows 

spatially explicit, showing that US footprints of CO2, SO2, NOx, PM10 in 2008 are highly 

concentrated, with 90% of the footprints located in only 1.6%, 3.1%, 3.6%, 9.9% of the land 

area, respectively 2008 95,96. Similarly, at the national level, Lenzen et al., find that American 

consumption drives the largest number of biodiversity threats (2424 total threat records, and 

995 from net imports) 59. Further spatially explicit analysis showed that 23.6% of species threats 

were concentrated on just 5% of global land area, and 60.7% of species threats were 

concentrated on 5% of the global marine area 114. The identification of these hotspots may help 

facilitate global policy responses. 

Macro-regional studies: A good example of macro-regional scale applications is the use of 

European Union data to investigate the spatial variation of environmental impacts driven by 

consumption. Ivanova et al. introduced a method for calculating carbon footprints, driven by 

household consumption in 177 regions of the EU27 105. They used this approach (described in 

Method 5 in the supplementary information) to calculate land, water, organic materials, and 

non-organic materials footprints under different kinds of consumption categories—shelter, food, 

clothing, mobility, manufactured products, and services 105.  

National studies: High-income countries and lower-income countries have different 

perspectives for environmental impact research. For the UK, a high-income country with 

relatively large consumption-based impacts, researchers have focused on carbon footprints 
126,127 and water footprints 108 at the scale of the local authority. Some researchers go further, 

attempting to find even higher resolution spatial distributions, for example of the grey footprint 

of Spain 116 and the carbon footprint in Estonia 128. Since some atmospheric pollutants have 

highly local health effects, but can also be transported within the nation, there has been work to 

model the diffusion of pollutants such as PM2.5 and mercury, which also incorporate dynamics 

of international and interprovincial trade 99–101.  

Subnational regional studies: These studies are very useful for interregional management, 

especially for a large country. For example, by linking census data with input-output models, 

researchers were able to show that the lowest Canadian per capita carbon footprint was found 

in metropolitan areas, since they often share goods and services 133. Another study investigated 

the opportunities for high-income and low-income consumers to reduce their carbon footprints 

across California, USA 144, finding that lifestyle modes have a large impact on overall carbon 

levels. 

City studies: Compared with other scales, cities tend to have highly-local measurements of 

environmental impacts, for example via in-situ air or water pollution measurement devices. 

Researchers have used input-output models and local city data to estimate direct economic 

losses to cities from natural hazards, including earthquakes 123, volcanic eruptions 117 and floods 



 

 

 

 

121. Analysis of the energy requirements of cities at suburban scales has also been made 129,130. 

City-based input-output tables are useful for this sort of analysis, and can provide specific 

support for local decision makers. 

Most SIO investigations are on global and national levels. This makes a certain amount of sense 

since global input-output models (WIOD, Eora, GTAP, EXIOBASE) and national input-output 

tables (official statistical publications) have been available for some time now, as have large-

scale, spatially explicit, global models of environmental stressors and impacts  

2.4 Options for enhancing spatial and sectoral resolution  

Theoretically, an MRIO framework could provide arbitrary spatial and sectoral resolution if the 

data and resources are available to those constructing the models. In one sense, at the extreme, 

a full MRIO model could include all interactions of economic activities for very fine spatial 

units, for example, 1 m × 1 m. This sort of model would fall under Category 3 above and is the 

ultimate ideal in developing SIO models (this would involve trillions of data points) because it 

can reveal all sectoral and spatial heterogeneity.  

This approach overcomes the spatial homogeneity assumption, which is an intrinsic 

shortcoming of input-output models (i.e. that each sector and region has specific environmental 

impacts across all products produced by that sector and across regions). However, data and 

computation limitations preclude such an approach for the foreseeable future. SIO models in 

Category 1 and 2 attempt to gain insights that such an approach might yield without the 

significant data and computation challenges. There is a large potential for developing these 

models further. In the following we expand on the opportunities for developments, first from a 

sectoral perspective, and then from a spatial resolution perspective. We then present some 

avenues for the development of approaches for Category 3. 

Enhancing Category 1, the sectoral and spatial resolution of environmental extensions. 

Sectoral resolution: The individual sectors included in analyses are important for further 

environmental and policy insights beyond the total environmental impact. However, it is 

difficult to create spatial maps for each sector, especially in the form of grid-cell data. In general, 

there are a greater variety of spatial data available for primary sectors such as crops 157 and 

livestock 158 . Primary sectors account for most of the land use, water use, and other 

environmental impacts resulting from production, so these sectors receive more research 

attention. Also, the function of land for primary sectors is often unique, so it is generally easier 

for remote-sensing to identify. In contrast, identifying the distribution of secondary and tertiary 

sectors is much more challenging. For example, a particular building could be used as a 

residence, restaurant, school, a company, or several other uses. Many land classification 

schemes do not include factories, refineries, restaurants etc. It is this underlying inability to 

specify land use that causes much of the problem. Some environmentally important industries 

may still be possible to spatially identify, for example, transport and stationary power plants 159. 

The phenomenon is especially evident in spatial distribution of carbon emission from EDGAR 

databases, which have detailed carbon emission for transport sectors, but much more coarse for 

manufacturing and service sectors 69. Given this issue, the environmental impacts of most of 

industries are proportionally allocated into sectors based on their output. For example, for lack 

of sector-specific data Moran et al. mapped all sectors in an input-output table into 11-13 spatial 

maps of air pollution and greenhouse gas emission 95,96. Similarly, for water, in Lutter et al. and 

Holland et al., WaterGAP consumption data was combined with an MRIO model (EXIOBASE 

for Lutter et al, and GTAP for Holland et al.), which was relatively straightforward to link in 

the case of agricultural and electricity sectors, but not directly possible in the manufacturing 



 

 

 

 

sectors 50,113. These difficulties in pinpointing secondary and tertiary sectors are a focus of 

ongoing research for water and energy modelers 71. 

One way to solve this sectoral information problem is to construct a map with a detailed land 

use classification based on current high-resolution map data, for example, Google Earth or 

OpenStreet map, which can identify location of secondary and tertiary sectors precisely. It 

would then be possible to link the sectoral map with spatially explicit environmental models to 

create more accurate spatial distribution of environmental impacts for more sectors in input-

output models. Multi-use buildings will remain a challenge for the foreseeable period; for 

example, one building may include resident households, restaurants, banks and other service. 

The phenomenon is particularly prominent in metropolis areas with high-density population 

and complex industrial structures. While some regions in some datasets have information on 

building-by-building use, the data is currently too patchy and limited for full integration into 

input-output models. 

Spatial resolution: Compared to subnational statistical data, grid-cell data is not limited to 

administrative boundaries, and it has the possibility of depicting spatial variation more 

accurately. But spatial variation still depends on the area of the grid cell. The coarsest resolution 

used in the 48 papers reviewed this study was 2° lon × 2.5° lat (about 60,500 km2 at the equator) 
98, slightly larger than smaller countries such as Netherlands, Switzerland, Slovakia, and 

Belgium. While increasing the spatial resolution of databases may be important for SIO models, 

there is little the input-output practitioner can realistically do about this given that these models 

often result from large research campaigns, for example NASA Earth Observations (NEO)160 . 

For ease of viewing we have presented a non-exhaustive selection of some common spatial 

databases that have the potential to be used in combination with input-output models in Table 

2.3.  

A key issue arises when looking at the spatial resolution of Category 1 studies. All the studies 

in our review use a proportionality assumption in assigning regions for production (which 

fulfills international demand). That is, all regions of production are treated the same whether 

products are used domestically or exported. This means that regions which do not have good 

access to markets and are likely producing goods for local consumption are ‘counted’ as part 

of the footprint of overseas consumers. Studies have suggested that regions with good 

transportation services and access to ports are more likely to be regions which export 

commodities 161,162. It may be possible to use this fact to apply a first-order correction to which 

regions may be producing domestically or exporting goods. Regions where road density is 

highest could be used as the first-priority for export, with the remaining area as the first-priority 

for domestic production and consumption. Similarly, we can allocate environmental impacts in 

the same way. In some cases, the subnational trade data is directly available (for example, at 

the municipal level in Brazil) 163, but is difficult to implement globally due to data limitations. 

Table 2.3. Potential spatial information sources to improve SIO models 

Environmental 

impacts 

Databases 
Sectoral 

resolution 

Temporal 

resolution 

Spatial 

resolution 

Land use and 

land cover 

European Space Agency Climate 

Change Initiative 29,164 

Cropland for crop 

sectors; grassland 

for livestock; 

Each year, 

from 1992 to 

2015 

300 m × 300 

m , global 



 

 

 

 

MODIS land cover 30,76 

forestland for 

forest products; 

urban area for 

manufacturing and 

service sectors 

Each year, 

data from 

2001 to 2012 

5’× 5’ 

minute, 

global 

USGS Global Cropland Area 

Database (GCAD)165 

Detailed cropland 

classification, 

including wheat, 

rice, maize, barley, 

soybean, cotton, 

orchards, 

sugarcane, 

cassava. 

2010 
1 km × 1 

km, global 

2015 
30 m × 30 

m , global 

Annually 

2003 to 2014 

250 m × 250 

m, Africa 

Annually 

2000 to 2015 

250 m × 250 

m , 

Australia 

Annually 

2001 to 2013 

250 m × 250 

m , USA 

Water 

Aqueduct Global Maps 166 

No specific 

mapping 

relationship with 

input-output 

databases, but can 

be combined with 

other spatial 

information, for 

example, crop 

distribution, power 

plants distribution, 

to create mapping 

relationship with 

input output 

databases 

2010 

Shape file 

by water 

basin, 

Global 

12 Global hydrological models 

(HDTM, Macro-PDM, MPI-HM, 

GWAVA, VIC, LaD, WaterGAP, 

PCR-GLOBWB, LPJmL, 

WASMODM, H08, ISBA-TRIP), 

details see 167 

Details for 

agricultural sectors 

and electricity 

sectors; difficult to 

combine with 

other 

manufacturing 

sectors 

Varying, 

from hours to 

month 

Varying, 

from 0.5° × 

0.5° to 2° × 

2°, Global 

Air pollution, 

GHG 

Emissions Database for Global 

Atmospheric Research (EDGAR) 69 

Varying from 7 to 

28 sectors related 

to energy 

consumption. 

Annually, 

1970 to 2012 

0.1° × 0.1°, 

Global  

Pesticides 

USGS, Grids of Agricultural 

Pesticide Use in the Conterminous 

United States 168 

All detailed crop 

sectors for input-

output tables in 

US. 

1992 1 km × 1 km 



 

 

 

 

Biodiversity 

Global Mammal Assessment 169 

Details see 59 

Annually, 

2000 to 2050 

1 km × 1 

km, Global 

IUCN Red List 72 

Annually, 

2009 to 

present 

Shape file 

by 

hydrological 

basins for 

freshwater 

basins; by 

taxonomic 

groups 

(species) for 

territorial 

and marine 

animals 

BirdLife 73  

Annually, 

2007 to 

present 

Shape file 

by 

taxonomic 

groups 

(species) 

Agriculture 

Global Gridded Crop Model 

Intercomparison (GGCMI) 170 
All detailed crop 

sectors for input 

output databases. 

 

Annually, 

1979 to 2010 

0.5° × 0.5°, 

global 

Spatial Production Allocation Model 

(SPAM)171 
2005 

5’× 5’, 

global  

Soil organic 

carbon 

Food and agricultural organization 

(FAO) 172 

No specific 

mapping 

relationship with 

input-output 

databases, but can 

be combined with 

other spatial 

information, for 

example, crop 

distribution to 

create mapping 

relationship with 

input-output 

databases 

2017 
30”× 30”, 

global 

Electricity  

US, environmental protection 

agency, Emissions & Generation 

Resource Integrated Database 

(eGRID) (USEPA, 2018) 
Power generation 

sectors in input-

output databases 

 

Annually, 

1996 to 2016 

Point 

locations, 

global 

Global Energy Observation 

(http://globalenergyobservatory.org/) 

Annually, 

1950 to 

present 

Platts (https://www.platts.com/) 

Quarterly, 

from 1998 to 

present 2017 



 

 

 

 

Going beyond the data sets provided in the Table 2.3, the increasing number of monitoring 

stations provided by local authorities, such as those for air and water quality may also provide 

further data available for analysis 74 

Enhancing Category 2, the sectoral and spatial resolution of final demand. 

Sectoral resolution: typically, commodity classification is more detailed than the products or 

sectors given in input-output models. However, the classification of consumer expenditure 

surveys is based on direct household consumption in mind, rather than economic sectors like 

those included in input-output models and so a conversion has to be applied. In addition, most 

categories within a consumer expenditure survey are food commodities. For example, out of 

the 183 commodities in the Norwegian database, 66 are food-related, but there are only 26 food 

related products in 200 products in high sectoral MRIO databases, EXIOBASE 110. Additionally, 

surveys cannot distinguish domestically made or imported products consumed by households. 

Other import parts, such as government consumption expenditure, and gross fixed capital 

information still lack of research. Blockchain with IoT devices would be a good way to trace 

these final consumptions in the future 173.  

Spatial resolution: From the final demand perspective, the spatial distributions of 

environmental footprints are generally performed at the local authority level – as described by 

Method 6 in the supporting information. This is mainly due to the lack of spatial distribution of 

consumption at any other resolution. Some scholars, for example, Moran, et al., applied global 

gridded population and local per-capita purchasing power databases to spatialize consumption-

based environmental impacts 107. Beyond that, Big Data methodologies have been suggested by 

various researchers as the possibility of collecting detailed human activities consumption with 

geolocation at a very high spatial (as well as sectoral) resolution 174.  

Pathways for moving towards Category 3 SIO’s.  

In an ideal situation, efforts to enhance sectoral and spatial resolution ultimately leads to a 

Category 3 SIO database. That is, spatially explicit information on production processes and 

related extensions, spatially explicit information on consumption patterns, with intermediate 

transaction matrices that match this spatial and sectoral detail. Compiling the intermediate 

transaction matrix is extremely challenging when compared to compiling spatially explicit 

extensions or final demand. Some national statistical institutes may have detailed, sectoral, 

statistical data consistent with international standards 175. But even in these cases it is extremely 

challenging to build spatially explicit input-output databases, since it requires a large amount 

of in-situ surveys. As discussed, studies that provide such transaction information generally do 

so using non-survey methods, leading to highly estimated transaction information. 

The most common non-survey method for constructing intraregional input-output models is to 

compile subnational input-output models and then estimate interregional trade flows separately 
145. However, this approach requires the common assumption that regional production 

technologies and preferences of customers are similar to the national level 145. Clearly this 

introduces uncertainties at the subnational level. Furthermore, interregional trade flows are 

usually estimated using a gravity model that assumes trade is only related to economic size and 

geographical distance of the producing and consuming regions 112,176 (other non-survey models, 

such as entropy and information models, neuronal network models, and behavior-based models 

can also be used 148).  

From above analysis, we find that most studies concentrate on the global or national level since 

national input-output models are readily available, and GMRIO models (e.g. EXIOBASE, 

WIOD, EORA, GTAP) have become increasingly available in recent years. Few studies focus 

at city level, due to a lack of official data. New technologies based on Big Data approaches and 



 

 

 

 

blockchain may offer ways forward in the future. Blockchain is a shared, distributed ledger that 

protects records from deletion, tampering or revision. Some researchers have used distributed 

ledgers combined with IoT devices to trace food supply chains, from plantation to processing 

and to retailers 177. Similarly, if any commodity is labeled with a unique code, it can be traced 

using advanced database approaches. Once a complete network of supply chains is constructed, 

it may be possible to use these data to build a transaction matrix for input-output models. The 

technology may reduce the cost of collecting transaction data, improve the efficiency and 

reliability of databases 173, and provide real-time information. 

Balancing resolution and policy needs: Ideally, finer spatial and sectoral scales will reveal more 

spatial heterogeneity in environmental impacts and will be of increasing relevance to policy 

makers. However, if there are no (reliable) data or reasonable assumptions for downscaling 

some regions, and attempting to do so might introduce unquantifiable uncertainty. Additionally, 

there may be cases where the policy need does not require higher-resolution in the first place. 

From the papers reviewed herein, the resolution of the final result is almost always dependent 

on external spatial information beyond input-output models. For this reason, papers which fall 

under Category 2: the disaggregation of final demand, are focused on American, European, and 

Australian regions since they have more complete local consumption statistics and a high 

availability of household surveys. It’s best if the spatial scale chosen relates to the policy 

relevance of the environmental impact findings. For example, water pollution is regarded as 

local environmental impact, but a river will run through many regions and countries, so local 

and regional water balances need to be considered as well as the linkages to trade through input-

output tables 50. For example, Lutter et al. 50 and Wang et al. 97 study fresh water at the spatial 

resolution of the water basin, which may be more helpful to inform general, sector-based 

policies for water extraction and pollution within a region. Conversely, greenhouse gas (GHG) 

emissions are well-mixed and is an impact suitable for analysis at the national scale. However, 

identifying the spatial distribution of GHG driven by consumption helps connect consumers 

with the impacts of their consumption 95. This is the case for Kanemoto et al. where they develop 

a hotspot analysis of carbon footprints at a global resolution of 0.1° × 0.1° 95.  

A different approach is needed for other types of air pollution such as particulate matter, which 

is very much a local issue and most often driven by point source emission 96. In addition, 

aerosols which remain in the atmosphere for several days, can easily diffuse to other regions 
102. Therefore, locating pollution sources and exploring the spatial distribution of emission 

diffusion embodied in trade is a more appropriate scale to help consumers participate in abating 

targeted air pollution. This also requires additional modelling of emission diffusion and a 

temporal resolution greater than the yearly average as commonly used in studies. 

Increasing the spatial resolution of input-output models may also put pressure on increasing the 

temporal resolution. One of the major drivers of making an IO database spatially explicit is to 

examine the local impacts of resource availability or pollutant emissions, which can sometimes 

vary more temporally than spatially. Since input-output databases are annual aggregations of 

activity, this elides some of the seasonal complexities. For example, the availability for water 

used in the cooling of thermal power plants vary more through the year than across the nation 
178. Some level of temporal resolution may be possible simply by using time-explicit final 

demand vectors, however these data will first have to be collected by national or regional bodies. 

For example, emission transport models need time series data, (hourly, daily, weekly or 

monthly), since aerosols diffuse to other locations on the order of several days. Temporal issues 

may also impact uncertainties, a topic to which we turn next. 



 

 

 

 

2.5 Addressing uncertainties 

Underlying sources of uncertainty: General uncertainties for input-output models arise from 

the source statistical data, sector aggregation, and data allocation approaches 65,179–184. For EEIO 

models, further issues with source data and assumptions about the density of environmental 

impacts also contribute to uncertainties 183,184. SIO analyses add two further, related 

uncertainties: 1) Uncertainty in spatial databases themselves, and 2) uncertainty from spatial 

and sectoral aggregation.  

With respect to uncertainty in spatial databases, this can vary depending on the type of source. 

For remote sensing, sensor quality, image generation, and processing techniques will drive 

uncertainty 185. In local statistical data, uncertainty will be driven mostly by statistical methods 
186. Finally, for modelling approaches, input data, assumptions, and model methodology will 

all drive uncertainties. Furthermore, the spatial resolution in environmental impacts will, on its 

own, result in some uncertainty. For example, the resolution of WaterGAP is 0.5° × 0.5° (about 

50 km × 50 km at the equator), implying that water consumption is the same within a 50 km × 

50 km region.  

Uncertainty will also be introduced when aggregating spatial databases into regions matched 

with input-output databases, especially at the border between regions. Spatial databases often 

have to break down spatial information into different sectors, using assumptions which will 

further drive uncertainty. Often, we can resolve the spatial distribution of primary sectors (e.g. 

food crops and livestock) and some secondary sectors (large power plants, for example). But as 

mentioned above, most manufacturing and service sectors remain difficult to locate.  

As we will see below, it is often hard to obtain a firm grasp of where the largest uncertainties 

may arise. In some cases, researchers have found it is likely that more uncertainty arises from 

additional pollutant modelling and not the input-output models themselves. For example, 

emission transport and health impact models have been found to have more uncertainty than 

the underlying input-output model 98,104. 

Approaches for estimating uncertainty: Uncertainty analysis for EEIO modelling is already 

challenging given the diversity of data 187 and the model structure 188. Approaches have been 

developed to estimate uncertainties 187,189–191 and perform sensitivity analyses 183,192,193, but 

there is still a lot more work to do to fully understand uncertainties. Given these existing 

difficulties, spatially explicit uncertainties add another layer of complexity. Given the variation 

of possible uncertainties, approaches such as Monte-Carlo simulations can be computationally 

prohibitive 100,104,107.  

Still, some researchers have attempted to clarify uncertainties by narrowing down the number 

of uncertainties for sensitivity analysis. For example, Lin et al. ran over 10,000 Monte-Carlo 

simulations 98 for each type of air pollution in their study. Zhang et al. estimate overall 

uncertainty in SIO models by aggregating 4 sources of uncertainty, including uncertainty from 

air pollution (via the spatial database), uncertainty in the MRIO model, uncertainty from 

chemical transport model—GEOS-Chem model using Normalized Root Mean Square 

Deviation (NRMSD) method, and uncertainty from health impact model 104. Lenzen et al., 

simulate standard errors of household factor multipliers, embodied factor multipliers and 

household expenditure, and then integrate all these parts of standard error into a total standard 

error estimate of the entire SIO model using Monte-Carlo simulations. In another example, 

Moran et al., employ a Monte-Carlo approach to build up range of alternative global Lorenz 

curves for carbon emissions 107. These methods inherit approaches used in the uncertainty 

analysis of traditional input-output models 194.  



These examples are all based on conventional Monte-Carlo simulations, extracting a large 

number of samples with assumed distributions, usually normal or log-normal. These 

simulations require an assumption that the extracted data are independent. Rodrigues et al. use 

a Bayesian approach to compare the uncertainties of independent sampling such as this 195, and 

find that this approach underestimates the uncertainty of results 195. Future uncertainty analysis 

could expand this concept to include spatial data, since spatial data are often developed by 

incorporating the same underlying databases as those used in input-output models, resulting in 

non-independent errors. 

2.6 Integration with other environmental models
Future options for SIO models may include integration with other environmental assessment 

models including technology-rich Integrated Assessment Models (IAMs), such as IMAGE 196, 

GCAM 197, AIM/CGE 198, MESSAGE 199, REMIND 200. Generally, IAMs use macroeconomic 

models to downscale the world spatially into 10-30 aggregated regions 201, after which they are 

coupled to earth system models or environmental data using spatially explicit models. The 

environmental impacts are then downscaled to that resolution (Figure 2.2). IAMs have already 

been integrated with other spatially explicit land use models such as the CLUE-s model 202,203, 

the Global Land-use Model 204,205, and the Land Use Land Cover Change (LULCC) model 206, 

and these could be all be combined with input-output approaches. IAMs have also been used to 

make water demand spatially explicit 207,208. For example, the LPJmL land model has been used 

to examine carbon balances 209, the dynamic GLOBIO model for evaluating biodiversity 

impacts 196, the integration of the GLOFRIS model for estimating impacts of flood risks 196, and 

the GISMO model for human development 196. However, IAMs lack physical linkages between 

capital stock and material flows and they cannot trace the entire supply chain, this means IAMs 

are generally not able to assess environmental impacts other than on a production-basis. 

However, input-output models are an effective tool to assess impacts including those impacts 

embodied in the trade 210. 

Generally, input-output models are constructed from historical data and used for historical 

analysis. Given their structure there are no built-in dynamic mechanisms. Conversely, 

technology-rich IAMs are used to project different scenarios for industrial structure, final 

demand, and spatial distribution of environmental impacts, which are the components of input-

output models. It would be possible to establish soft links between IAMs and SIOs 210. IAMs 

could be used to project components of input-output models needed to provide input-data to 

perform scenario-based consumption focused accounting 210–212. 

Human earth system

Macroeconomic models

Natural earth system

Environmental impacts 

Spatial disaggregation

Spatial aggregation

Spatial allocation model

Region or country scale

Grid cell scale

Figure 2.2 Schematic of general structure that integrates macroeconomic models with spatially explicit modes. 



 

 

 

 

2.7 Outlook 

Spatially explicit approaches inherit the advantages of EEIO, linking environmental impacts 

from production to consumption 65, while revealing the spatial variation of local environmental 

impacts. The recent growth in SIO is not necessarily surprising given the extensive role of 

globalization in outsourcing production and the associated environmental impacts of goods and 

services worldwide. Such SIO approaches can allow for a better understanding of the 

distribution of impacts from consumption, and provide data for targeted consumption-based 

mitigation measures.  

We have critically reviewed recent SIO analyses and provided an overview of their 

methodologies and strengths. These analyses can be broadly separated into three approaches: 

1) spatial disaggregation in environmental extensions, 2) spatial disaggregation in final demand, 

and 3) construction of a new input-output table with spatially disaggregated transaction matrices. 

We describe the considerations and issues that are raised when performing these analyses, and 

have presented an overview of specific findings. We have outlined the main challenges and 

limitations in present SIO modelling, including: the availability of spatially explicit data of 

different spatial and sectoral resolutions, the balancing of spatial resolution with research goals 

and policy advice, and the difficulty in assessing uncertainties. We also discuss the possibility 

of incorporating SIO modelling with integrated assessment models.  

We expect that future efforts will focus on several key areas: as further spatial databases become 

available with greater sectoral resolution – especially in secondary and tertiary sectors – more 

options for deeper analysis and linkage with other environmental models will become possible; 

we see the opportunity of temporal analysis for certain resources, such as water, becoming 

increasingly tractable; and, studies that combine both demand-side (Category 1) and 

consumption-side (Category 2) disaggregation will become possible. A major hurdle in 

building accurate Category 3 input-output models at a high level of spatial detail is the lack of 

information about intermediate transactions and the structure of the value chains at this level of 

detail. Issues with uncertainties will likely remain problematic for some time, given the 

difficulties in assessing input-output model uncertainty even without spatial disaggregation. 

However, this is a problem which is not specific to input-output modelling, and is faced by 

many other large-scale environmental model approaches such as IAMs. 
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3 Linking Global Crop and Livestock Consumption to Local Production Hotspots 2 

Abstract 

International trade plays a critical role in global food security, with global consumption having 

highly localized environmental impacts. It has been difficult to gain insights into these effects 

due to the diversity of food production, and complexity of supply chains in international trade. 

We present a Spatially explicit Multi-Regional Input-Output (SMRIO) model which couples 

primary crops and livestock at a high spatial resolution with a global Multi-Regional Input-

Output (MRIO) model. We then identify hotspots (the most significant production regions) for 

primary crops and livestock driven by international consumption. We present the method and 

data behind this approach, and provide illustrative case studies for Indonesian palm oil and 

Brazilian soy and beef production. Regionally, China is the largest primary crop consumer, 

while the EU28 is the largest livestock consumer. Primary crops and livestock hotspots are 

highly unequal, and the embodied primary crops and livestock for high-income countries are 

distributed over larger areas when compared to lower-income countries since high-income 

countries have more numerous trade links. Identified hotspots could allow for increased 

cooperation between consumers (high-income countries) and producers (lower-income 

countries) to improve sustainability programs for global food security.  

Keywords: primary crops; animal husbandry; spatially explicit; Multi-Regional Input-Output 

(MRIO) analysis 

3.1 Introduction 

Global food security is fundamental for human development with 12 of 17 Sustainable 

Development Goals (SDGs) having direct relationships with food systems 213. However, global 

food security is challenged by increasing global food demand due to both population growth 

and potential dietary shifts to higher calorie intake and a greater proportion of animal products 
214. Global population doubled from 1950 (2.5 billion) to 1987 (5.1 billion), and tripled by 2018 

(7.6 billion) (Figure S 8.6) 215. Although population growth is slowing, estimates suggest a 

global population of almost 10 billion by 2050 at a medium variant scenario 215. To meet this 

growth, the FAO suggests that cereal, meat, fruit and vegetables, and oil supply need to increase 

by ~39%-56%, ~29%-55%, ~48%-54%, and ~40%-51% respectively (between 2012 and 2050) 
216. Since the green revolution, increases in crop yield and cropland area have kept pace with 

increases in global food demand 217; however, food supply is unevenly distributed 218, and yields 

have stagnated in recent years 219. Between 2008 and 2050, four staple crops – wheat, rice, 

soybean, and maize – are estimated to have annual yield growths of 0.9%, 1.0%, 1.3% and 1.6% 

respectively 220, half the rate needed to satisfy demand while keeping prices stable 220. In some 

regions, yield growth may even stagnate entirely 221. The projected demand growth may exceed 

yield growth given these estimations. Following current food production and consumption 

patterns, environmental impacts are estimated to increase by 50% - 90% from 2010 to 2050 in 

the absence of technological progress and targeted mitigation measures 222. To stay within a 

safe operating space for humanity, we must therefore limit both the inputs and space required 

for food production 222. This is because agricultural production requires increasing areas of land 
223 and freshwater 224, causing serious environmental impacts, such as eutrophication, soil 

acidification, ecotoxicity, greenhouse gas emissions, and biodiversity loss 43. While many 

studies only focus on crops, we also examine the spatial distribution of livestock. Feed contains 

a large amount of additives, antibiotics, and antimicrobials, but most of them are not degraded 

                                                 

2 This chapter has been published as: Sun, Z., Scherer, L., Tukker, A. and Behrens, P., 2020. Linking global crop 

and livestock consumption to local production hotspots. Global Food Security, 25, p.100323. 



 

 

 

 

in the animal’s body. Instead, they are excreted by the livestock and released to the environment 
43,225. As the consequence, these compounds harm environmental and human health by 

accelerating eutrophication, deteriorating soil contamination, and promoting the spread of drug-

resistant pathogens 43,225,226. Additionally, the fact that about one third of food is lost or wasted 

embodied in food supply chain from farm to fork exacerbates these burdens 227. Food loss and 

waste occurs at every phase from production to final consumption along the food supply chain, 

and varies for agricultural products at different regions 227. For example, fruits and vegetables 

are lost or wasted more than cereals, and lower-income countries have a higher ratio of food 

loss at the production stage, while higher-income countries have a higher rate of food waste at 

the consumption stage 227. On top of these significant challenges, climate change and the 

increasing frequency of extreme weather events further exacerbate the problems faced by 

agricultural production 228.  

Some countries have gradually given up expanding cropland 229, and have spared cropland to 

preserve nature 230. This can result in a shift of the environmental burden related to agricultural 

production from high-income nations to low- and middle-income nations through trade 231. 

Although trade can globally increase resource use efficiency and reduce environmental impacts 

in some cases 232, the externalities in producing countries are not accounted for in trade. 

Globalization has led to a spatial disconnect between production and consumption of 

agricultural products 233. Growing international trade provides exotic or seasonal agricultural 

products for consumers year-round 234, improving food supply. The amount of global food trade, 

as measured in caloric content, has doubled from 1986 to 2009, enough to feed more than 1 

billion people. The global food trade as percentage of global food production increased from 

15% to 23% 235. Understanding the role of international trade in food systems is essential in 

understanding the environmental impacts of global food supply and demand. Previous studies 

have focused on embodied environmental pressures and impacts, such as land use, water use, 

greenhouse gas emissions, and biodiversity loss 43. These studies attribute the environmental 

responsibility of this supply to the consumers of food 65.  

Two prominent examples of shifting environmental burdens through international trade are the 

export of Brazilian soy and Indonesian palm oil. Increasing global demand for beef, soybean 

oil, and soybean meal used, to a large extent, to feed livestock and produce biofuels has 

promoted Brazil to a position as one of the largest exporters of soybean and beef in the world 
236. Brazil is expected to have the largest potential for agricultural expansion within this century 
237. Another high-yielding oil crop, oil palm has been the fastest growing crop in the 21st century 
238, driven by increasing demand for high-yielding crops producing refined vegetable oil. Much 

of this growth has occurred in South Asia, mainly Indonesia, where ~55% of global palm oil 

production takes place 236. However, agricultural expansion in tropical regions often comes at 

the expense of deforestation and the destruction of associated ecosystem services, devastating 

biodiversity, emitting large amounts of greenhouse gases (GHGs), and disturbing hydrological 

regulation. In Brazil’s case, even though deforestation has been decreasing since 2004, it has 

seen the largest deforestation of any country worldwide. This is mainly due to agroindustry 

clearing for pasture and soybeans 237. Deforestation appears to be worsening in Indonesia, with 

oil palm expanding at an average rate of 4500 km2 annually, resulting in an average 1700 km2 

of deforestation per year from 1995 to 2015 239.  

In the past decades, increasing global food consumption was partly achieved by international 

trade at the expense of the local environment. This led to the global food system losing its 

resilience by becoming too homogeneous and dependent on continued trade 240. Therefore, 

identifying spatial heterogeneity of different consumption patterns and setting a safe target for 

primary crops and livestock consumption are helpful for guiding more sustainable practices and 



 

 

 

 

healthier diets. Consumption-based accounting of primary crops and livestock raises consumer 

awareness of the original sources of their food and this can facilitate global cooperation between 

production- and consumption-oriented countries 65. For example, while impacts of food 

production are often outsourced from high-income to lower-income nations, high-income 

nations often have advanced technology and management experience that can be transferred to 

those lower-income, producing countries. According to our knowledge, there has been no 

comprehensive assessment of crops and livestock embodied in trade at a high spatial resolution. 

To fill this gap, we develop a spatially explicit multi-regional input-output model (SMRIO) 

based on the EXIOBASE input-output model 241, and investigate case studies on Brazilian 

soybean and cattle, and Indonesian palm oil to show the utility of this approach. Additionally, 

our work facilitates a more accurate assessment of environmental impacts from agriculture 

driven by final demand of any region in EXIOBASE, as our spatially explicit primary embodied 

crops and livestock can easily be combined with environmental intensities. 

3.2 Materials and Methods  

Here we use a global, environmentally-extended multi-regional input-output (MRIO) model, 

EXIOBASE, linked to crop and livestock data derived from FAOSTAT, to calculate the 

consumption of crops and livestock for countries and regions. To avoid double-accounting in 

the system, we remove primary crops fed to livestock. The choice of livestock over feed for the 

food-related material footprint is justified by livestock being closer to human food consumption. 

As such, the information is easier to understand for consumers who usually choose food based 

on simple and informationally frugal heuristics 242. We then spatially allocate the consumption-

based result of crops and livestock to the grid-level. We do this by using crop and livestock 

maps (Table 3.1), and by using both road quality and density 161 to distinguish between 

production likely for export and production for domestic consumption.  

Compared with other GMRIOs, EXIOBASE 3 contains the most detailed sectoral and 

environmental information and covers a long period from 1995 to 2015 241. For a detailed 

comparison, see Tukker and Dietzenbacher (2013). EXIOBASE 3 includes 163 industries, 200 

products, 28 EU countries, 16 other major countries, and 5 regions for the rest of the world 241. 

In order to construct EXIOBASE 3, a series of underlying databases are needed to estimate 

bilateral trade flows, including re-exports. Specifically, for re-exports, EXIOBASE 3 uses 

publicly available data from Comtrade on either re-exports or re-imports at the country level to 

estimate changes over time in the share of re-exports in total exports from the 2007 base year 
241. Since spatial databases for crops and livestock are available in 2006, we choose this year 

for EXIOBASE. The database includes 8 crop sectors linking 163 types of crop derived from 

FAOSTAT (domestic extraction of primary crops, cereals are based on the weight of dry grain, 

vegetable and fruits are based on the weight of fresh fruit of human consumption, treenuts are 

based on the weight of nut for sale) with input-output accounts (Table S 8.10). This forms the 

foundation for analyzing the distribution of crops driven by consumption.  

To keep the livestock data consistent with that of spatial databases and comparable between 

different types of animal, we select related data from FAOSTAT to create 6 livestock satellite 

accounts to match with EXIOBASE, including cattle, pig, chicken, duck, goat, and sheep ( 

Table S 8.11). In addition, we use primary livestock products instead of live animals to keep 

them comparable. The mapping relationship between FAO countries and EXIOBASE countries 

and regions is shown in  

Table S 8.12. Even though aquaculture is becoming more and more important 238, we do not 

consider it in this paper because of a lack of spatially explicit data for aquaculture. 



 

 

 

 

 The spatial distribution of crops and livestock  

We use spatial crop production data from the Spatial Production Allocation Model (SPAM) 

version 3.2. SPAM depicts the spatial distribution of 42 types of crop, including variables on 

production, yield, physical area, and harvest area 157. SPAM uses the average value of statistical 

data from 2004 to 2006. In order to match these data with the crop categories available in 

FAOSTAT, we aggregate Millet Pearl and Millet Small into Millet, and we aggregate Coffee 

Arabica and Coffee Robusta into Coffee (see Supplementary material).  

For livestock data, we use a high-resolution livestock density dataset at 30 × 30 seconds for 

2006, including cattle, goat, sheep, pig, chicken, and part of duck 244. In order to keep the same 

spatial resolution with road density as described below, we scale this down to 5 × 5 minutes. 

 Global Roads Inventory Project (GRIP) 

Previous studies using SMRIO approaches assume proportionality between production volumes 

and locations 95. This proportionality means there is no ability to distinguish between regions 

that produce food for export and regions that consume this food locally. This can be important 

in regions with both subsistence farming and industrial production in low- and middle-income 

nations (consider the Indonesian case with a high amount of subsistence consumption yet 

producing large amounts of palm oil for international markets). To address this and take the 

literature a step forward, we start from the assumption that agricultural products have better 

access to markets if there are better transportation services 161,162. We use data from the Global 

Roads Inventory Project (GRIP) 161 to allocate the spatial distribution of primary crops and 

livestock for export. We regard regions where road density is higher than 100 m / km2 as the 

first-priority for export, and the remaining area as the first-priority for domestic consumption. 

We allocate exported primary crops and livestock into the first-priority region for export. If the 

ratio of actual exports to the production in this region is above one (implying that more is 

produced for export than currently produced in this region), we allocate the rest of primary 

crops and livestock for export into the lower-priority region for export (first-priority region for 

domestic consumption). Similarly, we allocate primary crops and livestock into first-priority 

regions for domestic consumption, and the rest for domestic consumption is allocated into the 

second-priority region for domestic consumption (Canada is a special case, please see 

explanatory note 1 Special solution for Canada in the Supplementary material).  

Table 3.1. Spatial data employed in this paper 

Data Data source Resolution  

Global distribution of crops (SPAM)  http://mapspam.info/ 5 arc minutes 

Global distribution of livestock 244 http://www.livestock.geo-wiki.org 30 arc 

seconds  

Global administrative areas https://gadm.org/data.html, Version 3.6  vector data 

Global Roads Inventory Project (GRIP) 161 http://www.globio.info/download-grip-dataset 5 arc minutes 

 SMRIO analysis 

We use spatial distributions as spatial weights, and allocate consumption-based primary crops 

and livestock into grid cells with the same proportion of each grid cell accounting for the total 

amount in a country or region, according to equations 1 and 2, which have been used to allocate 

http://mapspam.info/
http://www.livestock.geo-wiki.org/
https://gadm.org/data.html
http://www.globio.info/download-grip-dataset


 

 

 

 

carbon emissions 95. By doing so, we trace the spatial distribution of the production source for 

crops and livestock to the consumption destination.  

𝑭𝑠 = ∑ 𝑅𝑟
𝑟

∑ 𝒆𝑖
𝑟∑ 𝑳𝑖𝑗

𝑟𝑡𝒚𝑗
𝑡𝑠

𝑗𝑡𝑖

∑ 𝑑𝑖
𝑟

𝑖
                                                        (1) 

𝑳 =  (𝑰 − 𝑨)−1                                                                        (2) 

Where Fs is the spatial distribution of the total consumption of country s; Rr is the distribution 

map of crops or livestock in absolute values in country r that produces crops or livestock; ei
r is 

the crop or livestock intensity for sector i in country r; L is the Leontief inverse matrix; I is the 

identity matrix, and A is the technical coefficient matrix to describe input output relationships 

between sectors and countries; yj
ts is the final consumption of sector j of the country t with the 

last sale to the destination country s. di
r is the share of sector i in country r.  

 Comparison with tentative targets  

A safe operating space typically relates to environmental impacts (e.g., biodiversity loss) or to 

emissions as outputs from the anthroposphere (e.g., greenhouse gas emissions) 245, especially 

from food production 246. Operationalizing such planetary boundaries is complicated and has 

not yet been done for most environmental impacts. The most comprehensive assessments exist 

for carbon emission targets 247,248. Further tentative boundaries for water and land use have been 

suggested based on limits of physical availability 60,249. Bringezu suggested halving 

(agricultural) resource use compared to the 2000 level to reduce environmental pressures, as 

human impacts on the planet were already too high in 2000 250. These suggested targets for 

resource use have not been unanimously accepted for several reasons 60. Most importantly, 

these targets are not based on an actual assessment of physical limits or levels of unacceptable 

environmental damage, but are simply based on the assumption that any further increase implies 

the risk to further aggravate environmental impact beyond acceptable limits. While this 

objection is undoubtedly true, this approach offers a heuristic for understanding the increasing 

environmental pressures triggered by food consumption through supply chains. In this case, and 

in the absence of any updated alternative, we will use the target of keeping the use of primary 

crops and livestock at the 2000 level for illustrative purposes.  

In 2000, primary crops, excluding feed crops, totaled 5.9 Gt, and livestock totaled 0.8 Gt, based 

on EXIOBASE 3 and FAOSTAT 241,251. Based on this, we obtain per-capita targets for 

embodied primary crops and livestock of 0.90 t/capita and 0.12 t/capita in 2006, our year of 

analysis. These targets are roughly in line with the latest food-specific healthy diet 

recommendation 252. The EAT-Lancet Commission recommends 0.4 t/capita/year of plant-

based food, and 0.1 t/capita of animal-based food (except for fish) for human direct 

consumption. If we assume one third of primary crops are consumed directly by humans, one 

third of primary crops are used to feed livestock 43, and one third of primary crops are wasted, 

while also one third of livestock are wasted 227, and two thirds of livestock are consumed by 

humans directly, it requires additional production of 0.4 t/capita/year for primary crops 

(excluding feed), and 0.05 t/capita/year for livestock. This sums up to almost 0.8 t/capita for 

primary crops and 0.15 t/capita for livestock, which is similar to 0.9 t/capita for primary crops 

and 0.12 t/capita used in our study. To investigate the variation of per-capita mass for different 

nations regarding primary crops, we set 0 to 0.45 t/capita as far below the target, 0.45 t /capita 

to 0.9 t/capita as below the safe target, 0.9 to 1.8 t/capita as exceeding the target, and >1.8 

t/capita as far exceeding the target. For livestock, we set 0 to 0.06 t/capita as far below the target, 

0.06 t /capita to 0.12 t/capita as below the safe target, 0.12 to 0.24 t/capita as exceeding the 

target, and >0.24 t/capita as far exceeding the target. 



 

 

 

 

3.3 Results 

 Hotspots of primary crops and livestock 

As expected, per-capita primary crop and livestock consumption is positively correlated with 

the per-capita GDP (Figure S 8.7). For example, the highest per-capita crop consumption is 

found in Luxembourg (8423 kg/capita), 12 times higher than in Indonesia (643 kg/capita). This 

phenomenon is more significant for livestock with a factor of 30 difference among per-capita 

total livestock weight, at 845 kg/capita in Ireland compared to 26 kg/capita in Indonesia (Figure 

S 8.7). In addition, high-income nations have more significant overseas primary crop and 

livestock hotspots than that of low-income nations (Figure 3.1), because they have a comparative 

advantage in capital while having more expensive labor and land (Figure S 8.8). This is 

consistent with previous studies 253,254. Figure 3.1 depicts primary crop and livestock hotspots 

driven by the three largest economies: the EU28, the United States (US), and China. The spatial 

distribution of primary crop and livestock hotspots generally matches.  

 

Figure 3.1 Spatial distribution of the primary crop hotspots driven by consumption of China (a), the US (b), and 

the EU28 (c), and the livestock hotspots driven by consumption of China (d), the US (e) and the EU28 (f). 

China is the largest consumer of primary crops, accounting for 18.4% of global primary crop 

consumption (Figure S 8.9). Figure 3.1 (a) reveals the spatial distribution of primary crops driven 

by China’s consumption. The most significant primary crop hotspots are located in East China, 

following the so-called ‘Hu-line’ closely (a geographical line South to North between Heihe in 

Heilongjiang Province and Tengchong in Yunnan Province). More than 90% of Chinese people 

live in the east of the “Hu line”, an area home to the most intensive cropland in China, including 

the three great plains of China: the Northeast China Plain, the North China Plain, and the 

Yangtze Plain.  

International crop hotspots driven by Chinese consumption include the Corn Belt in the US, 

and the Cerrado biome of Brazil, which are a major source of China’s soybeans. China is the 



 

 

 

 

largest consumer of soybean in the world, accounting for 28.7% of total production. To a large 

extent this is possible with large amounts of imports, at 32.6% of the global total soybeans 

imports in the supply chain. The US and Brazil are the largest two contributors to China’s 

soybean consumption with 20.4 Mt and 17.9 Mt, respectively. China is also the largest importer 

of palm oil with hotspots in Sumatera in Indonesia (the largest exporter of palm oil). 

For many other products, the US has larger trade flows. Domestic primary crop hotspots are 

centered on the well-known Corn Belt. Although it is the largest producer and exporter of 

cereals, it is the largest importer of global vegetables, tropical fruits, and temperate fruits, 

accounting for 15.2%, 19.4%, and 13.7% of global imports, respectively. In addition, 43.6% of 

vegetables, 57.0% of tropical fruits, and 35. 2% of temperate fruits consumed in the US come 

from abroad. An estimated 15.1% of vegetables and 6.6% of temperate fruits for US final 

consumption import from China, mainly from the east of China. The US imports 15.3% of its 

tropical fruit from Mexico, mainly surrounding the Gulf of Mexico; and 7.6% of tropical fruit 

from Brazil, mainly the Upper Paraná Basin.  

Turning to the EU28, large amounts of domestic production of primary crops translates into 

limited imports. Where imports arise they are generally from the Corn Belt of the US; the 

Cerrado biome of Brazil; Sumatra and Kalimantan in Indonesia; the east of China; and the Indo-

Gangetic Plain in India. The result is consistent with previous studies that the spatial distribution 

of land and water use for crop production driven by EU consumption 50,223.  

Compared with primary crop hotspots, livestock production is driven by domestic rather than 

foreign consumption. Domestic livestock makes up 88% of EU28 livestock consumption (it is 

also the largest consumer of livestock at 23.5% of global consumption) (Figure S 8.10). 

Overseas livestock hotspots of the EU28 are scattered in the east of China,; the south of India, 

the southeast and southwest of Australia, and the Pampa in South America.  

The US imports the largest percentage of livestock, accounting for 12.8%-15.8% of global 

animal trade flows (all animals summed together). Since the US produces mainly pig, cattle, 

and chicken, other animals are generally imported. As such 96.2% of goats, 91.9% of sheep, 

59.4% of ducks, 28.6% of pigs, 14.7% of cattle, and 11.6% of chickens originate from abroad. 

A significant pig hotspot is located in the Interior Plains since a large amount of maize and 

soybean produced in the area provides feed for rearing. Other hotspots are scattered in the east 

of China, such as the North China Plain, the south of Canada, the southeast of Mexico, the west 

and north of the Netherlands, the west of the United Kingdom, the south of India, the southeast 

and southwest of Australia, and the northeast of Spain.  

China is the largest consumer of primary crops, it is the third largest consumer of livestock, 

accounting for 11.0% of global consumption. The livestock hotspot for China is also east of the 

“Hu-Line”, which provides feed for livestock. Other significant hotspots are located in the west 

of the “Hu-line” and distributed in the top four prairies, namely Hulunbeier Prairie, Xilin Gol 

Prairie, Erie Prairie, and Nagga Alpine Steppe, which suit the grazing of ruminant animals. 

 Consumption of Brazilian soybean and beef and Indonesian palm oil 

To reveal specific issues for regions under pressure, we provide case studies on the role of beef 

and soybean production in Brazil and palm oil production in Indonesia through international 

supply chains.  

Brazil is a dominant producer of soybeans, accounting for 23.4% of the global production and 

30.6% of global exports respectively. Only 4.7% of Brazil’s soybean production is used 

domestically, with 35.7% exported to China, 22.5% exported to the EU28, and 6.0% exported 

to the USA (Figure 3.2 a, c), both directly and indirectly. Because most of soybeans are 



 

 

 

 

consumed by foreign countries, the spatial distribution of soybeans for domestic and overseas 

consumption is almost identical, and concentrates on its producing regions–the South Atlantic 

Forest biome, the Cerrado biome, and the South Amazon biome. The result is similar to 

previous analysis 255. In contrast, most of cattle is consumed domestically, even though Brazil 

was the second largest producer of cattle in 2006, exporting 1.23 Mt of beef to the EU28, 0.2 

Mt to the US, and 0.1 Mt to China. The major regions for domestic beef consumption 

concentrate on the Paraná River basin, the Tocantins basin, and along the Atlantic coast in the 

Atlantic Forest biome, which covers a large amount of pasture suitable for grazing. However, 

major regions for beef consumption abroad mainly gather in the South of the Paraná River basin 

and the Atlantic coast in the Atlantic Forest biome, which are the major cattle feeding areas, 

have a developed transportation network, and are near the Brazilian ports (Google Map, 2018).  

 

Figure 3.2 Brazilian soybeans and beef for domestic consumption (a, b) and consumption in foreign countries (c, 

d).  

Indonesia, the largest exporter of palm oil, contributes 49.8% to the global exports embodied 

in the supply chain. However, only 27.6% of palm oil is used for domestic consumption, 13.1% 

is exported to the EU28, 10.5% is exported to China, and 7.4% is exported to the US (Figure 

3.4), both directly and indirectly. Regions for domestic palm oil consumption in Indonesia range 

from Sumatra to Papua, covering almost all of Indonesia’s territory, even though the intensity, 

palm oil mass per grid cell, gradually decreases. In contrast, regions for overseas palm oil 

consumption mainly gather in Sumatera and the South of Kalimantan, because most of 

Indonesian ports locate at the coast around these two islands (Google Map,2018). In addition, 

one of the most important transportation hubs– Strait of Malacca settles between Sumatra and 

Malay Peninsula, and it provides a transportation advantage for these two islands.  



 

 

 

 

 

Figure 3.3 Indonesian palm oil for domestic (a) and foreign consumption (b). 

 Comparison with tentative targets  

We find that primary crop and livestock consumption in almost all high-income countries (some 

of them, for example, New Zealand are included in rest-of-the-world regions) is beyond the 

illustrative target in 2006 (Figure 3.4). Especially some of them, such as Australia, the US, 

Canada, the United Kingdom, and France, consume more than double the safe threshold. In 

contrast, the consumption of most low- and middle countries, mainly in Asia, the Middle East, 

and Africa, which constitute 75% of the global population (including China, India, Indonesia, 

South Africa, rest of Asia and Oceania, rest of America, rest of Africa, rest of Middle East) is 

within the safe operating space. The consumption in the rest of Africa and rest of Asia regions, 

making up 25% of the global population, is even far below the indicative target.  

  

 

Figure 3.4 Total primary crop (a) and livestock (b) consumption per-capita in comparison with the tentative target 

of 0.9 and 0.12 ton per-capita in 2006, respectively.  



 

 

 

 

3.4 Discussion  

Some studies, for example, the well-known transparent supply chains for sustainable economies 

(TRASE) project 255, have been tracing global supply chains sub-nationally very well 257
. 

However, the TRASE project mainly focuses on the environmental and social risks of 

agricultural expansion of a few commodities (soy, palm oil, sugarcane, cocoa, coffee, timber, 

and beef) on tropical forest ecosystems, and the SEI-PCS model (Spatially explicit Information 

on Production to Consumption Systems) mainly focuses on subnational administrative regions 
255. In this paper, we trace the supply chain of more agricultural products, namely 40 crop 

categories (as available in SPAM except for 2 types due to aggregations) and 6 types of 

livestock. We identify spatially explicit hotspots at a higher resolution (5 arc min) driven by 

final consumption by tracing primary crops and livestock embodied in supply chains based on 

SMRIO analyses. We find that low- and middle-income countries, for example China, have a 

greater self-sufficiency (here defined as the ratio of production to demand 258) as opposed to 

high-income countries, which are associated with larger trade flows. These results indicate that 

high-income countries outsource a significant amount of the burden from agricultural 

production, including large amounts of land and water use, to low-income countries with lower 

production cost. This is consistent with previous research 58,259,260, where the EU28, the US, and 

Japan are the top outsourcers of cropland, grazing land, and agricultural freshwater. More than 

40% of the trade volume of cropland is driven by the EU and the US. Cropland and animal 

stocks have been decreasing in high-income nations since 1960 261, and in the future, 

agricultural production transfer to lower-income countries are expected to continue 262. In 

addition, emerging giants, like China and India, will need more food from international markets, 

putting further pressure on food systems 263. Most notably, more than 70% of global soybean 

exports are estimated to flow into China by 2023/2024 264.  

Primary crops and livestock in lower-productivity regions overseas are being consumed at a 

larger growth rate by richer countries, although the productivity gap between lower-income and 

high-income countries is shrinking 261. Regions with lower productivity have cheaper land and 

labor and have a competitive advantage in terms of low value-added production, especially 

primary crops. But these regions have less advanced agricultural technologies and lack capital 

to improve infrastructure (e.g., water efficiency and transportation services among many other 

improvements). In this paper, we identify spatially explicit hotspots driven by final 

consumption, which could help decision makers to provide targeted technical and financial 

support for countries from which they consume primary crops and livestock. This could narrow 

the yield gap of primary crops and livestock between countries to ensure global food security. 

This would help in achieving the UN’s Sustainable Development Goals (SDGs), such as no 

poverty (SDG 1) and zero hunger, good health, and well-being (SDG 2). According to the latest 

published report on the state of food security and nutrition in the world, world hunger has 

started to increase since 2014 after a prolonged decrease, and about 1/9 of the global population 

(822 million) are undernourished in 2018 265. Improving nutrition and providing healthy diets 

requires long-term efforts and needs global cooperation. 

 Limitations 

There are several limitations to this approach. The first is sectoral and spatial homogeneity 

hypothesis. There are only 8 sectors for primary crops (Table S 8.10) and 6 sectors for livestock  

for 44 individual countries and regions, and remaining countries are aggregated into 5 rest of 

world regions in EXIOBASE.  

However, FAOSTAT has the most detailed classification for primary crops (163 types) and 

livestock (6 types selected) for each country in the world. The sectoral and spatial aggregation 



 

 

 

 

leads to some loss of detail 266. For example, soybean, rapeseed, and palm oil share the same 

trade structure in EXIOBASE, which impacts the real distribution of soybeans and palm oil 

driven by final consumption in the EU28, the US, and China.  

The second limitation is related to the quality of spatial databases. Robust and high-resolution 

spatial databases are essential to SMRIO 267. These spatial databases are created by models, 

which might have biases. The most obvious is that there is no data on the spatial distribution of 

ducks in South America and Africa 244. The situation has slightly improved in the recently 

updated spatial distribution of livestock 268, but due to the higher temporal mismatch we chose 

the previous version. 

A third limitation relates to the allocation method. We use a road network to allocate the spatial 

distribution of primary crops and livestock to production for exports and for domestic 

consumption. While this approach seems to outperform previous analyses, for example of 

market access 162, it still leads to some biases. Where there are large connected fields coupled 

with a low population density, and consequently fewer roads, such as in the Northeast China 

plain, exports might be underrepresented. However, linking trade with transportation is a widely 

accepted way in studying commodity supply chains at subnational scale. For example, some 

studies used a spatial cost minimization model (mainly including transportation cost) from 

production areas to consumption areas to estimate subnational commodity flows 255,269. Their 

results provide a good fit with results from this paper, as exemplified by soybeans in Brazil 

(Figure 3.2, Figure S 8.11).  

 Future work 

Agricultural production consumes the vast majority of land and freshwater, and leads to 

biodiversity loss and other environmental impacts. Identifying local environmental impact 

hotspots driven through global food consumption is the first step to mitigating local 

environmental impacts, to keep food production sustainable, and to guarantee global food 

security. Most present studies on estimating environmental impacts driven by agricultural 

production use a multiplication of environmental intensities or conversion factors (e.g. 

environmental impact per ton or ha of a specific crop) with crop-specific harvest areas or 

production amounts, and animal-specific production amounts(Table 3.2). The methods for 

getting conversion factors include meta-analyses, simulation models, and expert surveys. Such 

studies are promising sources for environmental conversion factors, which can be used in future 

research. By having spatially explicit embodied crops and livestock in combination with 

environmental conversion factors, we can obtain more accurate environmental impacts driven 

by final consumption of any given region within EXIOBASE. 

Table 3.2. Environmental impact research based on crop and livestock databases. 

Environmental 

impacts 
Spatial resolution 

Agricultural 

products 
Sources of conversion factors References 

Greenhouse gas 

(GHG) 

emissions 

national level crops 
International Fertilizer Association (IFA) 

survey 
270 

national level livestock Meta-analysis 270 

5 arc min crops 
IPCC tier 1 method; International 

Fertilizer Association (IFA) survey 
271,272 

21500 individuals 13 food groups LCA and meta-analysis 273 



 

 

 

 

Nitrogen and 

Phosphorus 
5 arc min crops 

International Fertilizer Association (IFA) 

survey 
271,274 

Biodiversity 5 arc min 
crops and 

livestock 
Meta-analysis 275 

Antimicrobials 5 arc min livestock Meta-analysis 226 

Water  

5 arc min crops Hydrological model 271,276 

21500 individuals 13 food groups Water Footprint Network survey 273 

 Implications 

Around 11% of the global population are still undernourished (habitual food consumption is 

insufficient to provide the dietary energy levels that are required to maintain a normal active 

and healthy life),mainly in Africa and Asia 265. If only eradicating poverty and other people 

keep their current consumption level, total primary crop and livestock consumption will exceed 

the safe operating space. Therefore, it is necessary to reduce consumption in high-income 

countries to offset the increase in lower-income countries. In addition, sustainable production 

and consumption of primary crops and livestock play a critical role in achieving other SDGs 

beyond the elimination of hunger (SDG 2) 277. The large difference in final consumption of 

primary crops and livestock between high-income and lower-income countries also indicates 

social inequality among countries. Besides, agricultural technological changes and the 

reduction of food loss and waste are huge challenge to maintain sustainable consumption 222. 

However, it is difficult to implement target policy, according to previous studies, because they 

trace food supply chains at the national level. In this paper, we use the SMRIO method to map 

the spatial relationship from production to consumption of primary crops and livestock. This 

can help to build targeted cooperation relationships between high-income and lower-income 

countries to keep agricultural production and consumption sustainable.  

3.5 Data statement 

Product-specific data and figures are available from the authors upon reasonable request.  
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4 Land use in key biodiversity areas disproportionately threatens global biodiversity3  

Abstract 

Key Biodiversity Areas (KBAs) are critical regions in efforts to preserve global biodiversity. 

KBAs are identified by their importance to biodiversity rather than their naturalness or legal 

status. As such, KBAs are often under pressure from human activities. KBAs can encompass 

many different land use types (e.g. cropland, pastures) and land use intensities. Here we 

combine a global economic model with spatial mapping to estimate the biodiversity impact of 

human land use in KBAs. We find that global human land use within KBAs causes 

disproportionate biodiversity losses. While land use within KBAs accounts for only 7% of total 

land use, it causes 16% of global plant loss and 12% of global vertebrate loss. The consumption 

of animal products accounts for more than half of biodiversity loss within KBAs, with housing 

the second largest at around 10%. Bovine meat is the largest single contributor to this loss at 

around 31% of total biodiversity loss. In terms of land use, lightly grazed pasture contributes 

most, accounting for around half of all species loss. This loss is concentrated mainly in middle- 

and low-income regions with rich biodiversity. International trade is an important driver of loss, 

accounting for 22-29% of total plant and vertebrate loss. Our comprehensive global, trade-

linked analysis provides insights into maintaining the integrity of KBAs and global biodiversity. 

Significance 

Global land use threatens biodiversity within Key Biodiversity Areas (KBAs). In an 

interconnected world, the consumption of products such as food in one region can drive 

biodiversity loss in other, producing regions via the international supply chain. We linked high-

resolution global land use and land-use intensity maps with detailed environmental-economic 

databases to trace biodiversity loss due to land use with different intensities within KBAs. We 

find a much higher proportional level of biodiversity loss within KBAs than in other areas. In 

terms of products, animal-based foods drive over half the total biodiversity loss. With respect 

to land use, pasture with light intensity accounts for half of the total loss. The findings can help 

to better target KBA conservation efforts. 

Keywords 

Biodiversity loss, countryside species-area relationship, multi-regional input-output analysis, 

land use intensity 

4.1 Introduction  

Biodiversity loss severely alters and threatens ecosystem functioning, and human-driven land 

use is the largest threat to terrestrial biodiversity 278,279. This land use has led to a rapid 

acceleration in the rate of species extinction, far exceeding estimated planetary boundaries 280–

282. The urgency for biodiversity protection is reflected in international agreements, for instance 

in Sustainable Development Goals (SDGs) 14 and 15 283 and the elapsed 2020 Aichi 

Biodiversity Targets 284. Recent developments in biodiversity protection include the 

identification of Key Biodiversity Areas (KBAs), sites that significantly contribute to the global 

persistence of biodiversity 285. KBAs reflect an increasing appreciation of the complexities 

required to maintain biodiversity and are identified on the basis of 11 globally standardized 

threshold-based criteria within five categories: threatened biodiversity, geographically 

restricted biodiversity, ecological integrity, biological processes, and irreplaceability. Around 

                                                 

3 This chapter has been submitted to Proceedings of the National Academy of Sciences, as Sun, Z., Behrens, P., 

Tukker, A., Bruckner, M., and Scherer, L. Land use in key biodiversity areas disproportionately threatens global 

biodiversity. (submitted to Proceedings of the National Academy of Sciences) 



 

 

 

 

16,000 KBAs have been identified as of 2020 286 and they are likely to take a more central role 

in the main framework for identifying future conservation priorities 287–289. This approach 

contrasts with other methods that generally address one biome or a group of species, leading to 

the omission of important biodiversity integrity 290. Even though KBAs play an important role 

in biodiversity protection, little is known about the biodiversity loss driven by land use within 

KBAs. 

KBAs encompass regions of human activities and land use. However, it is not only the amount 

of land use that drives biodiversity loss, but also the intensity of that land use 291,292. To 

investigate land use impacts on biodiversity, researchers have used characterization factors 

(CFs) derived from the countryside Species–Area Relationship (SAR) (see methods) 291,292. 

These CFs estimate the potential species extinctions driven by a unit of land use if it remains in 

its current state over the long term 291,292. Although land use is a local phenomenon, these CFs 

also evaluate if a species faces the potential for loss globally and will therefore go extinct 292. 

Here we refer to global species-equivalents potentially lost over the long term as species lost 

and use this approach in our analysis 292. 

Further, due to increasing levels of globalization, local human land use is often driven by global 

demand, which enhances the geographic disconnection between producers and consumers as 

supply chains grow in complexity. For example, biofuels consumed in the EU can drive loss in 

Indonesia when these fuels are derived from palm oil 293. Previous estimates have concluded 

that 25% of global species lost 291 and 30% 294 of global species threats are driven by 

international trade, a larger proportion than for estimates of several other trade-based 

displacements such as carbon emissions 295. The displacement of biodiversity loss is generally 

from high-income to middle- and low-income nations 296. As such, assessments of the 

responsibility for land use in KBAs benefit from taking both a production-based (responsibility 

is shouldered by the producing nation) and consumption-based (responsibility is shouldered by 

consumers of products all along the value chain) perspectives.  

A previous analysis found that global cropland, even inside protected areas, has large impacts 

on vertebrate species, but did not include the role of other land uses, impacts on other species 

or the responsibility of international trade 297. There have been efforts to map biodiversity loss 

in trade, for instance Moran et al. (2017) mapped consumption-based global biodiversity loss 

hotspots, but did not identify biodiversity loss due to a specific driver (e.g. land use) and used 

highly aggregated sectors for the economic activities driving this loss 296. Other studies have 

traced biodiversity loss along the global supply chain for some products back to specific 

production locations (e.g. the Brazilian Cerrado) but have not examined the global picture 298. 

Here we provide a global, trade-linked assessment of biodiversity loss within Key Biodiversity 

Areas (KBAs). We examine potential global loss of terrestrial species driven by domestic and 

teleconnected land use both within and outside KBAs (to provide a comparison of activities 

within and outside KBAs). We do this by building a hybrid model using physical and monetary 

input-output databases, spatially explicit land use maps, and characterization factors (CFs) of 

biodiversity loss (see methods for further details).  

4.2 Results 

 A global picture of biodiversity loss from land use within KBAs 

Overall, we find that human land use within KBAs leads to a total potential loss of 781 

terrestrial plant species (hereafter referred to as plants) and 208 terrestrial vertebrate species, 

including mammals, birds, amphibians, and reptiles (hereafter referred to as vertebrates) (Figure 

4.1). The loss accounts for 0.3% of global plant species and 0.7% of global vertebrate species. 

To put this in perspective, our results suggest that total land use (inside and outside KBAs) 



 

 

 

 

causes a potential loss of 5038 plant species and 1765 vertebrate species (Figure S 8.13). While 

land use within KBAs only accounts for 7% of total land use, it drives 16% of global plant loss 

and 12% of global vertebrate loss compared to total land use. The biodiversity loss due to land 

use differs among regions (Figure S 8.14), since different regions have different mixes of land 

use types, varying land use intensities (we cover minimal, light, and intensive land use patterns 

here), consume different goods, and have different levels of biodiversity. Light use of pasture 

within KBAs is the primary driver of biodiversity loss, accounting for a loss of 382 plant species 

(49% of losses), and 91 vertebrate species (44% of losses). This is because pasture with light 

use accounts for the largest proportion (50%) of land use within KBAs (Figure S 8.14). Pasture 

also sometimes displaces species-rich natural ecosystems, such as tropical forests in Latin 

America 299, thereby causing severe biodiversity loss. The exact mechanism by which cattle 

grazing influences biodiversity varies depending on location and management practices, but in 

general, biomass removal, trampling and destruction of root systems, and competition between 

livestock and wildlife have the largest impacts on reducing biodiversity 299,300. 

At a regional level, there are several distinct biodiversity-loss hotspots. Plant loss is highly 

concentrated across Mexico, the nations of Central America, the Caribbean, Colombia, 

Venezuela, Madagascar, Southern Europe, South Africa, the south of India, the southwest of 

China, Southeast Asia, and the southwest and southeast of Australia (Figure 4.1). Vertebrate 

loss from land use within KBAs is also mainly located in Mexico, the nations of Central 

America, the Caribbean, Colombia, Venezuela, Madagascar, southern India, and Southeast 

Asia (Figure 4.1). 

   



 

 

 

 

 

Figure 4.1. Potential global species loss driven by land use within KBAs for A) plants and B) vertebrates (mammals, birds, 

amphibians, and reptiles). Arrows indicate the top 10 flows of potential global species loss from nations where biodiversity 

loss occurs (tail of arrow) to final consumers (head of arrow). The width of arrows reflects the value of potential global species 

loss. 

 Biodiversity loss from different land use types with three intensities 

We focus on the results for 15 countries with the largest consumption-based or production-

based biodiversity loss from KBAs (Figure 4.2). These top 15 countries account for 62%-73% 

of total plant or vertebrate loss from either a production or consumption perspective. 

Consumption-based biodiversity loss from land use within KBAs ranks highest in biodiverse 

regions, such as South Africa and Madagascar (i.e. mainly as a result of domestic consumption) 

as well as in areas that import large amounts of loss via trade (e.g. the US). For plant species, 

South Africa sees the largest loss from a consumption- and production-based perspective (149 

and 168 species lost from land use within KBAs, respectively). Pasture with light use is the 

primary land-use driver in South Africa, contributing to 82% and 80% of consumption- and 

production-based plant loss, respectively.  



 

 

 

 

São Tomé and Príncipe sees the largest per-capita plant loss from a consumption- and 

production-based perspective (both 135 × 10-6 per-capita species lost from land use within 

KBAs). This is almost entirely due to land used for crops at a minimal use intensity. Such a 

large result is driven by São Tomé and Príncipe’s position as an important region for endemic 

species – 30% of its mammals are endemic – and more than half of its land area being covered 

by KBAs, a higher share than any other country 301,302. There is a large drop in per-capita plant 

loss in the next most prominent country, South Africa, at 3 × 10-6 and 5 × 10-6 per-capita 

consumption- and production-based species loss, respectively.  

Focusing on vertebrate loss, Colombia’s teleconnected land use within KBAs drives the largest 

consumption-based loss (13 species lost), where pasture contributes to 89% of the loss. In 

contrast, Indonesia sees the largest production-based impacts, with 14 species lost from land 

use within KBAs. Here, managed and planted forests are the main driver, contributing 61% of 

the loss. When looking at land use also outside KBAs, Brazil and the US surpass Indonesia and 

China, causing the largest production- and consumption-based total vertebrate species loss, 

respectively (Figure S 8.14). Among the top countries (Figure 4.2), Ecuador sees the largest 

per-capita consumption-based and production-based vertebrate loss (0.7 × 10-6 and 0.8 × 10-6 

species lost from land use within KBAs), where pasture with light use accounts for 80% and 

79%, respectively.  



 

 

 

 

 

Figure 4.2. Potential global species loss from land use within KBAs for A) plants and B) vertebrates (mammals, birds, 

amphibians, and reptiles). On each x-axis (bottom and top of figures), the production-based perspective is shown to the left of 

zero and the consumption-based perspective to the right. The y-axis lists the top 15 countries/regions with the largest 

consumption-based or production-based biodiversity loss from land use within KBAs at the national level. The bar shows the 

per-capita value of biodiversity loss within KBAs per land type and land use intensity. The circles show the total national 

biodiversity loss with a value shown by the upper x-axes on the top of each plot. Forest includes managed and planted forest. 

 



 

 

 

 

 Biodiversity loss embodied in international trade 

International trade is a major driver of biodiversity loss, contributing around a third of global 

vertebrate loss and a quarter of plant loss within KBAs (Figure 4.3). To illustrate flows from 

regions where biodiversity loss occurs to regions which consume the goods produced, we 

aggregate countries/regions into seven world regions. Western Europe and North America drive 

the largest biodiversity loss embodied in international trade (Figure 4.3). For instance, 79% of 

consumption-based plant loss in North America is driven through international markets, mainly 

from Central and South America (37%), and Asia and Pacific (30%) (Figure 4.3). Similarly, 

82% of consumption-based vertebrate loss in Western Europe is embodied in international trade, 

mainly from Asia and Pacific (33%), Africa (26%), and Central and South America (20%) 

(Figure 4.3). This is similar to other studies finding that Western Europe and North America 

were responsible for 69% of biodiversity impacts transferred through international trade 291. 

Specifically, the largest flow of plant loss via trade (excluding domestic production and 

consumption) is from Philippines to the US with 2.4 species lost (from land use within KBAs) 

(Figure 4.1). In contrast, the largest flow of vertebrate loss through trade is from Indonesia to 

the US with 1 species lost (Figure 4.1). The US is involved in 7 and 6 of the top 10 trade flows 

for vertebrates and plants, respectively. 

  to  



 

 

 

 

 

Figure 4.3. Embodied biodiversity loss flows for A) plants, and B) vertebrates (mammals, birds, amphibians, and reptiles) 

from land use within KBAs. Producing regions are on the left of the figure, consuming regions on the right. Regions are ordered 

by the magnitude of loss in the consuming region. The width of the flows are proportional to the magnitude of the potential 

global species loss. 

 



 

 

 

 

 Biodiversity loss driven by the consumption of products 

Overall, food products contribute 74% of biodiversity loss within KBAs, with the remaining 

26% driven by non-food products. Food-driven biodiversity loss is dominated by the 

consumption of animal products which account for more than half of total biodiversity loss 

within KBAs, with 408 plants (52%) and 104 vertebrates lost (50%). Within this, the 

consumption of bovine meat is the largest single contributor to biodiversity loss, with 241 plants 

lost (31%) and 63 vertebrates lost (30%). The result is consistent with Marques et al. (2019) 

who found that cattle farming was the largest driver of bird species loss from 2000 to 2011 291. 

Since they did not consider land use intensity, we can further clarify that this is more due to the 

extent of cattle farming than its intensity compared to other land uses. In addition, feeding 

livestock uses large areas of land. For example, 60% of land use within KBAs is pasture which 

is used for livestock ranching. Further, around 30% of cropland within KBAs is used to feed 

livestock.  

The next largest product category is housing which includes all built infrastructure (e.g. roads), 

with 61 plants lost (8%) and 27 vertebrates lost (13%), driven mainly by “Construction work” 

and “Furniture” sub-categories, both of which heavily rely on forest products. Clothing 

contributes a further 6%, mainly driven again by pasture for animal products such as leather 

products. Grains contribute 5% biodiversity loss, which is proportionally much smaller than the 

around 16% land used as cropland within KBAs.  



 

 

 

 

 

Figure 4.4. Potential global species loss due to specific product consumption from land use within KBAs for A) plants and B) 

vertebrates (mammals, birds, amphibians, and reptiles). Forest includes managed and planted forest. 

4.3 Discussion 

We provide a comprehensive overview of global, land-use driven biodiversity loss within and 

outside KBAs by: 1) using potential global species loss for multiple taxa rather than a single 

aggregated index 291,303; 2) considering different land use intensities rather than just one 304; and, 

3) analyzing the effect of international trade on biodiversity loss rather than production-based 

biodiversity loss 292. We find that pasture is the largest contributor to biodiversity loss from 

land use within KBAs with 58% of total plant species loss and 56% of vertebrate species loss 

(Table S9). Consequently, animal products are the primary drivers of biodiversity loss, in 

particular bovine meat. Lowering animal product consumption could reduce agricultural 



 

 

 

 

expansion and intensification, eventually even leading to land sparing/sharing which could 

potentially reverse biodiversity declines 305,306. 

We estimate a quarter of global plant losses and a third of global vertebrate losses are embodied 

in international trade. This is slightly higher than previous estimates of 20% based on net 

primary productivity in biodiversity hotspots 307 and similar to a previous estimate of 25% for 

global endemic vertebrate loss 308 or 30% for threats to vertebrates 294. In the international 

market, high-income nations can outsource land use and the associated biodiversity loss to other 

middle- and low-income nations that may have lower regulatory standards and higher 

biodiversity 291,297. These differences partly drive leakage in biodiversity loss through 

international trade (analogous to carbon leakage). For example, Europe restored territorial 

forests by 9% (~ 13 Mha) while outsourcing 11 Mha deforestation due to crop displacement 

from 1990 to 2014 17. This deforestation occurs in many biodiversity-rich regions 17. These 

dynamics may change in the future as agricultural development is projected to grow due to 

rapidly increasing population and per-capita income in tropical and subtropical regions which 

may result in higher local consumption and lower exports 305. In addition, economic growth 

will threaten biodiversity loss by changing consumption patterns (e.g. increasing animal 

product consumption), especially in rapidly growing regions 291.  

It is possible to argue that KBAs are both more and less exploited than neighboring regions. 

They might be more exploited because they provide more resources, such as food, timber, and 

fiber 309,310, but also more protected because 56% of global terrestrial KBAs are in protected 

areas, much higher than the global average level of protected areas (14%) 311. Protected areas 

are established to prevent habitat loss and reduce biodiversity decline. Coverage of KBAs by 

protected areas can be used to measure the progress toward their protection 312. However, the 

status of a protected area does not guarantee adequate management 289. Some protected areas 

are simply “paper parks” and cover a high prevalence of habitat disturbance such as cropland, 

thereby, threatening biodiversity. For example, cropland within protected areas causes 18% of 

total species threats of global cropland 297. In addition, protected areas can also have little 

biodiversity conservation value, while KBAs are important for the persistence of biodiversity 
289. Therefore, other metrics to assess progress toward reaching biodiversity protection goals 

within KBAs are necessary. These may include the relative change of the current value 

compared with a reference value for different biodiversity and habitat indicators within KBAs 
289. This reference value may be the expected biodiversity in a region if there were little or no 

human disturbance. These metrics need extensive data from systematic monitoring (e.g. remote 

sensing, in situ monitoring) and timely update across all KBAs 289. 

There are a number of opportunities for future research. Given the dominance of land use for 

food systems, the first set of opportunities arises from improved agricultural mapping. 

Advances in remote sensing 313,314 and the use of crowdsourced data 315 may improve the 

accuracy of crop- and animal-specific maps. In terms of assessing biodiversity loss, improving 

the resolution of CFs can reduce uncertainties. Although other studies employ this same 

assumption to study biodiversity loss at a grid cell level 304, it would be an improvement to 

develop biodiversity CFs in line with the resolution of land use (i.e. 5 arc min in the paper). In 

addition, biodiversity responses are known to be scale-dependent and can be non-linear (for 

example, when critical thresholds are reached), making them extremely challenging to 

incorporate into global models 316. Further methodological breakthroughs are needed in order 

to represent these dynamics. Biodiversity is itself diverse and multidimensional (involving 

genetic, species, ecosystem, functional, structural, cultural and behavioral diversity) 278,306,317,318. 

Many species indicators, such as richness, evenness, differentiation, and abundance, have been 

used to assess biodiversity at multiple scales 278,306,319,320. However, indicators going beyond 



 

 

 

 

the species level are usually applied in case studies and still need an impact assessment method 

to be developed for the global scale 318. Even though land use change is the largest single threat 

to global biodiversity, other threats (e.g. climate change, invasive species, pollution, and 

overexploitation) can be more important locally, and will induce further global biodiversity loss 

via their interaction 306,321. An ongoing challenge is to represent the interaction of these 

pressures in biodiversity research 306. 

4.4 Conclusion  

The rising salience of biodiversity loss among policy spheres has led to a deeper integration of 

biodiversity knowledge between science and policy, with the most prominent example being 

the Intergovernmental Science–Policy Platform on Biodiversity and Ecosystem Services 

(IPBES) 322. Key Biodiversity Areas (KBAs) are likely to become the main regions of focus for 

biodiversity conservation 289. We globally assess biodiversity loss driven by human land use 

within KBAs and across nations in a spatially explicit integrated framework that retains 

important resolution in the food products which drive 22-29% of plant and vertebrate loss in 

international trade. We find that human land use within KBAs causes a proportionally high 

biodiversity loss (i.e. 7% of total land use caused 16% of global plant loss and 12% of global 

vertebrate loss), which indicates that KBAs, despite their importance, will need increasing 

policy protection in the future. Pasture with light use, as the most widespread land use type 

within KBAs, is the largest driver, accounting for around half of all species loss. Our 

comprehensive assessment can provide guidance for maintaining the integrity of KBAs and 

global biodiversity. 

4.5 Materials and Methods 

We assess global biodiversity loss driven by anthropogenic land use within KBAs by combining 

Multi-Regional Input-Output (MRIO) analysis with spatial analysis. Using MRIO analysis, we 

link production and associated environmental pressures to consumption anywhere in the world 

at the national scale. Then we allocate the consumption-based land use of a specific country 

into grid cells with the help of global land use maps and assign land use intensities. Different 

land use types and intensities determine the potential biodiversity loss at a location per area of 

land use, reflected by characterization factors. The biodiversity loss within the boundaries of 

KBAs can be delineated via this spatially explicit information. In short, we calculate 

biodiversity loss driven by land use both within KBAs and outside KBAs in order to provide a 

comparison. We focus on biodiversity loss within KBAs in the results section. 

 Modeling framework 

The starting point for quantification of biodiversity loss within KBAs is gridded land use data 

(see the next section). This enables the calculation of the biodiversity loss per m2 of land use 

(using characterization factors, CFs) (Figure S 8.12). While human land use is dominated by 

agriculture sectors, traditional global MRIO databases have highly aggregated agricultural 

sectors or regions. This is addressed by using the recently developed Food and Agriculture 

Biomass Input-Output (FABIO) table, a consistent, balanced, physical input-output database 

based on FAOSTAT data, covering 191 countries and 128 agriculture, food, and forestry 

products 323 (excluding non-agricultural sectors). To cover non-agricultural sectors, we build 

an integrated model framework linking FABIO and EXIOBASE (Figure S 8.12). EXIOBASE 

v3.6 is a highly detailed, monetary global multi-regional input-output database, including 200 

products and 49 countries or regions 324. EXIOBASE covers non-agricultural sectors in detail 

and by combining the two MRIO databases we can harness the advantages of both. An other 

uses matrix (Aother) links FABIO with EXIOBASE by providing agriculture and forestry 

biomass inputs in physical units for manufactured products in monetary units. We consider land 



 

 

 

 

use for food consumption (yFABIO) and non-food consumption (yEXIO) separately. To attribute 

land use to consumers across countries, we use a spatially explicit multi-regional input-output 

(SMRIO) model 293,325 (equations 1-2).  

SMRIO connects the economic sectors in a standard MRIO database with spatially explicit 

estimates of environmental pressures (e.g. land use) to track a country’s final consumption to 

the location of the embodied environmental pressures 325. The SMRIO in the study is used to 

estimate the impact of the demand of a given commodity (e.g., palm oil) in a specific region or 

country (e.g. the US) through land use in a region or country (e.g. Indonesia) on a species group 

(e.g. plants). The full model is expressed mathematically as: 
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where, Fs is the global spatial distribution of environmental impacts driven by final 

consumption of country s for both FABIO and EXIOBASE. Rr defines the spatial distribution, 

represented in absolute values, of land use in country r. ei
r
 is the environmental intensity (land 

use area per unit of output) of product i in the producing country r. yts
fabio,j indicates the final 

consumption of FABIO product j in country s that originates from country t, which is the last 

country exporting to country s in FABIO (that is, in a supply chain of four countries producer 

A, intermediate B, intermediate C, and consumer D, this refers to country C). yuv
exio,k indicates 

the final consumption of EXIOBASE product k in country v that originates from country u, 

which is the last country exporting to country u in the other-uses matrix (i.e. required amount 

of biomass inputs per Euro of manufactured product) in Fig. S1. Since EXIOBASE has a higher 

spatial aggregation (with five “rest of world” regions), we assume the same per-capita 

consumption for FABIO countries, which fall under the five “rest of world” regions in 

EXIOBASE (see the mapping relationship in Table S5). dr
i expresses the total land use of 

product i in country r. HHs
i is the infrastructure land which is land that is not attributed to any 

product of the IO model but directly to final consumption of product i in country s. Since the 

matrix of technical coefficients (i.e. input requirements per unit of output) is a block matrix 

integrating FABIO and EXIOBASE, we can derive the Leontief inverse L, via a simplified 

equation (1) using LA, LB, LD as the subcomponents of the inverse in equation (2). Ifabio is the 

identity matrix with the same dimension of FABIO, and Iexio is the identity matrix with the same 

dimension of EXIOBASE. Afabio is the technical matrix of FABIO; Aexio is the technical matrix 

of EXIOBASE; Aother is the matrix of technical coefficients linking the agricultural products 

from FABIO to the non-agricultural products in EXIOBASE.  

 Product groups 

There are 128 agricultural and forestry commodities in FABIO, and 172 additional product 

categories are provided by EXIOBASE. We reported detailed product-based biodiversity loss 

driven by consumption of FABIO and EXIOBASE in Tables S11 and S12 respectively. For 

ease of inspection, we classified 200 product categories in EXIOBASE into 8 categories (Food, 

Housing, Transport, Energy, Clothing, Manufacturing, Services, and Other) according to 

previous work 326. Food is detailed in FABIO, therefore, we categorized food into 10 groups 

(Grains, Tubers, Vegetables, Fruit, Pulses and nuts, Meat and seafood, Dairy products and eggs, 

Oils and fats, Sugars, and Stimulus) similar to former studies 327,328. For the detailed mapping 

relationship between product categories and reporting groups, see Tables S6 and S7. 



 

 

 

 

 Land use datasets 

We choose a base year of 2005, which aligns with characterization factors we employ. To keep 

the geographic data consistent, we aggregate all land use maps to a common resolution of 5 arc 

min. 

Cropland: For national cropland, we use the harvested area of 168 types of primary crops from 

FAOSTAT in 2005 329, and aggregate them into FABIO’s 62 crop sectors. For the spatial maps 

of cropland, we use 40 categories covering 168 types of primary crops from FAOSTAT at 5 arc 

min resolution in 2005, provided by the Spatial Production Allocation Model (SPAM) 330 (see 

Table S2 for the detailed mapping relationship between FAOSTAT, FABIO, and SPAM crop 

categories). Specifically, we include the original 42 categories crop maps, but since “Pearl 

Millet” and “Small Millet” are not split in FAOSTAT, we aggregate them into millet; similarly 

“Arabica Coffee” and “Robusta Coffee” are not split in FAOSTAT and we aggregate them into 

coffee. Since FAOSTAT does not report the physical area of crops, we use the ratio of harvested 

to physical area of crops from SPAM to convert the consumption-based harvested area to the 

physical area for impact assessment. For national cropland used to produce animal fodder, we 

use the harvested area derived from FABIO in 2005. However, there is no cropland map of 

fodder in SPAM. Therefore, we incorporate cropland used to produce animal fodder and 

calculated it analogously using EarthStat’s aggregated fodder maps at 5 arc min resolution in 

2000 331.  

Forest: Previous studies tend to overestimate forest use because they consider all reported forest 

areas without distinguishing between natural forests and managed or planted forests 332. 

Therefore, we link our framework to the latest, global forest data at 1 km resolution in 2000 333. 

We assume there are no large changes for the forest map from 2000 to 2005. Although this 

assumption may not hold for some countries 334. Overall, this may slightly underestimate the 

effects of forest loss on biodiversity loss. The map downscales forest areas derived from FAO’s 

Forest Resources Assessment (FRA) into grid cells with two different levels of forest 

management (Level 1: primary, naturally regrown, and planted forests; Level 2: production, 

multiple purposes, and other purposes) 333. First, we use 6 combinations of forest classes and 

forest uses as forest use for human production and consumption (Table S4) 333. After summing 

the forest area used for production (derived from Schulze et al. 2019) in FABIO countries and 

regions, we allocate the managed and planted forest areas to the sectors “Wood fuel”, “Industrial 

roundwood, coniferous”, and “Industrial roundwood, non-coniferous” in FABIO. The 

allocation uses the share of wood produced by the different sectors in 329. We then aggregate 

the forest area map to 5 arc min, which we use as the uniform spatial resolution in this paper. 

Pasture: Pasture was represented by a high-resolution (30 seconds) map from 2005 335. We 

excluded non-productive areas (aboveground NPP below 20 g C m−2 yr−1) following a previous 

study 291,336, and capped the pasture at 100% total land-use coverage in each grid cell.  

Infrastructure: We use ESA CCI land cover maps (category Urban Areas at 300 m resolution) 

in 2005. We assume all infrastructure land is used in final demand (i.e., we assume all 

infrastructure land only takes part in domestic consumption activities and is not involved in 

international trade), even though some areas are used for manufacturing sectors. Previous work 

has outlined the challenges for including infrastructure land more comprehensively 337. 

Land use intensity: For the land use intensity map, we follow the method provided by Newbold 

et al. (2015). They map the global land system onto five land use types (we use cropland, pasture, 

and urban land) with three land use intensities (minimal, light, intense). A detailed definition 

of land use intensity classes is given in Table S3, and detailed conversion rules between Global 

Land System data and land use intensity in Table S4. For the definition of forest land use 



 

 

 

 

intensity, see Table S4, which itself is based on 333. The Global Land System mixes different 

land use types within a grid cell. For our purpose, the land use intensity at a location was judged 

separately for each land use type. 

 Deriving spatially-explicit biodiversity loss related to land use  

To quantify global species loss driven by human land use at different land use intensities, we 

use the latest characterization factors (CFs) developed by Chaudhary & Brooks (2018). The 

characterization factors (CFs) allow for an estimation of global potential extinctions driven per 

unit of land use 292. The CFs were derived from the countryside Species–Area Relationship 

(SAR) for regional species loss of 804 terrestrial ecoregions 292. While the classic SAR 

approach assumes that species can only persist in their native habitat, the countryside SAR 

acknowledges that species can also persist to some extent in human-modified habitats. 

Consequently, the classic SAR overestimates species loss and the countryside SAR provides 

more realistic estimates 338. Regional species loss was subsequently multiplied with a 

vulnerability score of species based on their geographic ranges and threat levels from the IUCN 

Red List to estimate global species loss 292. The vulnerability score is 1 if all species within a 

region are “critically endangered”, as assessed by the IUCN Red List, and have their entire 

range inside that region (i.e. they are strictly endemic to that region). Thus, local land use within 

KBAs can potentially lead to global species extinctions, especially if the species is endemic and 

critically endangered. The unit is global species-equivalents potentially lost (referred to as 

species lost). 

The CFs consider five taxa (mammals, birds, amphibians, reptiles, and plants) and five land use 

types (managed forest, plantation, pasture, cropland, and urban) under three intensity levels 

(minimal, light, and intense) for terrestrial ecoregions 292. Specifically, each taxon consists of 

numerous species, including 5,490 mammals, 6,433 amphibians, 9,084 reptiles, 10,104 birds, 

321,212 plants 339. We use average instead of marginal CFs. Marginal CFs apply to marginal 

changes from the current situation (e.g., one additional m2 of land use) 339. In this study, 

however, we are investigating large changes from natural habitat to the current land use pattern 

in KBAs or even globally. Because the CFs are at ecoregion scale, we assume that the value of 

CFs in each pixel is the same for all pixels situated within the ecoregion, as also assumed by 

Chaudhary et al. (2016). After computing the spatial distribution per unit area of each land use 

type at different land use intensities driven by final consumption in a given region, we multiply 

the corresponding CFs with consumption-based land use data to obtain consumption-based 

global species loss for each taxon equation (3).  

 𝑆𝐿𝑔𝑙𝑜𝑏𝑎𝑙,𝑔,𝑚,𝑛
𝑠 = CF𝑔𝑙𝑜𝑏𝑎𝑙,𝑔,𝑚,𝑛 × F𝑚,𝑛

𝑠                                          (3) 

SLs
global,g,m,n is the potential global species loss for each taxon g for a different land use type and 

intensity m in each grid cell n driven by final consumption in country s. CFglobal,g,m,n is the land 

occupation CF (species lost per unit land use) for taxon g at a different land use type and 

intensity m in each grid cell n. Fs
m,n is the land use for each different land use type and intensity 

m in each grid cell n driven by final consumption in country s. F is derived from equation 1.  

After finding the global distribution of biodiversity loss driven by human consumption, we use 

KBA boundaries 286 to get the subset of biodiversity loss from land use within KBAs. The 

consumption-based biodiversity loss is the sum of agriculture related biodiversity loss (from 

FABIO) and non-agriculture related biodiversity loss (from EXIOBASE).  
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5 A double carbon dividend from dietary change in high-income nations 4 

Abstract: A dietary shift from animal-based to plant-based food in high-income nations could 

reduce greenhouse gas (GHG) emissions from direct agricultural production and increase 

carbon sequestration if spared land is restored to its antecedent natural vegetation. Changing 

food behaviours in high-income countries—where these effects would be most pronounced — 

thus provides an opportunity for a double carbon dividend. We investigate this dividend under 

a scenario in which national average diets in 54 high-income nations representing 68% of global 

GDP and 17% of population shift to a planetary health diet, which is committed to the co-

development of healthy diets and sustainable food production. Here we show that these dietary 

changes across high-income nations could reduce direct annual emissions by 0.61 Pg CO2e yr-

1 while sequestering as much as 115.57 Pg CO2e over the long term. This sequestration 

represents a significant contribution to limiting GHG concentrations and could potentially fulfil 

high-income nations’ future carbon dioxide removal obligations. Linking land, food, climate 

and public health policy will be vital to harnessing the opportunities of this double dividend.  

5.1 Introduction 

Agriculture is a significant human system which has the potential to dictate the rate and depth 

of climatic change. Current food system emissions may preclude the limiting of climate 

warming to 1.5 or even 2 degrees Celsius 340, yet simultaneously, radical land use and 

agricultural management interventions may be crucial strategy for limiting climatic change 341. 

Dietary change has been found to be a practical and effective strategy in multiple studies 342,343. 

The global food system is responsible for ~13.7 Pg of carbon dioxide equivalent (CO2e) 

emissions per year (yr-1) accounting for 26% of anthropogenic greenhouse gas (GHG) 

emissions37. Agricultural production, particularly animal-derived products and land-use 

change, accounts for the largest proportion of these emissions344. Historical livestock emissions 

are estimated at 5.6 – 7.5 Pg CO2e yr-1 between 1995 and 2005 345 and western dietary patterns 

in high-income countries—characterized by a high intake of animal-based products, sugar, and 

saturated fatty acids—are a major driver of these emissions46,346,347. In 2013, for example, per-

capita meat consumption in high-income countries was almost six times greater than that in 

low-income countries348. Animal-derived products account for 70% of food-system emissions 

in high-income countries but only 22% in low-middle-income countries349. Attribution of these 

emissions is complicated by agricultural globalization whereby food consumption in high-

income drives overseas carbon emissions through international trade12. For example, around 

one sixth of the EU dietary carbon footprint is comprised of tropical deforestation emissions19 

and in some high-income nations, such as Japan and Luxemburg, imported agricultural carbon 

emissions are higher than those associated with domestic production19. Dietary change in high-

income countries, may therein, hold the potential to substantially reduce agricultural emissions 

around the world—a potential carbon ‘dividend’.  

Shifting from current dietary patterns in high-income nations to healthier alternatives with few 

or no animal products could simultaneously spare agricultural land for other uses. While a 

portion of this land may ultimately be used for various types of development and/or bioenergy, 

its use for intentional ecosystem restoration – a so-called ‘natural climate solution’ 341,350 would 

represent a second, additive carbon dividend of dietary change. In many regions, reverting 

cropland to its antecedent or ‘potential’ natural vegetation (PNV) can substantially increase 

aboveground biomass carbon (AGBC), belowground biomass carbon (BGBC) and soil organic 
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carbon (SOC) stocks 12,351–354 with additional co-benefits for biodiversity 355 and other 

ecosystem services. Recent studies highlight the large magnitude of this sequestration potential. 

Global vegetation is believed to currently store less than 50% (450 PgC) of its potential C stock 

(916 PgC) due to appropriative land use 352. Likewise, global soils have lost 116 PgC over the 

course of agricultural history due to C-cycle imbalances imposed by cultivation and other 

human appropriation 356. A substantial portion of these carbon stocks could be recovered if land 

is spared by dietary change and subsequently restored to PNV. However, the extent to which 

land could be spared has not been comprehensively assessed due, in part, to the complex trade 

relationships between food producers and consumers12. Such relationships are particularly 

relevant to the land use footprints of high-income nations which import large amounts of food 

from around the world5.  

We assess the potential for a ‘double dividend’ for emissions mitigation via dietary change from 

both (1) reduced direct agricultural production emissions and (2) carbon sequestration via the 

land sparing whereby agricultural lands can revert to other uses. While linked, these elements 

play out over two different timeframes: the first—reduced production emissions—influences 

the sector’s annual GHG contribution, while the second—sequestration—often requires 

decades or even centuries to realise its full potential. We conceptualize the latter effect, below, 

as a one-time “committed” mass of C that is sequestered over an unspecified period after 

restoration is initiated (see methods). We use data for the year 2010 from the Food and 

Agriculture Biomass Input–Output dataset (FABIO) 36 to relate the international final demand 

for food items with primary agricultural production. A GHG emission dataset linked to FABIO 

quantifies emissions for each step in the value chain357. Agricultural production is mapped to 

spatially explicit land use, which we linked to the latest harmonized global AGBC and BGBC 

map358; a SOC stock map of the top 100 cm359; and a PNV map with AGBC, BGBC, and 

SOC352,353. The result is a spatially explicit multi-regional input-output (SMRIO) model 360,361. 

We use the recommendations of the EAT-Lancet Commission as a basis for dietary change in 

high-income countries342. The EAT-Lancet Commission aims to develop human healthy diets 

and sustainable food production while meeting UN Sustainable Development Goals (SDGs) 

and climate goals 342. Such diets are characterized by reduced animal protein consumption and 

result in lower agricultural land requirements (for detailed recommendations per food group see 

methods and Supplementary Table 3). For our double dividend scenario, we assume spared land 

is restored to PNV (see methods and supplementary information) and determine the ensuing 

carbon sequestration potential as the difference between the carbon stock of PNV and that of 

current use.  

5.2 Carbon sequestration and emission reduction potentials from dietary change 

A shift to the EAT-Lancet diet in high-income nations would reduce annual food system 

emissions by 61.0% or 0.61 Pg CO2e yr-1. Our estimate is in line with those in the literature327 

(Figure 5.1, Figure S 8.18). About half of this reduction would collectively occur in the US 

(31.2%), France (6.7%), Australia (6.2%), and Germany (5.0%) (Figure 5.1B). Some large 

exporting middle- and low-income countries would also see emission reductions via reduced 

exports of agricultural products to high-income countries. These include India (2.2% of India’s 

emissions from agricultural production), and Brazil (3.0% of Brazil’s emissions from 

agricultural production). 

A dietary shift from national average diets to the EAT-Lancet diet across high-income countries 

would also result in significant opportunities for carbon sequestration. We find that a shift of 

this nature could spare more than 464.25 million hectares (Mha)—an equivalent area slightly 

larger than that of the EU. Subsequent committed sequestration over the long term on this land 

could increase C stocks by 115.57 Pg CO2e. Spared agricultural land would be comprised of 



 

 

 

 

383.54 Mha pastureland and 80.71 Mha cropland, with major abandonment hotspots expected 

in the western half of the US, Central Europe, and eastern states of Australia (Figure S 8.19).  

Carbon sequestration would be achieved predominately in large countries with large amounts 

of agricultural production, especially feed crops and pasture. For example, more than a half of 

the increase in global carbon sequestration would occur in four nations alone: the US (28.0%, 

32.33 Pg CO2e), Australia (9.5%, 11.01 Pg CO2e), Germany (8.1%, 9.40 Pg CO2e ), and France 

(6.7%, 7.78 Pg CO2e), collectively (Figure 5.1A). Regionally, major hotspots for sequestration 

include the Midwest US, Central Europe, and the eastern states of Australia (Figure 5.1A, 

Figure S 8.18) where the potential natural vegetation is forest with a high carbon density352,362. 

Australian dietary changes would see the largest per-capita carbon benefit overall at 605.22 Mg 

CO2e of sequestration (6 times the average of all high-income countries, see Supplementary 

Fig.3.), driven largely by a shift away from animal products and restoration of mixed native 

grassland and native forest 362.  

As a percentage of the total sequestration potential of dietary change, 34.1% lies outside of the 

consuming country (i.e. dietary change in a high-income country influences production in 

another country)—22.4% would be located in other high-income countries and around 11.7% 

would be located in middle- and low-income regions (Figure 5.1A, and Figure S 8.18). These 

latter regions would also be located mainly in countries providing large amounts of agricultural 

production for high-income nations, such as Brazil (1.50 Pg CO2e) and Botswana (1.06 Pg 

CO2e). 



 

 

 

 

 

 

Figure 5.1. Changes in (A) net carbon sequestration (the sum of AGBC, BGBC, SOC), (B) net carbon emissions due to dietary 

change in high-income countries (shown in Robinson projection). Three major hotspots of carbon sequestration are in the 

Midwest of the US (a, shown in USA Albers Equal Area Conic projection), central Europe (b, shown in Europe Albers Equal 

Area Conic projection), and coastal regions in Australia (c, shown in Australian Albers projection). Further maps of the global 

spatial distribution of changes in these variables are in Figure S 8.19.  

 

 



 

 

 

 

5.3 The role of animal products in the carbon cycle  

Given the large land requirement and high emission intensity of animal agriculture, a shift away 

from animal product consumption comprises the largest opportunity for both increased carbon 

sequestration via land sparing and emission reductions from the food system itself 327,349,362. 

Reductions in animal protein consumption would result in 110.54 Pg CO2e of sequestration 

over the long term, along with direct annual emission reductions of 0.57 Pg CO2e yr-1 (Figure 

5.2). The reduced consumption of dairy products would result in an additional sequestration of 

17.32 Pg CO2e, and emission reductions of 0.01 Pg CO2e yr-1 (Figure 5.2). Land spared by 

reducing the consumption of animal protein and dairy products could capture and store 128 

times the annual GHG emissions from direct agricultural production (1.00 Pg CO2e yr-1) of food 

consumed in high-income countries in 2010.  

Carbon mitigation due to dietary change depends on both local agricultural production practices 

and local dietary preferences. Dietary changes in the US and Australia contribute the largest 

carbon benefits since they are mostly comprised of reductions in animal product consumption 

(Fig. 2 and Supplementary Fig.5). This is due to the preponderance of grass-fed beef production 

systems in the US and Australia349. We find a different situation in the populous East Asian 

countries. In South Korea and Japan, the opportunity for carbon sequestration is offset 

slightly—by 0.48 Pg CO2e and 0.44 Pg CO2e due to an expected increase in dairy product 

consumption under the EAT-Lancet diet recommendations (Figure 5.2 and Figure S 8.19). 

Given that the current low levels of dairy consumption in East Asia are driven by high levels 

of lactose intolerance 363 our finding highlights the need for locally appropriate dietary 

recommendations that consider both public health and environmental outcomes. 

The reduction in animal proteins would be offset slightly by an increase in plant-protein 

production. Increased production of plant-based alternatives would also be needed to satisfy 

other nutrient demands such as vitamin B12 and Omega-3364. Increasing plant proteins and fruit 

production would result in a small offset—23.52 Pg CO2e—of the gains made from reducing 

animal products. The increase in direct emissions from the agriculture sector would be very 

small, at just 0.008 Pg CO2e yr-1 (Figure 5.2). This is somewhat unsurprising when we consider 

that the energy feed-to-food conversion efficiency of animal products is low and varies from 

3% for beef to 17% for eggs within animal products44,365. In addition, the grains fed to livestock 

(e.g. maize and soybean) could be redirected to human consumption or spared land could be 

used to produce plant-based products without expanding agricultural land in net (Figure S 8.19).  



 

 

 

 

 

  

Figure 5.2. Potential carbon sequestration (A) and GHG emission (B) change by food category ((a) Animal products (b) mixed 

animal- and plant-based products, (c) plant-based products) due to dietary shifts from national average diets to the EAT-Lancet 

diet in high-income countries. We showed detailed sectors for animal-protein groups given its important role. For detailed 

reporting group information, see methods and Supplementary Table 2. The potential increase of carbon sequestration means 

carbon sequestration in potential natural vegetation minus that of current agricultural vegetation. The offset of carbon 

sequestration means carbon sequestration in potential natural vegetation minus that of increased agricultural vegetation. The 

left y = 0 in (A) means offset of potential carbon sequestration, and the right of y = 0 in (A) means potential carbon sequestration. 

The red line in (A) means 4 Pg CO2e. The carbon reduction of GHG emission means the GHG reduction due to the reduction 

of food categories, and the offset means the GHG increase due to the increase of food categories The left of y= 0 in (B) means 

potential GHG reduction, and right panel of y = 0 in (B) means offset of potential GHG reduction. The red line in (B) means 

0.01 Pg CO2e.  

5.4 Carbon mitigation potentials for items not included in the EAT-Lancet diet.  

There has been little discussion of stimulants (coffee and products, cocoa beans and products, 

tea including mate), alcoholic beverages (wine, beer, fermented beverages, alcoholic 

beverages), edible offal, and other meat (e.g. horse, ass, camel, rabbit, game meat) in previous 



 

 

 

 

studies, as these were not a focus of the EAT-Lancet diet 327,366. Although these items only 

comprise 8.1% of dietary carbon emissions, they represent a non-negligible carbon 

sequestration opportunity. The cumulative total of these items represents a sequestration 

opportunity of 27.78 Pg CO2e (Figure 5.3) or 24.0% of the total sequestration opportunity 

identified above (Figure 5.1A) if high-income nations cease all consumption of these items. 

While others have pointed to opportunities for sustainable intensification by abandoning luxury, 

low-nutrition crops such as feedstock for alcoholic beverages 367, it would be a significant 

challenge to model potential reductions. There exist health issues related to stimulant 

consumption, including a risk of anxiety and depression 368, along with relationships between 

alcohol consumption and cancer risk369—significant reductions in these items would be a 

controversial cultural topic370. Nevertheless, per-capita alcohol consumption of high-income 

countries, for example, is much higher than that of middle- and low-income countries, and some 

high-income countries (e.g. in Europe) have been reducing alcohol consumption371,372. 

Since edible offal is a by-products of meat production, it obviously cannot be reduced 

unilaterally from other meats. However, offal is often wasted in high-income nations due to 

convention and consumer preference 373. Decreasing the waste of edible offal in high-income 

nations is an effective way to reduce overall meat consumption and its associated carbon cost 
374. Finally, if the animal proteins listed in the EAT-Lancet diet were to satisfy human demand, 

other meat consumption (consumption not listed in the EAT-Lancet diet for meat varieties such 

as horse, ass, rabbit and others) could be avoided, resulting in a sequestration opportunity of 

~10.28 Pg CO2e (Figure 5.3A).  

 

Figure 5.3. Potential carbon sequestration (A) and GHG emission (B) change due to removal of ignored food items in EAT-

Lancet diet for high-income countries. 



 

 

 

 

5.5 Implications for natural climate solutions 

Emission trajectories as reported by the IPCC 1.5°C special report suggest that limiting global 

average temperature increase to 1.5°C could require a cumulative carbon dioxide removal 

(CDR) of 348-1218 Pg CO2e by 2100, with a ‘middle-of-the-road’ scenario—one in which 

societal and technological development follows historical patterns—requiring a ~687 Pg CO2e 

reduction375,376. As with mitigation efforts under existing international frameworks for ‘shared 

but differentiated responsibilities’, there may be highly differentiated CDR targets for high-

income countries. Others have allocated global CDR requirements to countries based on 

responsibility (per-capita production-based carbon emission since 1850), capability (per-capita 

GDP) and equality (per-capita CDR quotas) principles376. Cumulative allocations to the 54 

high-income countries we investigate here vary from 84.70 Pg CO2e to 530.98 Pg CO2e 

depending on the allocation principle (ranging from equality to capability respectively), 

compared to our calculated 115.57 Pg CO2e CDR by PNV restoration due to dietary change376. 

Our results thus suggest that ecosystem restoration facilitated by dietary change alone could 

potentially fulfil between 21% and over 100% of these countries’ CDR obligations needed to 

limit warming to 1.5°C. 

Uniform adoption of the EAT-Lancet diet across high-income nations would benefit both the 

global environment and human health in high-income countries327,366. Land spared due to 

dietary change would expand opportunities for the implementation of natural climate solutions, 

such as regrowth of natural forest which is arguably the single most effective natural climate 

solution throughout much of the world341,350,354. Nevertheless, it would likely be a challenging, 

long-term, and complex process to restore the agricultural land spared by dietary change. A 

comprehensive analysis of social acceptance of land sparing is lacking but would likely find 

that success greatly depends upon local contexts377. In our analysis, we assume a scenario in 

which all spared land is restored to the potential natural vegetation associated with today’s 

climate to delineate the maximum potential352. However, this idealized opportunity is likely 

confounded by more nuanced biophysical and socioeconomic characteristics of various world 

regions. 

Restoration is also just one of many potential end uses for spared land. Competition among end 

uses inevitably precludes 100% adoption of any one type of land use and strategies are needed 

to identify ways in which trade-offs among uses can be optimally balanced. For example, from 

an emissions mitigation perspective some have recently proposed that restoration be prioritized 

based on the rate and degree to which candidate lands can recover C 378. Yet, even recovery 

rates are not a trivial criterion. Many contingencies determine theses rates—e.g. subsequent 

management, local climate, soil properties, surrounding ecology, etc.—that ultimately 

influence the efficacy of restoration379. Passive restoration, for example, is sometimes desirable 

as species on spared land can undergo natural succession and recover quickly at no or low 

cost379. Even so, passive restoration may be a less effective means sequestering C than active 

restoration in systems in which successional dynamics favor the dominance of less productive 

plant communities 380. In either case, restoration is a relatively slow process requiring decades 

or centuries to manifest its full effects. It therein requires a long-term mindset and commitment 

that may not be politically tenable.  

Spared land could also potentially be used for bioenergy cultivation – albeit with different 

outcomes379,381. Traditionally, bioenergy has been regarded as an economically costly strategy 

for climate change mitigation with a lower efficacy per unit of land use compared to 

alternatives341,379,381,382. However, a recent US case study suggests that the climate mitigation 

potential of second-generation bioenergy crops (switchgrass) in some US contexts could be 4 

to 15 times greater than the sequestration attained by restoring current cropland or pastureland 



 

 

 

 

to natural forest and grassland. However, these efficiencies remain contingent upon ensuing 

improvements to energy crop yields and biofuel conversion technology in addition to carbon 

capture and storage383. Moreover, unlike a return to PNV, the efficacy of bioenergy depends on 

technological and agricultural development 384,385; it may depend on, or drive, greater use of 

agricultural inputs like fertilizer, pesticides, or irrigation; and its effects on biodiversity or other 

ecosystem services remain unclear but are likely less than those expected from PNV 

restoration383.  

In addition to natural climate solutions that ensue from the sequestration element of the double 

dividend, other supplementary natural climate solutions address production emissions. These 

solutions, including improved nutrient management, cover crops, and biochar (see 

supplementary information), do not require extra land but instead target emissions reductions 

from remaining cropland341,379. Moreover, their effects are realized quicker (days to years) than 

those of PNV restoration which may make them more tractable for producers and policy 

makers. Even so, governance of land use changes implied by both elements of the double 

dividend will likely require new technological (e.g. remote-sensing monitoring) and financial 

support (e.g. reforestation and afforestation) 379,386,387.  

In order to harness the GHG mitigation potential of dietary change, a holistic social policy that 

coordinates between food, environment, and public health systems will be needed. Global 

agricultural subsidies, for example are currently ~$700 billion yr-1, and result in unsustainable 

production practices388,389. These subsidies could instead be redirected along the lines of 

environmentally cognizant agricultural practices and healthy diets388. Decision-makers could 

also repurpose taxes and regulations on unhealthy food389. High-income countries stand to 

achieve the largest per-capita carbon reductions by shifting to the EAT-Lancet diet due to the 

large proportion of their average diet currently devoted to carbon-intensive animal protein 

consumption327,362. While we estimate the magnitude of the potential carbon sequestration 

benefit due to dietary change in high-income nations, we do not include non-agricultural sectors 

such as transportation, processing, wholesale and retail, hotel and restaurant food emissions. 

Further, given the number of datasets integrated into this analysis, uncertainties in these 

data352,358 and the model36 mean that estimates for specific crops in individual nations should 

be interpreted cautiously. Nevertheless, our analysis sheds light on the indirect ways in which 

dietary change may offer substantial opportunities for GHG reductions via enhanced natural 

climate solutions and the deep and complex policy changes upon which they are predicated. 

 

  



 

 

 

 

5.6 Methods 

In this paper, we employed a Spatially explicit Multi-Regional Input-Output (SMRIO) model 

to derive carbon emission and carbon sequestration change after a dietary shift from national 

average diets in the year 2010 to a planetary health diet proposed by the EAT-Lancet 

Commission in high-income countries342. We focus on carbon emissions and sequestration – 

the latter distinguishing aboveground biomass carbon (AGBC), belowground biomass carbon 

(BGBC), and soil organic carbon (SOC) of crop and livestock production for human 

consumption. Carbon emissions and sequestration requires two different timeframes: the 

reduced production emission influences the sector’s annual GHG contribution, while 

sequestration requires decades or even centuries to realise its full potential. Therefore, we assess 

a ‘double dividend’ for emission mitigation from (1) annual reduced direct agricultural 

production emissions 327 and (2) carbon sequestration via the land sparing over the long term 
352,362. To keep the geographic data consistent, we aggregate all spatial maps to a uniform 

resolution of 5 arcmin. We outline the construction of the model for each plant type in turn. 

 Biomass carbon and soil organic carbon in current vegetation 

Primary crops and fodder:  

We calculated AGBC and BGBC for herbaceous crops and fodder using the approach of Spawn 

et al. 358 (equations 1 and 2) based on the crop production data at national scale from FAOSTAT 
357, to begin with (detailed parameters in Supplementary Table 1, and detailed description see 

Supplementary Methods). We then allocated AGBC and BGBC into grid cells based on the 

spatial distribution of the 29 herbaceous crops in SPAM 390 and the fodder crop map in EarthStat 
35.  

𝐴𝐺𝐵𝐶 = 𝑦𝜔(0.451ℎ−1  + 1.025𝑐 − 0.451)                                         (1) 

𝐵𝐺𝐵𝐶 = 0.451𝑦𝑟ℎ−1                                                                             (2) 

where y is the production of a specific crop or fodder item (in tons), ω is the dry matter fraction 

of its harvested biomass, h is its harvest index (fraction of total AGBC collected at harvest), c 

is the carbon content fraction of its harvested dry mass, and r is the root-to-shoot ratio of the 

crop (detailed values in Supplementary Table 1). We assume that 2.5% of all harvested biomass 

is lost between the field and farm gate and that unharvested residue and root mass is composed 

of 44% carbon (following Wolf et al. 391) 

Since some regions saw multiple harvests in a single year, we further determined the harvest 

frequency (f) of each grid cell by dividing a cell’s harvested area by its physical area as reported 

in SPAM. If f was greater than one, multiple harvests were assumed and AGBC and BGBC 

were divided by f to ensure that AGBC and BGBC estimates did not exceed the maximum 

standing biomass density 358. 

Woody crops like fruit, nuts, and oil palms were addressed separately and their biomass was 

assumed to be captured by the harmonized biomass AGBC and BGBC map from Spawn et al. 
358. The AGBC and BGBC were extracted based on the share of the physical area of 11 woody 

crops in SPAM on the grid cell area. We then allocated the AGBC and BGBC of 11 woody 

crop groups into individual crops based on the share of AGBC and BGBC calculated in 

equations 1 and 2 at the national level.  

Soil organic carbon (SOC), the carbon remaining in the soil after partial decomposition of any 

material produced by living organisms, constitutes a primary element of the global carbon cycle 

through the atmosphere, vegetation, soil, rivers, and the ocean. About 50% of total global SOC 



 

 

 

 

(i.e. top 300 cm depth) is stored in the top 100 cm depth, so SOC stock change assessment 

should be made to at least 100 cm depth 392. In this paper, we used a soil organic carbon stock 

map predicted by machine learning ensemble models at 250 meters resolution 359 in the top 100 

cm depth. We used the share of the physical area of 40 crops in SPAM and a fodder map from 

EarthStat to extract the value of SOC, and we then allocated the value into separated crops 

based on their harvested area in FAOSTAT and SPAM in 2010.  

Pastureland 

We used the latest year of pastureland for feeding livestock in the year 2010 provided by Sloat 

et al. 393 and calibrated it based on capping 100% total land-use coverage in each grid cell (see 

Supplementary Methods). AGBC and BGBC of pasture are from the harmonized biomass 

carbon map of pasture provided by Spawn et al.358. SOC is based on the same dataset as above 

cropland. We extracted the value of AGBC, BGBC, and SOC based on the percentage of pasture 

on a grid cell.  

 GHG emissions 

The GHG emissions for agricultural production in tonnes of CO2e yr-1 were calculated 

following the tier 1 methodology of FAOSTAT for the year 2010 357 applied at the national 

level rather than the grid cell level (see Supplementary Methods).  

 AGBC, BGBC, and SOC of potential natural vegetation 

To calculate the potential additional carbon storage of returning land to natural vegetation, we 

used the work of Erb et al. 352 and Searchinger et al. 353. Erb et al. generated a land-use induced 

biomass stock (AGBC, and BGBC) reduction percentage map based on 42 potential–actual 

biomass-stock difference maps by combining the seven actual biomass-stock maps with the six 

potential biomass-stock maps 352. In addition, Erb et al. adjusted the maps to guarantee the 

actual biomass stocks would not surpass the potential biomass stocks 352. We used the AGBC 

and BGBC maps constructed as above as the actual biomass stocks map, and used a reduction 

percentage map from Erb et al.352 to get AGBC and BGBC of potential natural vegetation. For 

SOC of cropland, we assumed 25% of soil carbon loss in the top 100 cm of soils, consistent 

with other global studies 353,394,395. The SOC difference between pastures and its potential 

natural vegetation remains disputed. We assume no change in SOC for tropical pastures and 

10% loss in the temperate pasture, following a previous study 353. For climate classification, we 

employed the latest Köppen-Geiger climate classification map at a 5-arcmin resolution 396. We 

assumed SOC of pastures in tropical rainforest, tropical monsoon, and tropical savannah stays 

unchanged, and other zones in the Köppen-Geiger climate classification lose 10%. We used 

this assumption to calculate SOC of potential natural vegetation.  

 Dietary change in high-income countries  

Source data for average national diets were obtained from FAO food balance sheets (FBSs) in 

2010 357. FBSs are available as calories (kilocalories per person per day) and weights (grams 

per person per day) 357 which can be used to compute the food-specific energy content (calories 

per unit food) for each country. We used food supply from FBSs, and did not include stock 

variation and food loss, because these are not consumed in human diets. The food used in 

feeding and processing are reflected by the input-output relationship in The Food and 

Agriculture Biomass Input-Output model (FABIO).  

For targeted healthier diets in high-income countries, we chose the food recommendations from 

the Universal Healthy Reference Diet (EAT-Lancet) which follows the guidelines on healthy 

diets and sustainable food systems 342,366. For each country, we aggregated food demand (in 

grams/capita/day) for each classification of the EAT-Lancet diet (for the detailed mapping 



 

 

 

 

relationship between FABIO sectors and EAT-Lancet classification, see Supplementary Table 

2), calculated the energy content (kilocalories/capita/day) in each classification, adjusted the 

energy intake for each classification to conform with the recommendation of EAT-Lancet, and 

adjusted all energy intake to 2500 kcal/capita/day similar to the method in previous studies 327,366. 

Most food items reduced shifting from the average national diet to the EAT-Lancet diet across 

high-income countries (for specific food item changes, see Supplementary Table 9). However, 

some food items (especially fruits and plant-protein food) increased in some high-income 

countries (for specific food item changes, see Supplementary Table 9). Food quantities (in 

grams/capita/day) in each classification were split using proportions in the national average 

diets for reduced and increased food items. As a result of these changes we would witness an 

increase in soybean food supply for the plant-protein group in the EAT-Lancet diet due to 

increased availability of soybeans from land producing soybeans as feed for animal product 

consumption. The difference between the average national diet and the EAT-Lancet diet is the 

dietary change used in this study. There are no recommendations for alcohol, coffee, tea, cocoa, 

other meat (e.g. horse, ass, mule, camel, rabbit, snails) and edible offal intake in the EAT-

Lancet diet, so we assumed these items to stay unchanged at the national average level 366.  

It is important to note several critiques of the EAT-Lancet diet, most of which centre on the use 

of the universal diet for middle- and low-income nations 397,398. Here we avoid much of this 

critique by focusing on high-income dietary changes. However, as noted above, there are some 

food groups and regions where the universal diet may need localisation even in high-income 

nations (for instance with respect to dairy intake in East Asia). 

 Physical input-output model for agricultural products: FABIO 

The Food and Agriculture Biomass Input-Output model (FABIO) is a consistent, balanced, 

physical input-output database based on FAOSTAT data, covering 191 countries and 130 

agriculture, food, and forestry products from 1986 to 2013 36. For further information on its 

construction see Bruckner et al.36. In this paper, we use the 2010 version of FABIO. 

 Environmentally extended multi-regional input-output model 

Environmentally extended MRIO models have been widely used in studying environmental 

impacts driven by global consumption. In this work, we followed the standard Leontief model 

to compute the biomass carbon and GHG emissions driven by food consumption changes in 

high-income countries. The standard approach is: 

∆𝑭 = 𝒅𝒊𝒂𝒈(𝒆)(𝑰 − 𝑨)−𝟏(∆𝒀) 

If the number of countries is R, of agricultural sectors is N and of high-income countries is H, 

then: ΔF is a (RN × H) matrix of environmental impact change driven by final demand change 

in every country. 

e is an environmental impact intensity row vector with dimension 1 × RN. diag(e) is a matrix 

of vector e when diagonalized. In this paper, the e stands for the production of crops, fodder, 

and pasture, or GHG emissions of crops, fodder, and livestock (including those emissions from 

enteric fermentation and manure management). 

A is a matrix of technical coefficients with dimension RN×RN, which gives the number of 

inputs that are required to produce a unit of output. 

ΔY is a matrix of food demand change (measured in physical units) in high-income countries 

with dimensions RN×H. The vector is derived from the last part (“Dietary change in high-

income countries”) based on the difference between FBS and EAT-Lancet diet.  



 

 

 

 

I is an identity matrix with dimension RN×RN. 

 Carbon change due to dietary shift 

We calculated GHG emissions at the national level, so the GHG change due to a dietary shift 

from average national diets to the EAT-Lancet diet can directly derive from the environmentally 

extended multi-regional input-output model.  

For decreased crops and forage (fodder and pasture) production, firstly, we calculated the 

production change of crops or forage at the national level, and then allocated them to grid cells 

proportionally, as done in previous SMRIO studies 361. We used AGBC as a proxy of production 

for pasture because aboveground biomass is used to feed livestock. Secondly, we used gridded 

production change divided by yield to get the spatial distribution of harvested area. The change 

in physical area was calculated by dividing harvested area by harvest frequency. The spared 

physical area of cropland and pastureland is where the potential natural vegetation can be 

restored.  

For increased crop or forage production, firstly, we multiply the spared physical area map with 

the harvest frequency map to get the spatial distribution of harvested area, and then multiply 

with the yield maps of existing crops and pasture to get the spatial distribution of potential 

additional production. This means the potential production maps consist of grid cells where the 

products are already produced, and the land is spared. Secondly, we allocate national increased 

production derived from the MRIO model into the aforementioned potential production maps. 

We redirect some production to other countries if the spared land is not enough to produce more 

of specific crops. In our research, the redirection occurs in just a few small countries or countries 

with little production for some specific crops. Thirdly, we used the increased production of 

crops and forage divided by their yield maps to get the spatial distribution of the harvested area, 

and then we can get physical area change through the harvested area divided by the harvest 

frequency. The physical area offset the spared cropland or pastureland to restore potential 

natural vegetation.  

We used the physical area maps to calculate the change of AGBC, BGBC and SOC between 

actual vegetation and potential natural vegetation as in the aforementioned method. In this paper, 

we focus on net carbon sequestration change, which is the sum of carbon sequestration of 

potential natural vegetation and increased agricultural vegetation minus the carbon stock in 

current agricultural vegetation.  

 Reporting of Results 

The analysis was performed for the 54 high-income countries available in FABIO (there is no 

food supply data in FAOSTAT for 4 small high-income countries in FABIO: Bahrain, Puerto 

Rico, Qatar, and Singapore). Carbon change analysis was reported in 10 categories for ease of 

inspection, as done in previous studies 327: Whole grains, tubers or starchy vegetables, 

vegetables, fruits, dairy food, animal proteins, plant proteins (nuts and legumes), added fats, 

added sugars, and others (namely, missing items in the EAT-Lancet diet) (details see 

Supplementary Tables 2 and 3).  
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6 General Discussion 

Modern food systems have created large-scale environmental pressures yet do not result in food 

security for all. Due to the significant spatial heterogeneity of food production pressures, and 

complex supply chains, the assessment of such problems in the global agri-food system cannot 

be sufficiently addressed by classical GMRIO analyses. Such approaches are capable of 

analyzing how (in this case: food) consumption drives via international supply chains the 

pressures of production, but only as an average of a production sector in a country. Since food 

production and the related pressures depend highly on the location where this production takes 

place, this thesis has experimented with an alternative approach: Spatially explicit multi-

regional input-output analysis (SMRIO). As indicated in the introduction, in principle SMRIO 

could make three elements of a traditional GMRIO matrix spatially explicit, i.e. pressures of 

production, expenditures related to consumption, and the intermediate inputs and outputs of 

production. Given the already high complexity of building traditional GMRIO databases, this 

thesis mainly focused on the first element by linking GMRIO databases like EXIOBASE, and 

the very detailed FABIO database covering agri-food products, with spatially explicit 

agricultural production maps. Using SMRIO, this thesis aims to answer the following 

overarching research question, next to drawing methodological conclusions on further 

improvement of the SMRIO method:  

How can spatially explicit multi-regional input-output approaches be used to evaluate 

sustainability in the global agri-food system?  

This chapter first reviews the progress made towards the specific research questions proposed 

in Chapter 1 and then answers the overall research question (section 6.1). It then discusses the 

experiences with the SMRIO method, and the prospects for developing improvements of 

SMRIO databases in relation to limitations experienced in the research for this thesis (section 

6.2). Finally, the chapter discusses the policy implications for agri-food sustainability derived 

by this SMRIO perspective (section 6.3).  

6.1 Answers to the research questions 

Question 1: What is the current status of spatially explicit input-output analysis? (Chapter 2) 

Environmentally Extended Input-Output (EEIO) analysis has been widely applied to many 

different environmental issues. However, EEIO analyses have been historically based on 

country-level analysis and hides spatial information of these impacts at a finer scale. Spatially 

explicit input-output analysis may offer improved visibility of heterogeneous environmental 

impacts along the supply chain. Chapter 2 reviewed studies of spatially explicit input-output 

analysis and summarized current developments. Spatially explicit input-output analyses can 

reveal finer spatial information of environmental impacts depending on which part of the table 

is disaggregated: spatially explicit environmental extensions (category 1), spatially explicit 

final demand (category 2), or a spatially explicit transaction matrix (category 3). Although a 

spatially explicit transaction matrix, as described by category 3, is ideal, it is extremely 

challenging and potentially intractable until a significant increase in production, transportation 

and consumption data becomes available. Category 2 aims to provide a better insight into 

consumption impacts of different consumers in the same country – for example between high-

income and low-income consumers and mainly relies on regional statistics (e.g. household or 

enterprise surveys). With the development of high-resolution environmental impact maps, 

Category 1 has already seen wide use and is likely to become more popular in the future but 

could benefit from improved approaches for allocating production for domestic consumption 

and production for export.  



 

 

 

 

Question 2: What are the local production hotspots of crops and livestock driven by global 

consumption and how does this impact food security through trade?  

International trade plays a crucial role in global food security, with localizing primary crops 

and livestock. Chapter 2 shows that primary crop and livestock footprints were highly unequal 

among countries. Footprints for high-income countries are distributed over larger areas when 

compared to lower-income countries, since high-income countries have more trade links. 

Compared with primary crops, livestock consumption is mainly sourced from domestic 

production instead of import. In addition, consumption of primary crops and livestock in almost 

all high-income countries was beyond the tentative target for a safe operating space for 

humanity in terms of agricultural resource use. This is because high-income nations consume 

large amounts of animal products. Excessive consumption in high-income nations may threaten 

local food security in regions where they consumed. 

The work also presented a different method for allocation of local and international 

consumption. In contrast to previous studies that assumed proportionality between production 

volumes and locations, this study used data from the Global Roads Inventory Project (GRIP) to 

allocate the spatial distribution of primary crops and livestock between domestic consumption 

and exports. This assumes exports of primary crops and livestock occur in locations with good 

transportation conditions. The study compared the results for Brazil for a previous national 

analysis using subnational trade data and it showed agreement, however a statistical comparison 

was not made due to data limitations. As a first attempt at such an approach for improving this 

allocation it shows promise.  

Question 3: How does land use driven by final consumption affect global biodiversity within 

key biodiversity areas?  

As an urgent, global, complex issue, biodiversity represents a critical common action problem. 

Key Biodiversity Areas (KBAs) are critical regions in efforts to preserve global biodiversity. 

However, KBAs are yet to be broadly protected by national and international treaties and as 

such can still be under pressure from human activities. The issue is addressed as the second 

application of SMRIO (Chapter 4).  

The study found that land use significantly and disproportionately impacts global biodiversity 

within key biodiversity areas. In fact, land use within KBAs caused 16% of global plant loss 

and 12% of global vertebrate loss, with only 7% of total land use. This land use driven loss is 

especially high in tropical regions. The land use is mostly driven by consumption of animal 

products and housing, accounting for ~51% and 8% of species lost respectively. On its own, 

the consumption of bovine meat contributed to around 40% of biodiversity loss within KBAs. 

The type of land use also impacts biodiversity, for example, pastureland with light use 

contributed to around half of all species loss within KBAs. Finally, since 25%-33% of land use 

within KBAs is driven by international trade, it is clear that biodiversity protection needs 

international cooperation between producers and consumers.  

Question 4: What are the global interactions between carbon emissions and carbon 

sequestration driven by diets and diet changes in high-income nations? 

Current food system emissions may already preclude the limiting of climate change to 1.5 or 

even 2 °C42. Dietary shifts in high-income nations may help mitigate climate change by both 

reducing greenhouse gas (GHG) emissions from direct agricultural production and via an 

indirect increase in carbon sequestration if spared land is restored to its potential natural 

vegetation. As such, dietary change offers an opportunity for a double carbon dividend from 

both (1) reduced direct agricultural production emissions and (2) carbon sequestration via the 

land sparing whereby agricultural lands can revert to other uses. Therefore, the third application 



 

 

 

 

based on SMRIO is used to measure this double carbon benefit from dietary change (Chapter 

5). This study found that dietary changes in high-income nations could reduce the global carbon 

emission of 0.61 Pg CO2e yr-1 from direct agricultural production. The dietary change could 

also result in an increased carbon sequestration potential of 115.57 Pg CO2e over the long term 

(~2.3 years of global CO2e yr-1 emissions in 2010). Carbon sequestration would predominately 

locate in large countries with large amounts of agricultural production, especially feed crops 

and pasture. Often overlooked food and beverage items outside the EAT-Lancet diet could offer 

further potential carbon benefits but may prove difficult to harness since they include alcohol 

and other stimulants (a maximum increase of 27.78 Pg CO2e sequestration and reduction of 

0.08 Pg CO2e yr-1 GHG emission).  

In addressing these research questions this thesis shows several answers to the overall research 

question "How can spatially explicit multi-regional input-output approaches be used to 

evaluate sustainability in the global agri-food system?".  

The thesis answered this question by providing a literature review of previous approaches and 

three new analyses based on a critical global issue. The review showed that SMRIO can help 

assess sustainability in many ways unique to this model. It was shown across all chapters that 

monetary-physical hybrid GMRIO datasets, when combined with spatial analyses can provide 

significant insights into the global food system. For instance, the spatial distribution of primary 

crops and livestock driven by global consumption showed the improvement potential to ensure 

global food security; and the comparison of per-capita primary crop and livestock footprints 

with a tentative target suggested a dietary change direction for each nation (Chapter 3). As a 

major driver of biodiversity loss and climate change, this framework was used to assess 

biodiversity loss driven by land use within Key Biodiversity Areas (Chapter 4) and the 

possibility of carbon sequestration via dietary change (Chapter 5). The results connected global 

food consumption to spatially explicit hotspots driven by local agricultural production.  

In summary, the SMRIO approach can fully utilize spatial information and trace spatial 

differences along the global supply chain. With the approach, it is possible to identify actual 

locations where environmental pressures are predominantly driven by specific consumers. In 

addition, the consumption of different products caused the diverse spatial distribution of 

environmental pressures. The highly sectorial monetary-physical hybrid GMRIO datasets 

means environmental pressures can be explored on a product-resolution basis. The identified 

regions and specific drivers could suggest targeted implications to achieve agri-food 

sustainability by connecting producers, consumers, and governments along the global supply 

chain. While this thesis describes findings that have potentially international importance to 

other scientists, policy makers, and the public, there are many ways these assessments can be 

improved and avenues for future research. 

6.2 Limitations and future research – ways forward for SMRIO 

Chapter 2 provided an overview of what data would ideally be available to perform a 

comprehensive spatially explicit input-output analysis: 

 Spatially explicit insight in production locations and the environmental pressures they 

cause. 

 Spatially explicit insight in patterns of final demand.  

 Spatially explicit insight in transaction matrices that describe value chain linkages 

between production and consumption activities at any spatial unit. 

These three points describe options for spatializing the matrices (i.e. environmental extensions, 

final demand, and transaction matrix in Figure 1.1) involved in environmentally extended multi-



 

 

 

 

regional input-output tables. The first point has been widely applied, given the availability of 

spatial datasets of extended environmental accounts. Linkage of such spatially explicit data sets 

on environmental pressures to GMRIO is a relatively recent phenomenon, though. Three case 

studies in this thesis all followed this concept for linking the spatial datasets of agri-food 

systems with GMRIO tables. Below I discuss the limitation of this approach and future avenues 

for research. I discuss the development of natural science datasets which may provide more 

opportunities to improve environmental pressure maps for SMRIO analysis in section 6.2.1. 

Locating specific consumption locations is more challenging than specific production locations 

given the complexity of human consumption behaviors. A blueprint or standard for geocoding 

consumption information for specific products in the GMRIO table is still missing and I discuss 

this further in section 6.2.2. The ideal situation of a full SMRIO analysis related to the third 

point above is intractable in the short term, given limitations in data collection, data quality, 

and computing power. However, proxies may be able to to help provide insights in the short 

term, and these are discussed in section 6.2.3.  

 

 Improving environmental pressure maps for SMRIO 

This thesis relied heavily on global land use datasets, especially crop-specific maps. For 

example, the crop maps used in Chapter 3 to Chapter 5 were from the Spatial Production 

Allocation Model (SPAM), recognized as the best crop-specific maps available and widely used 

in research 353,377,399,400. Most crop maps generally use a cross-entropy approach to downscale 

statistical data at different administrative levels depending on data availability. This cross-

entropy approach optimizes the crop distribution considering related information, such as land 

cover and crop suitability. However, the method is still a top-down allocation approach, which 

may not reflect the actual crop distribution at the level of the grid cell.  

Some studies have employed a remote sensing approach to illustrate the spatial distribution of 

some specific crops in particular regions, such as maize, wheat, soybean, barley, potato, rice, 

sugarcane, and cotton in the US, Zambia, India, China, Germany 313,401–404. However, it is 

challenging to incorporate these case studies into a harmonized global crop atlas because these 

studies have different accuracies, use different interpretations of remote sensing data, and have 

different temporal ranges 405: Further, definitions of cropland are sometimes inconsistent due 

to different application purposes and classification methods (and differs from statistical 

surveys), since it is difficult to identify cropland in a highly fragmented landscape with mixed 

cropland and other land cover types. Furthermore, satellite sensors struggle to characterize the 

human activities within cropland, for example, abandoned cropland from official statistics can 

still be detected as cropland by satellite sensors 405. Some studies have used approaches based 

on machine learning to create a harmonized global picture for crops (e.g. oil palm) using remote 

sensing data406. However, these studies generally focus on one crop only and a globally 

harmonized crop-specific atlas will need a lot of resources and attention from the research 

community. 

A further issue is that spatial information from satellites can only map natural impacts and not 

human activities. Therefore, improving the quality and attribution of natural science data to 

economic activities or commodities is as important as increasing spatial resolution of natural 

science data to better link with the economic model being used (i.e. an MRIO) 2. A 10 km by 

10 km grid cell (resolution of SPAM) may contain several types of crops and a number of 

associated environmental stressors (e.g. water use, GHG emissions) or impacts (e.g. 

biodiversity loss). Some recent projects have combined natural science datasets from satellite 

and in situ sites to estimate local production and associated impacts using artificial intelligence 



 

 

 

 

and machine learning 2. If more natural stressors or impacts can be linked to GMRIO tables, an 

assessment with SMRIO could evaluate multiple indicators at once, which would provide a 

more comprehensive view of sustainable development.  

 

 Locating consumption of specific products for SMRIO 

Chapter 2 argued that consumption-based environmental footprints were generally performed 

at the local authority level. Although a very high-resolution carbon footprint was shown, the 

spatial information was derived from the global gridded population dataset (at a 250-m 

resolution) and purchasing power datasets (the world is divided into 20,159 regions) rather than 

high-resolution maps of final consumption for specific products. 107. With the development of 

the Internet of Things (IoT), increasing amounts of customer transaction data are digitally 

recorded. An increasing coverage and availability of transaction data may provide an 

opportunity to locate the final consumption of specific products. However, it is very challenging 

to harmonize these datasets since they are recorded by different suppliers and each dataset 

implies commercial interests.  

Some geocoded consumption datasets, such as takeaway orders from an online food delivery 

platform in China 407,408, transactions from bank card records for point-of-sales terminals in 

Spain 409 and China 410, express delivery in China 411, building stocks in the US 412, and 

electricity consumption from supplying companies in Switzerland 413, have been applied in 

estimating environmental pressures. However, these datasets are samples of consumption (i.e. 

they do not fully cover the consumption of specific products) within a nation and do not link 

with GMRIO tables. In addition, there are concerns over data privacy given the high level of 

granularity of such data. Ideally, samples should be anonymized and data collection/application 

should follow international standards such as those suggested by the American Association for 

Public Opinion Research. 

 

 Improving the accuracy of the transaction matrix within GMRIO tables 

In the available monetary GMRIO tables, economic sectors and regions are highly aggregated, 

especially for agricultural products. Monetary-physical hybrid MRIO frameworks are able to 

extend the number of product categories by connecting detailed agricultural products (e.g. in 

physical units in FABIO) and larger economic sectors (e.g. in monetary units in EXIOBASE). 

As such, the framework can trace the downstream impacts associated with agricultural 

production along the supply chain. However, there is no feedback from non-agricultural 

products to agricultural commodities within this framework. That is, this framework is unable 

to connect non-agricultural products and agricultural commodities (e.g. the processing or 

transportation of products). In addition, the number of regions in FABIO (192 countries/regions) 

differs from that in EXIOBASE (49 countries and nations), so the integrated framework cannot 

fully reveal the spatial heterogeneity across all countries. However, there are efforts to produce 

a version of EXIOBASE with all countries disaggregated414. 

Although adding finer spatial units and more sectors in GMRIO tables can improve SMRIO 

analysis, it is challenging to develop a GMRIO covering all economic sectors for all individual 

nations. Lenzen et al.(2017) designed a GMRIO lab, which can compile a GMRIO with any 

combination of regions and economic sectors according to need of users or policy makers 415. 

However, the lab still needs more data sources and related technical support to achieve its 

ultimate goal.  



 

 

 

 

In general, SMRIO studies link spatially explicit datasets with GMRIO tables and ignore the 

subnational trade or spatial differences in input and output transactions of the same sector within 

a nation. That is, the input and output coefficients are the same for each sector, regardless of 

location (i.e. local production is allocated to domestic consumption and export proportionally). 

This proportional allocation approach will create uncertainties, especially for large countries 

(e.g. the US, China, Brazil, Australia, and India). A robust approach for increasing spatial 

resolution would be to embed sub-national MRIO datasets within GMRIO datasets. For 

instance, Yang et al. (2020) linked China’s high-resolution carbon emission maps with an 

integrated province-level Chinese MRIO embedded in GMRIO tables (Eora) using a 

proportional allocation assumption as described above22. However, China’s material footprints 

derived using a proportional allocation show deviations from actual customs statistics 416. As 

such, the proportional allocation approach may be an issue for other environmental pressures 

also. With the wider availability of national MRIO tables (e.g. the US, Japan, China, and 

Indonesia) and subnational trade data (e.g. the US, Brazil, Canada, Germany, Spain, and Japan) 
417, linking national MRIO and subnational trade data with GMRIO can contribute to the further 

development of the SMRIO approach. 

However, national MRIO tables or subnational trade are not available for each country. 

Therefore, finding a proxy is another way to allocate local production for SMRIO analysis. 

Chapter 3 used road density (Global Roads Inventory Project, GRIP) as a proxy to distinguish 

production for domestic consumption or export. However, other biophysical variables (e.g. 

slope and precipitation) and socio-economic variables (e.g. GDP and population density) have 

been found to influence local production 23. In addition, in the absence of actual data such as 

local surveys the approach is not validated globally. To avoid introducing uncertainties that 

could be propagated through the model, Chapter 4 and Chapter 5 reverted to the proportional 

allocation approach.  

Some recent work may help further address this proportionality issue. For production output, 

Malek et al. (2020) employed a cascade of related biophysical variables and socio-economic 

variables to create a probability map that describes the likelihood that a grid cell links with the 

market 23. The allocation approach could be calibrated by trade data at the highest spatial detail 

available 417.  

6.3 Policy implications  

Locating environmental pressure hotspots driven by the demand of consumers at a high spatial 

resolution can help to connect local producers, consumers, environmentalists, and government 

to better target sustainable development33,361. While conventional MRIO analysis can provide 

policy information at a national level for social and environmental footprints, it cannot pinpoint 

hotspots in a spatially explicit way. The results of this thesis may help uncover the opportunities 

available to actors in product supply networks to address their corresponding responsibility in 

reducing these impacts. In terms of upstream impacts, spatially explicit hotspot maps can guide 

local producers to reduce social and environmental impacts. From a downstream perspective, 

the results can suggest options for sustainable consumption.  

In practice this means actors along supply chains as identified by SMRIO could share 

technology and optimize financial investment to maximize global biodiversity conservation and 

climate mitigation 418. Given the fact that the current net direction of traded goods moves from 

low- to high-income nations while high-income nations often have the technological and 

financial resources available to mitigate impacts, there is a large opportunity for international 

cooperation. The basis of this cooperation can be related to the spatial distribution of local 

pressures driven by the final consumption of specific nations. For example, the identified 



 

 

 

 

spatially explicit hotspots of primary crops and livestock could guide governments, retailers or 

final consumers in importing countries to support investments in pressure-reducing mitigation 

measures in regions which produce the food they consume, for example in improving 

agricultural productivity (e.g. closing yield gap) (Chapter 3). The consumption-based species 

loss of Western Europe and North America is mainly embodied in the imported products from 

tropical KBAs in Latin America, Africa, and Asia (Chapter 4). However, these tropical regions 

are facing rapid population growth, serious hunger and undernutrition issues, and show a rapid 

economic development largely relying on agriculture 419,420. Therefore, future cropland 

expansion is more likely to occur in these regions to meet increasing demand for agricultural 

products on the one hand and expansion of economic activity on the other hand. To avoid further 

biodiversity loss in these biodiverse regions, Western Europe and North America could help 

their providers develop sustainable intensification of agricultural production. Some initiatives 

have highlighted an interest in international cooperation to address impacts and aid global 

sustainable development. For example, the Amsterdam Declarations (https://ad-

partnership.org/) aims to eliminate deforestation associated with agricultural production. 

Similarly, The New York Declaration on Forests (https://forestdeclaration.org/) aims to halt 

global deforestation and restore forests. However, policies related to reducing consumption-

based environmental impacts still see limited deployment. For example, less than 1% of EU’s 

deforestation policy options address imported deforestation 421. In addition, the implementation 

of policy interventions needs international cooperation across national borders. For example, 

the fact that biodiversity rich land areas cross socio-political boundaries could lead to a 

fragmentation of land use on the one hand and fragmented policy response on the other hand, 

and therefore drive biodiversity loss 422.  

Implementing such improvement options should take the implications into account that may 

arise from changing production systems via policy and consumption changes in high-income 

nations. For examples, this thesis shows a need for addressing animal product consumption 

across nations as the largest driver of biodiversity loss and increasing carbon sequestration. The 

estimated spatial distribution of carbon benefits due to diet change led to the suggestion to 

restore the land use for mitigating climate change (Chapter 5). However, such climate benefits 

will only materialize if land upstream in the supply chain, often in developing countries, indeed 

is not anymore used for agricultural activities. Without additional policies – especially support 

for local producers that provide most agricultural products for the international market – this 

could cause a massive social upheaval as livelihoods in animal agriculture face rapid and deep 

change. The same is also true for taxes to internalize costs related to carbon emissions or 

biodiversity loss, and border adjustments implemented for similar purposes. Not only is 

implementing such measures a challenge in view of e.g. World Trade Organisation rules, but 

also since such external costs will differ between agricultural products and as shown in this 

thesis, also between different regions for the same product 353. But such measures may also 

impact competitiveness of local producers significantly. Policies aiming at realizing climate 

and biodiversity goals related to agriculture hence must go hand in hand with measures fostering 

(local) economic development and poverty eradication423.   

https://forestdeclaration.org/
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8 Appendix 

8.1 Supporting information to chapter 2 

 Critical review methodology – selection of the literature 

We searched all papers using spatially-explicit input-output (SIO) approaches published before 

March, 2018 and analyzed their spatial scale, method, and environmental impacts. 

We use Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to search for articles using SIO approaches, on March, 2018 (Figure S 8.1) 424. 

PRISMA aims to be a standard operating procedure for systematic reviews, in order give a more 

reliable and less biased result 425. The systematic and explicit methods for this systematic review 

reduces issues with identifying, selecting, synthesizing, summarizing, collecting and analyzing 

data 425. It also allows for reproducibility by providing all the information required to perform 

the review. We searched three scientific catalogues: Web of Science, ScienceDirect and the 

Leiden University Catalogue. There is a large diversity of terms in the literature describing the 

same, spatially-explicit concept, including “map”, “mapping”, and “hotspots”. Of course, not 

all of these are synonyms, and not all of these studies are in fact spatially-explicit. In order to 

restrict the search further we included terms including “input-output” and “MRIO (Multi-

Regional Input Output)”, For example, we use the combination of (“spatial*” or “map*” or 

“hotspot*”) and ("input output analysis" or "input output model" or "input output table" or 

"MRIO") in for the research topic in Web of Science. For the detailed protocol please see the 

Supporting Information.  

The search criteria are: (1) that all papers are in English; (2) that all papers are in peer-reviewed; 

(3) that all papers use input-output method; (4) that all papers have spatially distributed results 

at a resolution higher than regional. A flow diagram of the search methodology is shown in 

Table S 8.1. After using search protocols, we find another 15 papers using Google Scholar, and 

then perform a snowball sampling of these papers, finding a further 14 eligible papers.  

 

Figure S 8.1 Flow diagram of the search methodology used. After a large number of initial studies were found, these were 

filtered on the criteria described above to 48 analyses.
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 Methodological approaches in the literature 

Method 1: mapping between MRIO model and hydrological model—WaterGAP  

Lutter et al. and Holland et al. combined an MRIO model (EXIOBASE in the case of Lutter et 

al. and GTAP8 in the case of Holland et al.), with WaterGAP model to research fresh water 

consumption embodied in trade almost at the same time 50,113. Their core work is to build up 

mapping relationship between MRIO table and water consumption data from WaterGAP model 

by production sector, particularly different agricultural sectors (Table S 8.2).The difference was 

that Lutter et al mapped MRIO data into watershed scale, but Holland et al. mapped MRIO data 

into original resolution—0.5°×0.5° grid cell—of WaterGAP 113. 

Table S 8.2 Example of disaggregation matrix, indicating which share of water consumption in a specific industry-region  

combination is originating form which watershed. 

 Region 1 … Region n 

 Ind 1 … Ind n … Ind 1 … Ind n 

Watershed 1 0 … 0.95 … 0.57  0.3 

… … … … … … … … 

Watershed m 1 … 0.05 … 0.43 … 0.7 

Source: from Lutter et al.50 

Method 2: identifying hotspots from supply chains 

Kanemoto et al.  developed a spatially-explicit MRIO method to identify spatially-explicit 

environmental impacts hotspots embodied in supply chain 95. The core of this method is to nest 

spatial distribution map (R) into traditional multi-regional input-output model. 

𝐻(𝑚)𝑠 = ∑ 𝑅𝑟
𝑟

∑ 𝑓𝑖
𝑟

𝑖 ∑ 𝐿𝑖𝑗
𝑟𝑡𝑦𝑗

𝑡𝑠
𝑗𝑡≠𝑠

∑ 𝑑𝑖
𝑟

𝑖
                                                         (S1) 

𝐻(𝑐)𝑠 = ∑ 𝑅𝑟
𝑟

∑ 𝑓𝑖
𝑟

𝑖 ∑ 𝐿𝑖𝑗
𝑟𝑡

𝑗𝑡 𝑦𝑗
𝑡𝑠

∑ 𝑑𝑖
𝑟

𝑖
                                                            (S2) 

Table S 8.3 Variables and description of hotspots method. 

Variables Description 

H
(m)s

 the PM2.5 emission hotspots H driven by imports (m) into country s 

H
(c)s

 the PM2.5 emission hotspots H driven by total consumption (c) into country s 

R PM2.5 emission maps term (R) are in absolute values 

d total emissions 

f intensity of  PM2.5 



 

 

 

 

L Leontief inverse 

y final demand 

i sector of origin and destination 

j sector of destination 

r exporting country 

s importing country 

t country of last sale in the consumption and imports terms 

Method 3: integrating process-based model with input-output model 

Wang et al. developed hybrid method that integrated process-based model with input-output 

model to analyze global water scarcity at basin level 97. The most pivotal part of this method is  

𝑊𝑆𝐼𝑖
𝐵𝐴𝑈 =

𝑊𝑊𝑖
𝐵𝐴𝑈

𝐵𝐴𝑖
                                                                  (S3)   

𝑊𝑆𝐼𝑖
𝑁𝑇 =

𝑊𝑊𝑖
𝑁𝑇

𝐵𝐴𝑖
                                                                    (S4) 

Table S 8.4 Variables and description of integrating process-based model with input-output model. 

Variables Description 

WSIi
BAU Water stress index with international trade at basin i 

WSIi
NT Water stress index without international trade at basin i 

WWi
BAU Water withdraw at basin i with international trade 

WWi
NT Water withdraw at basin i without international trade 

BAi Blue water availability annually at basin i 

WWi
BAU was calculated by downscaling production-based national water withdraws into basins 

based on water withdraw estimated Aqueduct Global Maps in 2010. 

WWi
NT was calculated by downscaling consumption-based national water withdraws, which got 

from MRIO model, into basins based on the same proportion of WWi
BAU   

Method 4: Integrating MRIO model with production-side location information. 

Cazcarro et al. integrated input-output model with spatial location information to downscale 

grey water footprints into business level 116. There were three steps to downscaling grey water 

footprints as following figure (Figure S 8.2): (1) estimating direct intensities of grey water 

footprints; (2) calculating grey water footprints with multi-regional input-output model; (3) 

downscaling grey water footprints into business level.  



 

 

 

 

Mekonnen et al. estimated global agricultural grey water footprints driven by EU27 

consumption with similar method of agricultural part in Cazcarro et al 115. 
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𝑯 = 𝒘 (𝑰 − 𝑨)−𝟏𝒚  

 

Figure S 8.2 Process of downscaling grey water footprints into business level. 

Table S 8.5 Variables and description of method that downscales grey water footprints. 

Variables Description 

�̅�𝑎𝑔𝑟,𝑖
𝑔𝑟𝑒𝑦

 Agricultural physical grey water coefficient (m3/ton) for ith crop 

L Excess of nitrogen (kg/ha per year) 

cmax Maximum acceptable concentration  

cnat Natural concentration  

Yi Crop yield for ith crop 

𝑤𝑎𝑔𝑟,𝑖
𝑔𝑟𝑒𝑦

 Agricultural direct grey water coefficient (m3/euro) for ith crop 

xi Agricultural output (euro) for ith crop 

�̅�i Agricultural production (ton) for ith crop 

�̅�𝑖𝑛𝑑,𝑖
𝑡𝑟𝑒𝑎𝑡 Amount of grey water from treated water(m3) for sector i 

�̅�𝑖𝑛𝑑,𝑖
𝑢𝑛𝑡𝑟𝑒𝑎𝑡 Amount of grey water from untreated water(m3) for sector i 

ctreat Concentration of treated effluent(mg/l) 

cabstr Actual concentration(mg/l) 

Effltreat,i Volume of treated effluent for sector i 

Abstri Water volume(m3) for sector i 

cuntreat Concentration of untreated effluent(mg/l) 

Effluntreat,i Volume of untreated effluent for sector i 

�̅�𝑖𝑛𝑑,𝑖
𝑣𝑜𝑙

 Total amount of grey water(m3) for sector i 



 

 

 

 

𝑤𝑖𝑛𝑑,𝑖
𝑔𝑟𝑒𝑦

 Direct grey water coefficient for sector i 

H Grey water footprint matrix 

𝒘  Grey water coefficient matrix 

I Identify matrix 

A Technical coefficient matrix for input-output table 

𝒚  Final demand vector 

Method 5: dynamic inoperability input-output model (DIIM) 

Inoperability input-output model is a good tool to assess risk, and McDonald et al. integrated 

dynamic inoperability input-output model with volcanic locations to estimate economic loss 117.  

Four steps to construct spatial map of risk by DIIM:  

 splitting regional output into the finest spatial scale; 

 evaluating production inoperability in each finest spatial location; 

 estimating total economic impact by DIIM; 

 adjusting total economic impacts based on hazard probability. 

Method 6: combining data from MRIO table and demand-side subnational information. 

Several researchers linked subnational information with input-output model to estimate 

subnational environmental impacts, the details referenced to their papers 105,108,123,126–128. Maybe 

some small difference existed in their method, but the core of their method is to combine supply 

chain information in national input-output database or multi-regional input output database to 

track upstream environmental impacts with subnational consumption information to calculate 

subnational environmental impacts, for example consumer expenditure surveys (CESs), to 

calculate subnational environmental impacts. 

For example, Feng et al. combined with geo-demographic data to calculate water footprints at 

subnational area. The core equations are as follows. 

𝑤𝐼𝑛𝑡 = 𝑒𝑑
∗
(𝐼 − 𝐴)−1𝑦 + 𝑤ℎℎ                                                   (S10) 

𝑤𝐸𝑥𝑡 = 𝑒𝑖
∗
(𝐼 − 𝐴)−1𝑦                                                              (S11) 

𝑒𝑑
∗
= [𝑒𝑑 , 0]                                                                             (S12) 

  𝑒𝑖
∗
= [0, 𝑒𝑖]                                                                              (S13) 

𝑦 = [
𝑦𝑑

𝑦𝑖
]                                                                                  (S14) 

Table S 8.6 Variables and description of method that combines with subnational information. 

Variables Description 



 

 

 

 

wInt Water footprint from domestic consumption 

wExt
 Water footprint from other countries 

whh Water consumption from direct household consumption 

ed Water consumption coefficients of domestic commodities  

ei Water consumption coefficients of commodities from other countries 

yd
 Final demand from domestic and export commodities 

yi Final demand from other countries 

I Identify matrix  

A Technological coefficients matrix 

A is from MRIO table at country level, and replace final demand y at regional level, it would 

calculate water footprint at local regional scale.  

Method 7: integrating MRIO with GEOS-Chem model 

Lin et al. and Zhang et al. combined multi-regional input-output model with GEOS-Chem to 

simulate transport of emissions 98,104. Firstly, calculating environmental impacts (or emissions) 

embodied in trade at country level, and then using GEOS-Chem model to simulate the spatial 

distribution of environmental impacts on worldwide (Figure S 8.3). Zhang et al., also link health 

impacts model, Integrated Exposure-Response (IER), to simulate spatial distribution of 

premature death driven by consumption  

 

Figure S 8.3 Process of method that integrated with GEOS-Chem model. 

Table S 8.7 Variables and description of method that integrated with GEOS-Chem model. 

Variables Description 

Ep Emission matrix from production  

F Emission intensity vector  

X Total output  

Ec Consumption-based emission matrix 

I Identify matrix 



 

 

 

 

A Technological matrix 

Y Final demand vector 

F Spatial distribution of fractional contribution of emission derived from different scenarios 

Cbase Emission concentration on base scenarios 

Csce Emission concentration on different scenarios 

D Premature death population at grid cell driven by consumption 

Dtotal Global total premature death population using IER model at grid cell 

Method 8: combing input-output model with air pollution dispersion model. 

Firstly, applying regional input-output table and emission inventory data to calculate emission 

coefficients of different sectors, and then using these coefficients to calculate amount of 

emission discharging sites 93. Finally, applying smeared concentration approximation method 

(SCA) to simulate spatial diffusion of these emissions (Figure S 8.4).  

 

Figure S 8.4 Process of combing with air pollution dispersion model 

Table S 8.8 Parameters and description of method that combines with air pollution dispersion model 

Variables Description 

E Production-based emission  

F Emission intensity 

X total output 

Di Average concentration of emission between source and receiver 

FFkm Frequency of emission occur  

Dikm Average contribution of concentration of emission at different situation 

I Emission classes 

K Atmospheric stability condition 

M Windspeed classes 



 

 

 

 

Method 9: spatial regional econometric input–output model 

Kim et al.  developed spatial regional econometric input-output model through integrating 

regional econometric input–output model(REIM) with disequilibrium adjustment model, and 

they used the model to predict population and employment change of 296 municipalities in 

Chicago, USA 118.  The core of this method included 5 steps: 

 Quantifying potential employment growth for year t based on exogenous national 

economic growth. 

 Estimating information for grid cell in year t-1. 

 Calculating employment and population at local level for year t based on information: 

(a) potential employment growth for year t-1 (b) information of grid cell for year t -1(c) 

their own information for year t-1 (d) interaction relationship between local-level 

employment and population. 

 Updating macroeconomic variables for year t based on information of employment and 

population change with modified REIM formulation. 

 Predicting information at grid cell level for year t via simple logic econometrics model 

or other more complicated simulation approach. 

Method 10: Integrating MRIO model with GIS technology.    

Van Der Veen et al. constructed contour map of value added based on employment data from 

enterprises and spatial interpolation methods with GIS platform, regarding multipliers from 

input-output model as the weight 121. Similarly, Zhou et al. estimated spatial flow of chemical 

oxygen demand (COD) in Changzhou city, China at GIS platform 119,120,122. 

Method 11 (in Trase.earth): spatially-explicit information on production to consumption 

systems(SEI-PCS) model 

In order to trace spatial heterogeneity of environmental impacts related to production consumed 

by other regions within a country, especially large country, which contributes to global 

consumption. Godar et al. developed SEI-PCS model 109, and they used the model to analyse 

crops and virtual water embedded in farming commodities in Brazil at subnational scale 153,154. 

The model downscales production consumed by domestic and other countries into finest scale, 

the municipality level, in a country. The following graph (Figure S 8.5) describes the core 

theory of this model, and the detail can reference to Godar et al. 2015 109.  



 

 

 

 

 

Figure S 8.5 The framework of SEI-PEC. 

𝑹𝒊×𝒌 = 𝑫𝒊×𝒆 × 𝑳𝒆×𝒌 × 𝑩𝒌×𝒌                                                                     (S5) 

�̅�𝒊,𝒌 {
𝒓𝒊,𝒌      𝒊𝒇 𝒌 ≠ 𝒄𝒐𝒖𝒏𝒕𝒓𝒚 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒆𝒔𝒕

𝑷𝒊 − ∑ 𝒓𝒊,𝒋𝒋   𝒊𝒇 𝒄𝒐𝒖𝒏𝒕𝒓𝒚 = 𝒄𝒐𝒖𝒏𝒕𝒓𝒚 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒔𝒕
                         (S6) 

𝑬𝑰𝒌 = 𝑬𝑰𝑰𝒊 × �̅�𝒊×𝒌                                                                                    (S7) 

𝒅𝒊,𝒆 =
𝒙𝒊,𝒆

∑ 𝒙𝒊,𝒆𝒊
                                                                                                (S8) 

𝒍𝒆,𝒌 =
𝒏𝒆,𝒌

𝑷𝒌
                                                                                                   (S9) 

Table S 8.9 Variables and description of equation in model SEI-PCS. 

Variables description 

Ri×k consumption of k countries produced by  i domestic producers in country of interest  

�̅�𝒊,𝒌 The revised value of Ri×k 

Di×e Share of commodities from i sub-regional producers to e trade facilities  

Le×k Ratio between imports from countries k and production of that country 

Bk×k Bilateral trade flow between k countries 

EIk Environmental impacts in k countries 

EIIi Environmental impacts intensity in subnational regions i  

Xi×e Exported commodities produced in subnational regions 



 

 

 

 

Yi×n Domestic production produced in subnational regions 

Tq×e Re-exported commodities in country of interest 

Zq×n Imported commodities were consumed in country of interest 

Pk Production of consumption countries k 

xi,e The elements of Xi×e 

di,e The elements of Di×e 

le,k The elements of Le×k    

ne,k The elements of Ne×k  

ri,k The elements of Ri×k  

�̅�𝒊,𝒌 The elements of �̅�𝒊,𝒌  

 



 

 

 

 

8.2 Supporting information to chapter 3 

 Explanatory note 1 

8.2.1.1 Methods for aggregating Millet and Coffee 

In the SPAM databases, there are Millet Pearl and Millet Small, and Coffee Arabica and Coffee 

Robusta. But there are only Millet and Coffee in FAOSTAT and so EXIOBASE as well. In 

order to match SPAM databases with EXIOBASE, we aggregate Millet Pearl and Millet Small 

into Millet, and aggregate Coffee Arabica and Coffee Robusta into Coffee. Because we use total 

production of primary crops in SPAM, namely a value in grid cell stands for its production 

quantity in metric tons, we use Raster Calculator tools in ArcGIS 10.2.2 to add two raster 

databases of production of Millet Pearl and Millet Small as the spatial distribution of total 

production of Millet. And the similar way for calculation for Coffee.  

8.2.1.2 Special solution for Canada 

Canada is a special case for the spatial distribution of some livestock. There is no major road 

further north than a latitude of 70° N; yet ducks and sheep are in relative abundance north of 

that. Therefore, we regard the region below 70° N within a concave hull based on a 1-degree 

buffer around all roads as the first-priority region for export and the second-priority region for 

domestic consumption, and the rest as the first-priority region for second-priority region for 

export and the first-priority region for domestic consumption. 

 

Figure S 8.6. World Population from 1950 to 2100. Source: World Population Prospects: The 2019 Revision. 
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Figure S 8.7. Per-capita embodied primary crop (a) and livestock (b) consumption and per-capita GDP for 44 countries in 

EXIOBASE. 

 

a 

 

b 

 

Figure S 8.8. Per-capita primary crop (a) and livestock (b) production and per-capita GDP for 44 countries in EXIOBASE. 

 



 

 

 

 

  

Figure S 8.9. Embodied primary crop consumption for each 

region in EXIOBASE 
Figure S 8.10. Embodied livestock for each region in 

EXIOBASE 

 

a

 

b

 

Figure S 8.11. Soybean export from official statistics data (a) and Trase.earth calculation (b) in 2006 at municipality level.  

 

 

 

 

 

 

 



 

 

 

 

Table S 8.10. Mapping relationship between resource extensions about crop accounts in EXIOBASE with SPAM 

Extensions in EXIOBASE un

it 

SPA

M 

code 

name in 

SPAM 

Sector in 

EXIOBASE 

Domestic Extraction Used - Primary Crops – Abaca kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops - Agave Fibres 

nes 

kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops – Almonds kt 42 rest of crops Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Anise, Badian, 

Fennel 

kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops – Apples kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Apricots kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Arecanuts kt 42 rest of crops Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Artichokes kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Asparagus kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Avocados kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Bambara beans kt 19 other pulses Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Bananas kt 37 banana Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Barley kt 4 Barley Cereal grains nec 

Domestic Extraction Used - Primary Crops - Beans, dry kt 14 Bean Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Beans, green kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Berries nec kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 



 

 

 

 

Domestic Extraction Used - Primary Crops – Blueberries kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Brazil nuts, with 

shell 

kt 42 rest of crops Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Broad beans, 

horse beans, dry 

kt 19 other pulses Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Buckwheat kt 8 other cereals Cereal grains nec 

Domestic Extraction Used - Primary Crops – Cabbages kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Canary Seed kt 8 other cereals Cereal grains nec 

Domestic Extraction Used - Primary Crops – Carobs kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Carrots kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Cashew nuts, 

with shell 

kt 42 rest of crops Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Cashewapple kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Cassava kt 12 cassava Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Cassava leaves kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Castor oil seed kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops – Cauliflower kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Cereals nec kt 8 other cereals Cereal grains nec 

Domestic Extraction Used - Primary Crops – Cherries kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Chestnuts kt 42 rest of crops Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Chick peas kt 15 chickpea Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Chicory Roots kt 41 vegetables Vegetables, fruit, 

nuts 



 

 

 

 

Domestic Extraction Used - Primary Crops - Chillies and 

peppers, dry 

kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops - Chillies and 

peppers, green 

kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Cinnamon kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops - Citrus Fruit nec kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Cloves kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops - Cocoa Beans kt 34 Cocoa Crops nec 

Domestic Extraction Used - Primary Crops – Coconuts kt 22 coconut Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Coffee, Green kt 32 arabica 

coffee 

Crops nec 

Domestic Extraction Used - Primary Crops – Coir kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops - Cotton Lint kt 30 Cotton Plant-based 

fibers 

Domestic Extraction Used - Primary Crops – Cottonseed kt 30 Cotton Oil seeds 

Domestic Extraction Used - Primary Crops - Cow peas, dry kt 16 cowpea Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Cranberries kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Cucumbers and 

Gherkins 

kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Currants kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Dates kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Eggplants kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Fibre Crops nes kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops – Figs kt 39 tropical fruit Vegetables, fruit, 

nuts 



 

 

 

 

Domestic Extraction Used - Primary Crops - Flax Fibre and 

Tow 

kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops – Fonio kt 8 other cereals Cereal grains nec 

Domestic Extraction Used - Primary Crops - Fruit Fresh Nes kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Fruit, tropical 

fresh nes 

kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Garlic kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Ginger kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops – Gooseberries kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Grapefruit and 

Pomelos 

kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Grapes kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Groundnuts in 

Shell 

kt 21 groundnut Oil seeds 

Domestic Extraction Used - Primary Crops – Hazelnuts kt 42 rest of crops Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Hemp Fibre and 

Tow 

kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops – Hempseed kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops – Hops kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops - Jojoba Seeds kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops - Jute and Jute-

like Fibres 

kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops - Kapok Fibre kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops - Karite Nuts kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops - Kiwi Fruit kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 



 

 

 

 

Domestic Extraction Used - Primary Crops – Kolanuts kt 42 rest of crops Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Leeks and other 

Alliac. Veg. 

kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Leguminous 

vegetables, nes 

kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Lemons and 

Limes 

kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Lentils kt 18 Lentil Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Lettuce kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Linseed kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops – Lupins kt 19 other pulses Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Maize kt 3 Maize Cereal grains nec 

Domestic Extraction Used - Primary Crops - Maize, green kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Mangoes, 

mangosteens, guavas 

kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Mate kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops – Melonseed kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops – Millet kt 5 pearl millet Cereal grains nec 

Domestic Extraction Used - Primary Crops - Mixed Grain kt 8 other cereals Cereal grains nec 

Domestic Extraction Used - Primary Crops – Mushrooms kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Mustard Seed kt 25 rapeseed Oil seeds 

Domestic Extraction Used - Primary Crops - Natural Rubber kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops - Nutmeg, mace 

and cardamoms 

kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops - Nuts, nes kt 42 rest of crops Vegetables, fruit, 

nuts 



 

 

 

 

Domestic Extraction Used - Primary Crops – Oats kt 8 other cereals Cereal grains nec 

Domestic Extraction Used - Primary Crops - Oil Palm Fruit kt 23 oilpalm Oil seeds 

Domestic Extraction Used - Primary Crops - Oilseeds nec kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops – Okra kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Olives kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops – Onions kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Onions, dry kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Oranges kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Other Bastfibres kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops - Other melons kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Papayas kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Peaches and 

Nectarines 

kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Pears kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Peas, dry kt 19 other pulses Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Peas, Green kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Pepper kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops – Peppermint kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops – Persimmons kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Pigeon peas kt 17 pigeonpea Vegetables, fruit, 

nuts 



 

 

 

 

Domestic Extraction Used - Primary Crops – Pineapples kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Pistachios kt 42 rest of crops Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Plantains kt 38 plantain Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Plums kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Pome fruit, nes kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Poppy Seed kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops – Potatoes kt 9 Potato Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Pulses nec kt 19 other pulses Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Pumpkins, 

Squash, Gourds 

kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Pyrethrum, 

Dried Flowers 

kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops – Quinces kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Quinoa kt 8 other cereals Cereal grains nec 

Domestic Extraction Used - Primary Crops – Ramie kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops – Rapeseed kt 25 rapeseed Oil seeds 

Domestic Extraction Used - Primary Crops – Raspberries kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Rice kt 2 Rice Paddy rice 

Domestic Extraction Used - Primary Crops - Roots and 

Tubers, nes 

kt 13 other roots Cereal grains nec 

Domestic Extraction Used - Primary Crops – Rye kt 8 other cereals Cereal grains nec 

Domestic Extraction Used - Primary Crops - Safflower Seed kt 27 other oil 

crops 

Oil seeds 



 

 

 

 

Domestic Extraction Used - Primary Crops - Sesame Seed kt 26 sesameseed Oil seeds 

Domestic Extraction Used - Primary Crops – Sisal kt 31 other fibre 

crops 

Plant-based 

fibers 

Domestic Extraction Used - Primary Crops – Sorghum kt 7 sorghum Cereal grains nec 

Domestic Extraction Used - Primary Crops - Sour Cherries kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Soybeans kt 20 soybean Oil seeds 

Domestic Extraction Used - Primary Crops - Spices nec kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops – Spinach kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Stone Fruit nec, kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Strawberries kt 40 temperate 

fruit 

Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - String beans kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Sugar Beets kt 29 sugarbeet Sugar cane, sugar 

beet 

Domestic Extraction Used - Primary Crops - Sugar Cane kt 28 sugarcane Sugar cane, sugar 

beet 

Domestic Extraction Used - Primary Crops - Sugar Crops nes kt 42 rest of crops Sugar cane, sugar 

beet 

Domestic Extraction Used - Primary Crops - Sunflower Seed kt 24 sunflower Oil seeds 

Domestic Extraction Used - Primary Crops - Sweet Potatoes kt 10 sweet potato Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops - Tallowtree 

Seeds 

kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops - Tang. Mand 

Clement. Satsma 

kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Taro kt 13 other roots Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Tea kt 35 Tea Crops nec 

Domestic Extraction Used - Primary Crops - Tea nes kt 35 Tea Crops nec 



 

 

 

 

Domestic Extraction Used - Primary Crops - Tobacco Leaves kt 36 tobacco Crops nec 

Domestic Extraction Used - Primary Crops – Tomatoes kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Triticale kt 8 other cereals Cereal grains nec 

Domestic Extraction Used - Primary Crops - Tung Nuts kt 27 other oil 

crops 

Oil seeds 

Domestic Extraction Used - Primary Crops – Vanilla kt 42 rest of crops Crops nec 

Domestic Extraction Used - Primary Crops - Vegetables 

Fresh nec 

kt 41 vegetables Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Vetches kt 19 other pulses Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Walnuts kt 42 rest of crops Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Watermelons kt 39 tropical fruit Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Wheat kt 1 Wheat Wheat 

Domestic Extraction Used - Primary Crops – Yams kt 11 Yams Vegetables, fruit, 

nuts 

Domestic Extraction Used - Primary Crops – Yautia kt 13 other roots Vegetables, fruit, 

nuts 

 

Table S 8.11. Mapping relationship between EXIOABSE account with FAOSTAT product of livestock 

EXIOBASE sector 

number 
EXIOBASE name FAOSTAT product names 

11 Poultry Eggs, hen, in shell 

14 Raw milk 
Milk, whole fresh cow; Milk, whole fresh goat; Milk, 

whole fresh sheep 

43 Products of meat cattle Hides, cattle, fresh; Meat indigenous, cattle 

44 Products of meat pigs Meat indigenous, pig. 

45 Products of meat poultry Meat indigenous, chicken; Meat indigenous, duck 

46 Meat products nec 
Meat indigenous, goat; Skins, goat, fresh; Meat 

indigenous, sheep; Skins, sheep, fresh. 

 



 

 

 

 

Table S 8.12. Mapping relationship between countries in FAOSTAT with regions in EXIOABSE for livestock 

FAOSTAT countries  EXIOBASE regions Region abbreviation in EXIOBASE  

Austria Austria AT 

Belgium Belgium BE 

Bulgaria Bulgaria BG 

Cyprus Cyprus CY 

Czechia Czech Republic CZ 

Germany Germany DE 

Denmark Denmark DK 

Estonia Estonia EE 

Spain Spain ES 

Finland Finland FI 

France France FR 

Greece Greece GR 

Croatia Croatia HR 

Hungary Hungary HU 

Ireland Ireland IE 

Italy Italy IT 

Lithuania Lithuania LT 

Luxembourg Luxembourg LU 

Latvia Latvia LV 

Malta Malta MT 

Netherlands Netherlands NL 

Netherlands Antilles (former) Netherlands NL 

Poland Poland PL 

Portugal Portugal PT 



 

 

 

 

Romania Romania RO 

Sweden Sweden SE 

Slovenia Slovenia SI 

Slovakia Slovakia SK 

United Kingdom United Kingdom GB 

United States of America United States US 

Japan Japan JP 

China, Hong Kong SAR China CN 

China, mainland China CN 

Canada Canada CA 

Republic of Korea South Korea KR 

Brazil Brazil BR 

India India IN 

Mexico Mexico MX 

Russian Federation Russia RU 

Australia Australia AU 

Switzerland Switzerland CH 

Turkey Turkey TR 

China, Taiwan Province of Taiwan TW 

Norway Norway NO 

Indonesia Indonesia ID 

South Africa South Africa ZA 

New Caledonia RoW Asia and Pacific WA 

Afghanistan RoW Asia and Pacific WA 

American Samoa RoW Asia and Pacific WA 

Armenia RoW Asia and Pacific WA 



 

 

 

 

Azerbaijan RoW Asia and Pacific WA 

Bangladesh RoW Asia and Pacific WA 

Bhutan RoW Asia and Pacific WA 

Brunei RoW Asia and Pacific WA 

Cambodia RoW Asia and Pacific WA 

Cook Islands RoW Asia and Pacific WA 

Democratic People's Republic of Korea RoW Asia and Pacific WA 

Fiji RoW Asia and Pacific WA 

French Polynesia RoW Asia and Pacific WA 

Georgia RoW Asia and Pacific WA 

Guam RoW Asia and Pacific WA 

Kazakhstan RoW Asia and Pacific WA 

Kyrgyzstan RoW Asia and Pacific WA 

Lao People's Democratic Republic RoW Asia and Pacific WA 

Malaysia RoW Asia and Pacific WA 

Micronesia (Federated States of) RoW Asia and Pacific WA 

Mongolia RoW Asia and Pacific WA 

Myanmar RoW Asia and Pacific WA 

Nepal RoW Asia and Pacific WA 

New Zealand RoW Asia and Pacific WA 

Niue RoW Asia and Pacific WA 

Norfolk Island RoW Asia and Pacific WA 

Pakistan RoW Asia and Pacific WA 

Papua New Guinea RoW Asia and Pacific WA 

Philippines RoW Asia and Pacific WA 

Samoa RoW Asia and Pacific WA 



 

 

 

 

Singapore RoW Asia and Pacific WA 

Solomon Islands RoW Asia and Pacific WA 

Sri Lanka RoW Asia and Pacific WA 

Tajikistan RoW Asia and Pacific WA 

Thailand RoW Asia and Pacific WA 

Timor-Leste RoW Asia and Pacific WA 

Tonga RoW Asia and Pacific WA 

Turkmenistan RoW Asia and Pacific WA 

Uzbekistan RoW Asia and Pacific WA 

Vanuatu RoW Asia and Pacific WA 

Viet Nam RoW Asia and Pacific WA 

Wallis and Futuna Islands RoW Asia and Pacific WA 

Antigua and Barbuda RoW America WL 

Argentina RoW America WL 

Bahamas RoW America WL 

Barbados RoW America WL 

Belize RoW America WL 

Bermuda RoW America WL 

Bolivia RoW America WL 

British Virgin Islands RoW America WL 

Cayman Islands RoW America WL 

Chile RoW America WL 

Colombia RoW America WL 

Costa Rica RoW America WL 

Cuba RoW America WL 

Dominica RoW America WL 



 

 

 

 

Dominican Republic RoW America WL 

Ecuador RoW America WL 

El Salvador RoW America WL 

Falkland Islands (Malvinas) RoW America WL 

French Guiana RoW America WL 

Greenland RoW America WL 

Grenada RoW America WL 

Guadeloupe RoW America WL 

Guatemala RoW America WL 

Guyana RoW America WL 

Haiti RoW America WL 

Honduras RoW America WL 

Jamaica RoW America WL 

Martinique RoW America WL 

Montserrat RoW America WL 

Nicaragua RoW America WL 

Panama RoW America WL 

Paraguay RoW America WL 

Peru RoW America WL 

Puerto Rico RoW America WL 

Saint Kitts and Nevis RoW America WL 

Saint Lucia RoW America WL 

Saint Pierre and Miquelon RoW America WL 

Saint Vincent and the Grenadines RoW America WL 

Suriname RoW America WL 

Trinidad and Tobago RoW America WL 



 

 

 

 

United States Virgin Islands RoW America WL 

Uruguay RoW America WL 

Venezuela (Bolivarian Republic of) RoW America WL 

Albania RoW Europe WE 

Belarus RoW Europe WE 

Bosnia and Herzegovina RoW Europe WE 

Faroe Islands RoW Europe WE 

Iceland RoW Europe WE 

Liechtenstein RoW Europe WE 

Montenegro RoW Europe WE 

Republic of Moldova RoW Europe WE 

Serbia RoW Europe WE 

The former Yugoslav Republic of Macedonia RoW Europe WE 

Ukraine RoW Europe WE 

Algeria RoW Africa WF 

Angola RoW Africa WF 

Benin RoW Africa WF 

Botswana RoW Africa WF 

Burkina Faso RoW Africa WF 

Burundi RoW Africa WF 

C+¦te d'Ivoire RoW Africa WF 

Cabo Verde RoW Africa WF 

Cameroon RoW Africa WF 

Central African Republic RoW Africa WF 

Chad RoW Africa WF 

Comoros RoW Africa WF 



 

 

 

 

Congo RoW Africa WF 

Democratic Republic of the Congo RoW Africa WF 

Djibouti RoW Africa WF 

Equatorial Guinea RoW Africa WF 

Eritrea RoW Africa WF 

Ethiopia RoW Africa WF 

Gabon RoW Africa WF 

Gambia RoW Africa WF 

Ghana RoW Africa WF 

Guinea RoW Africa WF 

Guinea-Bissau RoW Africa WF 

Kenya RoW Africa WF 

Lesotho RoW Africa WF 

Liberia RoW Africa WF 

Libya RoW Africa WF 

Madagascar RoW Africa WF 

Malawi RoW Africa WF 

Mali RoW Africa WF 

Mauritania RoW Africa WF 

Mauritius RoW Africa WF 

Morocco RoW Africa WF 

Mozambique RoW Africa WF 

Namibia RoW Africa WF 

Niger RoW Africa WF 

Nigeria RoW Africa WF 

Reunion RoW Africa WF 



 

 

 

 

Rwanda RoW Africa WF 

Saint Helena, Ascension and Tristan da Cunha RoW Africa WF 

Sao Tome and Principe RoW Africa WF 

Senegal RoW Africa WF 

Seychelles RoW Africa WF 

Sierra Leone RoW Africa WF 

Somalia RoW Africa WF 

Sudan (former) RoW Africa WF 

Swaziland RoW Africa WF 

Togo RoW Africa WF 

Tunisia RoW Africa WF 

Uganda RoW Africa WF 

United Republic of Tanzania RoW Africa WF 

Western Sahara RoW Africa WF 

Zambia RoW Africa WF 

Zimbabwe RoW Africa WF 

Bahrain RoW Middle East WM 

Egypt RoW Middle East  WM 

Iran (Islamic Republic of) RoW Middle East  WM 

Iraq RoW Middle East WM 

Israel RoW Middle East WM 

Jordan RoW Middle East WM 

Kuwait RoW Middle East WM 

Lebanon RoW Middle East WM 

Occupied Palestinian Territory RoW Middle East WM 

Oman RoW Middle East WM 



 

 

 

 

Qatar RoW Middle East WM 

Saudi Arabia RoW Middle East WM 

Syrian Arab Republic RoW Middle East WM 

United Arab Emirates RoW Middle East WM 

Yemen RoW Middle East WM 

 

 

  



 

 

 

 

8.3 Supporting information to chapter 4 

 

Figure S 8.12. Schematic of the methodology in general (a), and of linking FABIO and EXIOBASE (b). 



 

 

 

 

 

Figure S 8.13. Spatial distribution of potential global species loss driven by land use inside and outside KBAs for a) plants, 

and b) vertebrates (mammals + birds + amphibians + reptiles). The spatial resolution is 5 arc min. 



 

 

 

 

 

 

Figure S 8.14. The potential global species loss from land use inside and outside KBAs for plants (a) and vertebrates (b) 

(mammals, birds, amphibians, and reptiles). On each x-axis (bottom and top of figures), the production-based perspective is 

shown to the left of zero and the consumption-based perspective to the right. The y-axis lists the top 15 countries/regions with 

the largest consumption-based or production-based biodiversity loss from land use within and outside KBAs at the national 

level. The bar shows the per-capita value of biodiversity loss per land type and land use intensity. The circles show the total 

national biodiversity loss with a value shown by the upper x-axes on the top of each plot. 

 



 

 

 

 

 

 

Figure S 8.15. Land use within KBAs with different land use types and land use intensities (a) and in different regions (b).  



 

 

 

 

 

Figure S 8.16. Intersections between KBAs and the World Database on Protected Areas (WDPA). 

 

 

  



 

 

 

 

8.4 Supporting information to chapter 5 

 Supplementary Methods 

Biomass carbon and soil organic carbon in current vegetation 

The calculation of aboveground biomass carbon (AGBC) and belowground biomass carbon 

(BGBC) is based on the latest harmonized carbon density map in the year 2010 developed by 

Spawn et al358. For herbaceous crops, Spawn et al. employed gridded crop maps from EarthStat 
35, and we used the latest crop maps from Spatial Production Allocation Model (SPAM) 390 in 

2010 and method from Spawn et al. 358to get the latest AGBC and BGBC maps of herbaceous 

crops. For woody crops and pasture, we extract AGBC and BGBC from the latest harmonized 

carbon density maps directly.  

Primary crops and fodder:  

The production and harvested area of 163 types of primary crops and 16 types of fodder crops 

in 2010 come from FAOSTAT 357. The fodder crops are not available in FAOSTAT now, and 

are provided by one of developers of The Food and Agriculture Biomass Input-Output model 

(FABIO) 36. We then use the SPAM 390 to build a spatially-explicit picture of crop production. 

SPAM employs a cross-entropy approach to make estimates of 42 crop maps in 2010 at 5 arc 

min resolution. Since “Pearl Millet” and “Small Millet” are not split in FAOSTAT, we 

aggregate them into millet; similarly “Arabica Coffee” and “Robusta Coffee” are not split and 

we aggregate them into “Coffee”. These 40 crops are aggregated from an average of 163 types 

of primary crops contained in the FAOSTAT database between 2009 and 2011. Therefore, we 

used national data from FAOSTAT in 2010 to calibrate the SPAM for each country. However, 

since SPAM does not include fodder crop maps, we use EarthStat fodder maps 35 at 5 arc min 

resolution in 2000. We aggregate the 16 fodder maps into one fodder map for ease of analysis.  

Pasture  

There are many ways to estimate pasture for grazing. Ramankutty et al. created a map in which 

they estimate the percentage of pasture per grid cell at 5 min resolution 35 in 2000. Sloat et al., 

updated this map to the year 2010 at 500 meters resolution 393. They considered a grid cell to 

be pasture if it fell into a livestock category on the global livestock production systems (GLPS) 

map and also contained at least 30% pasture by area 393. Marques et al.,12 used pasture map 

from Ramankutty et al.,35 as permanent pasture, and excluded non-productive area (below NPP 

over 20 g C m−2 yr−1) is used to feed livestock in the year 2000. In the end, we employed the 

pasture map developed by Sloat et al. 393 because their dataset is the latest and the time is in line 

with our research. We assume pasture layer was capped if all land-use types (cropland, 

infrastructure, and forest) fill 100% of the grid cell. For forest, we employed fractional tree 

cover from MODIS in 2010 426. We linearly stretched values such that 80% was treated as 

complete tree cover (100%), since MODIS tree cover estimates saturate at around 80%, 

following Spawn et al.358. For infrastructure, we used ESA CCI Land cover Maps at 300 meters 

resolution in 2010 427.  

GHG emissions 

For animal-specific sectors, this includes: “Enteric Fermentation”, “Manure Management”, 

“Manure applied to Soils”, and “Manure left on Pasture”. For crop-specific sectors, this 

includes: “Rice Cultivation”, “Crop Residues”, and “Burning - Crop Residues”. There are two 

outstanding, high-emission sectors: “Synthetic Fertilizers”, and “Energy Use” which are not 

allocated to specific agricultural sectors. In FAOSTAT, GHG emission of “Synthetic 

Fertilizers” is only derived from nitrogen fertilizers, so we first classify their GHG emissions 

into 28 countries/regions, and 13 crop groups based on the amount of nitrogen fertilizer use 



 

 

 

 

from the International Fertilizer Association (IFA) in 2010 428. Mapping relationship of 

countries and crops between FABIO and IFA see Tables S5 and S6. We then allocate GHG 

emission of “Synthetic Fertilizers” of 28 countries/regions, and 13 crop groups into separated 

countries and agricultural sectors in FABIO based on the monetary value of crops in each group 

from FAOSTAT 357. Similarly, we allocate CO2, CH4, and N2O from the “Energy Use” sector 

into 49 countries/regions and 14 agricultural sectors based on the combustion emissions of CO2, 

CH4, N2O in EXIOBASE v3.6. Mapping relationship of countries and sectors between FABIO 

and EXIOBASE see Supplementary Tables S7 and S8. We then allocate these cases from 

“Energy Use” into agricultural sectors and countries using FABIO and based on the monetary 

value of crops from FAOSTAT in every group. 

 Supplementary Discussion  

Potential opportunities for carbon sequestration.  

Climate-smart agriculture may provide another opportunity to increase carbon benefits 429. For 

example, novel plants like intermediate wheatgrass (Thinopyrum intermedium (Host) 

Barkworth & D.R.Dewey) is an emerging cool-season perennial grain (the name for 

commercialized grain is “Kernza”) and forage dual-use grass, and its extensive root system can 

improve belowground carbon fixing and reduce soil erosion 430. Intermediate wheatgrass is 

becoming commercially available to farmers for some areas in the US 431. A further opportunity 

is biochar. While carbon stocks will saturate when the land restores to mature and stable 

vegetation, biochar can break the biophysical limits of carbon sequestration379. Feedstocks for 

biochar come from residues of forest/crop/pasture, animal manure, and food waste379. 

Removing forest residue can reduce risks of wildfire, but may disturb habitats of some fungi 

and wildlife, along with other ecosystem services 379. This represents a tradeoff among carbon 

sequestration and other ecosystem services 379. New technologies in agricultural production can 

also help to mitigate climate change. For example, 3-nitrooxypropanol (3NOP), a methane 

inhibitor, can persistently decrease enteric methane emissions by 30% under industry-relevant 

conditions without affecting animal productivity negatively 432, and has been approved as a feed 

additive in the European Union 433.  

Potential carbon offset.  

Here, we focus on dietary change in high-income countries where most food supply is higher 

than the recommendation in the EAT diet, and the dietary change could increase carbon 

sequestration and reduce CO2 emission. However, the carbon benefit may be offset by 

population growth and malnutrition in some low- and middle-income countries in the long term 
327. For example, most low- and middle-income countries face a severe double burden of 

malnutrition which means simultaneous manifestation of both undernutrition and overweight 

and obesity 434. The obesity in low- and middle-income countries is due to overconsumption of 

cheap ultra-processed food and beverages which is an unhealthy diet 434. The EAT diet is not 

suitable in low-income countries because they cannot afford it, and it estimated at least 1.58 

billion people are not able to pay for the cost of the EAT diet in the world 397. People will 

consume more food with income growth, especially animal products in low- and middle-income 

countries 45. In addition population growth low- and middle-income countries will increase food 

needs further. For example, population is projected to increase by 199% (1026·04 million in 

2017 to 3071·21 million in 2100) in Sub-Saharan Africa 420. The increasing food demand in 

low- and middle-income countries will offset carbon benefit from dietary change in high-

income countries.  

Another carbon offset is food waste in high-income countries. EAT diet recommends per-capita 

food intake instead of food purchase. Pre-capita food waste is positively related to per-capita 



 

 

 

 

income, and most food waste occurs in consumption stage in high-income countries because of 

overstocking, and too much cooking or serving 435. In addition, healthier diets would cause 

more food waste because healthier diets need more consumption of perishable produce such as 

fruit and vegetables, which has substantial hidden costs from food waste 436. Therefore, it is 

very necessary to halt food waste and loss. It is estimated about one third of global food is lost 

or wasted 222. If reducing 50% of global food waste and loss, another 0.9 Pg CO2e yr-1 would 

be mitigated 437.  

Recently, organic food consumption and organic agriculture production are surging in high-

income countries because they are more environmentally friendly (e.g. less fertilizer or 

pesticide input, and fewer biodiversity losses) also higher price compared to conventional 

farming 438,439. However, organic production has lower yield which means it needs more land 

use to satisfy the same food demand 438,439. The high quality and environmentally friendly food 

consumption is at the expense of carbon benefit.  

 

 

 

 



 

 

 

 

 

Figure S 8.17. Aboveground biomass carbon (AGBC, A), belowground biomass carbon (BGBC, B), soil organic 

carbon (SOC, C) and GHG emission (D) embodied in current national average diets of high-income countries.  



 

 

 

 

 

Figure S 8.18. Embodied carbon stocks (A) and GHG emission flows (B) in national average diets for high-income 

countries by food category. Carbon stock means aboveground biomass carbon (AGBC), belowground biomass 

carbon (BGBC), and soil organic carbon (SOC) in present agricultural production related vegetation (primary 

crops, fodder, and pasture) used for human food consumption.  

 

 

 



 

 

 

 

 

Figure S 8.19. Area of spared land due to dietary shift from national average diets to EAT diet in high-income 

countries for cropland (A) and pastureland (B). 



 

 

 

 

 

Figure S 8.20. Net carbon sequestration due to dietary shift from national average diets to EAT diet in high-income 

countries. Increasing amount of carbon sequestration in spared land due to dietary change for AGBC (A), BGBC 

(B), SOC (C).  

 



 

 

 

 

 

Figure S 8.21. National and Per-capita net carbon benefit due to dietary shift from national average diets to EAT 

diet in individual high-income country by food category. Increasing amount of carbon sequestration due to dietary 

change for AGBC (A), BGBC (B), SOC (C), and reducing amount of GHG emission (D) by food category. The 

bar means per-capita carbon sequestration and GHG emission change by food categories, and the dot means 

national net carbon sequestration and GHG emission change. The potential increase of carbon sequestration means 

carbon sequestration in potential natural vegetation minus that of current agricultural vegetation. The offset of 

carbon sequestration means carbon sequestration in potential natural vegetation minus that of increased 

agricultural vegetation. The carbon reduction of GHG emission means the GHG reduction due to reduction of food 

categories, and the offset means the GHG increase due to increase of food categories.  

  



 

 

 

 

Summary  

The global agri-food system plays a critical role in food security and environmental issues 

including land use, biodiversity loss and climate change. Increasing globalization has resulted 

in a complex international food system where production and consumption along the 

international supply chain can incorporate many geographically distinct regions. This 

interconnection means that it is difficult for any single producer or consumer to address these 

impacts. This thesis represents a step towards mapping the global food system from producers 

to consumers and offers several policy-relevant insights, especially in the national accounting 

of environmental footprints. Given that many drivers occur locally, but are traded globally, and 

that inter-regional differences in consumption are increasingly important, it is a natural next 

step to find approaches that can connect local impacts (production side) with global 

consumption (consumption side) through trade. Global spatially explicit multi-regional input-

output (SMRIO) analyses can help to identify hotspots of local production and associated social 

and environmental impacts driven by global consumption. Therefore, this thesis puts forward 

the following overarching research question: 

“How can spatially explicit multi-regional input-output approaches be used to evaluate 

sustainability in the global agri-food system?”. 

In this thesis, I first assessed the past use of SMRIO to evaluate what is the current status of 

spatially explicit input-output analysis (sub-question 1)?. 

To further assess the potential of the technique, I built a variety of SMRIO models for three 

different case studies. I used SMRIO models to investigate three critical issues (i.e. food 

security, biodiversity loss, and climate change) in the agri-food system. They address the 

following questions: 

What are the local production hotspots of crops and livestock driven by global consumption 

and how does this impact food security through trade (sub-question 2)? 

How does land use driven by final consumption affect global biodiversity within key biodiversity 

areas (sub-question 3)? 

What are the global interactions between carbon emissions and carbon sequestration driven by 

diets and diet changes in high-income nations (sub-question 4)?  

To answer the first sub-question, Chapter 2 reviews the literature on spatially explicit input-

output analysis and assesses the mechanisms proposed for connecting global consumption with 

local environmental pressures. I define spatially explicit input-output analysis as cases where 

the spatial resolution of results are greater than the underlying input-output transaction matrix. 

I assess past attempts at combining these perspectives at varying temporal and spatial scales, 

and with different environmental stressors. Past studies covered various environmental 

pressures and impacts, such as GHG emissions, water use, air pollution, and biodiversity loss. 

Three ways are identified to make input-output analysis spatially explicit based on the structure 

of environmentally extended input-output databases (i.e. environmental extensions, final 

demand, and transaction matrix). On the global scale, most studies linked spatial environmental 

extensions with global multi-regional input-output (GMRIO) tables to estimate local 

environmental impacts driven by global consumption. In general, it is more challenging to 

disaggregate the final demand and transaction matrix than the extensions matrix given the 

limitation of present datasets and computational power. The review proposed a theoretical 

framework of global SMRIO analysis and provided methodological support to answer the 

remaining sub-questions. 



 

 

 

 

In the first case study, Chapter 3 identifies hotspots (i.e. the most significant production regions) 

for primary crops and livestock driven by international consumption, by linking high-resolution 

production maps of crop and livestock with a GMRIO table (EXIOBASE in Chapter 3). The 

embodied primary crops and livestock for high-income countries are distributed over larger 

areas is the case for middle- and low-income countries. This is driven by the higher number and 

complexity of trade links for high-income countries and higher per-capita consumption 

volumes, particular of animal products. This means low- and middle-income countries rely for 

feeding their own population more on their own production and export large amounts of fodder 

and food for use in high-income countries, that often see overconsumption of food and/or have 

systems of intensive husbandry. This has clear ramifications on food security for low- and 

middle-income nations. Therefore, identified hotspots driven by global consumption can 

facilitate targeted cooperation between consumers and producers to safeguard global food 

security. In terms of methodology, this chapter moves SMRIO forward by using road density 

from the Global Roads Inventory Project (GRIP) to distinguish the spatial distribution of 

production for local consumption and export (i.e. whether local production within a grid cell is 

used for export or domestic consumption). The comparison between these results and 

subnational trade data in Brazil shows some agreement. However, global calibration using such 

a proxy approach is still not possible due to data limitations. 

In the second case study, Chapter 4 presents a comprehensive assessment of the potential global 

loss of terrestrial species driven by domestic and teleconnected land use within key biodiversity 

areas (KBAs). For this, I build an SMRIO model from physical and monetary input-output 

databases, spatially-explicit land use maps, and characterization factors of biodiversity loss. 

Human land use is dominated by agriculture sectors. Traditional GMRIO databases have highly 

aggregated agricultural sectors or regions. This limitation is addressed by using the Food and 

Agriculture Biomass Input-Output (FABIO) table, a consistent, balanced, physical input-output 

database based on FAOSTAT data, covering 191 countries and 130 agriculture, food, and 

forestry products. However, FABIO only has a partial coverage of the global economy does not 

include production and trade of non-agricultural products. In order to cover non-agricultural 

sectors, this chapter uses an integrated model framework linking FABIO and EXIOBASE. 

EXIOBASE is a highly detailed GMRIO database, including 200 products and 49 countries or 

regions. The chapter finds that land use within KBAs only accounts for 7% of total land use, 

while it causes 16% of global plant loss and 12% of global vertebrate loss compared to total 

land use. Animal product consumption accounted for more than half of biodiversity loss within 

KBAs. Bovine meat consumption alone contributed to about 40% of biodiversity loss within 

KBAs. In terms of land use, lightly grazed pastureland contributes to around half of all species 

loss. International trade is an important driver of loss, accounting for 25-33% of plant and 

vertebrate loss. The comprehensive assessment can provide guidance for maintaining the 

integrity of KBAs and global biodiversity. 

In the third case study, Chapter 5 assesses the potential for a ‘double dividend’ for climate 

change mitigation via the dietary change in high-income countries from both (1) reduced direct 

agricultural production emissions and (2) carbon sequestration via land sparing whereby 

agricultural lands can revert to other uses. I employ the SMRIO approach by linking FABIO 

with spatially explicit maps agricultural GHG emissions and of storage of harmonized 

aboveground biomass carbon (AGBC), belowground biomass carbon (BGBC) and soil organic 

carbon (SOC), in the case of use of land for agriculture and agricultural land reverted to other 

uses (most notably rewilding). The dividend is estimated for a scenario in which national 

average diets in 54 high-income nations representing 68% of global GDP and 17% of 

population shift to a planetary health diet as proposed by the EAT-Lancet Commission, which 



 

 

 

 

is committed to co-development of healthy diets and sustainable food production. I find that 

dietary changes in high-income nations could result in an increased carbon sequestration 

potential of 115.57 Pg CO2e over the long term (~2.3 years of global CO2e yr-1 emissions in 

2010), and a decrease in food system emissions of 0.61 Pg CO2e yr-1. Animal protein 

consumption reduction contributes the largest benefit. Including often-overlooked food and 

beverage items outside the EAT-Lancet diet could offer another potential carbon benefit. For 

example, about 1.8 Pg CO2e carbon sequestration would benefit from cutting out beer 

consumption in high-income nations. The carbon sequestration from land sparing due to dietary 

change represents potentially a significant contribution to limiting GHG atmospheric 

concentrations. Linking land, food, climate, and public health policy will be vital to harnessing 

the opportunities of this double dividend. 

Finally, Chapter 6 concludes that SMRIO analysis is capable of contributing novel insights into 

the sustainability of the agri-food system. The results based on SMRIO analysis can help to 

identify local impact hotspots, set effective impact reduction priorities, and facilitate targeted 

cooperation between producers and consumers. Chapter 6 also gives a general discussion on 

SMRIO analysis and presents three potential lines for their improvement, including the 

improvement of spatial data and the potential for further applications not explored in this thesis. 

The latest high-resolution satellite data in combination with machine learning approaches may 

include greater amounts of natural science data in SMRIO analysis. Improving the accuracy of 

the transaction matrix is very challenging, and a key opportunity for future research is the use 

of greater amounts of subnational trade information to map a more precise relationship between 

producers and consumers. This can lead particularly to better estimate in which sub-national 

regions food produced is mainly used for regional consumption (including e.g. subsistence 

farming), and in which regions mainly for exports. If data on subnational trade is not available 

then the use of a proxy may be considered, like e.g. road density as used in Chapter 3. However, 

better validation of proxy approaches would be beneficial.  

Overall, each study found results with scientific and policy relevance. The consumption of 

animal products played a prominent role in every case study of this thesis. As these studies and 

others highlight, there is an urgent need for different forms of protein production and dietary 

change. These sorts of assessments can help provide insights into how we might avoid 

catastrophic environmental problems in a globalized world. However, any of the benefits 

highlighted in these studies will require significant international action and collaboration. They 

will also have to be sensitive to local conditions and the economic ramifications at both global 

and local level of rapid food transitions. 

 

 

  



 

 

 

 

Samenvatting 

Het wereldwijde landbouw en voedingssysteem speelt een cruciale rol in het realiseren van 

voedselzekerheid en milieukwesties, waaronder landgebruik, verlies van biodiversiteit en 

klimaatverandering. De toenemende globalisering heeft geresulteerd in een complex 

internationaal voedselsysteem waarin productie en consumptie in de internationale 

toeleveringsketens veel verschillende geografische regio's kunnen omvatten. Deze onderlinge 

afhankelijkheid betekent dat het moeilijk is voor een enkele producent of consument om 

problemen in dit systeem aan te pakken. Dit proefschrift maakt een stap in het in kaart brengen 

van het wereldwijde systeem van productie en consumptie van voeding en biedt verschillende 

beleidsrelevante inzichten, bijvoorbeeld ten aanzien van de milieuvoetafdruk. Gezien het feit 

dat veel milieudruk van voeding locatiespecifiek is, maar voeding wereldwijd wordt verhandeld, 

en dat interregionale verschillen in consumptie steeds belangrijker worden, is het een logische 

volgende stap om benaderingen te vinden die lokale effecten (productiekant) kunnen verbinden 

met wereldwijde consumptie (consumptiekant). Globale ruimtelijk (‘spatial’) expliciete 

multiregionale input-output (SMRIO) -analyses kunnen helpen bij het identificeren van 

hotspots van lokale productie en de daarmee samenhangende sociale en milieueffecten die het 

gevolg zijn van consumptie elders. Daarom stelt dit proefschrift de volgende overkoepelende 

onderzoeksvraag: 

‘Hoe kunnen ruimtelijk expliciete multiregionale input output benaderingen gebruikt worden 

om de duurzaamheid van het wereldwijde landbouw- en voedselsysteem te beoordelen?’ 

In dit proefschrift heb ik eerst het eerdere gebruik van SMRIO geanalyseerd, om het volgende 

na te gaan: wat is de huidige status van ruimtelijk expliciete input-outputanalyse (deelvraag 1) ? 

Om het potentieel van de techniek verder te beoordelen, heb ik een aantal verschillende SMRIO 

modellen gebouwd voor gebruik in drie verschillende case studies. Ik gebruik de SMRIO 

modellen om drie kritieke problemen in het landbouw- en voedselsysteem te onderzoeken:  

voedselzekerheid, het verlies aan biodiversiteit, en klimaatverandering. De case studies 

behandelen de volgende vragen: 

Wat zijn de hotspots voor lokale productie van gewassen en vee die zijn gerelateerd aan 

wereldwijde consumptie van voeding en hoe beïnvloedt deze wereldwijde handel de 

voedselzekerheid ( deelvraag 2)? 

Hoe beïnvloedt landgebruik gerelateerd aan eindconsumptie van voeding de biodiversiteit 

binnen de zogenaamde ‘Key Biodiversity Areas’ ( deelvraag 3)? 

Hoe beïnvloeden diëten en veranderingen daarin in landen met een hoog inkomen 

koolstofemissies en koolstofvastlegging in vegetatie en bodem ( subvraag 4)? 

Om de eerste deelvraag te beantwoorden , bespreekt Hoofdstuk 2 de literatuur over ruimtelijk 

expliciete input-outputanalyse en beoordeelt het de mechanismen die worden voorgesteld om 

wereldwijde consumptie in verband te brengen met lokale milieudruk. Ik definieer ruimtelijk 

expliciete input-outputanalyse als een aanpak waarin de ruimtelijke resolutie van resultaten 

groter is dan de onderliggende input-output transactiematrix. Ik beoordeel eerdere pogingen om 

deze perspectieven te combineren op verschillende temporele en ruimtelijke schalen, voor 

verschillende vormen van milieudruk. Eerdere studies hadden betrekking op verschillende 

soorten van milieudruk, zoals de uitstoot van broeikasgassen, watergebruik, luchtvervuiling en 

verlies van biodiversiteit. Ik identificeer drie manieren om traditionele input-outputanalyse 

ruimtelijk expliciet te maken: te weten het ruimtelijk expliciet maken van milieu-extensies, de 

finale vraag en de transactiematrix. De meeste studies op wereldschaal koppelden globale 

multiregionale input-output (GMRIO) tabellen aan ruimtelijk expliciete informatie over 



 

 

 

 

milieudruk van productie. Zo kunnen locatie specifieke milieueffecten worden ingeschat 

veroorzaakt door wereldwijde consumptie. Het blijkt echter veel lastiger om de finale vraag of 

transactiematrix ruimtelijk expliciet et maken. Beperkingen in beschikbaarheid van data, maar 

ook rekenkracht, zijn nog groot. Hoofdstuk 2 ontwikkelde kort gezegd een theoretisch kader 

voor het uitvoeren van wereldwijde SMRIO analyses, wat het beantwoorden van de resterende 

sub-vragen ondersteunde. 

De eerste case studie in Hoofdstuk 3 identificeert hotspots (dat wil zeggen de belangrijkste 

productieregio's) voor de primaire gewassen en dierlijke producten in relatie tot internationale 

consumptie van voeding. Voor dit doel koppelde ik productie kaarten van landbouw en veeteelt 

met een hoge geografische resolutie met een GMRIO tabel (EXIOBASE). De productie van 

gewassen en dierlijke producten voor consumptie in landen met hoge inkomens vindt plaats in 

grotere gebieden dan het geval is voor landen met midden- en lage-inkomens. Dit wordt 

veroorzaakt door het grotere aantal en de complexiteit van handelsrelaties voor landen met een 

hoog inkomen naast hogere consumptievolumes per hoofd van de bevolking, met name van 

dierlijke producten  Dit betekent dat lage- en middeninkomenslanden voor het voeden van hun 

eigen bevolking meer afhankelijk zijn van hun eigen productie en grote hoeveelheden voer en 

voedsel exporteren voor gebruik in hoge-inkomenslanden. De laatsten hebben vaak te maken 

met overconsumptie van voedsel en hebben vaak ook systemen van intensieve veehouderij. Dit 

heeft duidelijke gevolgen voor de voedselzekerheid voor landen met lage- en middeninkomens. 

De hotspots die ik identificeerde kunnen consumenten en producenten helpen bij het prioriteren 

van samenwerking ten aanzien van het zekerstellen van wereldwijde voedselzekerheid. 

Methodologisch maakt het hoofdstuk de volgende stap in het verbeteren van de SMRIO 

benadering. Het is van belang per gridcel onderscheid te maken tussen productie voor lokale 

consumptie en export. Het gebruik van de verhouding hiertussen op nationaal niveau is te grof. 

Ik gebruikte de wegendichtheid uit het Global Roads Inventory Project (GRIP) om de 

verhouding tussen productie voor lokale consumptie en export beter in te schatten. Ik toetste 

deze aanpak met cijfers over sub-nationale handel in Brazilië, hetgeen enige overeenstemming 

liet zien. Kalibratie van dit soort proxybenadering op wereldschaal is echter nog steeds niet 

mogelijk vanwege beperkingen in voorhanden gegevens. 

In de tweede casestudie presenteert Hoofdstuk 4 een uitgebreide beoordeling van het potentiële 

wereldwijde verlies van terrestrische soorten als gevolg van landgebruik door wereldwijde 

voedselconsumptie binnen belangrijke biodiversiteitsgebieden (‘Key Biodiversity Areas’ of 

KBA's) . Hiervoor bouwde ik een SMRIO- model gebaseerd op fysieke en monetaire input-

output databases, ruimtelijk specifieke informatie over landgebruik, en ruimtelijk specifieke 

karakterisatiefactoren die aangeven hoe milieudruk zoals landgebruik doorwerkt op 

biodiversiteitsverlies. De landbouw domineert menselijk landgebruik. Traditionele GMRIO-

databases hebben sterk geaggregeerde landbouwsectoren en -regio's. Om deze beperkingen te 

overwinnen gebruikt Hoofdstuk 4 de Food and Agriculture Biomass Input-Output (FABIO) -

tabel, een consistente, gebalanceerde, fysieke input-outputdatabase op basis van statistieken van 

de Food- en Agricultural Organisation van de UN (‘FAOSTAT’). Die gegevens hebben 

betrekking op 191 landen en 130 landbouw-, voedsel- en bosbouwproducten. FABIO dekt 

echter alleen productie en consumptie van landbouwproducten. FABIO mist de productie en 

handel van niet-landbouwproducten en mist dus een deel van de wereldeconomie. Daarom 

verbindt hoofdstuk 4 FABIO met EXIOBASE. EXIOBASE is een zeer gedetailleerde GMRIO-

database, met 200 producten en 49 landen of regio's. De analyse laat zien dat landgebruik 

binnen KBA's slechts 7% van het totale landgebruik uitmaakt, terwijl in vergelijking met het 

totale landgebruik daar 16% van het wereldwijde plantverlies en 12% van het wereldwijde 

verlies van gewervelde dieren plaatsvindt. De consumptie van dierlijke producten blijkt 



 

 

 

 

verantwoordelijk voor meer dan de helft van het verlies aan biodiversiteit binnen KBA's. Alleen 

al de consumptie van rundvlees droeg bij tot ongeveer 40% van het verlies aan biodiversiteit 

binnen KBA's. In termen van landgebruik draagt licht begraasd weiland bij aan ongeveer de 

helft van alle soortenverlies. Internationale handel is een belangrijke oorzaak hiervan, goed 

voor 25-33% van het verlies aan planten en gewervelde dieren. Deze analyse geeft handvaten 

hoe KBA's en de wereldwijde biodiversiteit beschermd kunnen worden. 

In de derde casestudie beoordeelt Hoofdstuk 5 het potentieel voor een 'dubbel dividend' ten 

aanzien het klimaatprobleem door wijziging van het voedingspatroon in landen met een hoog 

inkomen door zowel (1) verminderde directe emissies van landbouwproductie als (2) 

koolstofvastlegging door vermindering van gebruik van land voor landbouwdoeleinden. Hierbij 

kunnen landbouwgronden voor andere doeleinden worden gebruikt. Ik pas de SMRIO-

benadering toe door FABIO te koppelen aan ruimtelijk expliciete kaarten, agrarische 

broeikasgasemissies en van opslag van koolstof in  bovengrondse biomassa (AGBC), in 

ondergrondse biomassa (BGBC) en als organische koolstof in de bodem (SOC). Ik analyseer 

hoe wijzigingen in diëten in landen met hoge inkomens landbouwgrond vrijmaakt voor andere 

doeleinden, met name het terugbrengen van die grond in oorspronkelijke staat (‘verwildering’). 

Ik neem hiervoor een scenario waarin 54 landen met hoge inkomens (goed voor 68% van het 

mondiale bruto binnenlands product (bbp) en 17% van de globale bevolking) een dieet gaan 

volgen zoals voorgesteld door de EAT-Lancet Commission. Ik vind dat dergelijke wijzigingen 

zouden kunnen leiden tot een verhoogde koolstofvastlegging van 115.57 Pg CO 2 e op de lange 

termijn (vergelijkbaar met ongeveer 2,3 jaar van de wereldwijde koolstofuitstoot in 2010), en 

een daling van de emissies uit het voedingssysteem van 0.61 Pg CO2  per jaar-1 . De 

vermindering van de consumptie van dierlijke eiwitten levert het grootste voordeel op. Ook 

vermindering van gebruik van voedingsmiddelen die geen deel uitmaken van het EAT-Lancet 

dieet kunnen tot extra reductie van koolstofemissies leiden. Bijvoorbeeld, het terugdringen van 

consumptie van bier en wijn in landen met hoge inkomens kan tot ongeveer 1.8 pg CO 2 e 

koolstofvastlegging leiden. De koolstofvastlegging door landbesparing als gevolg van 

veranderingen in het voedingspatroon kunnen dus een significante bijdrage leveren aan het 

beperken van de atmosferische broeikasgasconcentraties. Het koppelen van land-, voedsel-, 

klimaat- en volksgezondheidsbeleid is cruciaal om de kansen op dit dubbele dividend te 

benutten. 

Ten slotte concludeert Hoofdstuk 6 dat SMRIO-analyses in staat zijn om met nieuwe inzichten 

bij te dragen om de duurzaamheid van het landbouw- en voedingssysteem te vergroten. 

Resultaten op basis van SMRIO-analyses kunnen helpen bij het identificeren van hotspots ten 

aanzien van milieudruk op lokaal niveau , het stellen van prioriteiten voor reductie van impacts 

en het faciliteren van gerichte samenwerking tussen producenten en consumenten. Hoofdstuk 

6 geeft ook een algemene discussie over SMRIO-analyse en presenteert drie mogelijke lijnen 

voor verbetering van de methode. Dit behelst een verdere verbetering van ruimtelijke gegevens 

en het toepassen op andere cases die niet in dit proefschrift zijn onderzocht. Vooral nieuwe 

hoge-resolutie satelliet gegevens in combinatie met machine learning benaderingen kunnen de 

SMRIO analyses voeden met betere en gedetailleerdere data. Vooral het ruimtelijk expliciet 

maken van de transactiematrix is een grote uitdaging. Het gebruik van sub-nationale 

handelsdata kan helpen handelsketens specifieker in kaart te brengen. Het is daarbij vooral 

belangrijk dat een onderscheid gemaakt kan worden voor welk deel de lokale productie van 

landbouwproducten wordt gebruikt voor lokale consumptie, en welk deel naar andere regio’s 

of landen wordt geëxporteerd. Als er geen gegevens over sub-nationale handel beschikbaar zijn, 

kan het gebruik van een proxy worden overwogen, zoals bijvoorbeeld de wegendichtheid die 

gebruikt werd in hoofdstuk 3. Een betere validatie van proxybenaderingen is echter van belang. 



 

 

 

 

Over het algemeen vond elke hoofdstuk resultaten met die wetenschappelijk- en beleidsrelevant 

zijn. De consumptie van dierlijke producten speelde een prominente rol in elke case studie in 

dit proefschrift. Zoals uit deze en andere onderzoeken blijkt, is er dringend behoefte aan nieuwe 

vormen van eiwitproductie en verandering van het voedingspatroon. Dit soort analyses kan 

helpen om inzicht te krijgen in hoe we catastrofale milieuproblemen in een geglobaliseerde 

wereld kunnen voorkomen. Het realiseren van de kansen die dit proefschrift identificeert vergt 

echter een aanzienlijke mate van internationale actie en samenwerking. Die samenwerking zal 

ook rekening moeten houden met de lokale omstandigheden en de economische gevolgen van 

snelle voedselovergangen op zowel mondiaal als lokaal niveau . 
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