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We respond to gestures with an extreme alertness and, one might almost say, in accordance 
with an elaborate and secret code that is written nowhere, known by none, and understood 
by all.

Edward Sapir, 1927

The social animal 

Humans rely on one another for protection against outside danger (De Dreu & Gross, 
2019; Tomasello, 2019), for personal meaning (Cacioppo & Hawkley, 2009; Ortner, 
1998), and for advancing technological innovation and cultural evolution (De Dreu, 
Nijstad, Bechtoldt, & Baas, 2011; Henrich, 2016). However, despite the benefits 
afforded by living in social groups and cooperating with others, these benefits can come 
at a cost to the individuals within the group. Oftentimes, the actions most beneficial 
to the group and the actions most beneficial to the individuals within that group are 
incongruent, and cooperative behavior requires an individual to forego a personal benefit 
for the sake of their social unit. It would be more personally profitable to neglect the bill 
after dining out, to free-ride on public transport, and to claim ownership over a valuable 
idea without giving proper credit. However, if everyone adhered to this self-interested 
ethos society could not function, and no one would be allowed to enjoy the benefits of 
the public goods that civilization provides. 
	 Indeed, society could not function if it were not for the fact that, as Jean-Jacques 
Rousseau put it (1762/1993): “each of us puts his person ... under the supreme direction 
of the general will” (p. 196). While this statement is true in an ideal world, the danger 
that a customer does not pay their bill after dining out, that a passenger freely partakes 
in public transport, or that a colleague claims another’s ideas as their own, is always a 
possibility. Cooperating within the bounds of a group’s customs goes hand in hand with 
the risk that other group members act with purely self-interested motives, exploiting the 
behaviors of those under the “direction of the general will” (Rousseau, 1762/1993). In 
other words, in addition to the personal costs, there are risks of interpersonal exploitation 
inherent to social exchange. These risks are mitigated by specific institutions, such 
as norms of cooperation, which curb antisocial behavior (Bicchieri, 2005; Fehr & 
Schurtenberger, 2018). However, norms are an implicit set of rules – what the great 
anthropologist Edward Sapir (1927) referred to as “an elaborate and secret code” (p. 
137), which means that norms can be ambiguous (e.g. knowing how much to tip in a 
restaurant), and therefore learning and applying norms is an elusive task. Adequately 
navigating a social group’s norms is both essential and challenging, and failure to do so 
is both easily accomplished and detrimental. Yet, humans somehow do learn to navigate 
these implicit rules that govern civil society. 
	 Recent advances in psychology, economics, and neuroscience attempt to shed light 
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on these problems by combining (i) structured situations with economic games in tightly 
controlled experimental setups, (ii) formal theory with the application of mathematical 
frameworks such as game theory and expected utility theory, and (iii) neuroscientific 
methods that allow us to assess hypothesized neurophysiological mechanisms. These 
approaches have in common that they assume that humans attempt to maximize some 
form of subjective value, so-called utility. In the remainder of this introduction, I will 
outline how these advances were put to use in the current thesis in order to elucidate 
some of the outstanding questions surrounding human social interactions.

The utility of  economic games

One of the tools used to study how individuals navigate complex social interactions 
is Game Theory. Originally invented by mathematicians and physicists to study 
strategic interdependence (Dimand & Dimand, 1996), Game Theory offers a precise 
mathematical formulation of decision-making under clearly defined circumstances. A 
“game” in this framework is a specification of the strategies, information, outcomes, and 
associated values available to interacting players (Camerer, 2003). A canonical example 
is the prisoner’s dilemma game, which in its simplest form involves two players, each of 
whom must decide whether to “cooperate” or “defect” with the other. If both players 
cooperate or both defect, they both receive equal payments, with mutual cooperation 
leading to higher payoffs than mutual defection. However, unilateral defection (in 
which one player exploits the other’s cooperative decision) leads to asymmetrical payoffs 
benefitting the defector. This game offers a simple model allowing for the study of social 
uncertainty and strategic reasoning, such as deciding whether or not to pay the bill after 
dining out, pay for public transport, or claim ownership over a valuable idea without 
giving proper credit.
	 When considering that in virtually every social interaction, human individuals (viz. 
players) have available actions (viz. strategies) with associated outcomes (viz. payoffs), 
it becomes clear that quite a lot of human social life can be classified as a “game”. 
Indeed, questions regarding who will attack a vulnerable opponent when competing for 
resources, or trust and reciprocate with an unknown other, or learn what’s considered 
fair in a novel environment, all seem intractable at face value. However, each of these 
situations can be modeled by relatively simple economic games. Here I focus on three 
games in particular – the attacker-defender contest, the trust game, and the ultimatum 
game – which model asymmetrical conflicts, generosity and reciprocity, and norms of 
fairness, respectively.  

The attacker-defender contest.
Failure to navigate a group’s code of conduct can lead to interpersonal conflict. 
Conflict itself is a complex and multifaceted phenomenon, making a precise definition 
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problematic. Nevertheless, conflict generally involves an incongruence of desires between 
multiple interaction parties. Several individuals striving for the last piece of cake, only 
parking space, or coveted job opening, all can result in conflict. In these examples (as 
in many cases), conflict can emerge out of a symmetrical structure, in which all players 
have the same goals, knowledge and available actions. However, most conflicts exhibit 
an asymmetry of power and motivation between the involved parties (De Dreu & Gross, 
2019; De Dreu, Gross, et al., 2016). Indeed, roughly 67% of interstate militarized 
conflicts involve one revisionist state (one nation seeking change in another) and one 
non-revisionist state (one nation resisting change from another) (De Dreu, Gross, et al., 
2016). This same asymmetry exists in corporate hostile takeovers (Schwert, 2000), in 
dissolution of romantic entanglements (Kluwer, Heesink, & Van de Vliert, 1997; Perel, 
2017), and in groups of predators hunting prey (Dawkins & Krebs, 1979; De Dreu, 
Gross, et al., 2016). 
	 To model the processes underpinning these asymmetric conflicts, we designed an 
economic game called the attacker-defender contest. This game consists of two players, 
each of whom starts with a given endowment out of which they can invest. One player 
can invest in attack, and the other player can invest in defense. Investments are non-
recoverable and thus wasted. However, if the attacker invests more than the defender, 
then the attacker obtains all the leftover endowment of the defender, i.e. whatever the 
defender did not invest. If this happens, the defender ends with nothing. If, however, the 
defender invests as much or more than the attacker, both sides keep their non-invested 
resources. In this setup, investments can increase attacker earnings, and can prevent 
defenders from losing their remaining endowment to their attacker. Across multiple 
studies this game has revealed that investments in defense are more frequent and more 
intense than investments in attack (De Dreu, Giacomantonio, Giffin, & Vecchiato, 
2019; De Dreu & Gross, 2019; De Dreu, Gross, et al., 2016). Furthermore, attacks are 
only successful (i.e. result in taking the defenders’ remaining endowment) in about 30% 
of cases, which mimics the success rates in interstate warfare, corporate hostile takeovers, 
and group-hunting predators (De Dreu, Gross, et al., 2016). 
	 The situation in which both attackers and defenders invest nothing is the situation 
that leads to the most collective wealth – they both keep their entire endowments. 
However, the attacker has the opportunity to earn more than their endowment if they 
invest. It is most beneficial for the attacker-defender unit to invest nothing, yet it is more 
individually beneficial for the attacker to invest and take the defender’s endowment, 
allowing for a precise model of the mixed-motives structures alluded to above.

The trust game.
While conflict can result from an asymmetry of motives, it can also be sparked by a 
mismatch between what is promised or expected and what is delivered or experienced. 
This can lead to innocuous situations such as roommates squabbling over dirty dishes, 
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and to severe situations such as interstate war. For example, during the revolutionary war 
of the United States, George Washington, who was the head of the American military, 
made an alliance with the King of France and accepted French aid in the fight against the 
British Empire. However, when the French people sought American military assistance 
during their own revolution, Washington claimed the alliance was with the King, not 
the people, and refused to provide any help. A similar example can be found in South 
America, where the ruthless conquistador Francisco Pizarro captured the Incan emperor 
Atahualpa and guaranteed his safety in exchange for gold. When Pizarro received his 
payment, he reneged on his promise, killing Atahualpa and continuing his subjugation 
of the Incan people. In these examples, understandings of what constituted a mutually 
trusting relationship between the parties involved were either at odds, or else one 
party violated said trust. The results in both cases was a severe hampering or complete 
destruction of future social interactions between the involved parties. 
	 How and when individuals decide whether to trust others, and whether to 
reciprocate said trust, can be addressed with a variation of the trust game (Berg, Dickhaut, 
& McCabe, 1995). The trust game consists of a sender who decides how much (if any) 
of a given endowment to transfer (viz. entrust) to a responder. The amount transferred 
to the responder is then increased by some multiplying factor (usually three), after which 
the responder decides how much (if any) to return (viz. reciprocate) back to the sender. 
Because each unit of the endowment the sender transfers to the responder is tripled, 
the most collectively profitable outcome involves the sender transferring their entire 
endowment to the responder. However, in this situation the responder has a strong 
incentive to exploit the sender’s trust and keep the entire sum for themselves. Therefore, 
the situation that creates the most collective wealth is also the situation that can 
create the largest inequity and risk of exploitation. So while perhaps the United States 
aiding France in their struggle for revolution or Pizarro releasing the Incan emperor 
as promised could have created the most collectively advantageous scenario, failing to 
reciprocate may have created the most individually advantageous scenario (or at least the 
expectation thereof ) for the United States and Pizarro. 
	 While it is certainly tempting to infer the motivations behind the dramatic 
actions of George Washington or Francisco Pizarro, a psychological account in these 
cases remains speculative. This is precisely why controlled laboratory experiments are 
so valuable. Previous research on behavior in the trust game shows that, on average, 
senders transfer half of their endowments to responders who, on average, return 40% 
of the tripled amount back to the sender (Johnson & Mislin, 2011), which implies that 
people are, for the most part, trusting and trustworthy. However, there is substantial 
inter-individual and cross-cultural variation in both trust and trustworthiness (Balliet & 
Van Lange, 2013; Bohnet, Greig, Herrmann, & Zeckhauser, 2008; Johnson & Mislin, 
2011; Romano, Balliet, Yamagishi, & Liu, 2017), suggesting that different individuals 
follow different rules when deciding to trust and reciprocate. How individuals learn 
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these rules is an open question in need of more research.

The ultimatum game.
One element contributing to differences of expectations are differences between cultures. 
Navigating the rules and secret codes of one’s own culture is already a difficult task, 
and straddling multiple cultures only increases the difficulty. There is a multiplexity of 
customs, rituals, and taboos which threaten the efficacy of the interaction. Nevertheless, 
in the increasingly globalized world, navigating the cultural divide with little to no 
knowledge of other individuals’ cultural backgrounds has become commonplace. 
	 To model the mechanisms behind learning the implicit rules associated with 
different cultural expectations, we utilize the ultimatum game (Güth, Schmittberger, 
& Schwarze, 1982), a two-player game in which one player (the proposer) starts with 
an endowment from which they make an offer to the other player (the responder). 
The responder then decides whether to accept the proposed division, or to reject it, 
in which case both players receive nothing. A proposer ideally makes an offer that is 
exactly at the acceptability threshold of the responder. Offering too little risks rejection, 
but offering too much is an unnecessary expenditure. This game mimics the type of 
judgements involved in both innocuous and high-stakes interactions. For example, 
when a store owner is selecting an item’s price, setting too high of a price risks scaring off 
potential customers, and setting too low of a price risks missing out on potential profits. 
A much more high-stakes example is the negotiation of a peace treaty – if one party 
demands terms that are too stringent, they risk enraging the other party and dissolving 
the agreement. However if one party demands terms that are too weak, they could be 
making unnecessary concessions. 
	 Cross-cultural research with the ultimatum game have shown a diverse set of 
behaviors and norms across different parts of the world (Henrich et al., 2005; Henrich, 
Ensminger, et al., 2010). In our version, we experimentally nudge individuals to 
accept different offers, modeling different fairness norms, which we use to explore how 
individuals learn different implicit rules of engagement.

The correspondence problem.
Economic games provide stripped back models of complex behavior, and by truncating 
the number of options and outcomes available to players they limit the amount of 
motivations that could be driving the observed strategies. Nevertheless, there is not 
necessarily a single psychological trait responsible for every single action. In other 
words, there is not a one-to-one correspondence between an action and a purported 
psychological driver of said action. In the attacker-defender contest, for example, 
one player might invest in defense out of mistrust of the other player, to reduce their 
personal uncertainty about the game’s outcome, or because they feel that this action is 
expected of them under the circumstances. Therefore, while economic games reduce 
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the complexity of human social behavior to a more manageable set of variables, we are 
still inevitably left with ambiguity regarding the foundations of human behavior and 
concomitant cognitive processes. For this reason, precise quantification of behavior into 
a set of formal suppositions via computational modeling enhances our predictive ability 
regarding what drives individuals to act the way that they do. 

Computational modeling

Computational models provide us with a mathematical language with which to make 
predictions about the mechanisms driving behavior. To employ a computational model, 
one formulates a series of calculations that are hypothesized to generate a given outcome, 
in our case a certain social propensity. While the term “model” can be used to describe 
any mathematical or even conceptual mapping of one phenomenon onto another, in 
our sense we mean specifically a series of equations which describe the mechanisms 
behind an observed behavior. In this way, the models which we employ are generative 
models: they are mathematical expressions of the processes which generate behavior. 
	 While there are scores of different computational models that have been used to 
describe virtually any simple or complex system, from the weather (Lynch, 2008) to a 
chess match (Larson, 2010), from presidential elections (Silver, 2012) to the spread of 
the Coronavirus (Friston et al., 2020), what all these models have in common is that 
each of them consists of a set of parameters constituting algorithms which transform 
inputs (rules of the game, personality traits, economic status, dispositions) into outputs 
(actions, cooperating vs. defecting, attacking vs. abstaining). These parameters are 
simply numerical weights which are estimated from the data. More importantly, these 
parameters oftentimes come along with psychological interpretations. For example, the 
most widely used technique for modeling choice selection is the softmax choice function 
(Daw, 2011; Sutton & Barto, 2018). This function consists of a single free (i.e. estimated) 
parameter, the so-called inverse temperature parameter. A high value for this parameter 
denotes high determinism, indicating that the individual is exploiting a known course 
of action instead of exploring unknown courses. A low value for this parameter denotes 
high stochasticity, indicating that the individual is exploring unknown options. Put 
succinctly, this parameter gives us a precise measure of an individual’s exploration/
exploitation tradeoff. It is precisely this type of translation from numerical precision 
to qualitative psychological interpretation that make computational models such a 
powerful tool for studying human behavior. 
	 As stated above, the number of possible computational models that exist is 
staggering (Jolly & Chang, 2019; Palminteri, Wyart, & Koechlin, 2017; Sutton & 
Barto, 2018). However, much research on behavior in economic games has found 
consistent and robust evidence in favor of a computational framework that is based on 
the assumption that the individual is attempting to maximize subjective value, or utility 
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(Camerer, 2003). The concept of utility has many definitions (Georgescu-Roegen, 1968), 
but perhaps the famous philosopher Jeremy Bentham, the founder of utilitarianism, put 
it best: “nature has placed mankind under the governance of two sovereign masters, pain 
and pleasure… They govern us in all we do, in all we say, in all we think…  The principle 
of utility recognizes this subjection, and assumes it for the foundation of that system” 
(1789).  Put succinctly, each of our models assume that individuals are attempting to 
maximize pleasure and minimize pain, which we operationalize as maximizing collective 
or individual reward, and minimizing collective or individual loss. 
	 Based on this principle, we still have a potential multitude of models at our disposal, 
however each makes use of the concept of utility and, as such, each facilitates the use 
of prediction errors. A prediction error is simply a measure of the mismatch between 
what is expected and what is actually experienced. Learning itself is essentially reducing 
prediction errors over time (Sutton & Barto, 2018), and this principle is a powerful tool 
with which to study adaptive behavior. Furthermore, predictions errors have a robust 
and consistent fingerprint in the brain, which allows for a way to connect cognitive and 
neurological processes.

Neuroimaging

Combining neuroimaging with economic games and computational modeling increases 
our ability to explain the psychological and concomitant neurophysiological substrates 
underlying behavior. The neuroimaging method most commonly used in conjunction 
with economic games and computational modeling, and the one we employ here, is 
functional magnetic resonance imaging (fMRI) (Behrens, Hunt, & Rushworth, 2009; 
Fehr & Camerer, 2007). 
	 In fMRI, a participant completes a task (such as an economic game) while lying 
supine in an MRI scanner. Throughout the task, the MRI scanner uses magnetic waves 
to take precise measures of the blood flow in the participant’s brain. Importantly, blood 
has a specific magnetic signature depending on how much oxygen it contains. Because 
more cellular activity requires more oxygen, we can use the magnetic signatures of 
oxygenated vs. deoxygenated blood to infer levels of neural activity. In fact, research 
has shown that there is a close correspondence between neural activity and changes in 
blood oxygenation levels.  This allows the use of blood oxygen level dependent changes, 
so called BOLD responses, as measured by fMRI, as proxies of the underlying neural 
activity (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001). 
	 There has, however, been controversy in recent years surrounding the efficacy 
of fMRI. Specifically, some studies have shown that, using conventional analysis 
techniques, a statistically significant signal can be detected when in reality no signal 
is present (Bennett, Miller, & Wolford, 2009; Eklund, Nichols, & Knutsson, 2016; 
Warren et al., 2017). Furthermore, the very practice of fMRI often makes use of “reverse 
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inference”, in which a psychological construct is inferred based on the activity of a 
certain brain region. This type of logic, though widely practiced, is oftentimes invalid 
(Poldrack, 2006, 2011). However, this type of fallacious logic can be avoided by selecting 
neural structures a priori and using independent tasks that elicit activations in these 
same areas in order to localize the subject-specific functional regions (e.g., Prochazkova 
et al., 2018). 
	 Furthermore, one of the most reliable and robust effects within cognitive 
neuroscience is the discovery of so-called reward prediction errors in the brain (Gershman 
& Uchida, 2019; Preuschoff & Bossaerts, 2007; Schultz, 2010; Schultz, Dayan, & 
Montague, 1997). In a seminal study (Schultz et al., 1997), monkeys were trained to 
expect a reward (juice) every time they pulled a lever. At the beginning of the learning 
process, each time a monkey pulled the lever and received juice, neurons within the 
dopaminergic midbrain became more active. This is consistent with the interpretation 
that the monkeys were surprised each time a lever pull resulted in a reward; they 
experienced a positive prediction error, i.e. the outcome was better than they expected, 
and this positive prediction error was expressed as an increase in dopaminergic neural 
activity. When, on the other hand, the monkeys had experienced that a lever pull 
preceded juice allocation many times, yet no juice was provided, neurons within the 
dopaminergic midbrain became less active. This is consistent with the interpretation 
that the monkeys were still surprised, but this time from a negative prediction error 
– the outcome was worse than they expected – and this negative prediction error was 
expressed as a decrease in dopaminergic neural activity. This close coupling of prediction 
errors with neural firing patterns was subsequently shown to be robustly correlated with 
BOLD response within regions of the human basal ganglia, most notably the ventral 
striatum and ventromedial prefrontal cortex (Behrens, Hunt, Woolrich, & Rushworth, 
2008; Behrens, Woolrich, Walton, & Rushworth, 2007; O’Doherty et al., 2004), which 
is heavily innervated with dopaminergic inputs (Palminteri & Pessiglione, 2017).
	 Importantly, this close correspondence between neural activity and subjective 
experience (e.g. surprise) facilitates the use of computational models that make use of 
the concept of utility. Specifically, when a participant plays an economic game in the 
fMRI scanner, we use computational modeling to infer their expectations and violations 
thereof; in other words, we estimate their predictions and their prediction errors. We 
can then search for correlates of these prediction errors in the brain. In fact, because the 
neural reward prediction error is so reliable, we are able to use neural data to validate our 
computational models. In short, economic games, computational modeling, and fMRI 
each strengthen each other in a three-pronged approach to the study human sociality.
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Outline of  thesis

This thesis consists of three empirical chapters that investigate elements of human social 
behavior through the combination of economic games, computational modeling, and 
neuroimaging. The empirical chapters are outlined in detail below.

Chapter 2.
Chapter 2 deals with the assertion made by John Stuart Mill (1859) in his principles of 
political economy: “a great proportion of all efforts … [are] spent by mankind in injuring 
one another, or in protecting against injury.” These tendencies for “injuring others” and 
defending against injury are well captured by economic contest experiments, such as 
our attacker-defender contest, in which individuals invest to gain a reward at a cost to 
their competitor (so-called attack), or to avoid losing their resources to their antagonist 
(Carter & Anderton, 2001; Chen & Bao, 2015; Chowdhury, Jeon, & Ramalingam, 
2018; De Dreu & Gross, 2019; De Dreu, Kret, & Sligte, 2016; De Dreu, Scholte, van 
Winden, & Ridderinkhof, 2015; Grossman & Kim, 1996; Wittmann et al., 2016; Zhu, 
Mathewson, & Hsu, 2012).
	 Why individuals invest in attack and defense remains poorly understood, and 
can be explained by a variety of subjective “desires” (Charpentier, Aylward, Roiser, & 
Robinson, 2017; Delgado, Schotter, Ozbay, & Phelps, 2008; Dorris & Glimcher, 2004). 
Humans may be attempting to maximize their personal earnings when investing in 
attack and defense, a desire which is typically assumed in standard economic theory (e.g. 
Ostrom, 1998). In the same vein, individuals could invest in attack and defense due to 
“competitive arousal” and interpersonal rivalry (Delgado et al., 2008; Ku, Malhotra, & 
Murnighan, 2005). Furthermore, attack and defense investments could be indicative of 
a desire to minimize risk and uncertainty (Delgado et al., 2008; Kahneman & Tversky, 
1984). In short, behavior in this game can be driven by a multitude of psychological 
forces. 
	 We addressed this multiplicity of motives using an approach in line with research 
on learning from reward and risk prediction (Olsson, FeldmanHall, Haaker, & Hensler, 
2018; Palminteri, Wyart, & Koechlin, 2017; Preuschoff, Quartz, & Bossaerts, 2008). 
In conjunction with fMRI, we applied a cognitive-hierarchies framework (Camerer, Ho, 
& Chong, 2004). The cognitive-hierarchies framework rests on the assumption that 
expectations and beliefs in strategic interactions are formed recursively (i.e., [1] I think 
that [2] you think that [3] I think that [4]…) and vary in terms of their sophistication 
(i.e., the number of recursions k). Using this computational framework, we were able 
to estimate, for each attack/defense investment, the expected reward and accompanying 
prediction errors. 
	 Our results showed that attackers were best described by a model with 4 levels of 
recursion, while defenders were best described by a model with 3 levels of recursion. This 
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suggests that during attack individuals engage a more sophisticated level of recursive 
reasoning than during defense. At the neural level we found that participants exhibited 
more neural activity during attack relative to defense in the anterior insula, a region 
associated with emotional processing (Sanfey, Rilling, Aronson, Nystrom, & Cohen, 
2003), and the inferior frontal gyrus, a region associated with strategic reasoning (De 
Dreu, Kret, et al., 2016) as well as theory of mind (Engelmann, Meyer, Ruff & Fehr, 
2019; Prochazkova et al., 2018; Van Overwalle, 2009). In a follow-up analysis we found 
that neural activity during attack covaried with wins and losses in, among other regions, 
the temporoparietal junction, a region consistently linked to theory of mind (Engelmann, 
Meyer, Ruff & Fehr, 2019; Prochazkova et al., 2018; Van Overwalle, 2009), and the 
ventral striatum, one of the central hubs of the reward learning network (Balodis et al., 
2012; McNamee, Rangel, & O’Doherty, 2013; Metereau & Dreher, 2015; Rudorf, 
Preuschoff, & Weber, 2012; Xue et al., 2009; Zhu et al., 2012). Within the ventral 
striatum, there was a significantly higher correlation between reward prediction errors 
and neural activity during attack than during defense, suggesting that attacker brains 
were more responsive to the rewards of the contest than defender brains. 
	 In sum, our results suggest that strategic injuring of others is accomplished via 
high-level recursive reasoning with the goal of maximizing personal wealth. This is given 
credence by the fact that attackers utilized higher k-level reasoning than did defenders, 
as well as the fact that neural structures associated with theory of mind and reward 
processing were preferentially recruited during attack relative to defense. Taken together, 
our results suggests that theory of mind, while essential for empathy, could also underpin 
strategies which serve to maximize reward through exploiting and subordinating others. 

Chapter 3.
A key task for defenders in the attacker-defender game studied in Chapter 2 is to assess 
to what extent they can trust their counterpart to not attack, or should instead fear their 
counterpart’s aggressiveness. Chapter 3 zooms in on trust and distrust as a key element 
in social interactions. Especially when interacting with strangers, the decision to trust 
is non-trivial, as norms of trust and reciprocity differ dramatically between cultures 
and groups (Heap & Zizzo, 2009; Johnson & Mislin, 2011; Romano, Balliet, & Wu, 
2017; Romano, Balliet, Yamagishi, et al., 2017). Therefore, learning these norms in 
novel situations is critically important for individuals to adequately function within 
a social environment. Faulty predictions of an interlocutor’s norms can lead to losing 
out, either from refusal to engage in a mutually trusting relationship, or from engaging 
in a relationship that results in exploitation. Accurate predictions, on the other hand, 
allow an individual to distinguish the trustworthy from the exploitative. It follows that, 
individuals require the ability to learn to predict the reciprocity of others. We examine 
this supposition by applying computational modeling to behavior in a variation of the 
trust game.



Introduction

Ch
ap

te
r 

1

19

	 Previous research on the trust game suggests that different individuals operate under 
different sets of rules regarding trust. Indeed, in this chapter we uncover that nearly all 
individuals fall into one of three discrete categories of reciprocity: exploiters, perfect 
reciprocators, and contingent reciprocators. Exploiters are responders who never return 
as much money to the sender as the sender transferred to them. Perfect reciprocators 
are responders who always return at least as much money as the sender transferred to 
them. Contingent reciprocators are responders who return money as a function of how 
much the sender transferred to them – when the sender transfers a small amount, they 
return a small amount, and when the sender transfers a large amount, they return a large 
amount.
	 These different reciprocity types raise an important question: how do individuals 
learn who to trust and who to avoid? In order to address this, we confronted naïve 
individuals with these different types, and gave them the opportunity to learn the 
trustworthiness of each through repeated interactions. We then constructed several 
computational learning models. One way in which individuals could learn who to trust 
and who to avoid is through the use of reinforcement learning (RL). At its simplest, RL 
makes the claim that individuals make predictions about actions and then update those 
predictions based on the observed outcomes (Sutton & Barto, 2018). This framework 
has been effective in capturing a wide variety of behaviors (Behrens et al., 2009; Erev 
& Roth, 1998; Palminteri et al., 2017), and precisely predicts the neural correlates of 
the learning process (Behrens et al., 2008; Levy & Glimcher, 2012; Rutledge, Dean, 
Caplin, & Glimcher, 2010). However, RL does make some psychologically implausible 
assumptions about how individuals reason. For example, RL only updates values for the 
selected action. This means that, under RL, we assume individuals ignore the value of 
every action except for the one they choose. 
	 In a different computational account, individuals mentally simulate the outcome 
of all actions, and update the values of these actions accordingly. This so-called belief-
based learning (BB) expands RL to include beliefs and counterfactual action simulation. 
This framework, however, also suffers from some untenable assumptions. For example, 
all outcomes, for both selected and mentally simulated actions, are updated with equal 
weight. This means that imagined and experienced outcomes are treated identically. 
	 Both of these frameworks have been combined in a hybrid model, Experience 
Weighted Attraction (EWA), which, better than RL or BB accounts, describes behavior 
in a variety of economic games such as the trust game (Camerer & Ho, 1999; Camerer, 
Ho, & Chong, 2002; Zhu et al., 2012) . Moreover, certain parameters of the EWA 
model have exact psychological interpretations, which further facilitates inferences 
about the processes generating behavior. 
	 When applied to the behavior of individuals playing the trust game as senders 
against the three aforementioned responder categories (exploiter, perfect reciprocator, 
contingent reciprocator), we found that the EWA model captured behavior better than 
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RL and BB alternatives. This means that when individuals are learning who they can trust 
and who they cannot, they combine their own experiences with their personal beliefs in 
a hybrid fashion. Interestingly, subjects behaved sub-optimally against all the different 
responder types, especially when interacting with contingent reciprocators. We further 
showed that the degree to which individuals learned from their simulated outcomes, the 
more money they earned from their interactions. This indicates that mental simulation 
while learning to trust offers a tangible benefit to the individual. 
	 In sum, we show that people cannot necessarily be categorized as simply trustworthy 
or untrustworthy because a substantial proportion of individuals reciprocate trust based 
on how much they are trusted. Furthermore, we show that to learn these different 
trustworthy categories individuals employ a combination of experiential and belief-
based learning. Taken together this suggests that to effectively learn who is trustworthy 
and who is not individuals must form a strong internal concept of the social world.

Chapter 4 .
The results from both Chapter 2 and 3 revealed an important role for social perception 
and learning, suggesting that empathy and social norms modulate decisions to exploit 
and to trust and reciprocate. Chapter 4 builds on these and related findings by asking 
what role  empathy (Zaki, 2014; Zaki & Mitchell, 2013) and social preferences such as 
concerns for fairness and the welfare of others (Blake et al., 2015; Fehr & Schmidt, 1999) 
play in learning group-specific conventions. Do these traits facilitate social coordination 
by enabling the acquisition of culture-specific rules of engagement, or do they interfere 
with efficient learning by biasing beliefs and hindering accurate information updating? 
Existing theory is ill-suited to answer these questions. Specifically, the role of social 
preferences in the formation and updating of beliefs and expectations is poorly 
understood. For this reason, we investigated whether and how beliefs about others’ 
needs and desires are formed and updated, and whether and how culturally engrained 
social preferences shape the learning of rules of engagement. 
	 In a first step, we created three distinct groups of ultimatum game responders 
that differed in the extent to which individual members would accept (versus reject) 
ultimatum offers based on actual decisions from participants. These different groups 
exhibited different acceptance thresholds, i.e. the minimum offer they would accept. 
This amount was unknown to proposers, yet each different group was identified with 
a unique symbol, similar to culture-specific markers of identity such as language or 
clothing. In addition to the three different groups of responders, we also tested whether 
social consequences affected the degree to which proposers learned culture-specific 
rules of engagement. In one treatment (the social condition), proposers interacted with 
human responders whose earnings depended on the (acceptance of ) proposed offers. In 
the other treatment (the non-social condition), proposers interacted with behaviorally 
identical computer agents that did not earn from the (acceptance of ) proposed offers 
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(Baumgartner, Fischbacher, Feierabend, Lutz, & Fehr, 2009; Sanfey et al., 2003). In 
the social condition, participants were explicitly told that they were facing groups 
of responders who had received different starting endowments but not what the 
endowments were. In the non-social condition, participants were told that they were 
facing computer generated lotteries programmed to mimic the behavior of participants 
who had received different starting endowments. This created a social and non-social 
learning environment with identical learning contingencies, allowing us to test how 
social concerns for the responders affects learning.
	 We next constructed a computational framework to model how proposers behave 
when paired with responders from these different groups, as well as how proposers behave 
when interacting in a social versus a non-social context. We used a so-called Bayesian 
Preference Learner (BPL) model, which posits that individuals learn by applying Bayes’ 
theorem. Through simulations we demonstrated that this model effectively captures 
optimal learning of these different responder groups in our ultimatum game setup. 
Furthermore, we demonstrated through simulations that learning should differ between 
social and non-social contexts if we assume that individuals exhibit an aversion to 
unequal outcomes for themselves versus other individuals – so-called inequity aversion. 
	 At the behavioral level we found that proposers did indeed learn the different 
responder groups, and that this learning process was well captured by our BPL model. 
This was likewise corroborated by an fMRI analysis, wherein we found prediction errors 
from our BPL model in the ventral striatum and ventromedial prefrontal cortex, crucial 
hubs in the reward learning network (Balodis et al., 2012; McNamee et al., 2013; 
Metereau & Dreher, 2015; Rudorf et al., 2012; Xue et al., 2009; Zhu et al., 2012) 
We also found that proposers made higher offers to responders in the social relative 
to the non-social condition, and that this discrepancy between conditions could be 
explained by including an inequity aversion term in our BPL model. This social/non-
social difference was also expressed in the brain, with significant differences in the dorsal 
anterior cingulate cortex, a structure consistently associated with executive control and 
contextual updating (Ebitz & Hayden, 2016; Kolling et al., 2016; Meder et al., 2016), 
as well as several hubs of the theory of mind network such as the superior temporal 
sulcus and the precuneus (Coricelli & Nagel, 2009; Hampton, Bossaerts, & O’Doherty, 
2008). Furthermore, in a post-hoc belief estimation task, we found that proposers 
actually over-estimated the acceptance thresholds of responders in the social relative to 
the non-social condition. This suggests that social concerns and personal preferences 
modify not only how individuals behave but what they believe about others in their 
social environment, which in turn biases how they build and update their concepts of 
culture-specific rules of engagement.
	 In sum, this chapter shows that humans can learn the cultural norm of an 
environment through a process of Bayesian learning, relying on reward/reinforcement 
neural circuitry. This process, however, is hindered by moral sentiments and social 
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preferences, which lead individuals to rely on erroneous heuristics, make unnecessarily 
high offers to their opponents, and leave money on the table. However, while this process 
leads to false beliefs about the environment and facilitates the perpetuation of relying on 
erroneous heuristics, the resulting self-fulfilling prophecy (I believe others require me to 
be nice and therefore I am nice) may explain how norms of fairness can establish and 
survive in groups even when individuals have selfish motives. 

Conclusions

While each empirical chapter uses a different computational model applied to a different 
economic game, each chapter addresses a specific problem regarding human social 
living. In this way, each chapter contributes to a greater understanding of how humans 
are able to socially interact despite the incentives which repel individuals away from 
commonality. Through the attacker-defender contest we show that when motives and 
abilities are asymmetrical such that one party (the attacker) can benefit at the expense 
of the other (the defender), attackers will utilize high-level recursive reasoning and 
associated neural circuitry in an attempt to profit at the expense of defenders. Through 
the trust game we show that reciprocity behavior falls in three simple categories, yet 
learning these categories occurs suboptimally through a combination of belief and 
experiential learning –  with greater reliance on personal belief being associated with 
higher monetary outcomes. Through the ultimatum game we show that individuals 
can be nudged into exhibiting acceptability thresholds that resemble those of different 
cultures. Learning to adapt to these different “cultures” is impeded by social preferences, 
which in turn leads to false beliefs about the social environment. Each study deals with 
a different collection of social norms and attempts to understand how humans reconcile 
the associated social dilemmas. 
	 While each chapter does contribute to a more comprehensive understanding of 
human sociality, there are shortcomings to the included works that can be improved upon 
in future studies. One of the largest outstanding questions concerns generalizability. All 
of our participants came from western, educated, industrialized, rich, and democratic 
backgrounds – so-called WEIRD societies (Henrich, Heine, & Norenzayan, 2010). It 
could very well be the case that the effects found in our studies are specific to this 
particular milieu. Future studies involving cross-cultural comparisons are needed in 
order to establish how generalizable our results truly are. Furthermore, while we do 
attempt to describe in detail the mechanisms generating the behaviors we observe, 
there are many outstanding questions regarding environmental, psychological, and 
neurological substrates. 
	 In the attacker-defender contest, future studies should attempt to promote greater 
cooperation between the interacting parties. Is there a particular psychological framing, 
such as stressing similarity between the attacker and defender, that will prevent attackers 
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and defenders from investing in the contest in order to maximize collective wealth? 
Are there some changes to the incentive structure that can turn a docile attacker into 
an aggressive attacker (or vice versa)? In our study, attack behavior was associated with 
more sophisticated recursive reasoning. Could we potentially nudge individuals into 
higher (or lower) levels of recursion, and if so would that make them more (or less) 
efficacious in this setup? We also show that during attack relative to defense, reward 
related neural circuitry was preferentially responsive; this might suggest that dampening 
the effects of key neurotransmitters in the reward system (e.g. dopamine) might also 
reduce attack behavior. 
	 In the trust game, to our knowledge no other research has discovered the existence 
of the sizeable minority of responders we call contingent reciprocators. An interesting 
follow-up question should address what traits predict whether an individual will fall into 
this category versus the other two. Are contingent reciprocators more calculating? More 
selfish? More future-oriented? Is position in one of these three categories stable over 
time, or do individuals shift their reciprocity behavior frequently? Another interesting 
question that arises is: despite the fact that these reciprocity types seem ubiquitous, 
why do individuals learn them so imperfectly? Can we introduce manipulations, 
such as observational learning, in order to facilitate optimal learning of these types? 
Finally, future studies should elucidate what neural correlates underpin this learning 
process. Is the suboptimality of learning associated with diminished activity in reward 
learning circuitry, or associated with regions more involved in theory of mind and social 
cognition? Answering these questions could help determine what aspect of learning to 
trust most contributes to the suboptimal learning we observe.
	 In the ultimatum game, future research should establish if there is a way to nudge 
people into more or less prosocial thinking when learning the different responder 
cultures. For example, participants could, through psychological framing, be made 
to temporarily harbor relatively selfish (prosocial) preferences; the question becomes 
whether this will diminish (enhance) the negative effects on learning we observe in our 
current sample. In other words: would altered social preferences lead to altered learning? 
And if so, would this also diminish the differences in beliefs we observed between social 
and non-social contexts? Another interesting question that future research can address 
is the degree to which the altered beliefs in the social condition depend on the act of 
learning. Do participants need to experience the results of their own actions in order to 
form these false beliefs, or would a similar effect occur if they were to simply observe 
someone else going through the motions? 
	 Another interesting question that this thesis raises regards how performance in one 
of these tasks predict performance in the others. For example, do people who are very 
mild attackers also exhibit high inequity aversion and high levels of trust? Do people 
who are aggressive defenders have low levels of trust? Contingent trust? This will be a 
difficult question to address, but understanding how behavior in these different games 
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relate will contribute to our understanding of how the norms contained within each 
game interact with one another. 
	 Ultimately, each chapter acts as a building block contributing a different perspective 
to the study of human sociality. Using economic games, computational models based on 
the principle of utility, and model-based neuroimaging (Chapters 2 and 4), my research 
contributes to the scientific endeavor working to crack the “elaborate and secret code 
that is written nowhere, known by none, and understood by all” (Sapir, 1927, p.137).
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Summary

Competitions are part and parcel of daily life and require people to invest time and energy to 
gain advantage over others, and to avoid (the risk of ) falling behind. Whereas the behavioral 
mechanisms underlying competition are well-documented, its neurocognitive underpinnings 
remain poorly understood. We addressed this using neuroimaging and computational 
modeling of individual investment decisions aimed at exploiting one’s counterpart (“attack”) 
or at protecting against exploitation by one’s counterpart (“defense”). Analyses revealed 
that during attack relative to defense (I) individuals invest less and are less successful; 
(II) computations of expected reward are strategically more sophisticated (reasoning level  
k = 4; versus k = 3 during defense); (III) ventral striatum activity tracks reward prediction errors; 
(IV) risk prediction errors were not correlated with neural activity in either ROI- or whole-
brain analyses; and (V) successful exploitation correlated with neural activity in the bilateral 
ventral striatum, left orbitofrontal cortex, left anterior insula, left temporoparietal junction, and 
lateral occipital cortex. We conclude that in economic contests, coming out ahead (versus not 
falling behind) involves sophisticated strategic reasoning that engages both reward and value 
computation areas and areas associated with theory of mind. 

Key Words: Competition | K-level Reasoning | Theory of Mind | Reward Prediction | Risk 
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Introduction

In his principles of political economy, John Stuart Mill, (1859) observed that “a great 
proportion of all efforts … [are] spent by mankind in injuring one another, or in 
protecting against injury.” Such appetite for “injuring others” and to defend against 
being injured has recently been documented in economic contest experiments in which 
individuals invest to obtain a reward at a cost to their competitor (henceforth attack), 
or to avoid losing their resources to their antagonist (henceforth defense; Carter & 
Anderton, 2001; Chen & Bao, 2015; Chowdhury, Jeon, & Ramalingam, 2018; De 
Dreu & Gross, 2019; De Dreu, Kret, & Sligte, 2016; De Dreu, Scholte, van Winden, & 
Ridderinkhof, 2015; Grossman & Kim, 1996; Wittmann et al., 2016; Zhu, Mathewson, 
& Hsu, 2012). These experiments showed that humans invest in injuring others through 
attacks and in protecting against injuring through defense, that investments in attack 
are typically less frequent and forceful than investments in defense, and that attack 
decisions disproportionally often fail and defenders relatively often survive (with ≈ 30% 
victories against ≈ 70% survivals) (for a review see e.g., De Dreu & Gross, 2019). 
	 Resonating with the idea that competition can be costly, participants during such 
attacker-defender contests typically waste about 40% of their wealth in fighting each 
other  (De Dreu & Gross, 2019). Yet why people invest in attack and defense remains 
poorly understood. In fact, investing in injuring others, and in protecting against injury, 
may reflect an array of subjective “desires” (Charpentier, Aylward, Roiser, & Robinson, 
2017; Delgado, Schotter, Ozbay, & Phelps, 2008; Dorris & Glimcher, 2004). Perhaps 
humans invest in attack and defense to maximize their personal earnings, as is typically 
assumed in standard economic theory (e.g. Ostrom, 1998). Relatedly, individuals may 
invest in attack and defense because of “competitive arousal” and rivalry (Delgado et al., 
2008; Ku, Malhotra, & Murnighan, 2005). Finally, investment in attack and defense may 
be driven by a desire to minimize risk and uncertainty (Delgado et al., 2008; Kahneman 
& Tversky, 1984). Indeed, decision-making in competitive contests is inherently risky 
– investments are typically wasted and may result in no return (among attackers), in 
wasted resources (when attacks were unexpectedly shallow and one thus over-invested 
in defense), or in costly defeat (when attacks were unexpectedly tough). Humans factor 
in such risks when making decisions and are typically risk-averse (Kuhnen & Knutson, 
2005; Loewenstein, Hsee, Weber, & Welch, 2001; Tobler, O’Doherty, Dolan, & 
Schultz, 2006). 
	 Humans may hold conflicting desires when investing in attack and defense, 
and may need to balance between maximizing reward and minimizing risk. What 
individuals aim for and how possibly conflicting desires are regulated is difficult to infer 
from behavioral decision-making alone. To illustrate, consider a two-player contest in 
which one participant can invest in attack and the other participant in defense. When 
the attacker invests more than its defender, attackers obtain all what the defender did 
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not invest and the defender would be left with 0. If, attackers invests equal or less than 
their defender, both sides earn their non-invested resources (Carter & Anderton, 2001; 
Chowdhury et al., 2018; De Dreu & Gross, 2019; De Dreu, Gross, et al., 2016; De 
Dreu, Kret, et al., 2016; De Dreu et al., 2015; Grossman & Kim, 1996)1. It follows 
that investments can increase attacker earnings and their competitive success, and 
can prevent defenders from losing their remaining endowment to their attacker. At 
the same time, however, not investing resources eliminates the attacker’s uncertainty 
about earnings from the contest, alongside the possibility of losing money. Defenders, 
in contrasts, reduce such uncertainty and possibility of losing the contest by investing 
resources (Chowdhury et al., 2018). 
	 We solved this problem of inference using a two-pronged approach inspired by 
recent work in cognitive neuroscience on learning from reward and risk prediction 
(Olsson, FeldmanHall, Haaker, & Hensler, 2018; Palminteri, Wyart, & Koechlin, 2017; 
Preuschoff, Quartz, & Bossaerts, 2008).  First, from investments in attacker-defender 
contests we computed, using a k-level reasoning approach, estimates of expected reward 
and expected risk (Botvinick, Niv, & Barto, 2009; Camerer, Ho, & Chong, 2004; 
Harsanyi, 1967; Nagel, 2016; Ribas-Fernandes et al., 2011; Stahl & Wilson, 1995; Zhu 
et al., 2012). The computational approach incorporates the intuition that the formation 
of expectations and beliefs in strategic interactions are recursive (i.e., [1] I think that 
[2] you think that [3] I think that [4]…) and can be more or less sophisticated (i.e., 
the number of recursions k). Using computational modeling and model comparison we 
estimated for each investment in attack and defense the expected reward and risk, and 
concomitant reward and risk prediction errors. Our modeling thus defines (expected) 
reward as the (expected) monetary payoff from investment in attack and defense (e.g., 
Zhu et al., 2012), and (expected) risk as the (expected) variance of the reward prediction 
error (Preuschoff et al., 2008). 
	 Second, and next to an exploratory whole-brain analysis potentially revealing 
currently unknown cues about the neural foundations of exploitation and protection, 
we linked prediction errors to a priori defined regions of interest—the Ventral Striatum 
and the Amygdala. We chose the ventral striatum because it has been extensively linked 
to reward processing and competitive success (viz. reward maximization; Balodis et al., 
2012; McNamee, Rangel, & O’Doherty, 2013; Metereau & Dreher, 2015; Rudorf, 
Preuschoff, & Weber, 2012; Xue et al., 2009; Zhu et al., 2012). We chose the Amygdala 
because of its involvement in low-level affective processing of threat to resources (viz. 
risk minimization; Baumgartner, Heinrichs, Vonlanthen, Fischbacher, & Fehr, 2008; 

1	 The attack-defense contest belongs to a class of asymmetric conflict games in which one player competes 
to maximize personal gain and the counterpart competes to prevent exploitation (De Dreu & Gross, 2019; 
Dechenaux, Kovenock, & Sheremeta, 2015). Including in this class of asymmetric games are the Hide-and-
Seek game (Bar-Hillel, 2015; Flood, 1972), the matching-pennies game (Goeree, Holt, & Palfrey, 2003), the 
inspection game (Nosenzo, Offerman, Sefton, & van der Veen, 2014), and the Best-shot/Weakest-link game 
(Chowdhury & Topolyan, 2016; Clark & Konrad, 2007). Across these games, humans invest to maximize wealth 
and/or to minimize risk of losing.



Neurocognitive Underpinnings of  Aggressive Predation in Economic Contests

Ch
ap

te
r 

2

37

Choi & Kim, 2010; De Dreu et al., 2015; Delgado et al., 2008; Nelson & Trainor, 
2007; Phelps & LeDoux, 2005). 

Materials and Methods

Participants and Ethics
Male participants (M = 25.31 years; N = 27) were recruited via an on-line recruiting 
system for participating in a neuro-imaging study on human decision-making. 
Exclusion criteria were significant neurological or psychiatric history, prescription-based 
medication, smoking more than five cigarettes per day, and drug or alcohol abuse.2 
Eligible participants were assigned to a session and instructed to refrain from smoking 
or drinking (except water) for 2 hours before the experiment that lasted approximately 
1.5 hours. They received a show-up fee of €30 in addition to the earnings from decision 
making. The experiment involved no deception and was incentivized (see below), received 
ethics approval from the Psychology Ethics Committee of the University of Amsterdam, 
and complied with the guidelines from the American Psychological Association (6th 
edition). Participants provided written informed consent before the experiment and 
received a full debriefing afterwards.

Experimental Procedures
Experimental sessions were conducted between noon and 4PM and participants were 
tested individually (also see De Dreu et al., 2015). Upon arrival, participants were 
escorted to a private cubicle where they read and signed an informed consent form. 
Participants received a booklet with instructions for the Attacker-Defender Game (labeled 
Investment Task), containing several examples of investments and their consequences to 
both attacker (labeled Role A) and defender (labeled Role B), and several questions to 
probe understanding of the game structure and decision consequences. Neutral labeling 
was used throughout. 
	 Upon finishing the instructions for the contest, the experimenter prepared the 
participant for neuro-imaging. During the fMRI session, participants completed 6 
functional runs, each consisting of a 20 trial block played as either attacker or defender. 
Participants thus alternated between the role of attacker and defender every 20 trials, 
with the starting order counter-balanced across participants. Importantly, we used a 
random-partner matching one-shot protocol, eliminating reputation concerns (Zhu 
et al., 2012). In each session, participants made 60 investments as attacker, and 60 

2	 The sample was the same as used in De Dreu et al. (2015), which used a cross-over design to examine the 
behavioral and neural effects of oxytocin (versus placebo) administration. Here we only analyze investments 
made under placebo. Moreover, our earlier report only considered trials in which participant decisions affected 
themselves only, and did not include those decision trials in which decisions also affected two other individuals 
within their group. Here we include also those previously unanalyzed trials. Because this manipulation revealed 
no differences, we collapsed across these two conditions. In short, the current study shares 25% of its analyzed 
data with the previous one, asks a different research question and uses distinctly different analytic techniques.
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as defender. For each investment trial, they received a prompt, randomly generated 
between 0 (indicating no investment) and 10 (indicating investment of the entire 
endowment) and used a button-press to adjust the given number up or down to indicate 
their desired investment. The duration of the selection period was self-paced, and had 
an average length of 4.27 seconds (SD = 3.43 seconds) (see Figure 1). After selecting 
their investments, participants waited an average of 6.08 seconds (SD = 2.22 seconds), 
at which point they received feedback about their counterpart’s investment, and were 
shown the respective payoffs to oneself and the other (who was randomly chosen on 
each trial from a pool of 150 attacker [defender] investments; for further detail see 
De Dreu et al., 2019, 2015). At the end of the experiment participants received their 
participation fee and earnings by bank transfer (range €0 – €8, with M = €5 for non-
scanner participants, and €0 – €33, with M = €19 for scanner participants). Accordingly, 
participant pay was private and conditioned on their performance.
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Figure 1. Experimental design. (A) Timeline of the entire experiment. (B) The Attacker Defender contest: 
on each trial, both attackers and defender begin with a 10€ endowment with which to invest in the contest. 
Investments are non-recoverable, yet if the defender invests equal or more than the attacker (bottom), both 
attacker and defender keep their remaining endowments (i.e. whatever they did not invest in the contest). 
If the attacker invests more than the defender (top), the attacker receives their remaining endowment 
plus that of the defender, who receives nothing. (C) Trial break-down: for each trial, participants received 
a prompt, randomly generated between 0 (indicating no investment) and 10 (indicating investment of 
the entire endowment) and used a button-press to adjust the given number up or down to indicate their 
desired investment. The duration of the selection period was self-paced (M ± SD = 4.27 ± 3.43 seconds). 
After selecting their investments, participants waited an average of M ± SD = 6.08 ± 2.22 seconds and then 
received feedback about their counterpart’s investment and the payoffs to oneself and to the counterpart. 
This completed one trial.
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Attacker-Defender Contest 

The Attacker-Defender Contest (Figure 1B) consists of two players: an attacker and 
a defender. Each player was endowed with €10 from which they could invest in the 
contest. Investments were always wasted but if the investments by the attacker (x) 
exceeded that by the defender (y), the attacker (x > y) the attacker obtains all of the 
defender’s non-invested endowment (e–y). In this case, the attacker’s total earning was 
2e–x–y, and the defender earned 0. If, in contrast, the defenders investment matched or 
exceeded that by the attacker (y ≥ x), both defender and attacker earned what was left 
from their endowment (e – y, and e – x, respectively) (De Dreu et al., 2015; 2016ab; 
2019).
	 The Attacker-Defender Contest has a contest success function f = Xm/(Xm + Ym), 
where f is the probability that the attacker wins, m → ∞ for X ≠ Y and f = 0 if Y = X. 
Assuming rational selfish play and risk-neutrality, standard economic theory predicts 
that attackers and defenders use mixed strategies when investing. With e = 10€ per trial 
(as used in the current experiment), the mixed strategies for attack (with probability 
of investing x denoted by p(x)) and defense (with probability of investing y denoted 
by p(y)) define a unique Nash equilibrium where expected investments in attack are 
both lower (x = 2.62) than in defense (y = 3.38), and less frequent (probability of attack 
[defense] = 60% [90%]). However, when attacks are made they are expected to be more 
‘forceful’ (4.36 versus 3.75 for defense).3 

Modeling Investment Behavior with K-level Sophistication
To compute individual estimates of expected reward and concomitant reward and 
risk prediction errors, we adapted the cognitive-hierarchies framework developed in 
behavioral economics (Botvinick et al., 2009; Camerer et al., 2004; Nagel, 2016). The 
idea is that players hierarchically form beliefs about their opponents’ behavior, up to 
a certain level of cognitive sophistication (k-level). A k-0 player invests randomly. At 
k = 1 the individual assumes that her opponent has k = 0 and finds an investment 
that maximizes her expected reward under this assumption. At k = 2 the individual 
assumes that her opponent has k = 1 and finds an investment that maximizes her own 
expected reward under the assumption that the opponent seeks to maximize his personal 
reward against a k-0 player. This recursion can, in theory, continue infinitely, yet in our 
computational modeling we limited k ≤ 5. k-level 0. k-level 0 play each strategy with 
equal probability. We have: Specifically, when Is represent a player’s own investment  
(s stands for self) and Io their representation of the other player’s investment (o stands 
for other) we can formally express:

3	 Specifically, the mixed-strategy equilibrium is computed as follows: Attack: p(x=1) = 2/45, p(x) = p(x–1)[(12–
x)/(10–x)] for 2 ≤ x ≤6, p(x=0) = 1–[p(x=1) +…+ p(x=6)] = 0.4, and p(x) = 0 for x ≥ 7; Defense: p(y) = 1/(10–y) 
for 0 ≤ y ≤ 5, p(y=6) = 1 – [p(y=0) +…+ p(y=5)] = 0.15, and p(y) = 0 for y ≥ 7 (also see De Dreu et al., 2015).
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k-level 0. k-level 0 play each strategy with equal probability. We have:

 		  (1)

k-level 1. k-level 1 expect their opponent to play as k-level 0, such that they expect:

 		  (2)

These expectations can be used to compute the probability of success S of a given 
investment h (P(S|h)) by the attacker A and defender D, respectively:

 		  (3)

		  (4)

This can be used to compute an expected value, which in this case in the expected reward 
ER for any potential investment by the attacker and defender. We have, for the attacker:

	    	 (5)

where the two square brackets represent cases where the investment is successful or 
unsuccessful, respectively, and E[hD|hD < hA] is the expected opponent’s investment in 
case of success:

 		  (6)

For the defender we have, likewise:

 		  (7)

The expected reward also has an associated prediction error PE, which is simply the 
expected reward ER subtracted from the actual reward R 

  		  (8)

These values also allow for the calculation of risk prediction RP and accompanying risk 
prediction errors PERisk. We defined risk prediction as the expected size-squared of the 
reward prediction error (Preuschoff et al., 2008). More specifically, risk prediction is 
defined as the sum across all the possible rewards (R) of (R ‒ ER)2, multiplied by the 

∀	h ∈ {0,… ,10}, P(I! = h) = 	
1
11 

∀	h ∈ {0,… ,10}, P(I! = h) = 	
1
11 
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PE = R	-ER 
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probability P(R) that R is obtained. More formally: 

		  (9)

Which means that the risk prediction error PERisk is the risk prediction RP subtracted 
from the actual size-squared of the reward prediction error:

 		  (10)

Following standard practices in the field, we assume that participants select the 
investment Is that (soft-)maximizes their expected reward. This is modelled with a 
multinomial softmax function with free parameter β, which indexes the exploration/
exploitation tradeoff (choice temperature):

		  (11)

This choice temperature defines the likelihood of investments Is , i.e. the probability of 
observing investment Is under the considered model and parameter values.

k-levels  2 → n.  
For each k-level, k ≥ 2, the above procedure is iterated k-times, with k-level predictions 
of investments - needed to compute probabilities of success, expected rewards and 
choice probabilities - being generated by the softmax at the preceding level (see Figure 
2). Hence, each k-level model has k free-parameters, which constitutes the choice 
temperature at each level βk.

RP = 	E[(R-ER)!] =+ P(R) × (R-ER)!
"

 

PE!"#$ = (R-ER)%-RP 

P(I! = h") = 	
exp(β# 	× 	EV(h"))

∑ exp(β# 	× 	EV0h$1)#%
$&%
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Figure 2. Computational framework. Players hierarchically form beliefs about their opponents’ behavior, up 
to a certain level of cognitive sophistication (k-level) (column 1). The expected frequencies of the opponents 
investment are then used to calculated expected probability of success for each investment (column 2), which 
can then be used to calculated expected reward (column 3). Based on the expected reward, we calculate the 
frequency that a player should make each investment (column 4). A k-2 player (row 2) will assume that her 
opponent is k-1 and adjust her behavior accordingly, and so on. We developed computational models for 
hierarchies 1 up to 5.
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Model fitting

For each model M, the parameters	 were optimized by minimi-
zing the negative logarithm of the posterior probability (LPP) over the free parameters:

		  (12)

Here, P(D|M,    ) is the likelihood of the data D (i.e. the observed choice) given the 
considered model M and parameter values     , P(    |M) and  is the prior probability of 
the parameters. Following Daw (2011), the prior probability distributions were defined 
as a gamma distribution (gampdf(β,1.2,5)) for the choice temperature. This procedure 
was conducted using Matlab’s fmincon function with different initialized starting points 
of the parameter space (i.e., 0<β<Infinite) (Palminteri, Khamassi, Joffily, & Coricelli, 
2015). We computed the Laplace approximation to model evidence (ME). It measures 
the ability of each model to explain the experimental data by trading-off their goodness-
of-fit and complexity. Defining     as the model parameters identified in the optimi-
zation procedure and n as the number of data-points (i.e. trials), ME was computed as 
follows (Where |H| is the determinant of the Hessian matrix):

		  (13)

Bayesian Model Comparison. 
To identify the model most likely to have generated a certain data set, ME was computed 
at the individual level for each model in the respective model-space, and fed to random-
effects Bayesian Model Comparison using the mbb-vb-toolbox (http://mbb-team.
github.io/VBA-toolbox/; Daunizeau, Adam, & Rigoux, 2014). This procedure estimates 
the expected frequencies (denoted PP) and the exceedance probability (denoted XP) for 
each model within a set of models, given the data gathered from all subjects. PP quantifies 
the posterior probability that the model generated the data for any randomly selected 
subject. XP quantifies the belief that the model is more likely than all the other models 
of the model-space. An XP > 95% for one model within a set is typically considered as 
significant evidence in favor of this model being the most likely. 

Model identifiability. 
To assess the reliability of our modelling approach, we performed model identifiability 
simulations (see Correa et al., 2018 for a similar approach). Choices from synthetic 
subjects were generated for each task and each model, by running our computational 
models, with model parameters sampled in their prior distribution: softmax temperature 
β were drawn from gamma distribution (random(‘Gamma’,1.2,3)). For each model, we 
ran 10 simulations including 27 synthetic subjects (N=270), playing both attacker and 

(θ! = {β", β#, …	β$}) (θ! = {β", β#, …	β$}) 

(θ! = {β", β#, …	β$}) 
(θ! = {β", β#, …	β$}) (θ! = {β", β#, …	β$}) 

LPP = 	 - log)P(θ!|D,M)1 ∝ 	 - log)P(D|M, θ!)1 -log	(P(θ!|M)) 

(θ! = {β", β#, …	β$}) 

ME = 	log (P*D,M, θ/!01 + log (P*θ/!,M01 +
df
2 log

(2π) -
1
2 log

|H| 
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defender for 3 blocks of 20 trials. Model identifiability was assessed by running the 
Bayesian Model Comparison on the synthetic data.

MRI Data Acquisition, Preprocessing, and Data Analysis
Scanning was performed on a 3T Philips Achieva TX MRI scanner using a 32-channel 
head coil. Each participant played six blocks of the attacker-defender game in which 
functional data were acquired using a gradient-echo, echo-planar pulse sequence 
(TR=2000 ms, TE=27.63 ms, FA=76.18, 280 volumes, FOV=192^2 mm, matrix 
size=64^2, 38 ascending slices, slice thickness=3 mm, slice gap=0.3 mm) covering 
the whole brain. For each subject, we also recorded a 3DT1 recording (3D T1 TFE, 
TR=8.2 ms, TE=3.8 ms, FA=88, FOV=256^2 mm, matrix size=256^2, 160 slices, slice 
thickness=1 mm) as well as respiration, pulse oximetry signal, and breath rate. Stimuli 
were back-projected onto a screen that was viewed through a mirror attached to the 
head-coil. 

Analyses were conducted with FSL (Oxford Centre for Functional MRI of the Brain 
(FMRIB) Software Library; www.fmrib.ox.ac.uk/fsl) and custom scripts written in 
Matlab (Mathworks, US). All fMRI data was pre-whitened, slice-time corrected, 
spatially smoothed with a 5mm FWHM gaussian kernel, motion corrected, and high-
pass filtered. Functional images were registered to each subject’s high resolution T1 scan 
and subsequently registered to MNI space. 

Our primary goal was to determine if neural activity was modulated by the expected 
values and/or prediction errors from our reinforcement learning model. The entire fMRI 
analysis consisted of a 3-level analysis: level 1 was averaging within runs within subjects, 
level 2 was averaging across runs within subjects, and level 3 was testing for significance 
at the group level. We constructed 3 different general linear models (GLM’s) to test 
for significant neural differences between attack and defense behavior as well as to see 
if attack and defense behavior correlated with our variables of interest. GLM-1 was 
meant to test for simple model-free differences between attacker and defender neural 
activity and consisted only of the selection and feedback epochs. GLM-2 was meant to 
determine if neural activity significantly correlated with investment magnitude during 
the selection time-phase and whether wins/losses significantly correlated with neural 
activity during feedback. To this end it consisted of the following regressors: selection, 
selection modulated by investment (orthogonalized with respect to selection), feedback, 
and feedback modulated by wins/losses (z-scored and orthogonalized with respect to 
feedback). GLM-3 was meant to determine whether any neural activity correlated 
with the parameters calculated from our K-Level model and contained the following 
regressors: selection, selection modulated by expected value (orthogonalized with respect 
to selection), selection delayed by 4 seconds in order to capture the delayed nature of 
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risk prediction (Preuschoff et al., 2008), delayed selection modulated by risk prediction 
(orthogonalized with respect to delayed selection), feedback, feedback modulated by the 
prediction error (z-scored and orthogonalized with respect to feedback), and feedback 
modulated by the risk prediction error (z-scored orthogonalized with respect to feedback). 
To mitigate spurious results from asymmetric parameter value ranges (Lebreton, Bavard, 
Daunizeau, & Palminteri, 2019), each parametric regressor was z-scored within each 
role, meaning both attacker and defender parametric regressors had identical variance. 

We checked for multicollinearity by calculating the variance inflation factors (VIF) for 
each regressor of interest (Mumford, Poline, & Poldrack, 2015), and found none to be 
problematic (all VIF’s < 2.3). However, four subjects made identical investments on 
every trial, which resulted in rank deficient models (4 subjects for GLM-2 and GLM-
3). Specifically, two individuals made the exact same investment on all attack decisions, 
one individual made the exact same investment on all defense decisions, and one 
individual made the exact same investment during attack and defense. These subjects 
had to be removed from the analysis. We tested for an interaction effect between role 
and each variable of interest by contrasting the relevant parameter estimates for attack 
and defense in a second level within-subject fixed-effects analysis. Finally, we tested for 
group level significance and corrected for multiple comparisons using FSL’s FLAME 
1 with the standard cluster forming threshold of Z>3.1 and clusters significant at p = 
0.05. We ran additional control analyses with FSL’s randomized threshold-free cluster 
enhancement (TFCE) (Smith & Nichols, 2009; Winkler, Ridgway, Webster, Smith, & 
Nichols, 2014), and results were virtually identical.  

We also conducted analyses within an a priori selected anatomical ventral striatum (VS), 
and within an a priori selected anatomical amygdala ROI. Both masks were obtained 
from the meta-analytic tool Neurosynth (Yarkoni, Poldrack, Nichols, Van Essen, & 
Wager, 2011). We used the terms “ventral striatum” and “amygdala” in our search of 
Neurosynth, instead of using “reward” or “fear.” Avoiding psychological constructs such 
as reward or fear reduced possible bias in our ROI’s in favor of a particular psychological 
construct. For our ROI analyses, we took the average value across every voxel within 
each ROI for each subject within the contrast of interest (e.g. attacker-reward prediction 
error), and then tested for significance with a paired-sample t-test. 
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Results

Decision-Making
Earlier reports of the attacked-defender contest game analyzed investments in terms of 
the overall investment (range 0 – 10), the frequency of investment (all trials in which x 
or y > 0; range 0 – 60), and the force of investment (the amount invested on non-zero 
investment trials, range 1 – 10). For these measures we find, consistent with earlier 
work, that individuals invested less often in attack than in defense, t(26) = -4.12, p 
= 0.0003, invested in attack less overall, t(26) = -8.56, p < 0.0001, and invested less 
forcefully in attack than in defense, t(26) = -7.81, p < 0.0001 (Figure 3B). Although 
individuals earned more from attack (non-invested resources + spoils of winning) than 
defense trials (non-invested resources in case of survival), t(26) = 43.91, p < 0.0001, 
they were less successful during attack than defense trials, t(26) = -7.22, p < 0.0001: 
As defender they “survived” more often than that they “killed” as attacker (Figure 3C). 

Figure 3. Behavioral results. (A) Nash equilibrium predictions (bars) plotted against empirical distribution of 
participants’ investments (dots with error bars are Means ± 1 Standard Error) for attacker (top row, red) and 
defenders (bottom row, blue). (B) Attacker (red) and defender (blue) investments, force of investment, and 
mean earnings (shown are Means ± 1 Standard Error) (C) frequency of investment, and success-rate (shown 
are Means ± 1 Standard Error). Contrasts marked * (**) (***) are significant at p < 0.05 (0.01) (0.001).
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In addition to the contrast between attack and defense, we examined investments in 
relation to predictions derived from standard economic theory that assumes rational 
self-interest and risk-neutrality. Relative to mixed-strategy equilibrium predictions 
(see Materials and Method), individuals invest more, and more forcefully in defense 
(t(26) = 20.40, p < 0.0001, and t(26) = 18.467, p < 0.0001, respectively), but not 
more, and not more forcefully in attack (t(26) = 1.46, p = 0.157, and t(26) = -0.78,  
p = 0.441, respectively) (Figure 3A). Still, however, both attack and defense returned 
less earnings than predicted by standard economic theory (t(26) = -4.19, p = 0.00028, 
and t(26) = -40.56, p < 0.0001), and the frequency of both attacks and defense exceeded 
expectations based on rational selfish play (t(26) = 3.04, p = 0.0054, and t(26) = 30.26, 
p < 0.0001, respectively). Conversely, success-rates for attacks (victories) and defense 
(survival) did not deviate from Nash equilibrium predictions (t(26) = -0.25, p = 0.804, 
and t(26) = -0.98, p = 0.336, respectively).

Neural Correlates of Attack and Defense. 
To examine the neural foundations of decision-making during attack and defense, we 
performed whole-brain analyses on the selection phase (when subjects decided whether 
and how much to invest in attack or defense) and on the feedback phase (when subjected 
received information about their opponent’s investment and the resulting outcomes 
to oneself ). Whereas no significant differences between attacker and defender were 
observed during selection, whole-brain analyses did show significant attacker-defender 
contrasts for the feedback phase. Specifically, during feedback, participants exhibited 
higher BOLD response during attack relative to defense in a cluster within the left 
anterior insula and inferior frontal gyrus (Figure 4: MNI coordinates: x = -40, y = 10,  
z = 16, Z = 4.88, cluster size = 1657, p = 0.0151, FWE-whole brain).

Table 1: Regions exhibiting significant correlation between neural activity and win / loss feedback 
during attack.

Peak

Region x y z Cluster size Z-value p (FWE-corr)

Attacker Win/Loss

VS/OFC/Insula/Thalamus -8 4 -4 5329 4.27 <0.001

Lateral Occipital Cortex -22 -74 -8 1686 4.75 0.002

Occipital Pole 8 -84 4 1603 4.45 0.002

TPJ/Lateral Occipital Cortex -26 -84 46 1577 4.1 0.003

Note. All statistics are corrected for multiple comparison with FSL’s FLAME 1.
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Figure 4. Brain-imaging Results.  Whole brain analysis testing for attacker neural activity correlated to wins 
and losses (A), and feedback differences between attacker and defender (B). (A) Wins and losses as an attacker 
correlated with neural activity in the temporo-parietal junction (TPJ), inferior frontal gyrus (IFG), ventral 
striatum (VS), anterior insula (AI), thalamus (THA), and lateral occipital cortex (LOC). (B) Processing 
feedback as an attacker associated with more neural activation in the left inferior frontal gyrus (IFG), left 
anterior insula (AI), and left orbitofrontal cortex (OFC).  All contrasts are FWE-corrected at p < 0.05 for the 
whole brain.

In a follow-up analysis we examined whether participant’s exhibited a correlation 
between neural activity and investments (during decision-making) and outcome (win/
loss) during feedback. As before, no significant correlations were found between neural 
activity and investments during attack or defense, nor did the correlation differ between 
the two roles. During feedback, however, neural activity during attack covaried with 
wins and losses in clusters that included the bilateral ventral striatum, left orbitofrontal 
cortex, left anterior insula, left temporoparietal junction, and lateral occipital cortex 
(Table 1, Figure 4B). Activity in these same areas also correlated with wins/losses more 
during attack than defense, but did not survive cluster-based multiple comparison 
correction (with p < 0.05, uncorrected). When participants processed feedback as 
defenders there were no clusters that significantly covaried with wins and losses.

Model-Based Analyses of Decision-Making and Neural Activity
	 As noted in the Methods, we captured the computations at hand in attack and 
defense behavior using the cognitive-hierarchies framework developed in behavioral 
economics (Botvinick et al., 2009; Camerer et al., 2004; Nagel, 1995). The idea is that 
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players hierarchically form beliefs about their opponents’ behavior, up to a certain level 
of cognitive sophistication (k-level) (see Figure 2). We developed such computational 
models for hierarchies 1 up to 5 (see Materials and Methods), and first verified that the 
behavior predicted by different levels of the cognitive hierarchies could be discriminated 
(see Materials and Methods/Model identifiability and Figure 5). We then fitted those 
models to our participants’ investment data, and ran a Bayesian Model Comparison 
to identify the hierarchy most likely to generate attacker and defender-like behavior.  
Our results show that attackers are best described by a model with 4 levels of recursion 
(model K4, exceedance probability = 67.20%), while defenders are best described by a 
model with 3 levels of recursion (model K3, exceedance probability = 87.41%) (Figure 
5). From these models we estimated, for each subject and each investment in attack 
and defense, the expected reward, risk prediction, and concomitant reward and risk 
prediction errors. These reward and risk prediction errors were then related to neural 
activity, using both whole-brain and ROI-based analyses.

Figure 5. Computational results. (A) Model identifiability, true model used to generate the simulated 
data (y-axis) and the model estimated as most likely based on our Bayesian Model Comparison (x-axis) 
for both attacker (top row) and defender (bottom row). (B) Exceedance probability (bars) and estimated 
model frequencies (diamonds) for both attacker (top row) and defenders (bottom row) of each model fit to 
participant data. (C) Estimates of each model shown in comparison to true behavioral data for both attacker 
(top row) and defender (bottom row).
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Neural Correlates of Reward Prediction Errors. 

Within our VS ROI there was a significant correlation between reward prediction errors 
and VS neural activity during attack (t(22) = 2.645, p = 0.0148), but not during defense 
(t(22) = -0.330, p = 0.745). Furthermore this correlation between reward prediction 
errors and VS activity was stronger in attackers than in defenders (t(22) = 2.189, p = 
0.0395, see Figure 6A). Within our amygdala ROI, there was no significant correlation 
between neural activity and reward prediction errors during either attack (t(22) = 1.785, 
p = 0.088), or defense (t(22) = -1.507, p = 0.146), but there was a significant difference 
in correlations between the two roles (t(22) = 2.405, p = 0.025).

Figure 6. Reward prediction errors differentially relate to attacker and defender neural activity. (A) ROI-
analysis reveals prediction errors during attack significantly correlate with ventral striatum activity in attackers 
but not in defenders. (B) Whole brain analysis reveals that prediction errors during attack significantly correlate 
with inferior frontal gyrus neural activity. Contrast is FWE-corrected at p < 0.05 for the whole brain.

At the whole brain level, we found a cluster in the right IFG that significantly correlated 
with reward prediction errors during attack (MNI coordinates: x = 48, y = 32, z = 12, Z 
= 4.55, cluster size = 681, p = 0.0391, FWE-whole brain, see Figure 6B). We note that 
this cluster is similar in location to regions found to covary with reaction times (RT), 
but in the present case the correlation between RT and reward prediction errors was not 
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significant (r = -0.0079, p = 0.654). Because all the contrasts reported were conducted 
at the feedback time-phase, with the selection time-phase as a co-variate RT was at least 
partially captured by our GLM. Accordingly, because RT – RPE is non-significant here 
and RT is captured in the duration of the selection-phase decision-making, we can 
conclude that RT is not of relevance here.  
	 There were no clusters at the whole brain level that correlated with reward 
prediction errors during defense, nor were there any clusters that showed a significant 
difference in correlation between attacker and defender trials. 

Neural Correlates of Risk Prediction Errors. 
We found that within our VS ROI, there was no significant correlation between neural 
activity and risk prediction errors during either attack (t(22) = -1.622, p = 0.117), or 
defense (t(22) = 0.164, p = 0.871), nor was there a significant difference in correlations 
between the two roles (t(22) = -1.505, p = 0.145). The same was true in our amygdala 
ROI (attacker: t(22) = -0.588, p = 0.562; defender: t(22) = 0.363, p = 0.720; attacker vs. 
defender: t(22) = -0.647, p = 0.523) and at a the whole brain level. 

Conclusions and Discussion

Competition requires that people expend resources to win from other contestants and 
to expend resources to prevent losing from other contestants. These two core motives 
operating during competition – coming out ahead versus not falling behind – were 
examined here in a simple attacker-defender contest in which opposing individuals 
simultaneously invested, out of a personal endowment, into exploitative attacks and 
protective defense. As shown by others already, we find here too that individuals invest 
less frequently and less intensely in economically “injuring others” than they invest in 
defending themselves against the threat of being economically injured (De Dreu & 
Gross, 2019 for a review). Computationally, we found that during attack individuals 
tend to utilize a higher level of cognitive recursion than during defense. We furthermore 
found attack behavior relative to defense behavior to be preferentially associated with 
neural regions associated with theory of mind, and, within the ventral striatum, to be 
preferentially correlated with reward prediction errors. 
	 What remained poorly understood is why and how people design their strategies 
of attack and defense. We argued that, in addition to reward maximization, investments 
in attack and defense may be driven by the desire to out-compete the protagonists as 
well as by the desire to minimize risk. We approached this issue with a computational 
framework modeling reward and risk prediction errors based on k-level reasoning in 
belief formation (Camerer et al., 2004; Nagel, 1995; Zhu et al., 2012). Our results at 
the neural level revealed no evidence for risk minimization. Instead, and in line with 
earlier work (e.g., Zhu et al., 2012), we find good evidence that contestants aimed to 
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maximize reward both during attack and defense. At the same time, however, we observed 
significant differences in the computation of expected reward and in the underlying 
neural activation during attack versus defense. Specifically, we found reward prediction 
errors during attack (more than during defense) to robustly correlate with neural activity 
in the ventral striatum and, using whole-brain analyses, the inferior frontal gyrus. 
	 Our computational modeling demonstrated that investments in attack are best 
fitted by a model containing four levels of recursion whereas investments in defense are 
best fitted by a model containing three levels of recursion. This suggests that individuals 
engage in more sophisticated reasoning about their protagonist’s strategy during attack 
than defense. Indeed, our neuroimaging results revealed significant attack-defense 
contrasts in neural activation in regions often associated with perspective taking and 
“Theory of Mind” – the lateral occipital cortex, the inferior frontal gyrus, and the 
temporoparietal junction (Engelmann, Meyer, Ruff & Fehr, 2019; Prochazkova et al., 
2018; Van Overwalle, 2009). These results resonate with earlier work showing that 
temporarily dysregulating the inferior frontal gyrus through theta burst stimulation 
affected investment behavior during attack but not defense (De Dreu, Kret, et al., 2016), 
and that reducing cognitive capacity prior to decision making influenced attackers but 
not defenders (De Dreu et al., 2019). Combined, these results suggest that individuals 
engage neural regions for perspective taking and theory of mind during economic 
contests to out-smart and exploit their protagonist.
	 Results for neural activity were specific to the feedback phase, when contest outcomes 
were presented, and not observed during the selection phase when investment decisions 
were implemented. Possibly, different neurocognitive operations govern implementation 
and processing of feedback. During implementation, controlled deliberation may be 
more or less active and this may relate to activity in prefrontal regions involved in 
executive control. Perhaps the extent to which cognitive control and deliberation during 
selection is engaged is not conditioned by the specific role decision-makers perform. 
During feedback, learning and updating operations may be active, and this may relate 
to neural activation in regions involved in value computation and emotion processing 
(Behrens, Hunt, & Rushworth, 2009; Yacubian et al., 2006). Indeed, we found neural 
activity in the ventral striatum to be meaningfully related to reward prediction errors 
(also see O’Doherty et al., 2004; Stallen et al., 2018; Yacubian et al., 2006; Zhu et al., 
2012). In contrast to expectations, however, we did not find differential activity in the 
amygdala, nor amygdala activity to be related to behavioral indicators processed during 
feedback. Possibly, contestants process feedback in an emotionally detached and rather 
cognitive manner aimed at revising and updating their (future) strategy for attack and 
defense. 
	 Our study design included male participants, and extrapolating conclusions to 
female participants may be non-trivial. Intuitively competitive success and reward 
maximization may fit an (evolved) male psychology, whereas risk minimization risk fits 
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an (evolved) female psychology (Croson & Gneezy, 2009; Niederle & Vesterlund, 2011; 
Spreckelmeyer et al., 2009). At the same time, however, male and female participants 
tend to perform similarly in the attacker-defender contest studied here (De Dreu & 
Gross, 2019). Future work is needed to test whether the neurocognitive mechanisms 
are similar as well, which would further contradict the intuitive hypothesis derived from 
evolutionary psychology.. 
	 Competitions are part and parcel of human life and can be wasteful. In the current 
contest, subjects destroyed roughly 40% of their wealth in attempts at “injuring others 
and protecting against being injured” (viz. Mill, 1859). Our neurocomputational 
approach suggested that injuring others is done through rather sophisticated cognitive 
reasoning, with the key aim to understand the protagonist’s strategy selection such that 
personal rewards can be optimized. When investing in attack more than in defense 
people engage more sophisticated cognitive recursion. Furthermore, neural structures 
associated with theory of mind and reward processing are recruited more during attack 
than defense decisions. Perhaps, mentalizing not only serves empathy and pro-social 
decision-making, but also the strategic goal of reward maximization through exploitation 
and subordination. 
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Summary

Trust and reciprocity play core roles in human social interactions. From economic 
markets to personal relationships, trust and reciprocity allow efficient trade, mutual 
gain, and cooperation. However, norms of trust and reciprocity differ substantially 
across individuals and cultures. Here we uncover that variability in reciprocity can be 
exhaustively captured by three categories: exploiters (individuals who never reciprocate), 
perfect reciprocators (individuals who always reciprocate), and contingent reciprocators 
(individuals who reciprocate as a function of how much they are trusted). Due to this 
variability, trustors are confronted with the challenge to learn who they can trust and 
who they cannot. Here we investigated this learning process through computational 
modeling. We show that individuals learn to trust through a combination of 
reinforcement and belief-based learning. While individuals are able to detect differences 
between the different reciprocating types through this learning process, they do so sub-
optimally. In particular, individuals frequently fail to learn optimal policies towards 
contingent reciprocators. Furthermore, the degree to which individuals weigh belief over 
reinforcement is positively correlated to their average payoff, indicating that learning to 
trust from mentally simulated outcomes outperforms learning from observation alone. 
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Introduction

Many social transactions afford and require trust and reciprocity. However, norms of trust 
and reciprocity differ dramatically between cultures (Johnson & Mislin, 2011; Romano, 
Balliet, Yamagishi, & Liu, 2017) and groups (Heap & Zizzo, 2009; Romano, Balliet, 
& Wu, 2017), depend on personality traits (Engelmann, Schmid, De Dreu, Chumbley, 
& Fehr, 2019), and are conditioned by low-level perceptual cues (FeldmanHall et al., 
2018; Prochazkova et al., 2018). This variability of reciprocity creates a dilemma for 
individuals: while trust can lead to mutual gain if investments (e.g. time/energy/money) 
are reciprocated, trust can also be exploited (Bohnet, Greig, Herrmann, & Zeckhauser, 
2008). Therefore, it is imperative that an individual be able to learn who is likely to 
reciprocate, and who is likely to exploit. Those individuals who consistently err in their 
predictions lose out whereas those who learn to differentiate the trustworthy from the 
exploitative can profit from mutually beneficial relationships while avoiding exploitation 
(Baumard, André, & Sperber, 2013; De Dreu & Gross, 2018). Accordingly, individuals 
must possess a capacity to learn and predict the reciprocity of others. Here we examine 
this possibility using computational modeling and behavioral experiments.
	 Trust has been modeled with economic games such as the trust game (TG) (Berg, 
Dickhaut, & McCabe, 1995). The TG consists of a sender who decides how much 
(if any) of a given endowment to transfer (viz. entrust) to a responder. The amount 
transferred to the responder is then increased by some multiplying factor (usually three), 
after which the responder decides how much (if any) to return (viz. reciprocate) back to 
the sender. Because each unit of the endowment the sender transfers to the responder is 
tripled, the most collectively profitable outcome involves the sender transferring their 
entire endowment to the responder. However, in this situation the responder has a 
strong incentive to exploit the sender’s trust and keep the entire sum for themselves. 
Therefore, the situation that creates the most collective wealth is also the situation that 
can create the largest inequity and risk of exploitation. 
	 A meta-analysis of TG behavior shows that, on average, senders transfer half of 
their endowments to responders who, on average, return 40% of the tripled amount 
back to the sender (Johnson & Mislin, 2011).  However, investments as well as amounts 
returned can vary highly (Balliet & Van Lange, 2013; Johnson & Mislin, 2011), 
suggesting that different individuals follow different rules when deciding to reciprocate. 
Indeed, in Experiment 1 and 2 we uncover that nearly all individuals fall into one of 
three discrete categories: exploiters, perfect reciprocators, and contingent reciprocators. 
Exploiters are responders who never return as much money to the sender as the sender 
transferred to them. Perfect reciprocators are responders who always return at least as 
much money as the sender transferred to them. Contingent reciprocators are responders 
who return money as a function of how much the sender transferred to them – when 
the sender transfers a small amount, they return a small amount, and when the sender 
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transfers a large amount, they return a large amount.
	 These differences in reciprocity naturally lead to questions about trust, namely: how 
do senders learn who to trust and who to avoid? To answer this question we developed 
and tested computational learning models. One plausible form this learning process 
could take is reinforcement learning (RL), which in its simplest form posits that an 
individual makes a prediction about the value of an action, and updates that prediction 
based on its outcome (Sutton & Barto, 2018). While RL has been extremely effective 
in describing human and animal behavior (Behrens, Hunt, & Rushworth, 2009; Erev 
& Roth, 1998; Palminteri, Wyart, & Koechlin, 2017), and provides a good model for 
the observed neural processes associated with learning (Behrens, Hunt, Woolrich, & 
Rushworth, 2008; Levy & Glimcher, 2012; Rutledge, Dean, Caplin, & Glimcher, 
2010), in many settings RL makes untenable assumptions about how individuals actually 
reason and adapt to the environment. One of these assumptions is that individuals only 
update actions they select, and ignore all other strategies available to them. 
	 A more psychologically plausible account makes the claim that individuals in fact 
simulate the outcome of the other strategies available to them, and update all strategies based 
on these simulated outcomes. This so-called belief-based learning (BB) is mathematically 
equivalent to Bayesian updating under specific assumptions (Fudenberg & Levine, 1998; 
Zhu, Mathewson, & Hsu, 2012), and generalizes RL to include beliefs and counterfactual 
action simulation. However, BB posits that all strategies are updated with equal weight, 
whether they were selected or not. This assertion that mentally simulated outcomes are 
treated identically to experienced outcomes is as untenable as the assertion from RL that 
mentally simulated outcomes are ignored. 
	 A third alternative offers a unification of these two approaches through a hybrid 
model which allows for each of these separate accounts as special cases (Camerer & Ho, 
1999). This model, Experience Weighted Attraction (EWA), has been shown to account 
for behavior in a variety of economic games better than RL or BB models (Camerer 
& Ho, 1999; Camerer, Ho, & Chong, 2002; Ho, Camerer, & Chong, 2007; Zhu et 
al., 2012). Furthermore, the parameters of the EWA model have specific psychological 
interpretations, allowing for insights into the inner workings of individuals’ decision-
making process that exceed those allowed by simpler models. 
	 Here we apply these different models to understand how people learn to trust. We 
show that when individuals play the TG as senders against the three different responder 
categories (exploiter, perfect reciprocator, contingent reciprocator), the EWA model 
captures behavior better than RL and BB alternatives. This means that when faced with 
the dilemma of learning who to trust and who to avoid, individuals combine their 
own experiences with their subjective beliefs about others. Interestingly, we further 
showed that reliance on belief was positively correlated with average payoff, indicating 
that mental simulation during the process of learning to trust, although only partially 
employed, affords a direct benefit to the individual. 
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Experiments 1 and 2

Materials and Methods

Ethics and subject recruitment
Experiments received ethics approval from Leiden University (Exp. 1: CEP19-0131/40; 
Exp. 2: CEP19-0108/7). Participants (Exp. 1: N = 272; Exp. 2: N = 106) were recruited 
from MTurk (Exp. 1) or the subject pool at Leiden University (Exp. 2), provided 
digital or written informed consent, and were debriefed and paid for participation. All 
experiments were incentivized and did not involve deception. Individual anonymity was 
guaranteed throughout and earnings were paid in private.

The Trust Game 
To investigate trust, we used the dyadic trust game (TG) (Berg et al., 1995; Johnson & 
Mislin, 2011) that is played between a sender and a responder. Senders began each trial 
with an endowment of e = 20 monetary units (MU) (1MU = €0.025). The sender could 
transfer any amount t (in steps of 1MU) to the responder (t ∈ [0,20]). Any amount 
transferred to the responder was tripled (3t). The responder was then allowed to return 
any amount r between 0 and 3t (in steps of 1MU) back to the sender (r ∈ [0,3t]). At the 
end of each trial, each player received their MU as their payoff (sender payoff = e - t+r, 
responder payoff = 3t-r). 
Because any amount transferred by the sender is at risk of being kept by the responder, 
the amount transferred is a measure of trust. On the other hand, because the responder 
is under no obligation to return anything to the sender, any amount they do return is 
a measure of reciprocity (or the return of trust). All players were paid out based on two 
randomly selected trials (resulting in a maximum bonus payout of €3.00).

Detecting different types of reciprocators 
In order to categorize subjects’ reciprocation behavior, we collected data from participants 
playing the TG as responders using the strategy method. Specifically, participants were 
asked what they would return for all possible transfers from the sender. Participants were 
told that their data would be used as feedback for senders in a future experiment, and 
that, in addition to the payment they received after the experiment, they would receive 
additional bonuses every time their responses were used in subsequent experiments. 
	 The canonical view of rationality from economics would predict that responders 
never return anything to senders (Henrich et al., 2005). However, this view has been 
consistently refuted by studies showing humans to be cooperative (De Dreu & Gross, 
2018), fairness seeking (Fehr & Schmidt, 1999), and innately prosocial (Rand, Greene, 
& Nowak, 2012). Based on this view, we would predict that responders generally act 
“fairly” towards senders. However, the concept of fairness differs across individuals and 
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cultures (Bohnet et al., 2008; Henrich et al., 2005). One intuitive conceptualization 
of fairness posits that a responder always returns back to the sender roughly half of 
what they receive. However an alternative view posits that responders are attempting to 
approximate a fair division of the total amount of money available on any given trial. 
Based on this view, we would expect that when a sender transfers a low amount and keeps 
most of the endowment for themselves, the responder reacts by returning a low amount; 
conversely we would expect that when a sender transfers a large amount, the responder 
reacts by returning a large amount, hence approximating an even split of the total sum 
available. Importantly, this conceptualization predicts responders to reciprocate in an 
ascending fashion. This reasoning led us to conduct two complementary analyses.
	 In the first analysis, we dividing our responders into those who never returned as 
much as the sender transferred (         ), those who always returned as much or more than 
the responder transferred (        ), and those who returned low transfers with less than 
the transferred amount and high transfers with more than the transferred amount, 

	 We confirmed this categorization using a data-driven approach. In this analysis, we 
fit logistic functions to each subject’s individual response data, with each logistic function 
having 4 free parameters: slope, inflection point, lower plateau, and upper plateau. We 
then conducted a weighted principal component analysis on the fitted parameters. 
Within each component, we ranked each subject based on their PC-score, indicating 
how much variance was explained by their particular combination of parameters relative 
to other subjects within the given component. We then divided subjects based on this 
PC-score into three equal groups within the component. Finally, we plotted the average 
return for each transfer within each of these groups. The patterns that emerged clearly 
qualitatively mimicked those of the above described return-rate division.

(∀𝑟𝑟 ≥ 𝑡𝑡) 

!∀𝑟𝑟 < 𝑡𝑡, 𝑖𝑖𝑖𝑖	𝑡𝑡 = 1
∀𝑟𝑟 ≥ 𝑡𝑡, 𝑖𝑖𝑖𝑖	𝑡𝑡 = 𝑒𝑒. 

(∀𝑟𝑟 < 𝑡𝑡) (∀𝑟𝑟 < 𝑡𝑡) 
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Results

Trust responders 
We found that the majority of participants (Exp. 1: N = 219, 80.51%; Exp. 2: N = 94, 
88.68%) could be categorized as one of three distinct reciprocity types: individuals who 
never fully reciprocated, so-called exploiters (Exp. 1: N = 78, 28.68%; Exp. 2: N = 18, 
16.98%); individuals who always reciprocated, so-called perfect reciprocators (Exp. 1: N 
= 94, 34.56%; Exp. 2: N = 43, 40.57%), and individuals who reciprocated as a function 
of how much they were transferred, so-called contingent reciprocators (Exp. 1: N = 47, 
17.28%; Exp. 2: N = 34, 33.02%) (Fig. 2). 
	 We validated our pre-defined categorization with a data-driven approach using 
principle component analysis (PCA; see Material and Methods/ Detecting different 

Figure 1. Schematic of game and timeline. (A) Trial timeline for the behavioral task in Experiments 1 and 
2. Participants in the role of responder were asked to return an amount for every possible amount trans-
ferred to them by the sender. This resulted in (B) a division of responders into three categories: exploiters 
(red line), perfect reciprocators (purple line), and contingent reciprocators (blue line). This dots with error 
bars are the data, and the shaded area are model fits (see Experiments 1 and 2 – Material and Methods/ 
Detecting different trustworthy type). These responder categories were used to provide feedback for (C) 
Experiments 3 and 4, during which senders made transfers to each responder type, each of which was 
identified with a neutral shape.
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trustworthy type). This analysis corroborated our theory-driven approach, with subjects 
exhibiting return patterns consistent with either exploiter, perfect reciprocator, or 
contingent reciprocator (see Fig. 2). In short, the vast majority (>80%) of the sample 
fell into one of these three discrete categories of reciprocity. 

Figure 2. Different trustworthy types in both theory and data driven analyses. (A, C) Theory driven divisi-
on of responders around “fair” return (dotted line), which would return sender to their original endowment. 
The three lines represent responders who either always return as much or more than what was transferred to 
them (purple), responders who always return less than what was transferred to them (red), and responders 
who return low transfers with less but high transfers with more than what was transferred to them (blue). 
(B, D) Data-driven division of responders through principal component analysis. We fit logistic functions 
to response data, subjected the parameters of these logistic fits to PCA, and then split up the results into 
three discrete groups within PC-space. The resulting division clearly qualitatively matched the results ob-
tained from our theory-driven approach.
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Summary and Discussion for Experiment 1 and 2

The results of Experiments 1 and 2 converge on the notion that reciprocity behavior can 
be exhaustively captured within three simple categories: exploiters, perfect reciprocators, 
and contingent reciprocators. This tripartite division may at first seem counterintuitive, 
since it is tempting to think of behavior as either fair or not and thus to observe 
individuals who are either reciprocal or not. This reasoning should lead to a binary 
division of responders into exploiters (individuals who never adhere to norms of fairness) 
and reciprocators (individuals who always adhere to norms of fairness). However, what 
this binary division ignores is the multifarious nature of the concept of fairness, even 
within a given culture or group (Henrich et al., 2005). We attempted to capture this 
multifarious nature by considering the possibility that individuals may reciprocate based 
on different rules. Accordingly, in both Experiments 1 and 2 we found that, in addition 
to acting exploitatively, responders acted either as “perfect reciprocators” (returns were 
consistent across transferred amount), or “contingent reciprocators” (returns were 
contingent on transferred amount). While still simplistic, these three categories captured 
the vast majority of our sample (>80%). This was given credence by an initial theory 
driven approach, and a subsequent principal component analysis. Furthermore, this 
was replicated across both online and laboratory studies, suggesting that these different 
types are composite elements of the population. If these different reciprocating types 
are indeed as common as these experiments imply, then we should expect to see them 
readily learned by naïve individuals in the population. This reasoning led us to conduct 
Experiments 3 and 4.

Experiments 3 and 4

Materials and Methods

Ethics and subject recruitment 
Experiments received ethics approval from Leiden University (Exp. 3: CEP19-0108/7; 
Exp. 4: CEP19-0131/40). Participants (Exp. 3: N = 98; Exp. 4: N = 106) were recruited 
from MTurk (Exp. 3) or the subject pool at Leiden University (Exp. 4), provided digital 
or written informed consent), and were debriefed and paid for participation. Exp. 2 and 
Exp. 4 consisted of the same participants and were conducted in the same experimental 
session, with participants always first making decision in the TG as responders and 
subsequently making decisions as senders. All experiments were incentivized and did 
not involve deception. Individual anonymity was guaranteed throughout and earnings 
were paid in private.
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Learning to trust  

Participants played multiple rounds of the TG as senders to the three different responder 
categories found in Exp. 1 and 2 (see Experiments 1 and 2 – Results/Trust Responders). 
To provide feedback to senders, we used the results of the PCA analysis from Exp. 1 
(see Results/Trust Responders). Specifically, for each amount the sender transferred, they 
were returned an amount within the interval of the return percentage specific to that 
particular responder, displayed as the shaded areas on Fig. 1B. For example, if a sender 
transferred 10MU to a contingent reciprocator (blue line), he or she would receive 
back a random amount between 25% and 29% of the tripled amount, which resulted 
in a return between 7MU and 9MU. This method allowed us to provide feedback to 
senders that maximized noise (so as not to have feedback entirely deterministic) while 
still maintaining the same division of responders into exploiters, perfect reciprocators, 
and contingent reciprocators. Subjects played 4 blocks of 36 trails (Exp. 3) or 2 blocks 
of 72 trials (Exp. 4) against each responder category. Responders were identified by a 
neutral shape (e.g., a square, a circle, or a triangle), with shapes randomized for each 
participant. To ensure the independence of learning within each block, every block 
consisted of completely novel shapes.

Computational modeling 
Reinforcement and Belief-Based Learning. We utilized computational modeling in 
order to gain insights into the mechanisms behind sender decision-making. One 
plausible form decision-making could take is reinforcement learning (RL), which in 
its simplest form posits that individuals make predictions about the value of an action, 
and update those predictions based on their outcomes (Sutton & Barto, 2018). More 
specifically, every given action,      , has an associated expected value           . On every  
trial t, a prediction error is calculated, which is the actual outcome subtracted from the 
expected outcome:  

This prediction error is then used to update the value of that action using an additional 
weighting parameter    acting as the learning rate: 

While this simple formulation has been extremely effective in describing decision-
making, in some situations it oversimplifies the process and relies on untenable 
assumptions. One of these assumptions is that individuals only update their selected 
action, and leave all unselected options unchanged.
	 An alternative account makes the claim that individuals in fact simulate the 
outcome of the other strategies available to them, and update all strategies based on 
these simulated outcomes. This so-called belief-based learning (BB) expands RL to 
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include beliefs about unselected actions, such that every possible action is updated on 
each trial. However, BB posits that all strategies are updated with equal weight, whether 
they were selected or not, which is an assumption just as untenable as those made by RL. 
A third alternative offers a unification of these two models into a single framework.

Experience Weighted Attraction. The experience weighted attraction (EWA) framework 
combines reinforcement learning (RL) and belief-based learning (BB) into a single 
hybrid model (Camerer & Ho, 1999). In its original form, the EWA model contains 
two key variables which are updated on each trial: N (t), and     . The variable  
N (t) is the number ‘observational-equivalents’, which is to say the number of times a 
subject has experienced, or believes they have experienced, an interaction with a given 
opponent. The variable         is a vector of “attractions”, which is the value ascribed to 
every possible option. On each trial, N (t) is updated according to the following rule:

Where p is a free parameter which controls the depreciation of N (t) over trials. The 
variable          is updated according to the following rule:

Where          is the option selected by the participant, i.e. the amount of money transferred 
to the responder. The free parameter    controls the depreciation of past attractions for 
options that the participant selected, and the free parameter    controls the depreciation 
of past attractions for options that the subject did not select. 
	 In our framework, we assumed that senders formed a priori estimates of each 
option’s value by estimating the function governing each responder category’s return-
rate for each option. These so-called response functions took a linear form and consisted 
of two additional free parameters, a prior slope and prior intercept, which provided the 
initial attractions,            . Based on previous literature, we set N (0) to 1 (Ho et al., 2007). 
As is common in the computational modeling literature (Daw, 2011), we modeled actual 
choice selection with a softmax function, which included an additional free parameter 
β , which is the inverse temperature parameter controlling the participant’s exploration/
exploitation trade-off. Lower values of β indicate more exploratory (stochastic) behavior, 
while higher values indicate more exploitative (deterministic) behavior.
	 The primary benefit of the EWA model is that it allows for both RL and BB 
learning simultaneously. These two forms of learning are controlled by   , with higher 
values of   indicating a higher reliance on BB learning and as such a higher reliance 
on simulating the outcomes of unselected options (so-called forgone outcomes). To 
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simulate the outcome of an unselected option, we reasoned that participants could (I) 
use their prior estimates of the responders’ response function, (II) extrapolate from the 
observed percentage returned by the responder, or (III) extrapolate from the observed raw 
amount returned by the responder. We therefore designed different versions of the EWA 
model in which unselected options were updated based one each of these possibilities. 
Furthermore, participants could be weighing unselected options asymmetrically. We 
therefore devised models in which options above and below the chosen option had 
their values updated by two different   parameters:  - and  + . We also tested for  
the possibility that participants were weighing forgone outcomes from each different 
responder category with a different weight, resulting in three   parameters. Finally, as 
stated above, the EWA model allows for both RL and BB learning as special cases. 
When       and       , the model is equivalent to RL (with   being equivalent to 
the learning rate   ), and when         and         , the model is equivalent to complete BB 
learning (forgone and experienced outcomes are weighted equally) (Camerer & Ho, 
1999). For this reason, we added three BB models (one for each foregone outcome 
method), and one RL model. Therefore we tested a total of 13 models: 3 (number of 
    ) ⨉ 3 (forgone outcome update method) + 3 (BB with different foregone outcome 
methods) + 1 (RL).

Model Fitting Procedure.	
We optimized each models’ free parameters by minimizing the negative log likelihood 
(LLmax) of the participant’s observed choices under the model using Matlab’s fmincon 
function, initialized at multiple starting points of the parameter space. Negative log 
likelihoods were used to compute, at the individual level and for each model, the 
Akaike Information Criterion (AIC), which was used to quantify model evidence 
			    (Correa et al., 2018). We then employed a random effects Bayesian 
model comparison using the Variational Bayesian Analysis (VBA) toolbox (Daunizeau, 
Adam, & Rigoux, 2014) to estimate the exceedance probability (denoted XP) for each 
model. Exceedance probability quantifies the evidence that the model is more likely than 
all the other models tested. An exceedance probability greater than 95% for one model 
within a test-set is therefore typically considered as significant evidence in favor of this 
model being the most likely. In our case, even after accounting for the additional free 
parameters, and with a total of 13 models tested against one-another (risking probability 
dilution), the EWA model which simulated foregone outcomes by extrapolating from 
the observed percentage returned, and with asymmetrical deltas, was significantly better 
than all other models tested, including both the RL and the BB alternatives (all XP’s > 
95%, see Fig. 4).
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Parameter recovery and model identifiability.

As a further validation, we ran simulations which mimicked the experimental parameters 
of both Exp. 3 and 4. In this procedure, we generated choice behavior for 98 and 106 
simulated subjects for each of our 13 models. Parameters were randomly sampled from 
probability distributions which approximated the distribution of parameters estimated 
from fitting the EWA model to the choices of senders in both Experiments 3 and 4. The 
experimental constraints were identical to those of each experiment, that is, 98 and 106 
simulated subjects playing 4 blocks of 12 trials and 2 blocks of 24 trials, respectively, for 
each of our 13 models. We then estimated the parameters of the model that was used to 
simulate the behavior based solely on the simulated behavior. Finally, we correlated the 
estimated model parameters with the simulated model parameters. For each model, the 
correlation between the true and estimated parameters was highly significant (all p’s < 
0.001; Fig. 3CD), indicating that each model’s parameters could be reliably estimated. 
Finally, Variational Bayesian Analysis (Daunizeau et al., 2014) was used to confirm 
whether the model used to simulate the data was also selected as the most likely model 
based on our goodness of fit measure (AIC). In each case the model used to generate the 
data was selected as the most likely (XP’s > 95%; Fig. 3AB). 
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Figure 3. Model identifiability and parameter recovery. We ran simulations which mimicked the experi-
mental parameters of both Exp. 3 (A, C) and Exp. 4 (B, D), that is, 98 and 106 subjects playing 4 blocks 
of 12 trials and 2 blocks of 24 trials, respectively, for each of our 13 models. Parameters were randomly 
sampled from probability distributions which approximated the distribution of parameters estimated from 
fitting the EWA model to the choices of senders in both Experiments 3 and 4. We then estimated the 
model (A, B) and the parameters (B, C) of the model used to simulate the behavior based solely on the 
simulated behavior. Panels (A, B) show the exceedance probability of all models fit to each other, with the 
dark diagonals indicating that in each case the model used to simulate the data was the model identified as 
most likely. Panels (A, B) show the correlation between the simulated and estimated parameters for each 
parameter from our winning model (model 6, EWA with different δ parameters for options above and 
below selected option.).
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Results

Trust senders.  
Model-free results. Over trials, subjects did adapt their transfers to the different responder 
types over trials (note: exploiter dummy coded as baseline; Exp. 3: perfect reciprocator 
× trial: b ± se = 0.585 ± 0.036, p < 0.001, contingent reciprocator × trial: b ± se = 
0.363 ± 0.036, p < 0.001; Exp. 4: perfect reciprocator × trial: b ± se = 0.260 ± 0.015,  
p < 0.001, contingent reciprocator × trial: b ± se = 0.167 ± 0.015, p < 0.001) (see 
Table 1). This demonstrates that learning was indeed taking place, however this learning 
occurred differentially depending on the responder category a sender faced (Fig. 5).

Table 1: Multi-level Regression on sender transfers over trials.

Experiment 3 Experiment 4

B (se) B (se)

Trial -0.409 (0.025)*** -0.151 (0.011)***

Perfect Reciprocator 4.260 (0.263)*** 4.708 (0.221)***

Contingent Reciprocator 2.652 (0.263)*** 2.040 (0.221)***

Perfect Reciprocator × Trail .585 (0.036)*** 0.260 (0.015)***

Contingent Reciprocator × Trail 0.363 (0.036)*** 0.167 (0.015)***

Observations 98 106

Note. Exploiter dummy coded as baseline. Standard Errors are clustered within subjects (N = 98 for Exp. 3, 
and N = 106 for Exp. 4). *** p < 0.0001, ** p < 0.001, * p < 0.05, # p < 0.10 (two-tailed tests).

	 Interestingly, subjects on average behaved sub-optimally against all responder 
categories. An optimal transfer to both the perfect and contingent reciprocators was 
20MU (which would yield a return rate between 32% and 38%), and an optimal transfer 
for the exploiters was 0MU, since no transfer would return the sender to their original 
endowment. However, transfers on the final trial were significantly different from the 
optimum in all cases (Exp. 3: exploiters: t(97) = 9.272, p < 0.001; perfect reciprocators: 
t(97) = -13.265, p < 0.001; contingent reciprocators: t(97) = -19.455, p < 0.001; Exp. 
4: exploiters: t(105) = 7.899, p < 0.001; perfect reciprocators: t(105) = -10.814, p < 
0.001; contingent reciprocators: t(105) = -16.497, p < 0.001). Repeated-measures 
ANOVAs (with Huyn-Feldt corrections for violations of sphericity) with participant  
distance from optimum on the final trial                  ) as      
the dependent variable and responder category as the independent variable revealed 
that the degree of suboptimality differed significantly between the different responder 
types (Exp. 3: F(2, 194) = 55.599, p < 0.001, partial η2 = 0.223; Exp. 4: F(2, 210) 
= 50.844, p < 0.001, partial η2 = 0.215). Furthermore, participants were farthest 
from optimal when interacting with contingent reciprocators (Exp. 3: exploiters vs. 
perfect reciprocators: t(97) = -5.605, p < 0.001; exploiters vs. contingent reciprocators:  

(𝑎𝑎𝑎𝑎𝑎𝑎(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓	𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 
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t(97) = -9.238, p < 0.001; perfect reciprocators vs. contingent reciprocators: t(97) = 
-5.937, p < 0.001; Exp. 4: exploiters vs. perfect reciprocators: t(105) = -3.962, p < 0.001; 
exploiters vs. contingent reciprocators: t(105) = -8.697, p < 0.001; perfect reciprocators 
vs. contingent reciprocators: t(105) = -7.260, p < 0.001). In other words, participants 
received less money than they could have if they had adapted more strongly to the 
responder categories, particularly to the contingent reciprocators. 

Model-based results.
We next assessed the mechanisms responsible for the learning process participant’s 
utilized when interacting with these different responder categories. To this end, we 
tested several computational models that were psychologically plausible and shown to 
effectively explain empirical data in economic games (Camerer & Ho, 1999; Erev & 
Roth, 1998).
	 In total, we constructed 13 candidate models (see Materials and Methods/
Computational modeling/Experience Weighted Attraction) which could account for 
learning our TG set-up. Bayesian model comparison revealed the winning model to be 
the one that extrapolated the experienced percentage returned to the rest of the option 
space (Exp. 3: XP = 98.76%; Exp. 4: XP = 100%; see Fig. 4). We examined this model’s 
fit to the empirical data for both Experiments 3 and 4, and in both cases this version 
of the EWA model did captured a significant amount of sender behavioral variance, 
(Exp. 3: R2 = 0.339; Exp. 4: R2 = 0.351; see Fig. 5). This reveals that subjects were more 
cognizant of the percentage returned than the total amount returned, suggesting they 
were more concerned with the amount they received relative to the responder than the 
amount they received in total.
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Figure 4. Bar-plots of model comparison. We used Variational Bayesian Analysis (Daunizeau et al., 2014) 
in order to compare our candidate models. Shown are results from this model selection procedure for 
both Exp. 3 (A) and Exp. 4 (B). For both datasets, the winning model was model 6: experience weighted 
attraction, estimating payoffs from unselected options by extrapolating from the percentage returned of the 
selected option, and with different δ parameters for unselected options above and below the option selec-
ted. For descriptions of all other models, see Materials and Methods/Computational Modeling/Experience 
Weighted Attraction.
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Furthermore, the winning model updated forgone outcomes differentially, operationalized 
by two δ parameters which differentially accounted for updating unselected options 
above and below the chosen option. Options below the selected option were updated 
with a significantly lower weight than those above the selected option for Exp. 4 (t(105) 
= -4.315, p < 0.001), however this effect was absent in Exp. 3 (t(97) = 1.213, p = 0.229; 
Fig. 6AB), possibly due to the lower number of trials in this experiment relative to 
Exp. 4. Because δ denotes reliance on BB relative to RL learning, one interpretation 
of δ is that participants were more apt to simulate the outcomes of options that could 
yield higher payoffs than those they actually received. This can be seen as an optimism 
bias, with subjects showing a higher propensity for imagining brighter relative to darker 
alternative outcomes.
	 This reliance on BB learning also had tangible effects on sender outcome. The 
higher a sender’s δ (both positive and negative), and thus the more they relied on BB 
learning, the higher they earned overall (Exp. 3: δ-: R = 0.689, p < 0.001, δ+: R = 0.502, 
p < 0.001; Exp. 4: δ-: R = 0.657, p < 0.001, δ+: R = 0.284, p = 0.005, Fig. 6C-F). In other 
words, the more an individual relied on learning from fictitious play, the more money 
they received in this task. This means that simulated learning was actually beneficial for 
learning to trust, despite the fact that it was only partially employed by participants.

Figure 5. Learning curves with model fits to data. Across trials, participants adjusted to the different 
reciprocity types differentially (exploiter = red, perfect reciprocator = purple, contingent reciprocator = 
blue), a process that was well captured by our modeling approach. Dots with error bars represent mean ± 
standard error, shaded areas represent model predictions for Experiment 3 (A) and Experiment 4 (B).
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Figure 6. Comparing δ above and below selected option and correlation between δ and reward . For Exp. 
4 (B), but not Exp. 3 (A), the parameter δ, which controls the tradeoff between reinforcement and belief-
based learning strategies, differed significantly, meaning unselected options above selected options had their 
values adjusted with a higher weight than options below selected options. Additionally, the parameter δ 
robustly correlated with average reward across subjects in both Exp. 3 (C, E) and Exp. 4 (D, F). This was 
true for δ’s adjusting weights below (C, D) and above (E, F) the selected option in both data sets. Each dot 
represents one subject. Bars and error-bars represent mean and SEM, respectively.
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Discussion 

Trust is at the core of many human interactions within economic, political, and social 
spheres. Engaging in a trusting relationship can be profitable to all parties involved, 
however trusting behavior is always at risk of being exploited. Thus, it is crucial to 
understand the different trustworthy characteristics that exist in the general population, 
and how these different characteristics are learned. By collecting data from both 
responders and senders in the classic two-step trust game (Berg et al., 1995), we show 
that three simple rules of trustworthiness can exhaustively capture responder behavior, 
and that these different rules are (suboptimally) learned by naïve senders through a 
combination of reinforcement and belief-based learning.
	 When considering trustworthy (viz. responder) behavior, it is tempting to fall into 
a trap of binary thinking: that an individual is either selfish (exploiter) or not (perfect 
reciprocator). Indeed while economic theory predicts that individuals should always 
exploit in a one-shot interaction such as that used in the current setup, humans in reality 
are cooperative (De Dreu & Gross, 2018), fairness seeking (Fehr & Schmidt, 1999), and 
prosocial (Rand et al., 2012). Therefore we should expect that at least some individuals 
behave “fairly”, despite the fact that interactions are one-shot and anonymous. However, 
“fairness” itself differs across individuals and cultures (Bohnet et al., 2008; Henrich et 
al., 2005), and can be manifested in a variety of ways. One intuitive conceptualization 
of fairness is the rule that a responder returns to the sender half of what they receive. 
However an alternative rule is that responders should approximate a fair division of the 
total amount of money available. This view predicts that responders respond to high 
(but not low) transfers with substantial returns – their reciprocity is contingent on what 
they receive. Indeed, in the current study we showed that individuals spontaneously fall 
into one of three categories of reciprocity: exploiter, perfect reciprocator, and contingent 
reciprocator. Exploiters are individuals who never fully reciprocate regardless of how 
much they are trusted, perfect reciprocators are individuals who always reciprocate, and 
contingent reciprocators are individuals who reciprocate as a function of how much they 
are trusted. This was demonstrated across both online and laboratory samples, and shows 
that the intuitive binary division of individuals into “trustworthy” or “untrustworthy” 
needs to be expanded.
	 Because our division of these different types exhaustively captured the behavior of 
our responders, it stands to reason that they should be recognizable by other members 
of these populations. Accordingly, when naïve individuals were required to learn how 
much to trust these different trustworthy types through trial-and-error, they were able to 
differentiate the different categories, however they did so suboptimally and did not profit 
maximally from the interactions. We showed that individuals utilized a combination of 
reinforcement learning (RL) and belief-based (BB) learning in a hybrid fashion, so-
called experience weighted attraction (EWA). This means that subjects were not relying 
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completely on what they themselves experienced, but also simulated the outcomes of 
unselected options when learning who reciprocates and who exploits. Furthermore, 
participants engaged more with BB learning for options that could potentially yield 
higher relative to lower payoffs, suggesting that participants interacting in our TG 
set-up were relatively optimistic and reluctant to imagine negative relative to positive 
outcomes. Finally, we showed that the degree to which individuals relied on BB learning 
was positively and robustly correlated with their average payoff, suggesting that the 
propensity to simulate potential outcomes serves a direct benefit to the individual.  
	 Previous researchers have modeled trust-learning using simple reinforcement 
learning (Parnamets, Granwald, & Olsson, 2018), Bayesian preference learning (Devaine 
& Daunizeau, 2017; Hula, Montague, & Dayan, 2015), as well as EWA similar to that 
used in our study (Camerer & Ho, 1999; Camerer et al., 2002). However, in these 
studies, the decisions available to senders in the TG were severely restricted, often to 
a simple binary decision of trust vs. not trust (e.g. Camerer et al., 2002; Parnamets et 
al., 2018) which, as mentioned above, does not capture the reciprocity distributions 
we found in the sampled responders – particularly the contingent reciprocators found 
in Experiments 1 and 2. In our study, therefore, we made no such binary restriction, 
and allowed subjects to make any transfer between 0 and 20, which had the benefit of 
increasing ecological validity at the cost of a computational challenge in the form of a 
large option space. We met this challenge in part by estimating priors as parameters of 
the response function that we assumed our senders imagined responders to possess, an 
assumption we feel is tenable and one likewise corroborated by our model’s goodness 
of fit as well as validity checks vis-à-vis parameter recovery. It also allowed us to gain 
novel insights about how participants simulated foregone payoffs. We tested different 
versions of our EWA model which made different predictions about how participants 
could estimate the payoffs of options that they did not select. By testing these different 
hypotheses against each other, we were able conclude that participants extrapolate from 
the percentage of the selected option that the responder returned. This means that 
senders were preferentially focusing on their own payout relative to that of the responder 
instead of focusing on their own total payout. 
	 While others before us have shown that adding subjective belief to learning 
models improves model fits relative to simple RL (Camerer & Ho, 1999; Camerer et 
al., 2002; Zhu et al., 2012), these researchers did not relate reliance on belief to actual 
performance outcome. Here we showed that a higher propensity to engage in “fictitious 
play”, in which the outcomes of unselected actions are mentally simulated, led to more 
profit than focusing solely on the actual outcome experienced. Therefore, reliance on 
belief, that is – imagining potential outcomes – not only improves model fit but affords 
a tangible benefit to individuals when learning to trust.
	 Our study leaves several open questions that future research should address. 
Foremost among them: what traits predict what reciprocating category an individual falls 
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within? More research will be needed, with a more systematic battery of psychological 
appraisals, in order to detect what leads an individual to fall within one of these 
reciprocity categories. The second outstanding question demanding more research is: 
why are senders so far from optimality when learning these reciprocity types? While our 
model fits behavior well, and even helps explain inter-individual differences in reward, 
the current set-up does not allow us to explain what leads individuals to learn these types 
so poorly. Future research, potentially involving observational learning or neuroimaging, 
may shed light on these questions. 
	 In sum, we show that a simple binary division of individuals into trustworthy 
or untrustworthy fails to capture a sizeable minority of the population (between 17% 
and 33%), whose reciprocity behavior is contingent on how much they are trusted. 
Furthermore we employ a novel application of a well validated computational model 
to demonstrate that individuals rely both on their experiences as well as their beliefs 
about unexperienced outcomes when learning how much to trust. Our results suggest 
that forming a mental image of the social landscape is crucial when learning who is 
trustworthy and who is not.



Learning to trust through experience and belief  

Ch
ap

te
r 

3

85

References

Balliet, D., & Van Lange, P. A. M. (2013). Trust, conflict, and cooperation: A meta-
analysis. Psychological Bulletin, 139(5), 1090–1112. https://doi.org/10.1037/
a0030939

Baumard, N., André, J. B., & Sperber, D. (2013). A mutualistic approach to morality: 
The evolution of fairness by partner choice. Behavioral and Brain Sciences, 36(1), 
59–78. https://doi.org/10.1017/S0140525X11002202

Behrens, T. E. J., Hunt, L. T., & Rushworth, M. F. S. (2009). The Computation of 
Social Behavior. Science, 324(5931), 1160–1164. https://doi.org/10.1126/
science.1169694

Behrens, T. E. J., Hunt, L. T., Woolrich, M. W., & Rushworth, M. F. S. (2008). 
Associative learning of social value. Nature, 456(7219), 245–249. https://doi.
org/10.1038/nature07538

Berg, J., Dickhaut, J., & McCabe, K. (1995). Trust, Reciprocity, and Social History. 
Games and Economic Behavior, 10(1), 122–142. https://doi.org/10.1006/
game.1995.1027

Bohnet, I., Greig, F., Herrmann, B., & Zeckhauser, R. (2008). Betrayal Aversion: 
Evidence from Brazil, China, Oman, Switzerland, Turkey, and the United States. 
American Economic Review, 98(1), 294–310. https://doi.org/10.1257/aer.98.1.294

Camerer, C. F., & Ho, T. H. (1999). Experience-weighted attraction learning in normal 
form games. Econometrica, 67(4), 827–874. https://doi.org/10.1111/1468-
0262.00054

Camerer, C. F., Ho, T. H., & Chong, J. K. (2002). Sophisticated Experience-Weighted 
Attraction Learning and Strategic Teaching in Repeated Games. Journal of Economic 
Theory, 104(1), 137–188. https://doi.org/10.1006/jeth.2002.2927

Daunizeau, J., Adam, V., & Rigoux, L. (2014). VBA: A Probabilistic Treatment of 
Nonlinear Models for Neurobiological and Behavioural Data. PLoS Computational 
Biology, 10(1). https://doi.org/10.1371/journal.pcbi.1003441

Daw, N. D. (2011). Trial-by-trial data analysis using computational models. In Decision 
Making, Affect, and Learning (Vol. 6, pp. 3–38). Oxford University Press. https://
doi.org/10.1093/acprof:oso/9780199600434.003.0001

De Dreu, C. K. W., & Gross, J. (2018). Revisiting the Form and Function of Conflict: 
Neurobiological, Psychological and Cultural Mechanisms for Attack and Defense 
Within and between Groups. Behavioral and Brain Sciences, (2019). https://doi.
org/10.1017/S0140525X18002170

Devaine, M., & Daunizeau, J. (2017). Learning about and from others’ prudence, 
impatience or laziness: The computational bases of attitude alignment. 
PLoS Computational Biology, 13(3), 1–28. https://doi.org/10.1371/journal.
pcbi.1005422



Chapter 3

86

Engelmann, J. B., Schmid, B., De Dreu, C. K. W., Chumbley, J., & Fehr, E. (2019). On 
the psychology and economics of antisocial personality. Proceedings of the National 
Academy of Sciences of the United States of America, 116(26), 12781–12786. https://
doi.org/10.1073/pnas.1820133116

Erev, I., & Roth, A. E. (1998). Predicting How People Play Games: Reinforcement 
Learning in Experimental Games with Unique, Mixed Strategy Equilibria. 
American Economic Review, 88(4), 848–881. https://doi.org/10.2307/117009

Fehr, E., & Schmidt, K. M. (1999). A Theory of Fairness, Competition, and 
Cooperation. The Quarterly Journal of Economics, 114(3), 817–868. https://doi.
org/10.1162/003355399556151

FeldmanHall, O., Dunsmoor, J. E., Tompary, A., Hunter, L. E., Todorov, A., & Phelps, 
E. A. (2018). Stimulus generalization as a mechanism for learning to trust. 
Proceedings of the National Academy of Sciences of the United States of America, 
115(7), E1690–E1697. https://doi.org/10.1073/pnas.1715227115

Fudenberg, D., & Levine, D. (1998). The Theory of Learning in Games. Cambridge, MA: 
The MIT Press.

Heap, S. P. H., & Zizzo, D. J. (2009). The value of groups. American Economic Review, 
99(1), 295–323. https://doi.org/10.1257/aer.99.1.295

Henrich, J., Boyd, R., Bowles, S., Camerer, C., Fehr, E., Gintis, H., … Tracer, D. 
(2005). “Economic man” in cross-cultural perspective: Behavioral experiments in 
15 small-scale societies. Behavioral and Brain Sciences, 28(6), 795–815. https://doi.
org/10.1017/S0140525X05000142

Ho, T. H., Camerer, C. F., & Chong, J. K. (2007). Self-tuning experience weighted 
attraction learning in games. Journal of Economic Theory, 133(1), 177–198. https://
doi.org/10.1016/j.jet.2005.12.008

Hula, A., Montague, P. R., & Dayan, P. (2015). Monte Carlo Planning Method Estimates 
Planning Horizons during Interactive Social Exchange. PLoS Computational 
Biology, 11(6). https://doi.org/10.1371/journal.pcbi.1004254

Johnson, N. D., & Mislin, A. A. (2011). Trust games: A meta-analysis. Journal of 
Economic Psychology, 32(5), 865–889. https://doi.org/10.1016/j.joep.2011.05.007

Levy, D. J., & Glimcher, P. W. (2012). The root of all value: a neural common currency 
for choice. Current Opinion in Neurobiology, 22(6), 1027–1038. https://doi.
org/10.1016/j.conb.2012.06.001

Palminteri, S., Wyart, V., & Koechlin, E. (2017). The Importance of Falsification in 
Computational Cognitive Modeling. Trends in Cognitive Sciences, 21(6), 425–433. 
https://doi.org/10.1016/j.tics.2017.03.011

Parnamets, P., Granwald, T., & Olsson, A. (2018). Building and Dismantling Trust: 
From Group Learning to Character Judgments, 846–851.

Prochazkova, E., Prochazkova, L., Giffin, M. R., Scholte, H. S., De Dreu, C. K. W., 
& Kret, M. E. (2018). Pupil mimicry promotes trust through the theory-of-mind 



Learning to trust through experience and belief  

Ch
ap

te
r 

3

87

network. Proceedings of the National Academy of Sciences, 115(31), E7265–E7274. 
https://doi.org/10.1073/pnas.1803916115

Rand, D. G., Greene, J. D., & Nowak, M. A. (2012). Spontaneous giving and calculated 
greed. Nature, 489(7416), 427–430. https://doi.org/10.1038/nature11467

Romano, A., Balliet, D., & Wu, J. (2017). Unbounded indirect reciprocity: Is reputation-
based cooperation bounded by group membership? Journal of Experimental Social 
Psychology. https://doi.org/10.1016/j.jesp.2017.02.008

Romano, A., Balliet, D., Yamagishi, T., & Liu, J. H. (2017). Parochial trust and 
cooperation across 17 societies. Proceedings of the National Academy of Sciences of 
the United States of America. https://doi.org/10.1073/pnas.1712921114

Rutledge, R. B., Dean, M., Caplin, A., & Glimcher, P. W. (2010). Testing the reward 
prediction error hypothesis with an axiomatic model. Journal of Neuroscience, 
30(40), 13525–13536. https://doi.org/10.1523/JNEUROSCI.1747-10.2010

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning, Second Edition: An 
Introduction. The MIT Press.

Zhu, L., Mathewson, K. E., & Hsu, M. (2012). Dissociable neural representations of 
reinforcement and belief prediction errors underlie strategic learning. Proceedings 
of the National Academy of Sciences of the United States of America, 109(5), 1419–
1424. https://doi.org/10.1073/pnas.1116783109



4



Chapter 44 Generosity Biases the Learning 
of  Cultural Conventions

Michael Rojek-Giffin1,2*, Maël Lebreton3,4,*, #, Jean Daunizeau5,6,7, 
Andrea Fariña1,2, Jörg Gross1,2, and Carsten K.W. De Dreu1,2,8,#

1	 Institute for Psychology, Leiden University, Leiden, the Netherlands
2	 Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
3	 Laboratory for Behavioral Neurology and Imaging of  Cognition,  

Department of  Basic Neurosciences, Université de Genève, Geneva, Switzerland
4	 Swiss Centre for Affective Sciences, Université de Genève, Geneva, Switzerland
5	 Sorbonne Université, Paris, France
6	 Institut du Cerveau et de la Moelle épinière, Paris, France,
7	 INSERM UMRS 1127, Paris, France
8	 Center for Research in Experimental Economics and Political Decision Making,  

University of  Amsterdam, Amsterdam, the Netherlands
*	 Indicates shared first authorship
#	 Corresponding authors at Leiden University, PO 9555, 2300 RB Leiden, the Netherlands; 

email: c.k.w.de.dreu@fsw.leidenuniv.nl and  
Geneva University, Geneva, Switzerland; email: mael.lebreton@unige.ch 



Chapter 4

90

Summary

Human groups can markedly differ in fairness and cooperation norms, and these 
differences can create intergroup misunderstandings and conflict. At the same time, 
humans also trade and travel across cultural divides, suggesting that they can learn 
and adapt to new culture-specific conventions and rules of engagement. While such 
adaptions avoid intergroup conflict and benefit intergroup exchange, how humans learn 
group-specific rules that are often implicit and distinct from already learned values 
and norms remains poorly understood. Here we examine this fundamental learning 
process underlying social rule acquisition. We created three populations with different 
yet unobservable rules of engagement and varied whether or not decisions affected 
interaction partner outcomes. Participants made bargaining offers to responders from 
these different populations and could observe whether their offer was accepted or 
rejected. Participants quickly adapted to group-specific rules in learning environments 
without social consequences, but were overly generous and ended up misrepresenting 
what would be acceptable when decisions affected their partner’s outcomes. We propose 
a computational model, combining Bayesian principles and social preferences, that 
mechanistically explains how generosity leads to biased sampling, impeded learning, and 
false beliefs about what offers are deemed acceptable. Using functional neuroimaging, we 
mapped key computational variables in two major brain networks, previously associated 
with value-based and social decision-making. Results suggest that generosity, related to 
brain regions associated with decision-conflict and perspective-taking, can induce self-
fulfilling beliefs in pro-sociality norms that may help to increase cooperation and reduce 
conflict between distinct groups but also create inaccurate stereotypes and economic 
inefficiencies. 

Key Words: Decision Neuroscience | Moral Sentiments | Bayesian Learning | Social 
Norms



Generosity Biases the Learning of  Cultural Conventions

Ch
ap

te
r 

4

91

Main Text

The myriad agreements that govern social life require some form of coordinated 
negotiation about what to give and what to take, and what to do and to avoid (Crawford, 
2019; De Dreu, Weingart, & Kwon, 2000; King-Casas et al., 2005). Social preferences 
for fairness and the welfare of other, alongside norms for cooperation, can help people 
to avoid economically costly coordination failures and emotionally taxing impasses that 
emerge when offering too little or asking too much (De Dreu, Gross, Fariña, & Ma, 
2020; Fehr & Fischbacher, 2002; Fehr & Schmidt, 1999). The coordination value of 
social preferences and cooperation norms decreases, however, when partners differ in 
their rules of engagement and hold different conceptions of fairness (Bicchieri, 2005; 
Fiske, 1992; Sam & Berry, 2010). Indeed, fairness norms and rules of engagement differ 
across groups, markets, and cultures—what is considered fair and appropriate in some 
cultures may be considered offending and too demanding in others (Blake et al., 2015; 
Debove, Baumard, & André, 2016; Henrich et al., 2005).
	 While operating on one’s fairness considerations may facilitate coordination and 
social exchange within cultures and markets (Bicchieri, 2005; Fehr & Fischbacher, 
2002; Tomasello, Carpenter, Call, Behne, & Moll, 2005), across cultures it can increase 
rather than decrease misunderstanding and conflict (Adair, Okumura, & Brett, 2001; 
Gelfand, Erez, & Aycan, 2007; Gelfand & Harrington, 2015; Rai & Fiske, 2011; 
Weber & Camerer, 2003). Extant work on mutual gains bargaining has indeed shown 
that culture-specific norms of fairness facilitate intracultural deal-making yet undermine 
collective efficiency when participants come from markedly different cultures (Buchan, 
Croson, & Johnson, 2004; Liu, Huang, Luo, & Zhao, 2012). And yet, since prehistoric 
times, humans interact and trade across cultural boundaries (Rand & Nowak, 2013; 
Soares et al., 2010), suggesting an ability to learn and adapt to new culture-specific 
rules of engagement. Here we address this possibility, asking how humans learn new 
rules of engagement, and to what extent culturally engrained social concerns for fairness 
modulate such learning and adaptation in intercultural interactions and economic 
exchanges.  

Creating cultural conventions in the lab

In a first step, we created three “cultures” in the lab that differed in the extent to 
which individual members would accept (versus reject) ultimatum offers. Participants 
(Experiment 1, N = 210, see Methods) decided to accept or reject a range of possible 
offers from proposers (out of endowment e = 20). When accepting the offer, participants 
as responders earned the offer and their proposer earned e – offer. When rejecting, each 
side earned 0 (Güth, Schmittberger, & Schwarze, 1982). In this simple game, modeling 
a social transaction between two people, the proposer has to make an offer large enough 
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to reduce the risk of rejection without knowing what the responder deems appropriate 
or acceptable a priori. If the proposer offers too much, she runs the risk of being overly 
generous, losing money that she could have kept for herself. Whereas proposers always 
had e = 20, responders indicated their accept/reject decisions when they themselves had 
e = 0, e = 10, and e = 20 already in their pocket to induce and create different acceptance 
thresholds (Methods). Confirming that different responder endowments influenced 
rules of engagement (or acceptance thresholds; (Slonim & Roth, 1998)), we find that 
responders with e = 0 exhibited an acceptance distribution commonly found in Western 
societies (Henrich et al., 2005; Oosterbeek, Sloof, & van de Kuilen, 2004). Thresholds 
were significantly lowered when responders’ had a starting endowment of e = 10 and 
e = 20, respectively (Fig 1A), corresponding to rules of engagement found in some 
non-Western cultures (Blake et al., 2015; Henrich et al., 2005). Different responder 
endowments thus created different group-specific rules of engagement (i.e. what was 
deemed a “fair” offer that was accepted rather than rejected), which we modelled 
with sigmoid functions - thereafter referred to as acceptance functions. These sigmoid 
functions formally describe the probability of each offer being accepted in each culture, 
and are fully characterized by two parameters (an intercept and a slope - Fig 1B). 

Figure 1.  
A model to learn cultural conventions. (A) Group-specific Rules of Engagement, estimated from 
Experiment 1. Grey histograms represent acceptance frequencies for respondents with starting endowments 
of (from left to right) 0, 10, and 20 MU, to any possible offer from a proposer with 20MU starting 
endowment. Colored lines represent acceptance functions, i.e. logistic functions fitted to the data to 
characterize the entire population. (B) Acceptance functions. Acceptance functions are modelled as logistic 
functions, fully characterized by two parameters: an intercept θ1 and a slope θ2. 
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Figure 1. Continued. 
(C) Proposer optimal policy. The ultimatum payoff structure (left panel) is combined with (known) 
acceptance functions (middle panel) to derive expected gain, as a function of offers, for each culture 
(right panel). The optimal policy is to select the offer with the maximum expected gain (diamonds). 
(D) Modeling beliefs. Proposer typically do not know the true acceptance function parameters, but are 
endowed an internal representation – belief – of those, which take a Gaussian form p(θ) = N(μ,Σ). The 
colored surface on the right panel represent the belief multivariate probability density function (with the 
marginal probability distribution for each parameter represented as white curves). (E) Learning model. 
Consider a proposer, represented by her belief probability density function (colored surface), confronted 
with a specific culture, represented by the parameters of its acceptance function (purple dot). At each trial, 
the proposer uses her estimated acceptance function (black curve; top right insets) to produce an expected 
gain function (bottom right insets), and select an offer that (soft) maximize expected gain (green dot). In 
this case, the offers are accepted, and the proposer use this information to update her beliefs using Bayes 
rule. Note that the peak of the belief probability density function gets closer to the true parameters (purple 
dots). Dotted lines represent the previous trial features. (F) Simulations. Simulations (N = 100) show that 
the Bayesian scheme used can efficiently converge to good approximation of the intercept (left panel) and 
slope (middle panel) of different culture’s acceptance functions (color codes are identical to panel A). Right 
panel pictures the original (dotted black line) and final estimated acceptance functions (dotted colored 
lines), with true acceptance function superimposed (thick colored lines). 
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A model of  learning cultural conventions

We next developed a mathematical framework to understand how ideal proposers 
would behave when repeatedly paired with responders sampled from those different 
cultures. First, consider an agent whose sole goal is to maximize her monetary gains. 
Should the agent know the acceptance function parameters of the different cultures, her 
optimal strategy is to use this function to compute each offer’s expected gain, knowing 
the ultimatum offer payoff rule, and to select the offer that maximizes her expected 
payoff (Fig 1C). Yet, in ecological settings, an uninformed agent does not know the 
acceptance function’s parameters characterizing each culture (FeldmanHall & Shenhav, 
2019). Instead, she relies on beliefs about these parameters (Fig 1D). Using Bayesian 
learning principles (see Materials and Methods), those (prior) beliefs can be updated 
when observing responders’ decisions to offers made, to form posterior beliefs that better 
estimate the true parameters (Fig 1E). Simulations demonstrate that an approximate 
implementation (based on a variational-Laplace scheme) of this optimal Bayesian 
learning principle can efficiently learn different culture acceptance function parameters, 
while selecting offers that (soft-)maximize her expected payoff (Fig 1F). 

A mechanistic explanation of how generosity biases cultural learning 

Now consider an agent who is not only concerned about maximizing her gains, but 
also by the responder’s welfare. Such social concern can be expressed, for instance, as 
inequality aversion (see also Materials and Methods). Then, should the agent know the 
different acceptance functions, her optimal policy is nonetheless modified, because the 
value derived from an offer now integrates both an expected gain term, and a term 
that accounts for social concern. To fully satisfy her preferences, this socially-concerned 
agent should make higher offers than a similar but purely gain maximizing agent (Fig 
2A). A socially-concerned uninformed proposer can also leverage the Bayesian update 
rule to learn cultural conventions. Yet, simulations show that social concerns bias the 
estimation of the acceptance function parameters. More specifically, despite the optimal 
Bayesian update rule, socially-concerned learners end up misrepresenting low-acceptance 
threshold cultures, believing that responders require higher offers than necessary (Fig 
2B). This result can be explained under the framework of efficient hypothesis testing: 
conditional on the agent’s current beliefs, offers (and responders’ decisions to those 
offers) are not all equally efficient (i.e. informative or diagnostic; see Materials and 
Methods). Social concerns bias offers upward, away from the offers for which reactions 
would be the most efficient to adjust beliefs to the true acceptance functions, effectively 
biasing posterior beliefs (Fig 2C).
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Figure 2. How Generosity Biases the Learning of Cultural Conventions. (A) Proposer optimal policy. The 
ultimatum payoff structure is combined with acceptance functions to derive expected gain, as a function of 
offers, for each culture (left panel). An inequality aversion (IA) term (middle panel) can be added to generate 
a complex expected utility function (right panel). The new optimal policy is to select the offer with the 
maximum expected utility (diamonds). The addition of the IA term therefore leads to higher optimal offers 
(right-most panel: plain diamonds: with IA.; empty diamonds: without IA). (B) Simulations. Two sets of 
simulations (N = 100 each) were performed with (middle panel) or without (left panel) the inclusion of 
IA term to select the offer. Results show that after 24 trials, Bayesian learning converged to different beliefs 
about the acceptance function intercepts (μ1) in those two conditions, especially in the most accepting 
culture (blue color – right panel). (C) Learning in(efficiency). 
*** P < 0.001

An experimental framework to test the culture learning model 

To test model predictions, we performed three experiments. Participants in the role of 
proposers (N = 198) made offers to responders that were identified by three neutral 
symbols, similar to culture-specific identity markers such as language or clothing (Fig 
3A). Unbeknownst to proposers, symbols corresponded to a particular acceptance 
threshold established in Experiment 1. Through a process of offer approval and 
rejection, proposers could learn and adapt to these group-specific rules of engagement, 
akin to learning new norms and culture-specific conventions (Sam & Berry, 2010). 
In addition, in one treatment (henceforth social condition), proposers interacted with 
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human responders whose earnings depended on the (acceptance of ) proposed offers 
whereas in another treatment (henceforth non-social condition), proposers interacted 
with behaviorally identical computer agents that did not earn from the (acceptance 
of the) offer (Baumgartner, Fischbacher, Feierabend, Lutz, & Fehr, 2009; Sanfey, 
Rilling, Aronson, Nystrom, & Cohen, 2003). In the social condition, participants were 
explicitly told that they were facing groups of responders who had received different 
starting endowments but not what the endowments were. In the non-social condition, 
participants were told that they facing computer generated lotteries programmed to 
mimic the behavior of participants who had received different starting endowments (see 
Materials and Methods). This created a non-social and social learning environment with 
identical learning contingencies, elucidating how social concerns for the responders 
affects learning (see also Materials and Methods).

Social concerns modulate learning behavior

Proposers indeed behaved differently when their decisions had social consequences. 
Proposers facing human responders made higher initial offers compared to computer 
responders (Fig 3BC: b ± se = 0.852 ± 0.231, p < 0.001) and higher offers on average 
(b ± se = 0.570 ± 0.026, p < 0.001). In sum, proposers were more generous to human 
as opposed to computer opponents. As a consequence, earnings were significantly lower 
when playing against human rather than computer responders (Fig 3C: b ± se = -0.185 
± 0.055, p < 0.001). 
	 Results also showed that proposers progressively learn the group-specific rules of 
engagement across repeated offers to responders. Offers converged over trials on three 
different final offers in the three different conditions (Fig 3BC; b ± se = -1.718 ± 0.076, 
p < 0.001). After learning, offers were still significantly higher for humans than for 
computer responders (Fig 3BC; b ± se = 0.596 ± 0.146, p < 0.001).
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Social concerns bias posterior beliefs

There may be two mechanisms accounting for the higher offers to human than computer 
responders at the end of learning. First, proposers may converge to similar estimates of 
acceptance functions in both social and non-social conditions, but still make higher 
offers to human responders because of social concerns. Our Bayesian model suggests, 
however, that by making higher offers to human rather than computer responders, 
proposers converge to different estimates of (the same) acceptance functions in the social 
versus non-social condition. Whereas the second possibility presumes posterior beliefs 
to be biased by the social versus non-social condition, the first possibility does not. To 
examine posterior beliefs, participants in two of our experiments (N = 93) performed, 
after the learning task, an incentivized belief estimation task that directly elicited 
participant beliefs about the acceptance functions (Materials and Methods). We find 
that, as predicted by the Bayesian model, proposers estimated the acceptance thresholds 
of human responders to be higher than those of computer-simulated responders, 
especially for the most lenient responder group (t(92) = 1.914, p = 0.059, Fig. 4BC). 
This indicates that social concerns can bias the formation and updating of group-specific 
beliefs about rules of engagement. 

Figure 3. Behavioral results of learning task. (A) Trial timeline. Subjects made ultimatum offers to three 
different responder groups each marked with a neutral shape in alternating blocks either with or without 
social consequences. (B) Offers over trials. Across multiple encounters, offers converge on the acceptance 
thresholds of the three different responder populations, depicted with different colors. Dots with error 
bars represent mean ± standard error, shaded areas represent model predictions. Social preferences (human 
versus computer-simulated responders) impede convergence of offers on responder acceptance thresholds 
(shown m ± se). (C) Behavioral results. Behavior differed between responder group and social consequence 
in terms of initial offer, average offer, average reward, average responder benefit, and final offer.
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Figure 4. Social preferences modulate beliefs. (A) Trial timeline. Proposers were asked what probability 
each offer had of being accepted by each responder type in both social and non-social conditions. (B-C) 
Posterior beliefs. Proposer answers were averaged (dots with error-bars) and fitted to sigmoid functions 
(lines), which represent proposers’ estimates of each responder’s acceptance function. The intercepts and 
slopes were then averaged within each responder and tested for differences between the social and non-social 
conditions.
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Fitting Bayesian learning with inequality aversion captures human behavior

Participants’ behavior match predictions from our computational model simulations, 
but this in itself is no evidence that our model can truly and most parsimoniously 
explain the (social-concern biased) learning and updating of culture-specific rules of 
engagement (Palminteri, Wyart, & Koechlin, 2017). However, a set of model fitting and 
model comparisons exercises (Daw, 2011) showed that the simulations of the estimated 
parameters from the Bayesian learning with social concerns model mimicked the key 
behavioral patterns observed in our participants: learning curves per condition (Fig. 3B) 
and average behavior (Fig. 3C). In addition, the model posterior beliefs estimated at the 
end of learning clearly accounted for the social bias in the posterior belief task (Fig. 4C). 
A Bayesian Model Comparison between Bayesian learning models with and without 
social concerns revealed that models with social concerns better account of the data 
than models without social concern. Combined, these results indicate that our model 
provides a satisfactory mechanistic explanation of participant behavior.  

Functional neuroimaging

Neuroimaging data (see Materials and Methods revealed for details on methods) revealed 
that proposer brains exhibited different patterns of neural activity depending on whether 
or not their decisions had social consequences. A whole-brain searchlight procedure 
using multi-voxel pattern analysis (Materials and Methods) revealed significant neural 
differences between offers made to human rather than computer responders in the 
dorsal anterior cingulate cortex (dACC) and the precuneus during feedback (Fig. 5A), 
and in dACC and in the right superior temporal sulcus (STS) when participants made 
their offers (Fig. 6B). This suggests that especially the dACC was critically involved in 
the differential behavior and beliefs observed between human and computer-simulated 
opponents. 
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Results also showed key parameters of our Bayesian learning model to covary with 
valuation and reward learning neural circuitry. The Bayesian model’s prediction error 
significantly correlated with BOLD response during feedback in the ventral striatum 
(VS) and ventromedial prefrontal cortex (VMPFC), as well as the posterior cingulate 
cortex (PCC), orbitofrontal cortex (OFC), hippocampus, and STS (Fig. 5D). The 
Bayesian model’s expected value significantly correlated with BOLD response during 
offer selection in the VS and VMPFC (Fig. 5E). 
	 When actions result in a social consequence, both simulations and behavioral 
results demonstrate that the most lenient responder group has their acceptance thresholds 
under-estimated to a higher degree than the other responder groups, and hence are 
the most over-valued (Fig 2B & Fig 3BC). This same interaction between responder 
groups and social context was also expressed neurally. The correlation between VMPFC 
BOLD response and the Bayesian learning model’s expected value significantly differed 

Figure 5. Neural activity differs between conditions and is tracked by model parameters. (A-B) Social 
context in the brain. Proposer brains exhibited significantly different patterns of neural activation during 
both feedback (A) and while making offers (B). (C) Region of interest. A priori defined ventromedial 
prefrontal cortex (VMPFC) ROI obtained from meta-analytic tool Neurosynth (Yarkoni, Poldrack, Nichols, 
Van Essen, & Wager, 2011). (D-E) Neural correlates of model parameters. Regions encompassing value 
attribution and social cognition significantly correlated with prediction errors (D) and expected values (E) 
from our Bayesian Preference Learner model. (F) VMPFC Social × Responder group interaction. Neural 
activity in the VMPFC exhibited an interaction between social context and responder group, with the 
most lenient responder group (blue) eliciting a higher VMPFC BOLD response in the social relative to the 
non-social context, while this social/non-social differentiation was absent in the most stringent group (red). 
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between responder groups depending on social context, with the difference being most 
pronounced for the most lenient responder group (social ´  responder (e = 10): b ± se = 
0.209 ± 0.123, p = 0.091; social ´  responder group (e = 20): b ± se = 0.259 ± 0.123, p 
= 0.037; social responder group (e = 0) vs. non-social responder group (e = 0): t(48) = 
-0.136, p = 0.892; social responder group (e = 10) vs. non-social responder group (e = 
10): t(48) = 2.259, p = 0.028; social responder group (e = 20) vs. non-social responder 
group (e = 20): t(48) = 2.888, p = 0.006; Fig. 5F). This indicates that the process of 
learning culture-specific rules of engagement is hindered by social concern in the form 
of inequity aversion, and this hinderance is evident at the computational, behavioral, 
and neural level. 

Conclusions

By experimentally isolating fairness norms and concomitant rules of engagement as a 
core component along which human cultures differ (Blake et al., 2015; Fiske, 1992; 
Gelfand & Harrington, 2015; Henrich et al., 2005; Oosterbeek et al., 2004; Rai & 
Fiske, 2011), we investigated how humans learn implicit, culture-specific conventions 
in a controlled learning environment. Specifically, participants learned to match their 
ultimatum offers to unobservable responders’ acceptance thresholds and updated their 
behavior and beliefs about culture-specific rules of engagement accordingly. At the same 
time, participants exhibited generosity when facing human opponents which impeded 
their ability to learn. Especially with responders with lenient acceptance thresholds, 
people learned slowly and continued to make unnecessarily high offers, often not 
observing that more self-serving choices would have been deemed appropriate in some 
environments. This was not the case in a non-social learning environment. It thus 
appears that social concerns can initiate a self-fulfilling process of selective sampling 
and updating, whereby some culture-specific rules of engagement are better learned and 
adopted than others. 
	 The self-fulfilling bias in learning revealed here provides a mechanistic explanation 
for asymmetric cultural evolution, in which over time some cultural conventions 
(Fiske, 1992), and value-systems more generally (Rai & Fiske, 2011), become more 
wide-spread than others. In our case, people were too generous with some partners who 
consistently received more than their acceptance thresholds. Because overly generous 
offers were frequently accepted, people were confirmed in their beliefs that others’ 
acceptance thresholds were higher than they actually were. It stands to reason that 
those who persistently receive more than they need likewise, over time, update their 
expectations and increase their acceptance thresholds, leading to a consensually shared 
social convention of what is needed and required to coordinate agreements, a self-
fulfilling prophecy based on generosity-impeded learning. It stands to reason too that 
such biased updating of beliefs and expectations operate in other culture-specific norms 
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and conventions, explaining why some (detrimental) cultural norms and conventions 
survive and increase in popularity, while others fade and become extinct. 

Materials and Methods

Ethics statement
Experiments received ethics approval from Leiden University (CEP17-0829/274, 
CEP17-1012/341, CEP19-0108/7, and CEP19-0617/350). Data were collected over 
four independent samples, and subsequently pooled together for analysis: Sample 1: 
N = 210; Sample 2: N = 50; Sample 3: N = 44; Sample 4: N = 49. Participants were 
recruited from the subject pool at Leiden University, provided written informed consent 
and were debriefed and paid for participation. Experiments were incentivized and did 
not involve deception. Individual anonymity was guaranteed throughout and earnings 
were paid in private. 

Responders’ tasks and data
To obtain the responder populations against which our proposers played, we first 
invited 210 participants to play Ultimatum Game (UG) as responders using the 
strategy method. Responders played in five different conditions consisting of starting 
endowments with different amounts of monetary units (MU): 0MU, 5MU, 10MU, 
15MU or 20MU (Fig. 6). These different starting endowments given to the responders 
resulted in different amounts of money being at stake on any given trial, and effectively 
modeled different environments with different cultural customs. For example, when 
the responder received a starting endowment of 0MU, all the money at stake on that 
trial would be in the hands of the proposer. Therefore, a 50/50 division of the total 
amount at stake on such a trial would be 10MU from the proposer. However, on a trial 
in which the responder received a starting endowment of 10MU, the total amount at 
stake would now be the proposer’s starting endowment (20MU) plus the responder’s 
starting endowment (10MU), totaling 30MU at stake altogether, and making a 50/50 
division equal to 5MU instead of 10MU. On trials in which the responder received 
a starting endowment of 20MU, there was 40MU at stake altogether, and an offer of 
0MU resulted in a 50/50 division. 
	 Responders were asked if they would accept all offers between 0 and 20 (Fig. 6), 
and their answers were then pooled and summed to obtain the frequency with which 
each offer was accepted in a given condition (Fig. 6). The condition in which responders 
received a starting endowment of 0MU exhibited the distribution commonly found in 
the Ultimatum Game, with offers of 10MU being accepted in most cases, but offers 
below 10MU being frequently rejected. More importantly, the conditions in which 
responders received initial starting endowments resulted in responders accepting lower 
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offers. The resulting distributions of this manipulation acted as the populations against 
which our proposer played. Specifically, we fit logistic functions over the resulting 
distributions of this manipulation in order to obtain the acceptance threshold of the 
entire population. These functions were used to provide feedback to our proposers. 

Figure 6. Responder task and data. Participants provided ultimatum game responses for each possible 
offer in five different conditions in which they were given five different starting endowments unaffected 
by the offers from proposers (top row). These starting endowments resulted in different distributions of 
acceptance frequencies (bottom row). To obtain the acceptance function of each responder group (i.e. each 
endowment), we fit logistic functions the distributions. The feedback provided to proposers was determined 
by the response functions for endowments of 0, 10, and 20.

Proposer Tasks

Learning task
Participants played between two blocks (Pilot: 1 human and 1 computer condition) 
and four blocks (fMRI and Replication: 2 human and 2 computer conditions) of the 
Ultimatum Game as proposers. In each block, participants played 72 trials against 3 
different responder cultures with different acceptance thresholds (24 trials per responder 
culture). Each responder group was marked with a neutral shape such as a circle or 
square, and all shapes were randomized for each participant and only used once such 
that each block consisted of completely novel shapes. Participants were instructed that 
they were playing against groups of responders who had received different starting 
endowments, although they were not told what the endowments were. Importantly, 
while in the human condition participants were told that they were playing against 
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groups of responders who had received different starting endowments, in the computer 
condition participants were told that they were playing against computer generated 
lotteries programmed to mimic the behavior of participants who had received different 
starting endowments. In other words, they were told that they were playing against 
computers programmed to behave like humans. One trial from each block was selected 
at random for payment.
	 The Pilot sample was programmed in oTree (Chen, Schonger, & Wickens, 2016) 
and was completely self-paced. On every trial, participants were shown a screen with a 
shape denoting the responder group, and selected an offer between 0 and 20. Participants 
were then presented with a results page containing feedback regarding whether or not 
their offer was accepted, and how much MU they earned for that trial. The fMRI and 
Replication experiments were programmed in the Psychtoolbox library of Matlab 
(Mathworks). Each trial started with a fixation cross (1.5 – 2.5 seconds), followed by a 
screen showing the shape denoting the responder culture (2 – 3 seconds). Subjects then 
used a slider to select an offer between 0 and 20, after which they were shown a screen 
indicating whether or not the offer was selected and how much MU they received for 
that trial (2 – 3 seconds). 

Posterior belief task
After one human and one computer block (for the fMRI and Replication samples), 
participants completed a fully incentivized belief estimation task. Due to technical issues, 
three participants from the fMRI sample were unable to complete the task, leaving a 
final sample of N = 93. In this task subjects were asked to estimate the probability 
each offer had of being accepted by each responder culture against whom they had just 
played. On each trial, participants were presented with a shape corresponding to one of 
the responder cultures from the previous blocks as well as an offer between 0 and 20. 
They were asked to identify on a scale from 0% to 100% how likely the given offer was 
to be accepted by that particular responder culture. All trials were self-paced. We used 
a Becker-DeGroot Marschak auction to incentivize accuracy, and selected one trial at 
random for payment.
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Neuroimaging 

acquisition details
Neuroimaging was performed using a standard whole-head coil on a 3-T Philips 
Achieva MRI system at the Leiden University Medical Center. Participants completed 
four runs, during which 400 T2*-weighted whole-brain echo-planar images (EPIs) were 
collected (TR = 2.2 s; TE = 30 ms, flip angle = 80°, 38 transverse slices, 2.75 × 2.75 
× 2.75 mm +10% interslice gap). The first five dummy scans were discarded to allow 
for equilibration of T1 saturation effects After each functional fun, a B0 field map was 
acquired. Additionally, a 3-D T1-weighted scan was acquired (TR = 9.8 ms; TE = 4.6 
ms, flip angle = 8°, 140 slices, 1.166 × 1.166 × 1.2 mm, FOV = 224.000 × 177.333 × 
168.000).

Neuroimaging preprocessing
fMRI data were preprocessed using FMRIPREP version 1.0.8 (Esteban et al., 2019), 
a Nipype (Gorgolewski et al., 2011) based tool. Each T1w (T1-weighted) volume was 
corrected for INU (intensity non-uniformity) using N4BiasFieldCorrection v2.1.0 
(Tustison et al., 2010) and skull-stripped using antsBrainExtraction.sh v2.1.0 (using 

Figure 7. Schematic of all tasks. Participants completed a learning task (A) against three responder groups 
(B) in both social and non-social contexts. After the learning phase, subjects then completed a probability 
matching task (D) assessing their posterior beliefs regarding the acceptance functions of the different 
responder groups.
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the OASIS template). Brain surfaces were reconstructed using recon-all from FreeSurfer 
v6.0.1 (Dale, Fischl, & Sereno, 1999), and the brain mask estimated previously was 
refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical gray-matter of Mindboggle (Klein et al., 2017). 
Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c 
(Fonov, Evans, McKinstry, Almli, & Collins, 2009) was performed through nonlinear 
registration with the antsRegistration tool of ANTs v2.1.0 (Avants, Epstein, Grossman, 
& Gee, 2008), using brain-extracted versions of both T1w volume and template. Brain 
tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter 
(GM) was performed on the brain-extracted T1w using fast (FSL v5.0.9) (Zhang, Brady, 
& Smith, 2001).
	 Functional data was motion corrected using mcflirt (FSL v5.0.9) (Jenkinson et al., 
2002). This was followed by co-registration to the corresponding T1w using boundary-
based registration (Greve & Fischl, 2009) with 9 degrees of freedom, using bbregister 
(FreeSurfer v6.0.1). Motion correcting transformations, BOLD-to-T1w transformation 
and T1w-to-template (MNI) warp were concatenated and applied in a single step using 
antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation.
	 Physiological noise regressors were extracted applying CompCor (Behzadi, Restom, 
Liau, & Liu, 2007). Principal components were estimated for the two CompCor 
variants: temporal (tCompCor) and anatomical (aCompCor). A mask to exclude signal 
with cortical origin was obtained by eroding the brain mask, ensuring it only contained 
subcortical structures. Six tCompCor components were then calculated including only 
the top 5% variable voxels within that subcortical mask. For aCompCor, six components 
were calculated within the intersection of the subcortical mask and the union of CSF 
and WM masks calculated in T1w space, after their projection to the native space of 
each functional run. Frame-wise displacement (Power et al., 2014) was calculated for 
each functional run using the implementation of Nipype.
	 Many internal operations of FMRIPREP use Nilearn (Abraham et al., 2014), 
principally within the BOLD-processing workflow. For more details of the pipeline see:   
http://fmriprep.readthedocs.io/en/latest/workflows.html. 

Univariate analysis
Preprocessed functional data was then analyzed with FSL (Oxford Centre for Functional 
MRI of the Brain (FMRIB) Software Library; www.fmrib.ox.ac.uk/fsl). At the first level 
(within subjects within runs), each subjects blood oxygen level dependent (BOLD) data 
was spatially smoothed with 5mm FWHM gaussian kernel, high pass temporal filtered, 
film pre-whitened, and convolved with the canonical double gamma hemodynamic 
response function. The general linear model (GLM) included the following regressors: 
“opponent”: the time-phase when the shape representing the different responder 
population was presented; “expected value”: the “opponent” regressor modulated by the 
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intercept of our RL model, and orthogonalized with respect to “opponent”; “feedback”: 
the time-phase when the response of the opponent was presented to the subject; 
“prediction error”: “feedback” modulated by the prediction error from our RL model, 
orthogonalized with respect to “feedback”. We also included temporal derivatives for 
all of these regressors, six motion parameters (three rotation and three translation), 
framewise displacement (Power et al., 2014), and six anatomical principal components 
(Behzadi et al., 2007). 
	 We conducted an analysis in which we looked for neural differences between our 
conditions within a priori regions of interest (ROI’s): the ventral striatum (VS) and 
ventromedial prefrontal cortex (VMPFC). Both of these ROI’s were obtained from the 
meta-analytic tool Neurosynth (Yarkoni et al., 2011) using the search terms “ventral 
striatum” and “ventromedial prefrontal cortex”. For this analysis we constructed a GLM 
similar to that described above except delineated by responder group (e.g. opponent  
e = 0, opponent e = 10, opponent e = 20, expected value e = 0, expected value e = 10, 
expected value e = 20). We then averaged over runs within subjects, and then took the 
average BOLD activation within each ROI for each subject. Finally we submitted each 
subject’s averaged BOLD response within the given ROI to a multilevel regression using 
the lme4 package in R (Bates, Mächler, Bolker, & Walker, 2015; The R Development 
Core Team, 2017), with BOLD activation within the specific ROI as the dependent 
variable, social consequence, responder group, and their interaction as independent 
variables, with the intercept of the model allowed to vary randomly across participants. 
Significant effects (observed for the VMPFC but not the VS ROI) were followed up 
with paired t-tests and reported in the main text. 

Multivariate analysis
We employed multi-voxel pattern analysis (MVPA) to examine patterns of neural 
activity during both the decision and feedback time-phases in order to detect subtle 
differences in neural processing between the social and non-social conditions (see Fig 
1A-B). For each subject we fit a general linear model (GLM) to each trial time-locked 
to the time-phase of interest (i.e. for both decision and feedback time-phases). This 
resulted in a single parameter estimate for each trial, during each epoch of interest. 
We then, for each subject, concatenated these parameter estimates together to create 
a single image file with 288 volumes, each volume corresponding to the parameter 
estimate of a given trial. We then applied a 27-voxel searchlight procedure with a linear 
discriminant analysis (LDA) classifier. A searchlight acts as a traveling region of interest 
used to detect spatially contiguous patterns of activation specific to functional neural 
structures (Kriegeskorte, Goebel, & Bandettini, 2006). Each subject completed two 
social and two non-social functional runs, and we therefore conducted a leave-two-runs-
out cross-validation procedure, in which our LDA classifier was trained on two runs 
(one social and one non-social), and then tested on the two independent left-out runs. 
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This resulted in a single accuracy map for each subject. The resulting accuracy maps 
were then concatenated together, and tested for significance with Monte Carlo boot-
strapping with 10,000 permutations with threshold-free cluster enhancement (TFCE) 
(Smith & Nichols, 2009), family-wise error correct (FWE-corrected) at the whole-brain 
level, implemented in the CoSMoMVPA MATLAB package (Oosterhof, Connolly, & 
Haxby, 2016). To maximize statistical sensitivity, we created null datasets for significance 
testing by permuting condition labels. Specifically, for each subject we permuted the 
labels indicating which condition each volume of their image file belonged to, and ran 
the searchlight on said permuted image. This process was repeated 100 times for each 
subject as recommended by Stelzer and colleafgues (Stelzer, Chen, & Turner, 2013) 
resulting in 100 “null” accuracy maps, representing results from randomized data. These 
data were used as the null data in the group level TFCE analysis. 

Main computational model

Details on BPL
In what follows, we provide mathematical details regarding the derivation of our 
“Bayesian Preference Learner” or BPL model (see (Devaine & Daunizeau, 2017) for 
a similar approach). This model essentially describes how Bayesian proposers update, 
on a trial-by-trial basis, their estimate of the receivers’ acceptance function parameters. 
Bayesian proposers assume that the receiver’s choices obey a softmax decision rule, 
which transforms a linear utility function of offer into a probability of accepting the 
offer (Fig 8). 
let 
                  is a potential offer
 	                                be the sigmoid function, 	 (1)
                 be the receiver’s binary choice at trial t, 
                                     be the estimated (linear) utility that receivers derive from an offer O. 
           gathers both the receiver’s intercept θ0 and slope θ1 of her acceptance 
function.
                               is the estimated probability that the receiver accepts an  
offer O.

Bayesian Learning
Before having observed any receiver’s decision, the proposer is endowed with some prior 
belief p(θ) about the receiver’s behavioral trait θ. 
Without loss of generality, we assume that this prior belief  
is Gaussian with mean μ0 (which captures the direction of the proposer’s bias) and 
variance/covariance Σ0 (which measures how uncertain is the proposer’s prior belief; see 

Fig 1, 8).

𝑂𝑂 ∈ [0: 20] 
𝑠𝑠: 𝑥𝑥 → 1/(1 + exp(−𝑥𝑥)) 
𝑎𝑎! ∈ {0,1} 
𝑓𝑓(𝜃𝜃, 𝑂𝑂) = 𝜃𝜃! + 𝜃𝜃"𝑂𝑂 𝑓𝑓(𝜃𝜃, 𝑂𝑂) = 𝜃𝜃! + 𝜃𝜃"𝑂𝑂 
𝜃𝜃 = {𝜃𝜃!, 𝜃𝜃"} 

𝑠𝑠(𝑓𝑓(𝜃𝜃, 𝑂𝑂)) ≜ 𝑝𝑝(𝑎𝑎! = 1|𝜃𝜃, 𝑂𝑂) 

𝑝𝑝(𝜃𝜃) = 𝑁𝑁(𝜇𝜇!, 𝛴𝛴!)  

Fig 1, 8).
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Observing the receiver’s choices gives the agent information about θ, which can be 
updated trial after trial using the following Bayes-optimal probabilistic scheme:

 		  (2)

where       is the proposer’s posterior belief about the receiver’s behavioural trait  
after trial t. 
A2 can be rewritten to highlight the trial-by-trial, sequential (online) form of Bayesian 
learning as:

 		  (3)

In other words, after observing receiver’s decision   , the proposer can update her  
(posterior) belief  about the receiver’s behavioral trait         , by combining the 
 likelihood of observing the decision given her preceding belief about the receiver’s 
behavioral trait           with her preceding belief about the receiver’s behavioral trait  

Equation 3 can be approximated using a variational-Laplace scheme, which essentially 
replaces the integration implicit in Equation 3 with an optimization of the sufficient 
statistics of the approximate posterior distributions (Daunizeau, Adam, & Rigoux, 
2014; Friston, Mattout, Trujillo-Barreto, Ashburner, & Penny, 2007). This eventually 
yields semi-analytical expressions for the trial-by-trial update rules of two first moments 
of the posterior probability density function. In brief, we approximate the posterior  
belief                   in terms of a Gaussian distribution with mean μt and 

Figure 8. Modeling Beliefs. Each offer has a corresponding probability of acceptance governed by two 
parameters (θ1 and θ2; left panel). Each of these parameters follows a Gaussian distribution described by μt 
and variance Σt, which combined create a probability density function (right panel).

𝑝𝑝(𝜃𝜃|𝑎𝑎→") ∝ 𝑝𝑝(𝑎𝑎→"|𝜃𝜃)𝑝𝑝(𝜃𝜃) 

𝑝𝑝(𝜃𝜃|𝑎𝑎→") 

𝑝𝑝(𝜃𝜃|𝑎𝑎→") ∝ 𝑝𝑝(𝑎𝑎"|𝜃𝜃)𝑝𝑝(𝜃𝜃|𝑎𝑎→"#$) 

𝑝𝑝(𝜃𝜃|𝑎𝑎→") ∝ 𝑝𝑝(𝑎𝑎"|𝜃𝜃)𝑝𝑝(𝜃𝜃|𝑎𝑎→"#$) 
𝑝𝑝(𝜃𝜃|𝑎𝑎→") 

𝑝𝑝(𝑎𝑎!|𝜃𝜃) 
𝑝𝑝(𝜃𝜃|𝑎𝑎→"#$). 

𝑝𝑝(𝜃𝜃|𝑎𝑎→") ≈ 𝑁𝑁(𝜇𝜇", 𝛴𝛴") 
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variance Σt (Fig. 8). 

Given the observed decision     to the offer Ot made at trial t, this leads to the following 
learning (update) rules for the belief about the receiver’s behavioral trait: 

		  (4)

Critically, and paralleling simpler models in reinforcement learning, it can be seen 
from Equation A4 that the change in the agent’s posterior mean             is driven by 
a choice prediction error              , whose impact is modulated by the  
agent’s subjective uncertainty Σt.

Also, note that the proposer’s posterior uncertainty about the receiver’s behavioral trait 
Σt is monotonically decreasing over trials.

Iterated through time or trials, Equation A4 essentially describes how the proposer 
learns about the receiver’s probability to accept any offer (Fig. 9). We refer the interested 
reader to (Devaine & Daunizeau, 2017; Devaine, Hollard, & Daunizeau, 2014; Mathys, 
Daunizeau, Friston, & Stephan, 2011) for further mathematical details regarding the 
derivations of similar meta-Bayesian learning rules.
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 𝜇𝜇! − 𝜇𝜇!"# 
(𝑎𝑎! − 𝑠𝑠(𝑓𝑓(𝜇𝜇!"#, 𝑂𝑂!))) 

Figure 9. Learning model. Over trials subjects use Bayesian updating to refine their estimates of the 
parameters governing the acceptance function of the responder group. Consider a proposer, represented 
by her belief probability density function (colored surface), confronted with a specific culture, represented 
by the parameters of its acceptance function (purple dot). At each trial, the proposer uses her estimated 
acceptance function (black curve; top right insets) to produce an expected gain function (bottom right 
insets), and select an offer that (soft) maximize expected gain (green dot). In this case, the offers are accepted, 
and the proposer use this information to update her beliefs using Bayes rule. Note that the peak of the belief 
probability density function gets closer to the true parameters (purple dots). Dotted lines represent the 
previous trial features.
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To summarize, the learning module of our computational model approximate Bayesian 
optimal learning of receivers’ parameters via a variational-Laplace scheme. The free-
parameters of the learning module (that can be adjusted/fitted to account for our 
participants behavior) are the prior beliefs about receiver’s intercept θ0 and slope θ1 of 
her acceptance function:
                         ; where μ1,0 is the mean of the prior beliefs about the receiver’s intercept 
and μ2,0 is the mean of the prior beliefs about the receiver’s slope.

                           ; where Σ1,0 is the variance of the prior beliefs about the receiver’s 
intercept and  Σ2,0 is the mean of the prior beliefs about the receiver’s slope. Σ12,0 is the 
covariance between the prior intercept and slope, which we assume is 0. Hence:

                             ;
 
Note however that due to learning, the covariance between the prior intercept and slope 
Σ12,0 becomes non-zero after the first feedback.

Expected gain
Given the receiver’s choices up to trial t, the proposer can now form a prediction about 
the Other’s probability to accept any offer O at trial t +1:

	 	 (5)

For simplicity we will assume that the predictions only depend on the parameter 
estimated mean μt (note, however, that the variance of the parameters could be included 
in these predictions).

	 	 (6)

These predictions can be used to evaluate offer’s expected payoff, given the Ultimatum 
Game payoff matrix:

		  (7)

Performing this evaluation across the whole offer space, receivers can identify which 
offer Ot+1 yield the highest expected gain (Fig. 10)

𝜇𝜇! = [𝜇𝜇",!, 𝜇𝜇$,!] 

𝛴𝛴! = [ 𝛴𝛴",! 𝛴𝛴"$,!
𝛴𝛴"$,! 𝛴𝛴$,! ] 

𝛴𝛴! = [
𝛴𝛴",! 0
0 𝛴𝛴$,!

] 

𝐸𝐸[𝑎𝑎!"#|𝑂𝑂!"#, 𝑎𝑎→!] = 𝐸𝐸)𝑠𝑠+𝑓𝑓(𝜃𝜃, 𝑂𝑂!"#)01𝑎𝑎→!2 

𝐸𝐸[𝑎𝑎!"#|𝑂𝑂!"#, 𝑎𝑎→!] = 𝑠𝑠(𝑓𝑓(𝜇𝜇!, 𝑂𝑂!"#)) 

𝐸𝐸𝐸𝐸[𝑂𝑂!"#, 𝑎𝑎→!] = (𝑒𝑒 − 𝑂𝑂!"#) × 	𝑠𝑠(𝑓𝑓(𝜇𝜇!, 𝑂𝑂!"#)) 
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Social preferences: inequality aversion

In the social condition participants are not only attempting to maximize their monetary 
gain, but also taking into account the monetary situation of their opponent. Formally 
this can be represented by introducing an inequity aversion term into the calculation of 
utility (Fehr & Schmidt, 1999). Inequity aversion simply reduces the value of outcomes 
that benefit one party more than the other, with the term itself simplified as follows:

 		  (8)

Which means that the payoff from every offer is reduced by a percentage centered around 
a “fair” 50/50 split. This is incorporated into the calculation of expected gain as follows:

		  (9)

Where A is the weight given to the inequity aversion term (see Fig. 2).
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Figure 10. Maximizing expected gain. The ultimatum payoff structure (left panel) is combined with 
acceptance functions (second panel from left) to derive expected gain, as a function of offers, for each 
responder group (third panel from left). The optimal policy is to select the offer with the maximum expected 
gain (diamonds). These offers correspond to specific combinations of estimates of the responder group’s 
slope and intercept (rightmost panel).

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 	−((𝑂𝑂 − 10)!/100) 
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Summary

This thesis consists of three empirical chapters that investigate elements of human social 
behavior through the combination of economic games, computational modeling, and 
neuroimaging. Chapter 2 uses the attacker-defender contest and a cognitive-hierarchies 
framework (Camerer, Ho, & Chong, 2004). The cognitive-hierarchies framework 
quantifies the depth of mentalizing recursion, i.e., I think that you think that I think. 
We found that during attack relative to defense individuals invested less and were less 
successful, and that investments in attack utilized more levels of cognitive recursion 
(i.e. more sophisticated mentalizing) than investments in defense. Furthermore, attack 
behavior was preferentially associated with neural activity in the ventral striatum, a region 
consistently linked with reward learning, and the temporoparietal junction, a region 
consistently linked with perspective-taking and social cognition. We conclude that in 
economic contests, coming out ahead (versus not falling behind) involves sophisticated 
strategic reasoning that engages neural regions associated with both value computation 
and theory of mind.
	 A key task for defenders in the attacker-defender game studied in Chapter 2 is to 
assess to what extent they can trust their counterpart to not attack, or should instead 
fear their counterpart’s aggressiveness. Chapter 3 zooms in on trust and distrust as a 
key element in social interactions. We show that variability in reciprocity (participants 
playing as responders) can be exhaustively captured by three categories: exploiters 
(individuals who never reciprocate), perfect reciprocators (individuals who always 
reciprocate), and contingent reciprocators (individuals who reciprocate as a function of 
how much they are trusted). This variability is learned by senders through a combination 
of reinforcement and belief-based learning. However, senders learn to trust imperfectly, 
frequently failing to arrive at the optimal policy, in particular when interacting with 
contingent reciprocators. Furthermore, the degree to which individuals weigh belief over 
reinforcement is positively correlated to their average payoff, indicating that learning to 
trust from mentally simulated outcomes outperforms learning from observation only. 
	 The results from both Chapter 2 and 3 revealed an important role for social 
perception and learning, suggesting that empathy and social norms modulate decisions 
to exploit and to trust and reciprocate. Chapter 4 builds on these and related findings 
by asking what role empathy (Zaki, 2014; Zaki & Mitchell, 2013) and social preferences 
such as concerns for fairness and the welfare of others (Blake et al., 2015; Fehr & Schmidt, 
1999) play in learning group-specific conventions. We created three populations with 
different rules of engagement and varied whether or not decisions affected interaction 
partner outcomes. Participants made ultimatum bargaining offers to responders from 
these different populations and could observe whether their offer was accepted or 
rejected. Participants quickly adapted to group-specific rules in learning environments 
without social consequences, but were overly generous and ended up misrepresenting 
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what would be acceptable when decisions affected their partner’s outcomes. We propose 
a computational model, combining Bayesian principles and social preferences, that 
mechanistically explains how generosity leads to biased sampling, impeded learning, and 
false beliefs about what offers are deemed acceptable. Using functional neuroimaging, we 
mapped key computational variables in two major brain networks, previously associated 
with value-based and social decision-making. Results suggest that generosity, related to 
brain regions associated with decision-conflict and perspective-taking, can induce self-
fulfilling beliefs in pro-sociality norms that may help to increase cooperation and reduce 
conflict between distinct groups but also create inaccurate stereotypes and economic 
inefficiencies.
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Samenvatting

Dit proefschrift bestaat uit drie empirische hoofdstukken die elementen van menselijk 
sociaal gedrag onderzoeken door de combinatie van economische spellen, computationele 
modellen, en neuroimaging. Hoofdstuk 2 maakt gebruik van de attacker-defender 
contest en een raamwerk van cognitieve hiërarchieën (Camerer, Ho, & Chong, 2004). 
Het raamwerk van cognitieve hiërarchieën kwantificeert het niveau van mentaliserende 
recursie, d.w.z., “ik denk dat jij denkt dat ik denk”. We ontdekten dat tijdens een aanval 
individuen minder investeerden en minder succesvol waren dan tijdens een verdediging, 
en dat investeringen in een aanval meer niveaus van cognitieve recursie (d.w.z., een 
geavanceerdere mentalisatie) gebruikten dan investeringen in een verdediging. 
Bovendien was aanvalsgedrag bij voorkeur geassocieerd met neurale activiteit in het 
ventrale striatum, een regio die consequent verbonden is met beloningsleren, en de 
temporoparietale junctie, een regio die consequent verbonden is met perspectief nemen 
en sociale cognitie. We concluderen dat in economische spellen, vooruit blijven (in 
plaats van niet achterblijven) geavanceerde strategische redeneringen worden gebruikt 
die neurale regio's stimuleren die verband houden met zowel waardeberekening als 
theory of mind.
	 Een belangrijke taak voor verdedigers in de attacker-defender contest die in 
hoofdstuk 2 wordt bestudeerd, is om te beoordelen of ze erop kunnen vertrouwen dat 
de tegenpartij niet aanvalt, of dat ze bang moeten zijn voor agressiviteit. Hoofdstuk 3 
zoomt in op vertrouwen en wantrouwen als sleutelelement in sociale interacties. We 
laten zien dat variatie in wederkerigheid (van individuen die als respondenten spelen in 
het trust-spel) kan worden samengevat in drie categorieën: uitbuiters (individuen die 
nooit wederkerig zijn), perfecte wederkerigheid (individuen die altijd wederkerig zijn) 
en contingente wederkerigheid (individuen die wederkerig zijn in functie van hoeveel ze 
worden vertrouwd). Deze variabiliteit wordt door afzenders in het trustspel aangeleerd 
door een combinatie van bekrachtiging en leren op basis van overtuigingen. Afzenders 
leren niet volledig te vertrouwen en komen vaak niet tot de optimale uitkomst, met 
name wanneer ze met spelers van de categorie contingente wederkerigheid omgaan. 
Bovendien is de mate waarin de overtuiging van individuen zwaarder weegt dan 
bekrachtiging positief gecorreleerd met hun gemiddelde beloning, wat aangeeft dat 
vertrouwen aanleren op basis van mentaal gesimuleerde uitkomsten betere uitkomsten 
oplevert dan leren door alleen observatie.
	 De resultaten van zowel hoofdstuk 2 als hoofdstuk 3 lieten een belangrijke 
rol voor sociale perceptie en leren zien, wat suggereert dat empathie en sociale 
normen beslissingen moduleren die belangrijk zijn voor exploitatie, vertrouwen, en 
wederkerigheid. Hoofdstuk 4 bouwt voort op deze en gerelateerde bevindingen door 
in te gaan op de rol die empathie (Zaki, 2014; Zaki & Mitchell, 2013) en sociale 
voorkeuren over rechtvaardigheid en het welzijn van anderen (Blake et al., 2015; Fehr & 



Appendix

124

Schmidt, 1999) spelen in het leren van groepsspecifieke conventies. We creëerden drie 
populaties met verschillende interactieregels en varieerden of beslissingen al dan niet van 
invloed waren op de resultaten van interactiepartners. Deelnemers deden aanbiedingen 
in het ultimatumspel aan respondenten uit deze verschillende populaties en konden 
observeren of hun aanbod werd aanvaard of afgewezen. Deelnemers pasten zich snel 
aan wat betreft de groepsspecifieke regels in leeromgevingen zonder sociale gevolgen, 
maar waren overdreven genereus en gaven uiteindelijk een verkeerde voorstelling van 
wat acceptabel zou zijn als beslissingen van invloed waren op de resultaten van hun 
partner. We introduceren een computationeel model dat Bayesiaanse principes en sociale 
voorkeuren combineert en mechanistisch uitlegt hoe vrijgevigheid leidt tot vertekende 
steekproeven, beperkt leren, en foute overtuigingen over wat voor aanbiedingen als 
acceptabel worden beschouwd. Met behulp van neuroimaging hebben we de belangrijkste 
computationele variabelen in kaart gebracht in twee grote hersennetwerken, die 
voorheen werden geassocieerd met op waarden gebaseerde en sociale besluitvorming. 
De resultaten suggereren dat vrijgevigheid, gerelateerd aan hersengebieden die verband 
houden met beslisconflicten en perspectief nemen, zelfvervullende overtuigingen over 
pro-socialiteitsnormen kan opwekken die kunnen helpen om samenwerking te vergroten 
en conflicten tussen verschillende groepen te verminderen, maar ook kunnen leiden tot 
onnauwkeurige stereotypen en economische inefficiënties.
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