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Conformations and
diffusion of colloidal
rings and dominoes
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Ring polymers are special in a topological sense: they do not
have a beginning or an end. This results in interesting diffusive
and rheological properties. Here, we study model systems of

micron-sized flexible rings and dominoes, created from
colloid-supported lipid bilayers. We characterize their conformational
and diffusive properties. We find that rings and dominoes have a
larger translational and rotational diffusion coefficient when
compared to chains, while they are less flexible. We show that the
flexibility of the rings and dominoes scales as the number of excess
floppy modes per bond. Our findings could have implications for the
behavior of both synthetic and biological ring polymers, as well as for
the dynamic modes of floppy colloidal materials.

7.1 Introduction

Ring polymers have unique properties compared to linear polymers, due to their
topologically closed structure that has no beginning or end.302 Blends of looped and
linear polymers can display rich viscoelastic properties303 that are not only interesting
from a physicists’ perspective, but can also be used for the design of materials304

with multifunctional and switchable properties. For example, it was found that tiny
fractions of linear polymer chains added to a melt of ring polymers already drastically
change their dynamic and rheological properties.305

In biological systems, studying the impact of the topological constraints of ring
polymers can potentially shed light on how genomes fold themselves into volumes
whose linear dimensions are many orders of magnitude smaller than their contour
lengths.306 Interestingly, their diffusivity was found to differ from that of linear
polymers: at short timescales, ring polymers exhibit sub-diffusive behavior, long after
the stress has completely relaxed, contrary to linear polymers. An explanation of this
observation, beyond the fact that shape fluctuations do not necessarily contribute to
the overall ring diffusion, requires a detailed understanding of their dynamics.306,307

However, to measure the dynamics of ring polymers, single-molecule techniques
with a simultaneously high spatial and temporal resolution are needed.

Here, we study experimentally and numerically a model system of micron-sized
colloidal rings and dominoes, built from spherical colloid-supported lipid bilayers
(CSLBs).85,110,112,242 Colloidal particles may be used as model systems for macro-
molecules, because of their unique combination of microscopic size and their sen-
sitivity to thermal fluctuations.18,19,284 Additionally, colloidal particles are useful in
their own right, as they could, as an example, provide ways to build switchable ma-
terials285 with novel properties not found in nature. In this work, we consider rings
of four to six spherical particles, as well as dominoes of six particles and study both
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their conformational and diffusive behavior. Dominoes are clusters of six particles
where an additional bond is present compared to rings of the same size, so that the
graph of particles and bonds forms a domino, or equivalently, (2, 3)-grid or 3-ladder
graph.308 We find that while the smaller rings and the dominoes show no preferred
shapes, preferences arise for the larger rings. Both the translational and rotational
diffusivity of the rings and dominoes is greater than that of chains of the same size,
while their flexibility is lower. We show that their flexibility scales as the number of
excess floppy modes per bond. Our findings could have implications for the behavior
of both synthetic and biological ring polymers, as well as for the dynamic modes of
floppy colloidal materials.

7.2 Materials and Methods

7.2.1 Experimental

Flexible rings and dominoes of colloid-supported lipid bilayers (CSLBs) were pre-
pared as described in previous work.85,110,112,242 Specifically, we followed the exact
same procedure as in Chapter 5, which we now briefly summarize.

The CSLBs consisting of (2.12 ± 0.06)µm silica particles were prepared as de-
scribed in our recent works.242,244 Briefly, the particles were coated with a fluid
lipid bilayer by deposition and rupture of small unilamellar vesicles consisting of
98.8 mol % of the phospholipid DOPC ((Δ9-Cis) 1,2-dioleoyl-sn-glycero-3-phospho-
choline), with 1 mol % of the lipopolymer DOPE-PEG(2000) (1,2-dioleoyl-sn-glyce-
ro-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]) and 0.2 mol %
of the fluorescently-labeled TopFluor-Cholesterol (3-(dipyrrometheneboron difluo-
ride)-24-norcholesterol) or, alternatively, the same amount of the fluorescently-la-
beled DOPE-Rhodamine (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissa-
minerhodamine B sulfonyl)). The bilayer coating was performed in a buffer at pH 7.4
containing 50 mm sodium chloride (NaCl) and 10 mm 4-(2-Hydroxyethyl)-1-pipera-
zineethanesulfonic acid (HEPES). We added double-stranded DNA (of respectively
strands DS-H-A and DS-H-B, see Table A.1) with an 11 base pair long sticky end and
a double stearyl anchor, which inserts itself into the bilayer via hydrophobic interac-
tions, as shown Figure 7.1c. The sticky end of strand DS-H-A is complementary to the
sticky end of strand DS-H-B, which allows them to act as linkers. Self-assembly exper-
iments were performed in a different buffer of pH 7.4, containing 200 mm NaCl and
10 mm HEPES. Chains of 2.12µm CSLBs were formed by self-assembly in a sample
holder made of polyacrylamide (PAA) coated cover glass.244 A confocal microscopy
image of the coated particles is shown in Figure 7.1a for a tetramer loop.

7.2.2 Microscopy

Loops and dominoes were imaged for at least 5 min (frame rates between 5 and 19 fps)
at room temperature using an inverted confocal microscope (Nikon Eclipse Ti-E)
equipped with a Nikon A1R confocal scanhead with galvano and resonant scanning
mirrors. A 60× water immersion objective (NA=1.2) was used. 488 and 561 nm lasers
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Table 7.1: Overview of the number of measurements, the total duration and the total
number of frames per ring size, for the experimental and simulated data, for loops
and dominoes.

𝒏 Type Measurements Duration [min] Total frames

Exp. Sim. Exp. Sim. Exp. Sim.

4 Ring 12 20 92 600 8.5 × 104 2.5 × 107

5 Ring 20 600 2.5 × 107

6 Ring 2 20 11 600 1.2 × 104 2.5 × 107

6 Domino 4 20 75 600 8.5 × 104 2.5 × 107

7 Ring 10 300 1.3 × 107

were used to excite, respectively, the Fluorescein or TopFluor and Rhodamine dyes.
Laser emission passed through a quarter wave plate to avoid polarization of the dyes
and the emitted light was separated by using 500 − 550 nm and 565 − 625 nm filters.

To complement the data obtained from self-assembled loops and dominoes, we
used optical tweezers to assemble specific cluster sizes. For the hexamer loops, the
probability of forming such a loop using the self-assembly method we used here
is low, therefore these were formed exclusively using optical tweezers. Briefly, we
employed a homemade optical setup consisting of a highly focused trapping laser
manufactured by Laser QUANTUM (1064 nm wavelength). The laser beam entered
the confocal microscope through the fluorescent port, after first passing through a
beam expander and a near-infrared shortpass filter. The same objective was used for
imaging and to focus the trapping laser beam. During the trapping, the quarter wave
plate was removed from the light path.

Particle positions were tracked using a custom algorithm242 available in TrackPy
by using the locate_brightfield_ring function188 or using a least-square fit of a
Mie scattering based model implemented in HoloPy.186 Both methods agree to an
accuracy of at least 1 px, however we have found that the Mie scattering based model
is more robust for tracking multiple particles in close proximity to each other. For all
analysis, we only selected rings and dominoes that showed all bond angles during
the measurement time, experienced no drift and were not stuck to the substrate.
An overview of the total number of measurements, the total duration and the total
number of frames per ring size is shown in Table 7.1.

7.2.3 Simulations

We have performed Brownian dynamics simulations with hydrodynamic interactions
following the method outlined in Sprinkle et al. 290 using the open-source RigidMulti-
blobsWall package.291 The procedure is identical to the method described in Chap-
ter 6, which we now briefly summarize. Hydrodynamic interactions are calculated
using the Stokes equations with no-slip boundary conditions. The hydrodynamic
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Table 7.2: Permutation data. For the rings and dominoes, we generated the𝑃(𝑁𝜃 , 𝑛−2)
configurations obtained by permuting all possible combinations of opening angles.
Interpenetrating configurations, which are forbidden due to excluded volume interac-
tions between particles, were removed from this permutation data. The percentages
of clusters of the correct topology are calculated relative to the total number of con-
figurations for permutations of the opening angles between 60 and 300 deg.

𝒏 Type 𝜹𝜽 [deg] 𝑷(𝑵𝜽 , 𝒏 − 2) Correct topology [%]

4 Ring 0.04 3.6 × 107 8.3 × 10−3

5 Ring 0.5 1.1 × 108 2.4 × 10−2

6 Ring 2.0 2.0 × 108 5.2 × 10−2

6 Domino 2.0 2.0 × 108 8.8 × 10−4

mobility matrix is approximated using the Rotne-Prager-Blake (RPB) tensor,35 which
is a modified form of the Rotne-Prager-Yamakawa (RPY) tensor34,275,292 and accounts
for a bottom wall, which is unbounded in the transverse directions. These corrections
to the RPY tensor are combined with the overlap corrections described in Wajnryb
et al. 292 to prevent particle-particle and particle-wall overlap. The RPB mobility inac-
curately describes near-field hydrodynamic interactions and therefore breaks down
for small separation distances. This can be overcome by adding a local pairwise
lubrication correction to the RPB resistance matrix as described in detail in Sprin-
kle et al. 290 Based on the full lubrication-corrected hydrodynamic mobility matrix,
the Ito overdamped Langevin equation is solved to describe the effect of thermal
fluctuations.

We include a gravitational force on the particles to confine them to diffuse close to
the bottom wall, as in the experiments. Inter-particle bonds are modeled by harmonic
springs of stiffness 1000𝑘𝐵𝑇/𝑅2 and equilibrium length 2𝑅, where 𝑅 = 1.06µm is the
particle radius. The bond angle is not restricted. We set the temperature𝑇 = 298 K, the
viscosity of the fluid 𝜂 = 8.9 × 10−4 Pa s, the gravitational acceleration 𝑔 = 9.81 m s−2,
the particle mass 𝑚𝑝 = 9.5 × 10−15 kg (by assuming a particle density of 1900 kg m−3)
and the simulation timestepΔ𝑡 = 1.42 ms. For the firm potential that prevents overlap,
we use a strength of 4𝑘𝐵𝑇 and a cutoff distance290,293 𝛿cut = 10−2. We initialized the
particle loops in the configuration given by the regular polygon of the same size and
we used a rectangular configuration, i.e. all opening angles equal to 90 or 180 deg,
for the hexamer dominoes. Then, these initial configurations were randomized by
running the integration for a simulated time of 60 s prior to saving the configurations,
to ensure a proper equilibration of the particle positions, bond lengths, velocities
and opening angles. The particle positions were saved every 8 simulation steps to
obtain a final framerate of approximately 90 fps. An overview of the total number of
simulations, the total duration and the total number of saved frames per cluster type
is shown in Table 7.1.
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For comparison to the simulated and experimental data, we generated data in
which the rings or dominoes are completely non-interacting and freely-jointed up to
steric exclusions in the following manner: we generated all (𝑛 − 2)-permutations of
the 𝑁𝜃 opening angles 𝜃𝑖 , which gives a total number of 𝑃(𝑁𝜃 , 𝑛 − 2) = 𝑁𝜃!/(𝑁𝜃 −
(𝑛 − 2))! combinations of 𝜃𝑖 . Here, the number of opening angles is 𝑁𝜃 = (360 − 2 ×
60)/(𝛿𝜃), where 𝛿𝜃 denotes the bin width. Then, we removed those combinations that
are forbidden because of steric exclusions between particles. After removing these
configurations, we checked if the topology of the structure was correct and removed
configurations of the wrong topology, resulting in the final allowed combinations,
which we call “permutation data”. In Table 7.2, we show the bin widths 𝛿𝜃 for each 𝑛,
as well as the total number of generated permutations 𝑃(𝑁𝜃 , 𝑛−2) and the percentage
of configurations of the correct topology, i.e. either a ring or a domino.

7.2.4 Diffusion tensor analysis

Definition of the diffusion tensor

We determined the short-time diffusivity of the rings and dominoes, both as function
of their instantaneous shape for the tetramer rings, as well as averaged over all
possible configurations for all loops and dominoes. Because the rings are sedimented
to the bottom substrate, we consider only the quasi-2D, in-plane diffusivity. For the
flexible tetramer loops, we calculated a 4× 4 diffusion tensor, where the four degrees
of freedom correspond to translational diffusivity in 𝑥 and 𝑦, rotational diffusivity
and the flexibility of the tetramer loop, which is described by the diffusivity of the
opening angle 𝜃. Specifically, the 𝑥- and 𝑦-directions are schematically shown for
one configuration in Figure 7.2a and defined by Equation 7.4. The rotation angle
used for determining the rotational diffusivity is indicated in Figure 7.2a and is the
angle of the 𝑥(𝜏) relative to 𝑥(𝜏 = 0), i.e. the angle of the body-centered 𝑥-axis of the
current frame relative to the body-centered 𝑥-axis of the reference frame at 𝜏 = 0. The
flexibility is calculated from the mean-squared displacement of the opening angle 𝜃,
which is depicted in Figure 7.1e. 𝜃 is defined in such a way that it is always less than
or equal to 120 deg.

The diffusion tensor elements of the tetramer loops were determined analogously
to the trimers.244 Briefly, for each pair of frames, we determined the initial shape of
the ring, which is characterized by the opening angle 𝜃. The short time diffusion
tensor is then calculated from the trajectories in the following way:

𝑫[𝑖 𝑗](𝜃) ≡ 1
2
𝜕⟨Δ𝑖(𝜃)Δ𝑗(𝜃)⟩𝜏

𝜕𝜏
, (7.1)

with 𝜏 the lag time between frames, ⟨· · · ⟩𝜏 denotes a time average over all pairs of
frames 𝜏 apart and Δ𝑖(𝜃) = 𝑖(𝜃, 𝑡+𝜏)− 𝑖(𝜃, 𝑡) is the displacement of the 𝑖-th diffusion
tensor element, which depends on the instantaneous shape given by 𝜃. The average
diffusion tensor elements 𝑫[𝑖 𝑗] were obtained by fitting the overall slope of the mean
(squared) displacements as a function of lag time 𝜏. We considered lag times up to
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0.25 s, set by the frame rate of the experimental data. We only considered trajectories
where the variation in 𝜃 did not exceed the edges of the bin describing the initial
shape. That is, we divided the possible values of 𝜃 in bins and calculated the short-
time diffusivity for all combinations of lag times where 𝜃(𝜏) remained in the same
bin as 𝜃(0), which were then stored according to their respective 𝜃-bins. In that way,
we calculated the diffusion tensor elements separately for each initial shape.

For fitting the slopes, we used a Bayesian method to find an estimate of the pos-
terior probability distribution, by using an Affine Invariant Markov chain Monte
Carlo (MCMC) Ensemble sampler method as implemented in the Python packages
lmfit246 and emcee.207 This allowed us to obtain accurate estimates of the error and
the maximum likelihood estimate (MLE) of the parameters. Parameter values were
initialized using a standard least-square fit, appropriate bounds on the parameter
values were implemented as priors. We estimated the autocorrelation time 𝜏acor of
the MCMC chain using the built-in methods and ran the analysis for at least 100𝜏acor

steps, where we discarded the first 2𝜏acor steps (corresponding to a burnin phase)
and subsequently used every other 𝜏acor/2 steps (known as thinning). We used 500
independent chains (or walkers). The reported values correspond to the maximum
likelihood estimate of the resulting MCMC chains, the reported uncertainties corre-
spond to the 16th and 84thpercentiles of the obtained posterior probability distribution.
For fitting the MSDs, we used a linear model with zero intercept.

For all rings and dominoes, we considered the shape-averaged, quasi-2D transla-
tional diffusion coefficient 𝐷𝑇 , which corresponds to in-plane diffusivity above the
wall. Additionally, we determined the rotational diffusion coefficient 𝐷[𝛼𝛼] from
the mean squared angular displacement of the 𝑥-axis (defined in Equation 7.4, see
Figure 7.7a for a schematic depiction for the hexamer loop), which describes the rota-
tional diffusivity around an axis perpendicular to the substrate. Finally, we determine
the overall cluster flexibility 𝐷[𝜽𝜽] by calculating the mean squared displacements
of the (𝑛 − 2) opening angles 𝜃𝑖 as follows:

⟨|𝚫𝜽 |2⟩ = ⟨|(Δ𝜃1 , . . . ,Δ𝜃𝑛−2)|2⟩, (7.2)

so that the flexibility 𝐷[𝜽𝜽] is given by

⟨|𝚫𝜽 |2⟩ = 2(𝑛 − 2)𝐷[𝜽𝜽]𝑡 , (7.3)

analogously to the other diffusion tensor elements.

The definition of the coordinate system

As tracking point, we considered the center of diffusion (c.d.) which coincides with
the center of mass of colloidal rings and dominoes, because the choice of origin is
expected to affect the magnitude of the diffusion tensor.105,269 The coordinate system
used here is identical to the coordinate system described in Chapter 6 and we briefly
summarize its definition here. The c.d. was calculated from 𝑨𝑖 𝑗 defined by Equation
2.16 of Cichocki et al. 269 using the RPB tensor35 with lubrication corrections as the
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inter-particle mobility matrix 𝝁𝑖 𝑗 . This tensor includes wall corrections, as discussed
previously in Section 7.2.3. The c.d. was determined from the simulated particle
positions, because the height above the bottom wall was not measured experimentally,
but is needed to calculate the wall corrections. The direction of the body-centered 𝑥-
and 𝑦-axes was determined as function of the tracking point 𝒓𝑡.𝑝., which defines the
origin of the body-centered coordinate frame. We define 𝒓𝑡.𝑝. = 𝜌1𝒓1 + 𝜌2𝒓2 + · · · +
𝜌𝑛𝒓𝑛 , which defines the location of the tracking point as a linear combination of the
particle positions (Equation 2.2 and 2.3 of Cichocki et al. 269 ). 𝝆 = (𝜌1 , 𝜌2 , . . . , 𝜌𝑛)
is a weight vector which determines how much weight is accorded to each particle
in the calculation of the tracking point 𝒓𝑡.𝑝.. As an example, for a tetramer ring,
𝝆 = (1/𝑛 = 1/4, 1/4, 1/4, 1/4) when the tracking point is chosen to be the c.d., or
equivalently, the center of mass.

The direction of the 𝑥-axis was chosen as

�̂� = ±
[
𝒓𝑡.𝑝.,1 + · · · + 𝒓𝑡.𝑝.,𝑠1

𝜌1 + · · · + 𝜌𝑠1
−

𝒓𝑡.𝑝.,𝑠2 + · · · + 𝒓𝑡.𝑝.,𝑛

𝜌𝑠2 + · · · + 𝜌𝑛

]
, (7.4)

where 𝒓𝑡.𝑝.,𝑖 is the 𝑖-th coordinate of the tracking point and the bead chain is split into
two parts with equal numbers of particles according to{

𝑠1 = 𝑠2 = ⌈ 𝑛2 ⌉ for odd 𝑛

𝑠1 = ⌈ 𝑛2 ⌉ , 𝑠2 = 𝑠1 + 1 for even 𝑛
(7.5)

�̂� is then chosen such that �̂� and �̂� form a right-handed coordinate system, where
the direction of �̂� is chosen to point away from the central part of the cluster towards
the tracking point, i.e. along 𝒓𝑡.𝑝. −

(
𝒓𝑠1 + 𝒓𝑠2

)
/2. This orientation was determined

for every frame, which fixed the orientation of the body-centered coordinate system
𝒙(𝜏 = 0), 𝒚(𝜏 = 0). For subsequent lag times, the direction of 𝒚(𝜏) was chosen such
that 𝒚(𝜏 = 0) · 𝒚(𝜏) > 0, i.e. the direction of 𝒚 does not change sign. The resulting
coordinate system relative to the c.d. is visualized for the tetramer loops in Figure 7.2a.

7.3 Results and Discussion

7.3.1 Free energy of flexible tetramer loops

To identify the most likely conformations of micron-sized, flexible ring-like struc-
tures in solution, we have studied an experimental model system of colloidal loops
and dominoes. Additionally, we have compared our experimental data to Brownian
dynamics simulation data, where hydrodynamic interactions between particles and
the substrate are taken into account via the Rotne-Prager-Blake (RPB) tensor,35 over-
lap corrections292 and a local pairwise lubrication correction290 (see Section 7.2.3 for
details). The experimental colloidal loops were formed from four or six spherical
colloid-supported lipid bilayers (CSLBs).85,110,112,242 As shown in Figure 7.1c, CSLBs
are colloidal silica particles surrounded by a fluid lipid bilayer, which is formed by
the rupture and subsequent spreading of small unilamellar vesicles. DNA linkers
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Figure 7.1: Free energy of flexible tetramer loops. a) Confocal image and b) bright
field snapshots of a flexible tetramer ring, which shows shape changes. Scalebars
are 2µm. c) The flexible rings are built from colloid-supported lipid bilayers (CSLBs).
CSLBs consist of spherical silica colloids coated with a fluid lipid bilayer. DNA linkers
are inserted into the bilayer using a hydrophobic anchor. Because the bilayer is fluid,
the linkers can diffuse on the surface and therefore, the particles can move with
respect to each other whilst staying bonded. d) The DNA linkers are functionalized
with two complementary sticky ends A and B, so that particles functionalized with
A-type linkers can only form bonds with particles coated with B-type linkers. e) The
definition of the opening angle 𝜃. f) The free energy of tetramer rings shows small
fluctuations in the ◦ experimental and ⋄ simulated data, but these are insignificant
compared to the thermal energy 𝑘𝐵𝑇 and absent in the permutation data (Perm.).

with hydrophobic anchors can be inserted into this lipid bilayer. We have used two
types of DNA linkers with different single-stranded overhangs, or sticky ends, which
we label A and B. As depicted in Figure 7.1d, the A-type sticky end is complementary
to the B-type sticky end and therefore, bonds can be formed between the A and B
strands only. After such bonds have formed, particles can still rearrange with respect
to each other, because the DNA linkers can diffuse in the fluid lipid bilayer. The use
of two different sticky ends A and B that are complementary to each other has a
distinctive advantage over using a single, self-complementary or palindromic sticky
end. Namely, by using two distinct sticky ends, we can prevent adhesion between
two opposing A-type or B-type particles in the ring, which would, for a tetramer
loop, cause it to lose its reconfigurability. Namely, the tetramer loop would become
mechanically rigid because of the extra bond. Moreover, the structure would no
longer have a ring topology. In Figure 7.1a, we show a confocal microscopy image
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of a tetramer ring. Additionally, in Figure 7.1b we show a time series imaged using
brightfield microscopy, in which shape transitions between a diamond and a square
configuration of the loop can be observed.

To answer whether there is a preference of either the diamond or square configu-
ration, or even some intermediate configuration, we analyze the free energy of the
flexible tetramer loops as function of their opening angle 𝜃, which is schematically
depicted in Figure 7.1e. We analyzed the free energy of colloidal rings as function
of their shape by calculating the probability density function of the opening angle.
From the probability density function calculated from the histogram, we determined
the free energy using Boltzmann weighing,

𝐹

𝑘𝐵𝑇
= − ln 𝑝 + 𝐹0

𝑘𝐵𝑇
, (7.6)

where 𝐹 is the free energy, 𝑘𝐵 is the Boltzmann constant, 𝑇 the temperature, 𝑝 is
the probability density and 𝐹0 is a constant offset to the free energy. As shown in
Figure 7.1f, in the simulation data there is a very small preference of ≈ 0.1𝑘𝐵𝑇 for
the diamond configuration (𝜃 ≈ 60 or 120 deg). On the contrary, in the experimental
data, there seems to be a small preference of ≈ 0.3𝑘𝐵𝑇 for 𝜃 ≈ 82 or 98 deg. Because
these preferences are negligible compared to the thermal energy, we conclude that
all configurations are essentially equally probable.

7.3.2 Diffusion of flexible tetramer loops

Because all configurations are equally probable, the tetramer loops continuously
change their shape. This could have implications for their short-time diffusive behav-
ior, as we have observed previously for colloidal chains244 (see also Chapter 5 and 6).
In Figure 7.2b, we show the shape-dependent, short-time translational diffusivity of
the flexible tetramer rings with respect to the coordinate system shown in Figure 7.2a,
which is defined in Section 7.2.4. The agreement between the simulated and experi-
mental data is good. In the simulation data, there is virtually no difference between
the diffusivity in the 𝑥- (Figure 7.2c) and 𝑦-direction (Figure 7.2d). Variations in the
experimental data are larger, but likely caused by the experimental uncertainty.

The fact that the translational diffusivity does not depend on shape implies that
the translational diffusivity of the tetramer rings can be described by the diffusion
coefficient of a sphere of some effective radius. Using the lubrication-corrected RPB
tensor described in Section 7.2.3, we have calculated the diffusion coefficients of
spheres of radii 𝑅eq.vol. and 𝑅𝑔 , located just above the substrate. Here 𝑅eq.vol. =

3
√

4𝑅,
i.e. the radius of a sphere with the same volume as the tetramer loop, with𝑅 = 1.06µm
the radius of an individual sphere of the ring. The radius of gyration 𝑅𝑔 is given by

𝑅𝑔 =


1
𝑛2

𝑛∑
𝑖=1

|𝒓𝑖 − 𝒓𝑐.𝑚. |2


1/2

, (7.7)
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Figure 7.2: Diffusion of flexible tetramer loops. a) An illustration of the coordinate
system used to analyze the diffusivity of the tetramer rings, as defined in Section 7.2.4.
In panels b-f, we have compared the diffusion tensor elements calculated from ⋄
simulated and ◦ experimental data. b) The in-plane translational diffusion coefficient
𝐷𝑇 . We find that

〈
𝐷exp./𝐷sim.

〉
= 1.03±0.05. The translational diffusion along the c) x-

and d) y-directions. e) The rotational diffusivity, for which
〈
𝐷exp./𝐷sim.

〉
= 0.83±0.05.

f) Compared to the simulated flexibility, the experimental flexibility is much lower,
namely

〈
𝐷exp./𝐷sim.

〉
= 0.25±0.07. Both the rotational diffusivity and flexibility terms

show a clear maximum for the square configurations, where 𝜃 is close to 90 deg. All
off-diagonal diffusion tensor elements are close to zero.
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where 𝒓𝑖 is the position of the 𝑖-th sphere and 𝒓𝑐.𝑚. is the position of the center
of mass of the loop. The resulting near-wall diffusion coefficients are indicated in
Figure 7.2b, where we plot the in-plane diffusion coefficient 𝐷𝑇 . Comparison of the
obtained diffusion coefficients to the experimental and simulated data brings us to the
conclusion that the diffusivity of the tetramer rings is captured best by the diffusion
coefficient of an effective sphere of the same volume, e.g. a sphere of radius 𝑅eq.vol..

Next, we consider the rotational diffusivity of the loops, which is defined as the
in-plane rotation of the 𝑥-axis or, equivalently, rotation of the cluster around the out
of plane axis, for a plane parallel to the substrate. From Figure 7.2e, we see that the
experimentally measured rotational diffusivity is slightly lower than the simulated
rotational diffusivity, but both show the same shape dependence. Specifically, the
more compact square configuration has a higher rotational diffusivity than the more
extended diamond structure, as expected.

Finally, from Figure 7.2f, we conclude that also the flexibility of the tetramer loop de-
pends on its shape: the flexibility is larger for square configurations than for diamond
configurations. This indicates that more open structures have a higher flexibility, as
we have also observed for chains in Chapter 6. For chains of CSLBs, we have found
that the experimental flexibility is 75 to 80 % of the flexibility of the simulated chains,
which is probably caused by friction of the DNA linker patch (see Chapter 6). For
the tetramer loops, however, we observe a drastically lower flexibility, namely, the
experimental flexibility is just 25 % of the simulated one, as shown in Figure 7.2f. This
indicates that the tetramer loops experience more interparticle friction compared to
the tetramer chains. We will discuss this difference in more detail in Section 7.3.5.

7.3.3 Conformations of pentamer rings

Now that we have characterized the conformations and diffusivity of flexible colloidal
tetramer rings, we ask how the possible ring conformations change by increasing the
ring size, as this also increases the degrees of freedom of the loop. In order to build
a larger ring in our experiments, we need an even number of spheres, because only
the A-type DNA linker-coated colloids can bind to the B-type ones, as depicted in
Figure 7.1d. This limitation could be overcome in future experiments by using a
larger variety of sticky ends, or by using palindromic sequences, where steps should
be taken to prevent the formation of more than two bonds per particle. Instead, here
we briefly discuss the possible conformations of pentamer loops using only simulated
data, before discussing hexamer rings in greater detail.

As shown in Figure 7.3a, the free energy in terms of the opening angles of the
pentamer ring shows a preference for angles smaller than 120 deg, for both the sim-
ulated and permutation data. This is in contrast with the flat free energy landscape
that we have observed for the tetramer rings. The angles are defined in Figure 7.3
and because the angles are indistinguishable, we have used all five opening angles
to calculate the free energy.

Next, we have looked at correlations between opening angles 𝜃𝑖 and 𝜃𝑗>𝑖 . For the
tetramer loop, the two opening angles are perfectly correlated according to 𝜃2 =
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Figure 7.3: Conformations of pentamer loops. a) The free energy of pentamer loops
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increases as function of 𝜃𝑗 because of constraints imposed by the ring structure. The
simulated and permutation data are shown. b) Schematic showing the definition of
the opening angles 𝜃𝑗 . Three angles are needed to fully describe the conformation
of a pentamer ring. c) Correlations between the opening angles 𝜃𝑖 and 𝜃𝑗>𝑖 for the
simulated data.
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180 deg − 𝜃1. Adding an additional particle to the ring structure also adds a degree
of freedom. This can be shown from the Maxwell counting rule, which counts the
number of bonds 𝑛𝐵,𝑅 needed for structural rigidity as309

𝑛𝐵,𝑅 = 𝑑𝑛 − 𝑑(𝑑 + 1)
2

= 2𝑛 − 3 (7.8)

with 𝑑 = 2 the number of dimensions and 𝑛 the number of particles. For a loop, there
are 𝑛𝐵 = 𝑛 bonds between particles and therefore there are 𝑛𝐵,𝑅 − 𝑛 = 𝑛 − 3 degrees
of freedom or floppy modes. Going from one floppy mode for the tetramer loop to
two for the pentamer loop decreases the correlations between the opening angles, as
shown in Figure 7.3c. While the possible combinations of angles 𝜃𝑖𝜃𝑗 for 𝑗 > 𝑖 are
still partially constrained by the ring structure, more combinations are geometrically
allowed compared to the smaller tetramer rings. We observe that the correlations
between any two neighboring opening angles, i.e. 𝜃𝑖 and 𝜃𝑖+1, are stronger than
correlations between the more distant opening angles 𝜃𝑖 and 𝜃𝑖+2.

7.3.4 Conformations of hexamer rings and dominoes

We have shown how the free energy of the opening angles of a tetramer loop differs
from a pentamer loop, that has an additional floppy mode. The pentamer loop could
not be assembled using our experimental scheme. In the experiments, only loops with
an even number of particles can be formed, because of the two complementary sticky
ends that we use for binding. Therefore, we now study the experimentally accessible
extension of the tetramer loop by adding two particles to the ring, so that we obtain
hexamer rings. The hexamer rings were formed manually using optical tweezers,
because the probability to form them via self-assembly is low. This limitation could be
overcome in other ways as well, for example by using template-assisted self-assembly
techniques3 or by using multiple DNA strands to achieve a more fine-grained control
over the self-assembly process.56 In Figure 7.4a, we show a confocal microscopy
image of a hexamer ring. From brightfield snapshots in Figure 7.4b, we see that
these hexamer rings show a greater variety of shapes compared to the tetramer rings.
While the tetramer loop only has one internal degree of freedom, the hexamer loop
has three internal degrees of freedom. Its shape can be characterized by four opening
angles, depicted in the schematic of Figure 7.4d.

Next, we analyze the free energy of hexamer loops as function of the opening
angles in order to determine whether some conformations are preferred over others.
Because the loop has no beginning or end, all angles are equivalent and we make a
single histogram of the values of all six opening angles. Using Equation 7.6, we obtain
the free energy in terms of opening angle, which is shown in Figure 7.4c. For opening
angles below 𝜃𝑗 ≈ 150 deg, the resulting free energy shows only small variations
compared to the thermal energy, for the simulation, permutation and experimental
data. For angles larger than 𝜃𝑗 ≈ 150 deg, the free energy increases as function of the
opening angle and the difference between 𝜃𝑗 = 150 deg and 240 deg is on the order
of 4𝑘𝐵𝑇. Angles greater than 180 deg correspond to compact and curved structures,
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Figure 7.4: Flexible colloidal hexamer rings. a) Confocal image. Scalebar is 2µm.
b) Snapshots of hexamer rings. A variety of shapes can be observed. Scalebars are
2µm. c) The free energy of hexamer loops as function of the opening angles 𝜃𝑗 ,
with 𝑗 ∈ [𝑖 , 𝑖 + 1, 𝑖 + 2, 𝑖 + 3]. The free energy increases as function of 𝜃𝑗 because of
constraints imposed by the ring structure. The simulated, the permutation and the
experimental data are shown. d) Schematic showing the definition of the opening
angles 𝜃𝑗 . Four angles are needed to fully describe the conformation of a hexamer
ring. e-f) Correlations between the opening angles 𝜃𝑖 and 𝜃𝑗>𝑖 for e) the simulated
data and f) the experimental data.
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which explains why these opening angles are not observed as often as others. For
example, there is only one structure in which one of the opening angles is equal to
240 deg.

To study the interplay of the opening angles of the hexamer loops in greater detail,
we have calculated the correlations between angles 𝜃𝑖𝜃𝑗 with 𝑗 > 𝑖 for the angles de-
fined in Figure 7.4d, as shown in Figure 7.4e and f for the simulated and experimental
data, respectively. For the experimental data, trends are hard to distinguish and more
data is needed to disentangle the effect of the four degrees of freedom. Correlations
in the simulated data are easier to discern, as shown in Figure 7.4e. The first thing
that stands out is that any two neighboring angles are more strongly correlated than
more distant opening angles, as can be seen by comparing the correlations between
𝜃𝑖𝜃𝑖+1 to those between 𝜃𝑖𝜃𝑖+2 and 𝜃𝑖𝜃𝑖+2. This is qualitatively the same as what we
have observed for pentamer loops. For opening angles 𝜃𝑖 , 𝜃𝑖+1 specifically, there is
a strong negative correlation given by 𝜃𝑖+1 ≈ 240 deg − 𝜃𝑖 . Moreover, as expected
from the geometry of the ring, it can be seen that the sum of the angles needs to stay
within the range 180 deg ≤ 𝜃𝑖 + 𝜃𝑖+1 ≤ 300 deg. For the correlations between more
distant opening angles, the range of accessible angles in Figure 7.4e and f is larger
for 𝜃𝑖𝜃𝑖+2 and 𝜃𝑖𝜃𝑖+3 compared to 𝜃𝑖𝜃𝑖+1. Specifically, 𝜃𝑖 + 𝜃𝑖+2,𝑖+3 ≤ 360 deg and��𝜃𝑖 − 𝜃𝑖+2,𝑖+3

�� ≤ 120 deg. These constraints arise from the topological constraint that
the particles form a ring and from the fact that particles cannot interpenetrate each
other.

In addition to hexamer rings, hexamer dominoes can also be formed via self-
assembly. In fact, their formation is more likely than that of hexamer rings, because
they can be obtained from a greater number of initial cluster topologies, such as
tetramer loops and related structures. The structure we call a hexamer domino is
a (2, 3)-grid, 3-ladder or domino graph308 where the particles are situated on the
vertices, as shown in the confocal image of Figure 7.5a and in the brightfield snapshots
of Figure 7.5d. As depicted by the schematic in Figure 7.5b, the hexamer domino has
the same structure as the hexamer ring of Figure 7.4, but one extra bond, as indicated
by the yellow circle.

Because of the extra bond, the hexamer dominoes behave very differently compared
to the hexamer rings. While the rings have three floppy modes, the dominoes have
only two, as given by Equation 7.8. Their possible variety in shapes is therefore smaller,
as shown in Figure 7.5d. In turn, their conformations can be uniquely described by
two opening angles instead of four angles for the hexamer loop, as shown in the
schematic in Figure 7.5c, where we also define the indices of all six opening angles.
Taking the same approach as for the hexamer rings, we have calculated the free
energy as function of the opening angles. However, because for the dominoes not all
opening angles are indistinguishable from each other, we consider the opening angles
𝜃𝛼,𝑖 and 𝜃𝛽, 𝑗 separately, as shown in Figure 7.5e for the experimental, simulated and
permutation data. The resulting free energy landscape is markedly different from the
one for hexamer rings in Figure 7.4c because of the additional bond that is formed.
For 𝜃𝛼,𝑖 , the free energy landscape is very similar to that of the tetramer loops in
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Schematic of the definition of the opening angles. Only two angles are needed to
fully describe the conformations of the dominoes. d) Brightfield microscopy images
of hexamer dominoes. Due to the additional bond compared to the rings in Figure 7.4,
a smaller variety of shapes is possible. Scalebars are 2µm. e) The free energy of
hexamer dominoes as function of the opening angles 𝜃𝛼,𝑖 (left) and 𝜃𝛽, 𝑗 (right), as
defined in panel c. The simulated, the permutation and the experimental data are
shown.
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Figure 7.1f. This makes sense because the hexamer domino essentially consists of
two flexible tetramer loops that share one side. The angles 𝜃𝛽, 𝑗 are the opening angles
between the two tetramer loop segments, as indicated in the schematic in Figure 7.5c.
For those angles, the most likely value lies around 180 deg. We show the free energy
of the hexamer rings in the same panel of Figure 7.5e. It is clear that the free energy
of the dominoes for 𝜃𝛽, 𝑗 partially overlaps with the free energy of the hexamer rings
for 𝜃𝛽, 𝑗 > 210 deg, because both correspond to compactly curved shapes. For the
dominoes, the free energy is symmetric around 180 deg as curving the structure as
shown in Figure 7.5c “upwards” (e.g. 𝜃𝛽,1 > 180 deg) or conversely, “downwards”
(e.g. 𝜃𝛽,1 < 180 deg) results in the same shape.

In conclusion, in this section we have characterized the possible conformations
of flexibly-linked colloidal hexamer rings and dominoes. Contrary to the tetramer
loops, we have found that there are preferred values of the opening angles for the
hexamer loops and dominoes. These have, compared to tetramer loops, one and two
additional degrees of freedom for dominoes and rings, respectively. Our results show
that the exact topology of a flexible structure and especially the number of floppy
modes, have a large effect on whether or not certain conformations are preferred over
others.

7.3.5 Gyration radii of rings, dominoes and chains

So far, we have characterized the behavior of flexibly linked tetramer, pentamer and
hexamer loops, in addition to flexible hexamer dominoes. Now, we compare their
conformational and diffusive behavior to each other and to flexibly linked chains
of the same number of spheres. A natural measure to compare the tetramer and
hexamer rings is the radius of gyration 𝑅𝑔 as defined in Equation 7.7, which is a
measure for the size of the loops. Furthermore, it is often used to quantify the extent
of polymer chains, or, as we have discussed in Chapter 6, for flexibly-linked colloidal
bead-chains.

The theoretical radius of gyration of tetramer loops is constant and its value is equal
to 𝑏/

√
2 ≈ 0.708𝑏, with 𝑏 the bond length. From the experimental and simulated

data, we obtain 𝑅𝑔 values of (0.71 ± 0.01)𝑏 and (0.708 ± 0.004)𝑏, respectively. This
slight spread around the expected value of 𝑅𝑔 can be attributed to variations in
the bond length 𝑏. These variations are most likely caused by tracking uncertainties
and the limited wiggle room stemming from the DNA linkers in the experimental
data. In the simulated data, these variations stem from the variations in particle
separation distance allowed by the harmonic potential that keeps the particles bonded.
Altogether, deviations from the expected radius of gyration are small. Tetramer chains
on the other hand, show a variation in 𝑅𝑔 from 0.71𝑏 to 1.12𝑏 with a median value of
0.93𝑏 (see Chapter 6). That is, their minimal size measured by 𝑅𝑔 is equal to the size
of a loop, which is the most compact structure of four particles, but on average the
chains are more extended. This has implications for the diffusivity as well, which we
will discuss in Section 7.3.6.

Contrary to tetramer loops, the radius of gyration of pentamer rings is not constant.
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Schematics of a) a pentamer ring, b) the most compact hexamer ring, c) a hexamer
ring or domino, d) the regular hexagon, which is the most extended hexamer ring. e-f)

The free energy as function of the radius of gyration normalized by the average bond
length 𝑏 for e) pentamer and f) hexamer loops (lo.) and dominoes (do.). Experimental,
simulated and permutation (Perm.) data are shown. The 𝑅𝑔 values corresponding to
the schematics are indicated on the plot, as well as the 𝑅𝑔 values corresponding to
the structures shown in the confocal images of panels i and j. g-h) Schematics of g)

the most compact and h) the most extended pentamer loop. i-j) Confocal images of i)

a hexamer domino and j) a hexamer ring. Scale bar are 2µm. In panels a-d and g-h,
a circle centered at the c.m. with a radius equal to the radius of gyration is shown for
all structures.
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In Figure 7.6e, the free energy of pentamer rings is shown in terms of 𝑅𝑔 . There
is a preference for structures of 𝑅𝑔 value between the conformation shown in the
schematic of Figure 7.6a and the most extended structure with the largest 𝑅𝑔 , which
is the regular pentagon schematically shown in Figure 7.6h. The free energy of the
most compact conformation, which is depicted in Figure 7.6g, is approximately 3𝑘𝐵𝑇
higher than that of the more extended structures. We note that the range of 𝑅𝑔 in
the simulated data exceeds that of the permutation data, which again is caused by
variations in the bond length 𝑏. However, these variations are smaller than 5 % of the
average 𝑅𝑔 . Again, the radius of gyration of the rings is much smaller than that of the
pentamer chains in Chapter 6, which varies between the smallest value observed for
the ring structure in Figure 7.6g and approximately 4𝑏. This will affect their diffusivity
as well, as we will discuss in Section 7.3.6.

Following the same trend, the hexamer rings show larger variations in𝑅𝑔 compared
to the pentamer rings. The distribution between the most compact shape depicted
in Figure 7.6b and the most extended shape in Figure 7.6d is not symmetric: we
find a minimum in the free energy in terms of 𝑅𝑔 for structures that correspond to
the confocal microscopy image shown in Figure 7.6j, as can be seen from the free
energy plotted in Figure 7.6f. In the same graph, we show the free energy of hexamer
dominoes in terms of 𝑅𝑔 . We find that the possible variation in 𝑅𝑔 is smaller for
the dominoes compared to the rings, as is expected because they have one degree
of freedom less than the rings and as a result, can adopt a smaller variety of con-
formations. Additionally, the dominoes are on average more compact than the rings,
but show the same trend in free energy as function of 𝑅𝑔 . This difference indicates
that the average diffusivity of hexamer dominoes will also differ from hexamer rings,
as we will discuss in Section 7.3.6, where we will also compare their diffusivity to
hexamer chains. Finally, we stress that 𝑅𝑔 does not uniquely define the shape of the
rings and dominoes, as can be seen by comparing the schematic of Figure 7.6c to the
confocal image of Figure 7.6i, which have a different conformation but the same value
of 𝑅𝑔 . Nonetheless, we have shown that the radius of gyration is a useful measure to
compare the free energy of a variety of different structures of different topologies in
terms of their extent, which in turn affects their diffusive properties.

7.3.6 Shape-averaged diffusivity of rings, dominoes and chains

Having shown that the radius of gyration of the rings and dominoes is smaller
on average than that of chains, we now compare the average diffusivities of rings,
dominoes and chains. To do so, we analyze the diffusivity of the relative to the same
definition of the coordinate system for all structures as defined by Equation 7.4 and
depicted schematically in Figure 7.2a for the tetramer loops, in Figure 7.7a for the
hexamer rings and in Chapter 6 for the chains.

First, we compare the average translational diffusivity of all structures in Figure 7.7b.
The translational diffusivity of rings decreases as function of their size, as expected
and as we have previously shown for flexible chains. In the experiments, however,
both diffusivities are the same, and we conclude that more data is needed to reliably
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given by Equation 7.11.
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determine the diffusivity of the hexamer rings. Nevertheless, for the tetramer rings,
the experimental diffusivity is slightly larger than in the simulations, as we had
observed previously for the flexible chains in Chapter 6. We hypothesize this is due
to the no-slip boundary condition on the substrate that is used in the simulations,
while in the experiments the substrate is a hydrogel that has a finite slip length,
as we have argued in Chapter 6. We find that the hexamer dominoes have the same
translational diffusion coefficient as the hexamer rings. This is unexpected, because by
comparing their average radii of gyration, we have found that ⟨𝑅𝑔⟩ of the dominoes
is smaller than that of the rings, as shown in Figure 7.6. However, the differences
between the two are very small, which may explain why their diffusion coefficients
are very similar.

Compared to chains of the same size, the translational diffusivity of the rings in the
simulation data is slightly larger, as is expected based on our analysis in Figure 7.6,
where we have found that the average radius of gyration of the rings is smaller than
that of the chains (characterized in Chapter 6). This can also be seen from the lower
bound on the diffusivity 𝐷𝑐.𝑑. as calculated from the matrix 𝑨𝑖 𝑗 defined by Equation
2.16 of Cichocki et al. 269 using the RPB tensor35 with lubrication corrections as the
inter-particle mobility matrix 𝝁𝑖 𝑗 , as explained in Section 7.2.4. For the experimental
data, the trends are less clear and more data is needed to fully elucidate their behavior.

The rotational diffusivity of the rings, dominoes and the chains are shown in Fig-
ure 7.7c. There, we see that both the experimental and simulated rotational diffusivity
of the rings is larger than that of the chains, because of their smaller average radius
of gyration. For the same reason, the rotational diffusivity of the rings decreases as
function of their size and the rotational diffusivity of the dominoes is smaller than
that of the rings. We hypothesize that the reason why we measure a lower rotational
diffusivity for the dominoes compared to the rings and not a lower translational
diffusivity can be explained as follows. Based on the Stokes relations, the rotational
diffusivity scales as 1/𝑅3, while the translational diffusivity scales as 1/𝑅. Therefore,
small differences in the average radius have a larger effect on the rotational diffu-
sion coefficient than on the translational one, which may explain why the differences
between the dominoes and rings are only appreciable for the rotational terms.

Having discussed the relative magnitudes of the translational and rotational dif-
fusivity of all structures, we now consider the scaling of these terms for the rings as
function of their size. There are different scalings that could reasonably be expected.
First, for tetramer rings in Figure 7.2b, we have found that the shape-dependent
short-time diffusivity can be accurately described by the diffusion coefficient of a
sphere of the same volume as the ring, which we label as 𝐷eq.vol. in Figure 7.7b. Here,
we used the lubrication-corrected RPB tensor described in Section 7.2.3 to calculate
the diffusion coefficients of spheres of radii 𝑅eq.vol. =

3
√
𝑛𝑅, located just above the

substrate. While it is clear from Figure 7.7b that 𝐷eq.vol. is close to the diffusion co-
efficient of the flexible tetramer rings, for larger ring sizes 𝐷eq.vol. deviates greatly
from the diffusion coefficients obtained from the simulated data. Moreover, the rota-
tional diffusion coefficients 𝐷r,eq.vol. predicted from spheres of the same volume as
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the rings overestimates the rotational diffusivity as found from the simulated data,
as shown in Figure 7.7c. Additionally, we have compared our data to the translational
and rotational diffusion coefficients of a spheroid, calculated using the Perrin friction
factors.31,310 For this comparison, we have used the lengths of the long and small
axes of the spheroid, as well as a prefactor that models additional substrate friction
as fitting parameters. Similarly to the diffusion coefficients calculated from a sphere
of the same volume, we observed large deviations between the spheroid model and
the simulated diffusion coefficients (not shown).

Instead, we find that both the translational and rotational diffusivity of the rings
can be accurately modeled by the scalings we had previously found for flexible chains
in Chapter 6, namely

𝐷𝑐ℎ𝑎𝑖𝑛 ∝
(
𝑎𝑏𝐾

[
(𝑛2 − 1)/𝑛

] 𝜈)−𝜈/2

(7.9)

𝐷𝑟,𝑐ℎ𝑎𝑖𝑛 ∝
ln

(
2𝐿/𝑏𝐾

)
𝐿3 , (7.10)

where we use the values we have determined in Chapter 6. Namely, the constant
𝑎 = 0.349 ± 0.002, 𝑏𝐾 = (1.03 ± 0.01)𝑏 is the Kuhn length (approximately equal to the
average bond length), 𝜈 is the Flory factor (expected to be 3/4 for chains in 2D) and
we set 𝐿 = 𝑏𝐾(1 + (𝑛 − 1)𝜈). Briefly, 𝐷𝑐ℎ𝑎𝑖𝑛 and 𝐷𝑟,𝑐ℎ𝑎𝑖𝑛 are derived from Kirkwood-
Riseman theory for the diffusivity of polymers using the rigid body approximation,286

as explained in detail in Chapter 6. We have only fitted the simulated data using
these expressions, in order to obtain the scaling from the experimental data, more
measurements are necessary. From the fit of the translational diffusivity of the rings
we obtain 𝜈 = 0.81 ± 0.01 and from the fit of the rotational diffusivity we find 𝜈 =

0.83 ± 0.04. These are close to each other and moreover, close to the values obtained
in Chapter 6 for chains, where we have found 𝜈 = 0.77 ± 0.02 for the translational and
𝜈 = 0.83 ± 0.04 for the rotational diffusivity of flexible chains. This good agreement
between the proposed scaling and the simulated and experimental data shows that
the rings behave on average more as rod-like objects than as sphere-like objects, in
terms of their diffusivity.

Finally, we consider the shape-averaged flexibility in Figure 7.7d as defined by
Equation 7.3. The experimentally measured flexibility of the rings is much lower
than the simulated flexibility, namely, the experimental value is (27 ± 1)% of the sim-
ulated value on average. For the flexible chains, we have found that the experimental
flexibility is 75 to 80 % of the simulated flexibility, which we attribute to friction of
the DNA linker patch not modeled in the simulations, as discussed in Chapter 6. This
is also true for the rings, but because the difference in experimental and simulated
flexibility is much larger for the rings, there could be an additional source of fric-
tion present for the rings that is not modeled in the simulation data. Alternatively,
while for the chains, the number of average bonds per particle is always less than
one (𝑛𝐵/𝑛 = (𝑛 − 1)/𝑛), for the rings, the average number of bonds per particle is
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always equal to one (𝑛𝐵/𝑛 = 𝑛/𝑛). Therefore, the average friction per particle, stem-
ming from the DNA linker patch, might be larger for the individual spheres in a ring
compared to those in a chain of the same length. Additionally, because the friction
depends on the DNA linker concentration in the patch area,85 it could be that by
performing more experiments using different DNA linker concentrations, we recover
the same behavior as we previously observed for chains in Chapter 6.

Counter-intuitively, we find that for both the simulated and experimental data, the
flexibility of the rings increases as function of ring size. This is unexpected because,
for the chains, we have found that the flexibility is set by the translational diffusivity
of the individual spheres, as indicated in Figure 7.7d by 𝐷𝑇[𝜽𝜽] and discussed
in Chapter 6. For the rings however, the flexibility is lower than this value, both
in the simulated and experimental data. Therefore, we hypothesize that both the
smaller separation distances between particles in the rings, as well as the additional
topological constraint of the ring structure, leads to a lower flexibility compared to the
more extended chains. Indeed, as shown in Figure 7.7d, we find that the simulated
data of the rings can be described by the following scaling based on Equation 7.8

𝐷[𝜽𝜽] = 𝐷𝜽𝜽,0 + Δ𝐷𝜽𝜽
𝑛𝐵,𝑅 − 𝑛𝐵

𝑛𝐵
= 𝐷𝜽𝜽,0 + Δ𝐷𝜽𝜽

𝑛 − 3
𝑛

, (7.11)

where 𝐷𝜽𝜽,0 and Δ𝐷𝜽𝜽 are fit parameters, 𝑛𝐵 is the number of bonds and 𝑛𝐵,𝑅 is
the number of bonds required for structural rigidity as given by Equation 7.8. The
good agreement between the simulated data and Equation 7.11 implies that the
flexibility of the rings scales as the number of excess floppy modes given by 𝑛𝐵,𝑅−𝑛𝐵,
as obtained from the Maxwell counting rule given in Equation 7.8, divided by the
total number of bonds 𝑛𝐵. By fitting the simulated data of the flexible rings, we
find 𝐷𝜽𝜽,0 = (40 ± 9)deg2/s and Δ𝐷𝜽𝜽 = (196 ± 21)deg2/s. Now that we know this
scaling is valid for the simulated data, we can fit the same relation to the experimental
data, for which we find that 𝐷𝜽𝜽,0 ≈ 12 deg2/s and Δ𝐷𝜽𝜽 ≈ 47 deg2/s. We find that
values of the fit parameters determined from the experimental data are respectively
29 and 24 % of the fit parameters determined from the simulated data, which is also
close to the average ratio between the experimental data and simulated data, which
is (27 ± 1)%. Therefore, we conclude that the experimental data follows the same
scaling.

Interestingly, we can further test whether the proposed scaling is valid by com-
paring the flexibility of the hexamer dominoes to the flexibility predicted by Equa-
tion 7.11. According to the proposed scaling, the relation between 𝐷[𝜽𝜽] and 𝑛

should be different for rings and dominoes, because of the different number of
bonds. For the rings, we have found that 𝐷[𝜽𝜽] ∝ (𝑛 − 3)/𝑛, while for the domi-
noes 𝐷[𝜽𝜽] ∝ (𝑛 − 4)/(𝑛 + 1) if Equation 7.11 holds. In Figure 7.7d, we plot the
expected scaling for the hexamer dominoes using the fit values obtained from the
simulated data of the rings. We find that indeed, the simulated flexibility of the hex-
amer dominoes is close to the predicted value based on Equation 7.11. While more
work is required to conclusively show that the scaling we have found is indeed valid
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for both rings and dominoes, we have presented strong indications that this is the
case. This finding could also have implications for the expected flexibility of floppy
colloidal crystal structures, for which we expect the flexibility will be lower than
𝐷𝑇[𝜽𝜽] as well, according to the scaling we have found here.

7.4 Conclusions

In this chapter, we have studied the possible conformations and the diffusive behav-
ior of flexibly-linked colloidal rings. We have found that the tetramer loops show
no preference for any configuration and freely change their shape from square- to
diamond-like conformations. Their short-time diffusivity only weakly depends on
shape and their translational diffusion can be described by the diffusion coefficient
of a sphere of the same volume.

In addition to tetramer rings, we have studied the possible conformations of larger
rings. The added degrees of freedom lead to preferred configurations for rings larger
than the tetramer ring. Furthermore, we have compared hexamer rings to hexamer
dominoes, that have an additional bond compared to the rings. For the dominoes,
the preferred conformations lie between those of the hexamer loops and the tetramer
loops because of the unique topology of the dominoes, which can be thought of as
consisting of two coupled tetramer loops.

Finally, we have compared the shape-averaged diffusivity of rings, dominoes and
chains. The shape-averaged short time diffusivity of rings decreases as function of
their size and the rings diffuse slightly faster than chains of the same number of
spheres, because the rings have a smaller average radius of gyration. The same trends
can be observed for the rotational diffusivity. Both scale according to the scaling we
have found for flexible chains in Chapter 6, where we have modeled the clusters as
instantaneously rigid by following the Kirkwood-Riseman theory.286

The flexibility of rings, however, is smaller compared to the flexibility of the chains.
We have found strong indications that the flexibility of the rings and dominoes scale
as the number of excess floppy modes of the structure divided by the total number
of bonds. This finding could have implications for the assembly of floppy colloidal
crystal structures, for which we expect the flexibility will be severely hindered as
well. As an example, the scaling we have found predicts that for a square 𝑛×𝑛 floppy
colloidal crystal, the flexibility will scale as (2𝑛 − 3)/(2𝑛2 − 2𝑛) which is a decreasing
function for 𝑛 ≥ 2 and approaches zero in the limit of infinitely large 𝑛. For future
work, it would be interesting to test whether the proposed scaling is valid for these
square floppy lattices as well and if so, up to what lattice size. More broadly, our
findings could have implications for the diffusive behavior of both synthetic and
biological ring polymers.
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