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Summary

Competitions are part and parcel of daily life and require people to invest time and energy to 
gain advantage over others, and to avoid (the risk of ) falling behind. Whereas the behavioral 
mechanisms underlying competition are well-documented, its neurocognitive underpinnings 
remain poorly understood. We addressed this using neuroimaging and computational 
modeling of individual investment decisions aimed at exploiting one’s counterpart (“attack”) 
or at protecting against exploitation by one’s counterpart (“defense”). Analyses revealed 
that during attack relative to defense (I) individuals invest less and are less successful; 
(II) computations of expected reward are strategically more sophisticated (reasoning level  
k = 4; versus k = 3 during defense); (III) ventral striatum activity tracks reward prediction errors; 
(IV) risk prediction errors were not correlated with neural activity in either ROI- or whole-
brain analyses; and (V) successful exploitation correlated with neural activity in the bilateral 
ventral striatum, left orbitofrontal cortex, left anterior insula, left temporoparietal junction, and 
lateral occipital cortex. We conclude that in economic contests, coming out ahead (versus not 
falling behind) involves sophisticated strategic reasoning that engages both reward and value 
computation areas and areas associated with theory of mind. 

Key Words: Competition | K-level Reasoning | Theory of Mind | Reward Prediction | Risk 
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Introduction

In his principles of political economy, John Stuart Mill, (1859) observed that “a great 
proportion of all efforts … [are] spent by mankind in injuring one another, or in 
protecting against injury.” Such appetite for “injuring others” and to defend against 
being injured has recently been documented in economic contest experiments in which 
individuals invest to obtain a reward at a cost to their competitor (henceforth attack), 
or to avoid losing their resources to their antagonist (henceforth defense; Carter & 
Anderton, 2001; Chen & Bao, 2015; Chowdhury, Jeon, & Ramalingam, 2018; De 
Dreu & Gross, 2019; De Dreu, Kret, & Sligte, 2016; De Dreu, Scholte, van Winden, & 
Ridderinkhof, 2015; Grossman & Kim, 1996; Wittmann et al., 2016; Zhu, Mathewson, 
& Hsu, 2012). These experiments showed that humans invest in injuring others through 
attacks and in protecting against injuring through defense, that investments in attack 
are typically less frequent and forceful than investments in defense, and that attack 
decisions disproportionally often fail and defenders relatively often survive (with ≈ 30% 
victories against ≈ 70% survivals) (for a review see e.g., De Dreu & Gross, 2019). 
	 Resonating with the idea that competition can be costly, participants during such 
attacker-defender contests typically waste about 40% of their wealth in fighting each 
other  (De Dreu & Gross, 2019). Yet why people invest in attack and defense remains 
poorly understood. In fact, investing in injuring others, and in protecting against injury, 
may reflect an array of subjective “desires” (Charpentier, Aylward, Roiser, & Robinson, 
2017; Delgado, Schotter, Ozbay, & Phelps, 2008; Dorris & Glimcher, 2004). Perhaps 
humans invest in attack and defense to maximize their personal earnings, as is typically 
assumed in standard economic theory (e.g. Ostrom, 1998). Relatedly, individuals may 
invest in attack and defense because of “competitive arousal” and rivalry (Delgado et al., 
2008; Ku, Malhotra, & Murnighan, 2005). Finally, investment in attack and defense may 
be driven by a desire to minimize risk and uncertainty (Delgado et al., 2008; Kahneman 
& Tversky, 1984). Indeed, decision-making in competitive contests is inherently risky 
– investments are typically wasted and may result in no return (among attackers), in 
wasted resources (when attacks were unexpectedly shallow and one thus over-invested 
in defense), or in costly defeat (when attacks were unexpectedly tough). Humans factor 
in such risks when making decisions and are typically risk-averse (Kuhnen & Knutson, 
2005; Loewenstein, Hsee, Weber, & Welch, 2001; Tobler, O’Doherty, Dolan, & 
Schultz, 2006). 
	 Humans may hold conflicting desires when investing in attack and defense, 
and may need to balance between maximizing reward and minimizing risk. What 
individuals aim for and how possibly conflicting desires are regulated is difficult to infer 
from behavioral decision-making alone. To illustrate, consider a two-player contest in 
which one participant can invest in attack and the other participant in defense. When 
the attacker invests more than its defender, attackers obtain all what the defender did 
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not invest and the defender would be left with 0. If, attackers invests equal or less than 
their defender, both sides earn their non-invested resources (Carter & Anderton, 2001; 
Chowdhury et al., 2018; De Dreu & Gross, 2019; De Dreu, Gross, et al., 2016; De 
Dreu, Kret, et al., 2016; De Dreu et al., 2015; Grossman & Kim, 1996)1. It follows 
that investments can increase attacker earnings and their competitive success, and 
can prevent defenders from losing their remaining endowment to their attacker. At 
the same time, however, not investing resources eliminates the attacker’s uncertainty 
about earnings from the contest, alongside the possibility of losing money. Defenders, 
in contrasts, reduce such uncertainty and possibility of losing the contest by investing 
resources (Chowdhury et al., 2018). 
	 We solved this problem of inference using a two-pronged approach inspired by 
recent work in cognitive neuroscience on learning from reward and risk prediction 
(Olsson, FeldmanHall, Haaker, & Hensler, 2018; Palminteri, Wyart, & Koechlin, 2017; 
Preuschoff, Quartz, & Bossaerts, 2008).  First, from investments in attacker-defender 
contests we computed, using a k-level reasoning approach, estimates of expected reward 
and expected risk (Botvinick, Niv, & Barto, 2009; Camerer, Ho, & Chong, 2004; 
Harsanyi, 1967; Nagel, 2016; Ribas-Fernandes et al., 2011; Stahl & Wilson, 1995; Zhu 
et al., 2012). The computational approach incorporates the intuition that the formation 
of expectations and beliefs in strategic interactions are recursive (i.e., [1] I think that 
[2] you think that [3] I think that [4]…) and can be more or less sophisticated (i.e., 
the number of recursions k). Using computational modeling and model comparison we 
estimated for each investment in attack and defense the expected reward and risk, and 
concomitant reward and risk prediction errors. Our modeling thus defines (expected) 
reward as the (expected) monetary payoff from investment in attack and defense (e.g., 
Zhu et al., 2012), and (expected) risk as the (expected) variance of the reward prediction 
error (Preuschoff et al., 2008). 
	 Second, and next to an exploratory whole-brain analysis potentially revealing 
currently unknown cues about the neural foundations of exploitation and protection, 
we linked prediction errors to a priori defined regions of interest—the Ventral Striatum 
and the Amygdala. We chose the ventral striatum because it has been extensively linked 
to reward processing and competitive success (viz. reward maximization; Balodis et al., 
2012; McNamee, Rangel, & O’Doherty, 2013; Metereau & Dreher, 2015; Rudorf, 
Preuschoff, & Weber, 2012; Xue et al., 2009; Zhu et al., 2012). We chose the Amygdala 
because of its involvement in low-level affective processing of threat to resources (viz. 
risk minimization; Baumgartner, Heinrichs, Vonlanthen, Fischbacher, & Fehr, 2008; 

1	 The attack-defense contest belongs to a class of asymmetric conflict games in which one player competes 
to maximize personal gain and the counterpart competes to prevent exploitation (De Dreu & Gross, 2019; 
Dechenaux, Kovenock, & Sheremeta, 2015). Including in this class of asymmetric games are the Hide-and-
Seek game (Bar-Hillel, 2015; Flood, 1972), the matching-pennies game (Goeree, Holt, & Palfrey, 2003), the 
inspection game (Nosenzo, Offerman, Sefton, & van der Veen, 2014), and the Best-shot/Weakest-link game 
(Chowdhury & Topolyan, 2016; Clark & Konrad, 2007). Across these games, humans invest to maximize wealth 
and/or to minimize risk of losing.



Neurocognitive Underpinnings of  Aggressive Predation in Economic Contests

Ch
ap

te
r 

2

37

Choi & Kim, 2010; De Dreu et al., 2015; Delgado et al., 2008; Nelson & Trainor, 
2007; Phelps & LeDoux, 2005). 

Materials and Methods

Participants and Ethics
Male participants (M = 25.31 years; N = 27) were recruited via an on-line recruiting 
system for participating in a neuro-imaging study on human decision-making. 
Exclusion criteria were significant neurological or psychiatric history, prescription-based 
medication, smoking more than five cigarettes per day, and drug or alcohol abuse.2 
Eligible participants were assigned to a session and instructed to refrain from smoking 
or drinking (except water) for 2 hours before the experiment that lasted approximately 
1.5 hours. They received a show-up fee of €30 in addition to the earnings from decision 
making. The experiment involved no deception and was incentivized (see below), received 
ethics approval from the Psychology Ethics Committee of the University of Amsterdam, 
and complied with the guidelines from the American Psychological Association (6th 
edition). Participants provided written informed consent before the experiment and 
received a full debriefing afterwards.

Experimental Procedures
Experimental sessions were conducted between noon and 4PM and participants were 
tested individually (also see De Dreu et al., 2015). Upon arrival, participants were 
escorted to a private cubicle where they read and signed an informed consent form. 
Participants received a booklet with instructions for the Attacker-Defender Game (labeled 
Investment Task), containing several examples of investments and their consequences to 
both attacker (labeled Role A) and defender (labeled Role B), and several questions to 
probe understanding of the game structure and decision consequences. Neutral labeling 
was used throughout. 
	 Upon finishing the instructions for the contest, the experimenter prepared the 
participant for neuro-imaging. During the fMRI session, participants completed 6 
functional runs, each consisting of a 20 trial block played as either attacker or defender. 
Participants thus alternated between the role of attacker and defender every 20 trials, 
with the starting order counter-balanced across participants. Importantly, we used a 
random-partner matching one-shot protocol, eliminating reputation concerns (Zhu 
et al., 2012). In each session, participants made 60 investments as attacker, and 60 

2	 The sample was the same as used in De Dreu et al. (2015), which used a cross-over design to examine the 
behavioral and neural effects of oxytocin (versus placebo) administration. Here we only analyze investments 
made under placebo. Moreover, our earlier report only considered trials in which participant decisions affected 
themselves only, and did not include those decision trials in which decisions also affected two other individuals 
within their group. Here we include also those previously unanalyzed trials. Because this manipulation revealed 
no differences, we collapsed across these two conditions. In short, the current study shares 25% of its analyzed 
data with the previous one, asks a different research question and uses distinctly different analytic techniques.



Chapter 2

38

as defender. For each investment trial, they received a prompt, randomly generated 
between 0 (indicating no investment) and 10 (indicating investment of the entire 
endowment) and used a button-press to adjust the given number up or down to indicate 
their desired investment. The duration of the selection period was self-paced, and had 
an average length of 4.27 seconds (SD = 3.43 seconds) (see Figure 1). After selecting 
their investments, participants waited an average of 6.08 seconds (SD = 2.22 seconds), 
at which point they received feedback about their counterpart’s investment, and were 
shown the respective payoffs to oneself and the other (who was randomly chosen on 
each trial from a pool of 150 attacker [defender] investments; for further detail see 
De Dreu et al., 2019, 2015). At the end of the experiment participants received their 
participation fee and earnings by bank transfer (range €0 – €8, with M = €5 for non-
scanner participants, and €0 – €33, with M = €19 for scanner participants). Accordingly, 
participant pay was private and conditioned on their performance.
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Figure 1. Experimental design. (A) Timeline of the entire experiment. (B) The Attacker Defender contest: 
on each trial, both attackers and defender begin with a 10€ endowment with which to invest in the contest. 
Investments are non-recoverable, yet if the defender invests equal or more than the attacker (bottom), both 
attacker and defender keep their remaining endowments (i.e. whatever they did not invest in the contest). 
If the attacker invests more than the defender (top), the attacker receives their remaining endowment 
plus that of the defender, who receives nothing. (C) Trial break-down: for each trial, participants received 
a prompt, randomly generated between 0 (indicating no investment) and 10 (indicating investment of 
the entire endowment) and used a button-press to adjust the given number up or down to indicate their 
desired investment. The duration of the selection period was self-paced (M ± SD = 4.27 ± 3.43 seconds). 
After selecting their investments, participants waited an average of M ± SD = 6.08 ± 2.22 seconds and then 
received feedback about their counterpart’s investment and the payoffs to oneself and to the counterpart. 
This completed one trial.
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Attacker-Defender Contest 

The Attacker-Defender Contest (Figure 1B) consists of two players: an attacker and 
a defender. Each player was endowed with €10 from which they could invest in the 
contest. Investments were always wasted but if the investments by the attacker (x) 
exceeded that by the defender (y), the attacker (x > y) the attacker obtains all of the 
defender’s non-invested endowment (e–y). In this case, the attacker’s total earning was 
2e–x–y, and the defender earned 0. If, in contrast, the defenders investment matched or 
exceeded that by the attacker (y ≥ x), both defender and attacker earned what was left 
from their endowment (e – y, and e – x, respectively) (De Dreu et al., 2015; 2016ab; 
2019).
	 The Attacker-Defender Contest has a contest success function f = Xm/(Xm + Ym), 
where f is the probability that the attacker wins, m → ∞ for X ≠ Y and f = 0 if Y = X. 
Assuming rational selfish play and risk-neutrality, standard economic theory predicts 
that attackers and defenders use mixed strategies when investing. With e = 10€ per trial 
(as used in the current experiment), the mixed strategies for attack (with probability 
of investing x denoted by p(x)) and defense (with probability of investing y denoted 
by p(y)) define a unique Nash equilibrium where expected investments in attack are 
both lower (x = 2.62) than in defense (y = 3.38), and less frequent (probability of attack 
[defense] = 60% [90%]). However, when attacks are made they are expected to be more 
‘forceful’ (4.36 versus 3.75 for defense).3 

Modeling Investment Behavior with K-level Sophistication
To compute individual estimates of expected reward and concomitant reward and 
risk prediction errors, we adapted the cognitive-hierarchies framework developed in 
behavioral economics (Botvinick et al., 2009; Camerer et al., 2004; Nagel, 2016). The 
idea is that players hierarchically form beliefs about their opponents’ behavior, up to 
a certain level of cognitive sophistication (k-level). A k-0 player invests randomly. At 
k = 1 the individual assumes that her opponent has k = 0 and finds an investment 
that maximizes her expected reward under this assumption. At k = 2 the individual 
assumes that her opponent has k = 1 and finds an investment that maximizes her own 
expected reward under the assumption that the opponent seeks to maximize his personal 
reward against a k-0 player. This recursion can, in theory, continue infinitely, yet in our 
computational modeling we limited k ≤ 5. k-level 0. k-level 0 play each strategy with 
equal probability. We have: Specifically, when Is represent a player’s own investment  
(s stands for self) and Io their representation of the other player’s investment (o stands 
for other) we can formally express:

3	 Specifically, the mixed-strategy equilibrium is computed as follows: Attack: p(x=1) = 2/45, p(x) = p(x–1)[(12–
x)/(10–x)] for 2 ≤ x ≤6, p(x=0) = 1–[p(x=1) +…+ p(x=6)] = 0.4, and p(x) = 0 for x ≥ 7; Defense: p(y) = 1/(10–y) 
for 0 ≤ y ≤ 5, p(y=6) = 1 – [p(y=0) +…+ p(y=5)] = 0.15, and p(y) = 0 for y ≥ 7 (also see De Dreu et al., 2015).
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k-level 0. k-level 0 play each strategy with equal probability. We have:

 		  (1)

k-level 1. k-level 1 expect their opponent to play as k-level 0, such that they expect:

 		  (2)

These expectations can be used to compute the probability of success S of a given 
investment h (P(S|h)) by the attacker A and defender D, respectively:

 		  (3)

		  (4)

This can be used to compute an expected value, which in this case in the expected reward 
ER for any potential investment by the attacker and defender. We have, for the attacker:

	    	 (5)

where the two square brackets represent cases where the investment is successful or 
unsuccessful, respectively, and E[hD|hD < hA] is the expected opponent’s investment in 
case of success:

 		  (6)

For the defender we have, likewise:

 		  (7)

The expected reward also has an associated prediction error PE, which is simply the 
expected reward ER subtracted from the actual reward R 

  		  (8)

These values also allow for the calculation of risk prediction RP and accompanying risk 
prediction errors PERisk. We defined risk prediction as the expected size-squared of the 
reward prediction error (Preuschoff et al., 2008). More specifically, risk prediction is 
defined as the sum across all the possible rewards (R) of (R ‒ ER)2, multiplied by the 

∀	h ∈ {0,… ,10}, P(I! = h) = 	
1
11 

∀	h ∈ {0,… ,10}, P(I! = h) = 	
1
11 

∀	h! ∈ {0,… ,10}, P(S|h!) = 1 P(I" = i)
#!-%

&'(

 

∀	h! ∈ {0,… ,10}, P(S|h!) = ∑ P(I" = i)#!
$%&   

ER!(h!) = [P(S|h!) × (10-	E[h"|h" < h!] + 10-h!)] + [(1– (S|h!)) × (10-h!)] 

E[h!|h! < h"] = 	) i × P(I# = i)
$"-&

'()

 

ER!(h!) = [P(S|h!) × (10-h!)] + [(1-P(S|h!)) × 0] 

PE = R	-ER 
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probability P(R) that R is obtained. More formally: 

		  (9)

Which means that the risk prediction error PERisk is the risk prediction RP subtracted 
from the actual size-squared of the reward prediction error:

 		  (10)

Following standard practices in the field, we assume that participants select the 
investment Is that (soft-)maximizes their expected reward. This is modelled with a 
multinomial softmax function with free parameter β, which indexes the exploration/
exploitation tradeoff (choice temperature):

		  (11)

This choice temperature defines the likelihood of investments Is , i.e. the probability of 
observing investment Is under the considered model and parameter values.

k-levels  2 → n.  
For each k-level, k ≥ 2, the above procedure is iterated k-times, with k-level predictions 
of investments - needed to compute probabilities of success, expected rewards and 
choice probabilities - being generated by the softmax at the preceding level (see Figure 
2). Hence, each k-level model has k free-parameters, which constitutes the choice 
temperature at each level βk.

RP = 	E[(R-ER)!] =+ P(R) × (R-ER)!
"

 

PE!"#$ = (R-ER)%-RP 

P(I! = h") = 	
exp(β# 	× 	EV(h"))

∑ exp(β# 	× 	EV0h$1)#%
$&%
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Figure 2. Computational framework. Players hierarchically form beliefs about their opponents’ behavior, up 
to a certain level of cognitive sophistication (k-level) (column 1). The expected frequencies of the opponents 
investment are then used to calculated expected probability of success for each investment (column 2), which 
can then be used to calculated expected reward (column 3). Based on the expected reward, we calculate the 
frequency that a player should make each investment (column 4). A k-2 player (row 2) will assume that her 
opponent is k-1 and adjust her behavior accordingly, and so on. We developed computational models for 
hierarchies 1 up to 5.
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Model fitting

For each model M, the parameters	 were optimized by minimi-
zing the negative logarithm of the posterior probability (LPP) over the free parameters:

		  (12)

Here, P(D|M,    ) is the likelihood of the data D (i.e. the observed choice) given the 
considered model M and parameter values     , P(    |M) and  is the prior probability of 
the parameters. Following Daw (2011), the prior probability distributions were defined 
as a gamma distribution (gampdf(β,1.2,5)) for the choice temperature. This procedure 
was conducted using Matlab’s fmincon function with different initialized starting points 
of the parameter space (i.e., 0<β<Infinite) (Palminteri, Khamassi, Joffily, & Coricelli, 
2015). We computed the Laplace approximation to model evidence (ME). It measures 
the ability of each model to explain the experimental data by trading-off their goodness-
of-fit and complexity. Defining     as the model parameters identified in the optimi-
zation procedure and n as the number of data-points (i.e. trials), ME was computed as 
follows (Where |H| is the determinant of the Hessian matrix):

		  (13)

Bayesian Model Comparison. 
To identify the model most likely to have generated a certain data set, ME was computed 
at the individual level for each model in the respective model-space, and fed to random-
effects Bayesian Model Comparison using the mbb-vb-toolbox (http://mbb-team.
github.io/VBA-toolbox/; Daunizeau, Adam, & Rigoux, 2014). This procedure estimates 
the expected frequencies (denoted PP) and the exceedance probability (denoted XP) for 
each model within a set of models, given the data gathered from all subjects. PP quantifies 
the posterior probability that the model generated the data for any randomly selected 
subject. XP quantifies the belief that the model is more likely than all the other models 
of the model-space. An XP > 95% for one model within a set is typically considered as 
significant evidence in favor of this model being the most likely. 

Model identifiability. 
To assess the reliability of our modelling approach, we performed model identifiability 
simulations (see Correa et al., 2018 for a similar approach). Choices from synthetic 
subjects were generated for each task and each model, by running our computational 
models, with model parameters sampled in their prior distribution: softmax temperature 
β were drawn from gamma distribution (random(‘Gamma’,1.2,3)). For each model, we 
ran 10 simulations including 27 synthetic subjects (N=270), playing both attacker and 

(θ! = {β", β#, …	β$}) (θ! = {β", β#, …	β$}) 

(θ! = {β", β#, …	β$}) 
(θ! = {β", β#, …	β$}) (θ! = {β", β#, …	β$}) 

LPP = 	 - log)P(θ!|D,M)1 ∝ 	 - log)P(D|M, θ!)1 -log	(P(θ!|M)) 

(θ! = {β", β#, …	β$}) 

ME = 	log (P*D,M, θ/!01 + log (P*θ/!,M01 +
df
2 log

(2π) -
1
2 log

|H| 
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defender for 3 blocks of 20 trials. Model identifiability was assessed by running the 
Bayesian Model Comparison on the synthetic data.

MRI Data Acquisition, Preprocessing, and Data Analysis
Scanning was performed on a 3T Philips Achieva TX MRI scanner using a 32-channel 
head coil. Each participant played six blocks of the attacker-defender game in which 
functional data were acquired using a gradient-echo, echo-planar pulse sequence 
(TR=2000 ms, TE=27.63 ms, FA=76.18, 280 volumes, FOV=192^2 mm, matrix 
size=64^2, 38 ascending slices, slice thickness=3 mm, slice gap=0.3 mm) covering 
the whole brain. For each subject, we also recorded a 3DT1 recording (3D T1 TFE, 
TR=8.2 ms, TE=3.8 ms, FA=88, FOV=256^2 mm, matrix size=256^2, 160 slices, slice 
thickness=1 mm) as well as respiration, pulse oximetry signal, and breath rate. Stimuli 
were back-projected onto a screen that was viewed through a mirror attached to the 
head-coil. 

Analyses were conducted with FSL (Oxford Centre for Functional MRI of the Brain 
(FMRIB) Software Library; www.fmrib.ox.ac.uk/fsl) and custom scripts written in 
Matlab (Mathworks, US). All fMRI data was pre-whitened, slice-time corrected, 
spatially smoothed with a 5mm FWHM gaussian kernel, motion corrected, and high-
pass filtered. Functional images were registered to each subject’s high resolution T1 scan 
and subsequently registered to MNI space. 

Our primary goal was to determine if neural activity was modulated by the expected 
values and/or prediction errors from our reinforcement learning model. The entire fMRI 
analysis consisted of a 3-level analysis: level 1 was averaging within runs within subjects, 
level 2 was averaging across runs within subjects, and level 3 was testing for significance 
at the group level. We constructed 3 different general linear models (GLM’s) to test 
for significant neural differences between attack and defense behavior as well as to see 
if attack and defense behavior correlated with our variables of interest. GLM-1 was 
meant to test for simple model-free differences between attacker and defender neural 
activity and consisted only of the selection and feedback epochs. GLM-2 was meant to 
determine if neural activity significantly correlated with investment magnitude during 
the selection time-phase and whether wins/losses significantly correlated with neural 
activity during feedback. To this end it consisted of the following regressors: selection, 
selection modulated by investment (orthogonalized with respect to selection), feedback, 
and feedback modulated by wins/losses (z-scored and orthogonalized with respect to 
feedback). GLM-3 was meant to determine whether any neural activity correlated 
with the parameters calculated from our K-Level model and contained the following 
regressors: selection, selection modulated by expected value (orthogonalized with respect 
to selection), selection delayed by 4 seconds in order to capture the delayed nature of 
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risk prediction (Preuschoff et al., 2008), delayed selection modulated by risk prediction 
(orthogonalized with respect to delayed selection), feedback, feedback modulated by the 
prediction error (z-scored and orthogonalized with respect to feedback), and feedback 
modulated by the risk prediction error (z-scored orthogonalized with respect to feedback). 
To mitigate spurious results from asymmetric parameter value ranges (Lebreton, Bavard, 
Daunizeau, & Palminteri, 2019), each parametric regressor was z-scored within each 
role, meaning both attacker and defender parametric regressors had identical variance. 

We checked for multicollinearity by calculating the variance inflation factors (VIF) for 
each regressor of interest (Mumford, Poline, & Poldrack, 2015), and found none to be 
problematic (all VIF’s < 2.3). However, four subjects made identical investments on 
every trial, which resulted in rank deficient models (4 subjects for GLM-2 and GLM-
3). Specifically, two individuals made the exact same investment on all attack decisions, 
one individual made the exact same investment on all defense decisions, and one 
individual made the exact same investment during attack and defense. These subjects 
had to be removed from the analysis. We tested for an interaction effect between role 
and each variable of interest by contrasting the relevant parameter estimates for attack 
and defense in a second level within-subject fixed-effects analysis. Finally, we tested for 
group level significance and corrected for multiple comparisons using FSL’s FLAME 
1 with the standard cluster forming threshold of Z>3.1 and clusters significant at p = 
0.05. We ran additional control analyses with FSL’s randomized threshold-free cluster 
enhancement (TFCE) (Smith & Nichols, 2009; Winkler, Ridgway, Webster, Smith, & 
Nichols, 2014), and results were virtually identical.  

We also conducted analyses within an a priori selected anatomical ventral striatum (VS), 
and within an a priori selected anatomical amygdala ROI. Both masks were obtained 
from the meta-analytic tool Neurosynth (Yarkoni, Poldrack, Nichols, Van Essen, & 
Wager, 2011). We used the terms “ventral striatum” and “amygdala” in our search of 
Neurosynth, instead of using “reward” or “fear.” Avoiding psychological constructs such 
as reward or fear reduced possible bias in our ROI’s in favor of a particular psychological 
construct. For our ROI analyses, we took the average value across every voxel within 
each ROI for each subject within the contrast of interest (e.g. attacker-reward prediction 
error), and then tested for significance with a paired-sample t-test. 



Neurocognitive Underpinnings of  Aggressive Predation in Economic Contests

Ch
ap

te
r 

2

47

Results

Decision-Making
Earlier reports of the attacked-defender contest game analyzed investments in terms of 
the overall investment (range 0 – 10), the frequency of investment (all trials in which x 
or y > 0; range 0 – 60), and the force of investment (the amount invested on non-zero 
investment trials, range 1 – 10). For these measures we find, consistent with earlier 
work, that individuals invested less often in attack than in defense, t(26) = -4.12, p 
= 0.0003, invested in attack less overall, t(26) = -8.56, p < 0.0001, and invested less 
forcefully in attack than in defense, t(26) = -7.81, p < 0.0001 (Figure 3B). Although 
individuals earned more from attack (non-invested resources + spoils of winning) than 
defense trials (non-invested resources in case of survival), t(26) = 43.91, p < 0.0001, 
they were less successful during attack than defense trials, t(26) = -7.22, p < 0.0001: 
As defender they “survived” more often than that they “killed” as attacker (Figure 3C). 

Figure 3. Behavioral results. (A) Nash equilibrium predictions (bars) plotted against empirical distribution of 
participants’ investments (dots with error bars are Means ± 1 Standard Error) for attacker (top row, red) and 
defenders (bottom row, blue). (B) Attacker (red) and defender (blue) investments, force of investment, and 
mean earnings (shown are Means ± 1 Standard Error) (C) frequency of investment, and success-rate (shown 
are Means ± 1 Standard Error). Contrasts marked * (**) (***) are significant at p < 0.05 (0.01) (0.001).
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In addition to the contrast between attack and defense, we examined investments in 
relation to predictions derived from standard economic theory that assumes rational 
self-interest and risk-neutrality. Relative to mixed-strategy equilibrium predictions 
(see Materials and Method), individuals invest more, and more forcefully in defense 
(t(26) = 20.40, p < 0.0001, and t(26) = 18.467, p < 0.0001, respectively), but not 
more, and not more forcefully in attack (t(26) = 1.46, p = 0.157, and t(26) = -0.78,  
p = 0.441, respectively) (Figure 3A). Still, however, both attack and defense returned 
less earnings than predicted by standard economic theory (t(26) = -4.19, p = 0.00028, 
and t(26) = -40.56, p < 0.0001), and the frequency of both attacks and defense exceeded 
expectations based on rational selfish play (t(26) = 3.04, p = 0.0054, and t(26) = 30.26, 
p < 0.0001, respectively). Conversely, success-rates for attacks (victories) and defense 
(survival) did not deviate from Nash equilibrium predictions (t(26) = -0.25, p = 0.804, 
and t(26) = -0.98, p = 0.336, respectively).

Neural Correlates of Attack and Defense. 
To examine the neural foundations of decision-making during attack and defense, we 
performed whole-brain analyses on the selection phase (when subjects decided whether 
and how much to invest in attack or defense) and on the feedback phase (when subjected 
received information about their opponent’s investment and the resulting outcomes 
to oneself ). Whereas no significant differences between attacker and defender were 
observed during selection, whole-brain analyses did show significant attacker-defender 
contrasts for the feedback phase. Specifically, during feedback, participants exhibited 
higher BOLD response during attack relative to defense in a cluster within the left 
anterior insula and inferior frontal gyrus (Figure 4: MNI coordinates: x = -40, y = 10,  
z = 16, Z = 4.88, cluster size = 1657, p = 0.0151, FWE-whole brain).

Table 1: Regions exhibiting significant correlation between neural activity and win / loss feedback 
during attack.

Peak

Region x y z Cluster size Z-value p (FWE-corr)

Attacker Win/Loss

VS/OFC/Insula/Thalamus -8 4 -4 5329 4.27 <0.001

Lateral Occipital Cortex -22 -74 -8 1686 4.75 0.002

Occipital Pole 8 -84 4 1603 4.45 0.002

TPJ/Lateral Occipital Cortex -26 -84 46 1577 4.1 0.003

Note. All statistics are corrected for multiple comparison with FSL’s FLAME 1.
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Figure 4. Brain-imaging Results.  Whole brain analysis testing for attacker neural activity correlated to wins 
and losses (A), and feedback differences between attacker and defender (B). (A) Wins and losses as an attacker 
correlated with neural activity in the temporo-parietal junction (TPJ), inferior frontal gyrus (IFG), ventral 
striatum (VS), anterior insula (AI), thalamus (THA), and lateral occipital cortex (LOC). (B) Processing 
feedback as an attacker associated with more neural activation in the left inferior frontal gyrus (IFG), left 
anterior insula (AI), and left orbitofrontal cortex (OFC).  All contrasts are FWE-corrected at p < 0.05 for the 
whole brain.

In a follow-up analysis we examined whether participant’s exhibited a correlation 
between neural activity and investments (during decision-making) and outcome (win/
loss) during feedback. As before, no significant correlations were found between neural 
activity and investments during attack or defense, nor did the correlation differ between 
the two roles. During feedback, however, neural activity during attack covaried with 
wins and losses in clusters that included the bilateral ventral striatum, left orbitofrontal 
cortex, left anterior insula, left temporoparietal junction, and lateral occipital cortex 
(Table 1, Figure 4B). Activity in these same areas also correlated with wins/losses more 
during attack than defense, but did not survive cluster-based multiple comparison 
correction (with p < 0.05, uncorrected). When participants processed feedback as 
defenders there were no clusters that significantly covaried with wins and losses.

Model-Based Analyses of Decision-Making and Neural Activity
	 As noted in the Methods, we captured the computations at hand in attack and 
defense behavior using the cognitive-hierarchies framework developed in behavioral 
economics (Botvinick et al., 2009; Camerer et al., 2004; Nagel, 1995). The idea is that 
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players hierarchically form beliefs about their opponents’ behavior, up to a certain level 
of cognitive sophistication (k-level) (see Figure 2). We developed such computational 
models for hierarchies 1 up to 5 (see Materials and Methods), and first verified that the 
behavior predicted by different levels of the cognitive hierarchies could be discriminated 
(see Materials and Methods/Model identifiability and Figure 5). We then fitted those 
models to our participants’ investment data, and ran a Bayesian Model Comparison 
to identify the hierarchy most likely to generate attacker and defender-like behavior.  
Our results show that attackers are best described by a model with 4 levels of recursion 
(model K4, exceedance probability = 67.20%), while defenders are best described by a 
model with 3 levels of recursion (model K3, exceedance probability = 87.41%) (Figure 
5). From these models we estimated, for each subject and each investment in attack 
and defense, the expected reward, risk prediction, and concomitant reward and risk 
prediction errors. These reward and risk prediction errors were then related to neural 
activity, using both whole-brain and ROI-based analyses.

Figure 5. Computational results. (A) Model identifiability, true model used to generate the simulated 
data (y-axis) and the model estimated as most likely based on our Bayesian Model Comparison (x-axis) 
for both attacker (top row) and defender (bottom row). (B) Exceedance probability (bars) and estimated 
model frequencies (diamonds) for both attacker (top row) and defenders (bottom row) of each model fit to 
participant data. (C) Estimates of each model shown in comparison to true behavioral data for both attacker 
(top row) and defender (bottom row).
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Neural Correlates of Reward Prediction Errors. 

Within our VS ROI there was a significant correlation between reward prediction errors 
and VS neural activity during attack (t(22) = 2.645, p = 0.0148), but not during defense 
(t(22) = -0.330, p = 0.745). Furthermore this correlation between reward prediction 
errors and VS activity was stronger in attackers than in defenders (t(22) = 2.189, p = 
0.0395, see Figure 6A). Within our amygdala ROI, there was no significant correlation 
between neural activity and reward prediction errors during either attack (t(22) = 1.785, 
p = 0.088), or defense (t(22) = -1.507, p = 0.146), but there was a significant difference 
in correlations between the two roles (t(22) = 2.405, p = 0.025).

Figure 6. Reward prediction errors differentially relate to attacker and defender neural activity. (A) ROI-
analysis reveals prediction errors during attack significantly correlate with ventral striatum activity in attackers 
but not in defenders. (B) Whole brain analysis reveals that prediction errors during attack significantly correlate 
with inferior frontal gyrus neural activity. Contrast is FWE-corrected at p < 0.05 for the whole brain.

At the whole brain level, we found a cluster in the right IFG that significantly correlated 
with reward prediction errors during attack (MNI coordinates: x = 48, y = 32, z = 12, Z 
= 4.55, cluster size = 681, p = 0.0391, FWE-whole brain, see Figure 6B). We note that 
this cluster is similar in location to regions found to covary with reaction times (RT), 
but in the present case the correlation between RT and reward prediction errors was not 
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significant (r = -0.0079, p = 0.654). Because all the contrasts reported were conducted 
at the feedback time-phase, with the selection time-phase as a co-variate RT was at least 
partially captured by our GLM. Accordingly, because RT – RPE is non-significant here 
and RT is captured in the duration of the selection-phase decision-making, we can 
conclude that RT is not of relevance here.  
	 There were no clusters at the whole brain level that correlated with reward 
prediction errors during defense, nor were there any clusters that showed a significant 
difference in correlation between attacker and defender trials. 

Neural Correlates of Risk Prediction Errors. 
We found that within our VS ROI, there was no significant correlation between neural 
activity and risk prediction errors during either attack (t(22) = -1.622, p = 0.117), or 
defense (t(22) = 0.164, p = 0.871), nor was there a significant difference in correlations 
between the two roles (t(22) = -1.505, p = 0.145). The same was true in our amygdala 
ROI (attacker: t(22) = -0.588, p = 0.562; defender: t(22) = 0.363, p = 0.720; attacker vs. 
defender: t(22) = -0.647, p = 0.523) and at a the whole brain level. 

Conclusions and Discussion

Competition requires that people expend resources to win from other contestants and 
to expend resources to prevent losing from other contestants. These two core motives 
operating during competition – coming out ahead versus not falling behind – were 
examined here in a simple attacker-defender contest in which opposing individuals 
simultaneously invested, out of a personal endowment, into exploitative attacks and 
protective defense. As shown by others already, we find here too that individuals invest 
less frequently and less intensely in economically “injuring others” than they invest in 
defending themselves against the threat of being economically injured (De Dreu & 
Gross, 2019 for a review). Computationally, we found that during attack individuals 
tend to utilize a higher level of cognitive recursion than during defense. We furthermore 
found attack behavior relative to defense behavior to be preferentially associated with 
neural regions associated with theory of mind, and, within the ventral striatum, to be 
preferentially correlated with reward prediction errors. 
	 What remained poorly understood is why and how people design their strategies 
of attack and defense. We argued that, in addition to reward maximization, investments 
in attack and defense may be driven by the desire to out-compete the protagonists as 
well as by the desire to minimize risk. We approached this issue with a computational 
framework modeling reward and risk prediction errors based on k-level reasoning in 
belief formation (Camerer et al., 2004; Nagel, 1995; Zhu et al., 2012). Our results at 
the neural level revealed no evidence for risk minimization. Instead, and in line with 
earlier work (e.g., Zhu et al., 2012), we find good evidence that contestants aimed to 
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maximize reward both during attack and defense. At the same time, however, we observed 
significant differences in the computation of expected reward and in the underlying 
neural activation during attack versus defense. Specifically, we found reward prediction 
errors during attack (more than during defense) to robustly correlate with neural activity 
in the ventral striatum and, using whole-brain analyses, the inferior frontal gyrus. 
	 Our computational modeling demonstrated that investments in attack are best 
fitted by a model containing four levels of recursion whereas investments in defense are 
best fitted by a model containing three levels of recursion. This suggests that individuals 
engage in more sophisticated reasoning about their protagonist’s strategy during attack 
than defense. Indeed, our neuroimaging results revealed significant attack-defense 
contrasts in neural activation in regions often associated with perspective taking and 
“Theory of Mind” – the lateral occipital cortex, the inferior frontal gyrus, and the 
temporoparietal junction (Engelmann, Meyer, Ruff & Fehr, 2019; Prochazkova et al., 
2018; Van Overwalle, 2009). These results resonate with earlier work showing that 
temporarily dysregulating the inferior frontal gyrus through theta burst stimulation 
affected investment behavior during attack but not defense (De Dreu, Kret, et al., 2016), 
and that reducing cognitive capacity prior to decision making influenced attackers but 
not defenders (De Dreu et al., 2019). Combined, these results suggest that individuals 
engage neural regions for perspective taking and theory of mind during economic 
contests to out-smart and exploit their protagonist.
	 Results for neural activity were specific to the feedback phase, when contest outcomes 
were presented, and not observed during the selection phase when investment decisions 
were implemented. Possibly, different neurocognitive operations govern implementation 
and processing of feedback. During implementation, controlled deliberation may be 
more or less active and this may relate to activity in prefrontal regions involved in 
executive control. Perhaps the extent to which cognitive control and deliberation during 
selection is engaged is not conditioned by the specific role decision-makers perform. 
During feedback, learning and updating operations may be active, and this may relate 
to neural activation in regions involved in value computation and emotion processing 
(Behrens, Hunt, & Rushworth, 2009; Yacubian et al., 2006). Indeed, we found neural 
activity in the ventral striatum to be meaningfully related to reward prediction errors 
(also see O’Doherty et al., 2004; Stallen et al., 2018; Yacubian et al., 2006; Zhu et al., 
2012). In contrast to expectations, however, we did not find differential activity in the 
amygdala, nor amygdala activity to be related to behavioral indicators processed during 
feedback. Possibly, contestants process feedback in an emotionally detached and rather 
cognitive manner aimed at revising and updating their (future) strategy for attack and 
defense. 
	 Our study design included male participants, and extrapolating conclusions to 
female participants may be non-trivial. Intuitively competitive success and reward 
maximization may fit an (evolved) male psychology, whereas risk minimization risk fits 
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an (evolved) female psychology (Croson & Gneezy, 2009; Niederle & Vesterlund, 2011; 
Spreckelmeyer et al., 2009). At the same time, however, male and female participants 
tend to perform similarly in the attacker-defender contest studied here (De Dreu & 
Gross, 2019). Future work is needed to test whether the neurocognitive mechanisms 
are similar as well, which would further contradict the intuitive hypothesis derived from 
evolutionary psychology.. 
	 Competitions are part and parcel of human life and can be wasteful. In the current 
contest, subjects destroyed roughly 40% of their wealth in attempts at “injuring others 
and protecting against being injured” (viz. Mill, 1859). Our neurocomputational 
approach suggested that injuring others is done through rather sophisticated cognitive 
reasoning, with the key aim to understand the protagonist’s strategy selection such that 
personal rewards can be optimized. When investing in attack more than in defense 
people engage more sophisticated cognitive recursion. Furthermore, neural structures 
associated with theory of mind and reward processing are recruited more during attack 
than defense decisions. Perhaps, mentalizing not only serves empathy and pro-social 
decision-making, but also the strategic goal of reward maximization through exploitation 
and subordination. 
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