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Conformations and
diffusion of flexibly-
linked colloidal chains

6



6

For biologically relevant macromolecules such as intrinsically
disordered proteins, internal degrees of freedom that allow

for shape changes have a large influence on both the motion and
function of the compound. A detailed understanding of the effect of
flexibility is needed in order to explain their behavior. Here, we study
a model system of freely-jointed chains of three to six colloidal
spheres, using both simulations and experiments. We find that in
spite of their short lengths, their conformational statistics are well
described by two-dimensional Flory theory, while their average
translational and rotational diffusivity follow the Kirkwood-Riseman
scaling. Their maximum flexibility does not depend on the length of
the chain, but is determined by the near-wall in-plane translational
diffusion coefficient of an individual sphere. Furthermore, we
uncover shape-dependent effects in the short-time diffusivity of
colloidal tetramer chains, as well as nonzero couplings between the
different diffusive modes. Our findings may have implications for
understanding both the diffusive behavior and the most likely
conformations of macromolecular systems in biology and industry,
such as proteins, polymers, single-stranded DNA and other chain-like
molecules.

6.1 Introduction

For biologically relevant (macro)molecules, internal degrees of freedom that allow
for shape changes have a large influence on both the motion and function of the com-
pound.100–104 Examples of flexible systems found in nature include bio-polymers such
as DNA and transfer RNA,251 antibodies101,103,253,254 and intrinsically disordered pro-
teins (IDPs).252,282 IDPs in particular display large shape changes, due to unstructured
(and therefore flexible) regions of small hydrophilic units that typically function as
linkers between more structured domains. These are involved in important cellular
processes such as signaling and transcription. Additionally, they are often involved in
disease-related gene truncations or translocations. The coupled binding and folding
of these flexible regions lead to a large number of possible interactions within the
same set of proteins.282 Even for more rigid proteins, shape changes can be an impor-
tant factor, for example in protein breathing, that involves slow collective movements
of larger secondary structures.283 Therefore, quantitative knowledge of structural
flexibility is necessary to understand the transport properties and function of flexible
biopolymers and proteins.261
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Measuring molecular shape changes calls for single-molecule techniques with a si-
multaneously high spatial and temporal resolution. As a simpler alternative, colloidal
particles have been widely used as model systems for (macro)molecular structures
since the early 20th century,18,19,284 because of their unique combination of micro-
scopic size and sensitivity to thermal fluctuations. Although colloidal particles are
frequently used as model systems, the study of colloidal particles is interesting in
its own right, as colloids can in principle form the building blocks of materials with
novel properties, such as photonic bandgap materials.2 Colloidal structures of recon-
figurable shape are expected to aid in the assembly of these structures, because they
allow the formed materials to quickly relax towards their thermodynamic equilib-
rium configuration, thereby mitigating “hit-and-stick” equilibration issues.77,196 In
addition, they could provide ways to build switchable materials.285

While the Brownian motion of rigid colloids of various shapes has been extensively
studied, for example for ellipsoids,91,95,96 boomerangs,14,97,98 and clusters,12,13 most
compounds found in nature show some degree of flexibility, which may affect their
transport properties. It was proposed to calculate their diffusive properties in an
approximate way, by treating the structure as an (instantaneously) rigid body and
take the ensemble average of all possible ‘snapshots’ of conformations, the so called
rigid body approximation.101,264,286,287 However, the accuracy of this approximation
is as of yet unclear: importantly, deviations between this approximation and the real
transport properties can become larger as function of the flexibility of the molecule.288

Recently, we have studied both numerically and experimentally the effect of seg-
mental flexibility244 in a simple model system consisting of a freely-jointed chain of
three spherical colloidal particles, also called trimers or trumbbells.107,262 This was
made possible for the first time thanks to the development of colloidal structures
with freely-jointed bonds.110 Similar to rigid particles, we found that shape affects
the diffusive motion of the colloid at short timescales and that displacements are
larger in directions that correspond to smaller hydrodynamic drag. By comparing
our flexible trimers to rigid ones, we found that the flexibility of the trimers led to
a higher translational diffusion coefficient. Furthermore, we uncovered a Brownian
quasiscallop mode, where diffusive motion is coupled to Brownian shape changes.
At longer timescales, in addition to the rotational diffusion time, an analogous con-
formational diffusion time governs the relaxation of the diffusive motion, unique to
flexible assemblies.244 These effects taken together show that the rigid body approx-
imation is not sufficient to model the rich behavior of flexible objects. However, in
the case of long polymer chains, Kirkwood-Riseman theory,286 which is based on the
rigid body approximation, is able to at least describe equilibrium properties such as
the average translational diffusion coefficient.289 This is attractive because, if accu-
rate, it would provide a simple and quick way to calculate the equilibrium long time
diffusion coefficients typically measured in light scattering experiments.

Here, we study flexible chains of three to six particles using both experiments
and simulations. Conceptually, the longer chains most resemble a flexible polymer,
modeled by beads on a chain, while the shorter chains are expected to show devi-
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ations from predictions based on polymer theory. We set out to test to what extent
the conformations of our bead chains can be described by polymer theory and to
what extent their equilibrium diffusivity can be described by simple scalings such
as the Kirkwood-Riseman model. First, we analyze their conformational free energy
in several different ways and compare our findings to two-dimensional Flory the-
ory. Then, we study the shape-dependent short-time diffusivity of the trimer and
tetramer chains and calculate the full diffusion tensor as function of instantaneous
shape. By also determining the shape-averaged translational diffusivity, rotational
diffusivity and flexibility for chains of three to six spheres, we show how these scale
as function of chain length. Overall, we find a good agreement between the experi-
mental measurement and the simulations, except for translational diffusivity. In that
case, we hypothesize that the difference in surface slip in the experiments, where the
substrate has a finite slip length due to the hydrogel surface, and simulations, where
we use a no-slip boundary condition, lead to the higher translational diffusivity in
the experiments. We hope our work aids the study of diffusivity of flexible objects
found in complex mixtures relevant in, for example, the cosmetic, pharmaceutical and
food industries, as well as in biological systems. Our findings may have implications
for understanding both the diffusive behavior and the most likely conformations of
macromolecular systems in biology and industry, such as polymers, single-stranded
DNA and other chain-like molecules.

6.2 Materials and Methods

6.2.1 Experimental

Flexible chains of colloid-supported lipid bilayers (CSLBs) were prepared as de-
scribed in previous work,85,110,112,242 specifically, we followed the exact same proce-
dure as in Chapter 5244 and used silica particles of two different radii to test the
generality of our findings. We now briefly summarize the experimental procedure
from Chapter 5.244

The CSLBs consisting of (2.12 ± 0.06)µm silica particles were prepared as de-
scribed in our recent works.242,244 Briefly, the particles were coated with a fluid
lipid bilayer by deposition and rupture of small unilamellar vesicles consisting
of 98.8 mol % of the phospholipid DOPC ((Δ9-Cis)-1,2-dioleoyl-sn-glycero-3-phos-
phocholine), 1 mol % of the lipopolymer DOPE-PEG(2000) (1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]) and 0.2 mol % of
the fluorescently-labeled lipids TopFluor-Cholesterol (3-(dipyrrometheneboron di-
fluoride)-24-norcholesterol) or DOPE-Rhodamine (1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine-N-(lissaminerhodamine B sulfonyl)). The bilayer coating was per-
formed in a buffer at pH 7.4 containing 50 mm sodium chloride (NaCl) and 10 mm

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). We added double-
stranded DNA (of respectively strands DS-H-A and DS-H-B, see Table A.1) with
an 11 base pair long sticky end and a double stearyl anchor, which inserts itself
into the bilayer via hydrophobic interactions (see Figure 6.1a, left panel). The sticky
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end of strand DS-H-A is complementary to the sticky end of strand DS-H-B, which
allows them to act as linkers. Self-assembly experiments were performed in a differ-
ent buffer of pH 7.4, containing 200 mm NaCl and 10 mm HEPES. Chains of 2.12µm
CSLBs were formed by self-assembly in a sample holder made of polyacrylamide
(PAA) coated cover glass.244 Confocal microscopy images of the coated particles are
shown in Figure 6.2a, for chain lengths of 𝑛 = 3 to 6 particles.

Additionally, we analyzed chains of (1.93 ± 0.05)µm CSLBs, with silica particles
purchased from Microparticles GmbH (product code SiO2−R-B1072). We followed
the same protocol with two minor modifications: first, the lipid composition was
91.2 mol % DOPC, 8.7 mol % DOPE-PEG(2000) and 0.1 mol % DOPE-Fluorescein. Sec-
ond, we added double-stranded DNA with a self-complementary 12 base pair sticky
end (i.e. a palindromic sequence) and a cholesterol anchor that inserts itself into the
lipid bilayer due to hydrophobic interactions (see Table A.1, strands PA-A and PA-B).
To image the 1.93µm CSLBs we used a flow cell coated with poly(2-hydroxyethyl a-
crylate) (pHEA) polymers.244 Self-assembly experiments were performed in a buffer
of pH 7.4, containing 50 mm NaCl and 10 mm HEPES.

6.2.2 Microscopy

Chains were imaged for at least 5 min (frame rates between 5 and 19 fps) at room
temperature using an inverted confocal microscope (Nikon Eclipse Ti-E) equipped
with a Nikon A1R confocal scanhead with galvano and resonant scanning mirrors.
A 60× water immersion objective (NA=1.2) was used. 488 and 561 nm lasers were
used to excite, respectively, the Fluorescein or TopFluor and Rhodamine dyes. Laser
emission passed through a quarter wave plate to avoid polarization of the dyes and
the emitted light was separated by using 500 − 550 nm and 565 − 625 nm filters.

To complement the data obtained from self-assembled chains, we used optical
tweezers to assemble specific chain lengths. Briefly, we employed a homemade opti-
cal setup consisting of a highly focused trapping laser manufactured by Laser QUAN-
TUM (1064 nm wavelength). The laser beam entered the confocal microscope through
the fluorescent port, after first passing through a beam expander and a near-infrared
shortpass filter. The same objective was used for imaging and to focus the trapping
laser beam. During the trapping, the quarter wave plate was removed from the light
path.

Particle positions were tracked using a custom algorithm242 available in TrackPy
by using the locate_brightfield_ring function188 or using a least-square fit of
a Mie scattering based model implemented in HoloPy.186 Both methods agree to
an accuracy of at least 1 px, however we have found that the Mie scattering based
model is more robust for tracking multiple particles in close proximity to each other.
For all analysis, we only selected clusters that showed all bond angles during the
measurement time, experienced no drift and were not stuck to the substrate. An
overview of the total number of measurements, the total duration and the total
number of frames per chain length is shown in Table 6.1.
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Table 6.1: Overview of the amount of measurements, the total duration and the total
number of frames per chain length, for the experimental and simulated data.

𝒏 Measurements Total length [min] Total frames

Exp. Sim. Exp. Sim. Exp. Sim.

3 30 30 275 900 9.3 × 104 3.8 × 107

4 69 50 305 1500 2.5 × 105 6.4 × 107

5 13 20 75 600 4.7 × 104 2.5 × 107

6 5 20 41 600 4.1 × 104 2.5 × 107

Table 6.2: Permutation data. For all chain lengths 𝑛, we generated the 𝑃(𝑁𝜃 , 𝑛 − 2)
configurations obtained by permuting all possible combinations of opening angles.
Interpenetrating configurations, which are forbidden due to short-range repulsive
forces between particles, were removed from this permutation data and the percent-
ages of these configurations relative to the total number of configurations between 60
and 300 deg, as well as between 0 and 360 deg (fully freely-jointed case) are shown.

𝒏 𝜹𝜽 [deg] 𝑷(𝑵𝜽 , 𝒏 − 2)
Interpen. [%]

(60-300 deg)
Interpen. [%]

(0-360 deg)

3 0.01 2.4 × 104 0 33.3
4 0.04 3.6 × 107 6.3 58.3
5 0.50 1.1 × 108 14.0 74.5
6 2.00 2.0 × 108 21.9 84.7

6.2.3 Simulations

We have performed Brownian dynamics simulations with hydrodynamic interactions
following the method outlined in Sprinkle et al. 290 using the open-source RigidMulti-
blobsWall package.291 Hydrodynamic interactions are calculated using the Stokes
equations with no-slip boundary conditions. The hydrodynamic mobility matrix is
approximated using the Rotne-Prager-Blake (RPB) tensor,35 which is a modified form
of the Rotne-Prager-Yamakawa (RPY) tensor34,275,292 and accounts for a bottom wall,
which is unbounded in the transverse directions. These corrections to the RPY tensor
are combined with the overlap corrections described in Wajnryb et al. 292 to prevent
particle-particle and particle-wall overlap. The RPB mobility inaccurately describes
near-field hydrodynamic interactions and therefore breaks down for small separation
distances. This can be overcome by adding a local pairwise lubrication correction to
the RPB resistance matrix as described in detail in Sprinkle et al. 290 Based on the full
lubrication-corrected hydrodynamic mobility matrix, the Ito overdamped Langevin
equation is solved to describe the effect of thermal fluctuations.
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We include a gravitational force on the particles to confine them to diffuse close to
the bottom wall, as in the experiments. Inter-particle bonds are modeled by harmonic
springs of stiffness 1000𝑘𝐵𝑇/𝑅2 and equilibrium length 2𝑅, where 𝑅 = 1.06µm is the
particle radius. The bond angle is not restricted. We set the temperature𝑇 = 298 K, the
viscosity of the fluid 𝜂 = 8.9 × 10−4 Pa s, the gravitational acceleration 𝑔 = 9.81 m s−2,
the particle mass 𝑚𝑝 = 9.5 × 10−15 kg (by assuming a particle density of 1900 kg m−3)
and the simulation timestepΔ𝑡 = 1.42 ms. For the firm potential that prevents overlap,
we use a strength of 4𝑘𝐵𝑇 and a cutoff distance 𝛿cut = 10−2.290,293 We initialized the
particle chains in a linear configuration (all opening angles 180°). Then, these initial
configurations were randomized by running the integration for a simulated time of
60 s prior to saving the configurations, to ensure a proper equilibration of the particle
positions, bond lengths, velocities and opening angles. The particle positions were
saved every 8 simulation steps to obtain a final framerate of approximately 90 fps. An
overview of the total number of simulations, the total duration and the total number
of saved frames per chain length is shown in Table 6.1.

For comparison to the simulated and experimental data, we generated data in
which the chains are completely non-interacting and freely-jointed up to steric ex-
clusions in the following manner: we generated all (𝑛 − 2)-permutations of the 𝑁𝜃

opening angles 𝜃𝑖 , which gives a total number of 𝑃(𝑁𝜃 , 𝑛 − 2) = 𝑁𝜃!/(𝑁𝜃 − (𝑛 − 2))!
combinations of 𝜃𝑖 . Here, the number of opening angles is 𝑁𝜃 = (360 − 2 × 60)/(𝛿𝜃),
where 𝛿𝜃 denotes the bin width. Then, we removed those combinations that are for-
bidden because of steric exclusions between particles, resulting in the final allowed
combinations, which we call “permutation data”. In Table 6.2, we show the bin widths
𝛿𝜃 for each 𝑛, as well as the total number of generated permutations 𝑃(𝑁𝜃 , 𝑛 − 2).
The percentage of permutations that was removed due to steric exclusions is shown,
as well as the total number of configurations that would result in interpenetrating
particles for the completely freely-jointed case, where 𝜃 can vary between 0 and
360 deg.

6.2.4 Data analysis

For all fits reported in this work, used a Bayesian method to find an estimate of the
posterior probability distribution, by using an Affine Invariant Markov chain Monte
Carlo (MCMC) Ensemble sampler method as implemented in the Python packages
lmfit246 and emcee.207 This allowed us to obtain accurate estimates of the error and
the maximum likelihood estimate (MLE) of the parameters. Parameter values were
initialized using a standard least-square fit, appropriate bounds on the parameter val-
ues were implemented as priors. We estimated the autocorrelation time 𝜏acor of the
MCMC chain using the built-in methods and ran the analysis for at least 100𝜏acor steps,
where we discarded the first 2𝜏acor steps (corresponding to a burnin phase) and subse-
quently used every other 𝜏acor/2 steps (known as thinning). We used 500 independent
chains (or walkers). The reported values correspond to the maximum likelihood es-
timate of the resulting MCMC chains, the reported uncertainties correspond to the
16th and 84th percentiles of the obtained posterior probability distribution.

124



6

6.2.5 Diffusion tensor analysis

Definition of the diffusion tensor

We determined the short-time diffusivity of the clusters, both as function of their
instantaneous shape, as well as averaged over all possible configurations. Because
the chains are sedimented to the bottom substrate, we consider only the quasi-2D,
in-plane diffusivity. For the flexible trimers, we followed the methods outlined in
Chapter 5.244 For the flexible tetramer chains, we calculated a 5 × 5 diffusion tensor,
where the four degrees of freedom correspond to translational diffusivity in 𝑥 and
𝑦, rotational diffusivity and the flexibilities of the tetramer, which are described by
the diffusivities of the opening angles 𝜃1 , 𝜃2. Specifically, the 𝑥- and 𝑦-directions are
schematically shown for one configuration in Figure 6.1b and defined by Equation 6.4.
The rotation angle used for determining the rotational diffusivity is indicated in
Figure 6.1b and is the angle of the 𝑥(𝜏) relative to 𝑥(𝜏 = 0), i.e. the angle of the
body-centered 𝑥-axis of the current frame relative to the body-centered 𝑥-axis of
the reference frame at 𝜏 = 0. The flexibilities are calculated from the mean-squared
displacements of the opening angles 𝜃1 , 𝜃2, which are depicted in Figure 6.1b. 𝜃1 is
defined in such a way that it is always less than or equal to 180 deg and this defines
how we assign the magnitude of 𝜃2, specifically, whether it is acute or obtuse.

The diffusion tensor elements of the tetramer chains were determined analogously
to the trimers.244 Briefly, for each pair of frames, we determined the initial shape
of the chain, which is determined by 𝜃1 , 𝜃2. The short time diffusion tensor is then
calculated from the trajectories in the following way:

𝑫[𝑖 𝑗](𝜃1 , 𝜃2) ≡
1
2
𝜕⟨Δ𝑖(𝜃1 , 𝜃2)Δ𝑗(𝜃1 , 𝜃2)⟩𝜏

𝜕𝜏
, (6.1)

with 𝜏 the lag time between frames, ⟨· · · ⟩𝜏 denotes a time average over all pairs of
frames 𝜏 apart and Δ𝑖(𝜃1 , 𝜃2) = 𝑖(𝜃1 , 𝜃2 , 𝑡 + 𝜏) − 𝑖(𝜃1 , 𝜃2 , 𝑡) is the displacement of
the 𝑖-th diffusion tensor element, which depends on the instantaneous shape given
by 𝜃1 , 𝜃2. The average diffusion tensor elements 𝑫[𝑖 𝑗] were obtained by fitting the
overall slope of the mean (squared) displacements as a function of lag time 𝜏. We
considered lag times up to 0.17 s, given by the frame rate of the experimental data. We
only considered trajectories where the variation in 𝜃1 , 𝜃2 did not exceed the edges of
the bin describing the initial shape. Then, we calculated the diffusion tensor elements
separately for each initial shape. For fitting the slopes, we used a MCMC sampling
method described in Section 6.2.4, where we used a linear model without an offset.
For longer chains, we only considered the shape-averaged, quasi-2D translational
diffusion coefficient 𝐷𝑇 , which corresponds to in-plane diffusivity above the wall.
Additionally, we determined the rotational diffusion coefficient𝐷[𝛼𝛼] from the mean
squared angular displacement of the 𝑥-axis (defined in Equation 6.4, see Figure 6.1b
for a schematic depiction), which describes the rotational diffusivity around an axis
perpendicular to the substrate. Finally, we determine the overall cluster flexibility
𝐷[𝜽𝜽] by calculating the mean squared displacements of the (𝑛 − 2) opening angles
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𝜃𝑖 as follows:

⟨|𝚫𝜽 |2⟩ = ⟨|(Δ𝜃1 , . . . ,Δ𝜃𝑛−2)|2⟩, (6.2)

so that the flexibility 𝐷[𝜽𝜽] is given by

⟨|𝚫𝜽 |2⟩ = 2(𝑛 − 2)𝐷[𝜽𝜽]𝑡 , (6.3)

analogously to the other diffusion tensor elements.

The influence of the tracking point

As tracking point, we considered the center of mass (c.m.) and the center of diffusion
(c.d.), because the choice of origin is expected to affect the magnitude of the diffusion
tensor.105,269 The c.d. was calculated from 𝑨𝑖 𝑗 defined by Equation 2.16 of Cichocki
et al. 269 using the RPB tensor35 with lubrication corrections as the inter-particle
mobility matrix 𝝁𝑖 𝑗 . This tensor includes wall corrections, as discussed previously
in Section 6.2.3. The c.d. was determined from the simulated particle positions, be-
cause the height above the bottom wall was not measured experimentally, but is
needed to calculate the wall corrections. The direction of the body-centered 𝑥- and
𝑦-axes was determined as function of the tracking point 𝒓𝑡.𝑝., which defines the origin
of the body-centered coordinate frame. We define 𝒓𝑡.𝑝. = 𝜌1𝒓1+𝜌2𝒓2+· · ·+𝜌𝑛𝒓𝑛 , which
defines the location of the tracking point as a linear combination of the particle posi-
tions (Equation 2.2 and 2.3 of Cichocki et al. 269 ). 𝝆 = (𝜌1 , 𝜌2 , . . . , 𝜌𝑛) is a weight vector
which determines how much weight is accorded to each particle in the calculation of
the tracking point 𝒓𝑡.𝑝.. As an example, for a trimer, 𝝆 = (1/𝑛 = 1/3, 1/3, 1/3) when
the tracking point is chosen to be the center of mass.

The direction of the 𝑥-axis was chosen as

�̂� = ±
[
𝒓𝑡.𝑝.,1 + · · · + 𝒓𝑡.𝑝.,𝑠1

𝜌1 + · · · + 𝜌𝑠1
−

𝒓𝑡.𝑝.,𝑠2 + · · · + 𝒓𝑡.𝑝.,𝑛

𝜌𝑠2 + · · · + 𝜌𝑛

]
, (6.4)

where 𝒓𝑡.𝑝.,𝑖 is the 𝑖-th coordinate of the tracking point and the bead chain is split into
two parts with equal numbers of particles according to{

𝑠1 = 𝑠2 = ⌈ 𝑛2 ⌉ for odd 𝑛

𝑠1 = ⌈ 𝑛2 ⌉ , 𝑠2 = 𝑠1 + 1 for even 𝑛
(6.5)

Note that for a trimer, with the tracking point at the c.m. (i.e. 𝝆 = (1/3, 1/3, 1/3)), �̂�
is parallel to the end-to-end vector, which is the same definition as in our previous
work.244 �̂� is then chosen such that �̂� and �̂� form a right-handed coordinate system,
where the direction of �̂� is chosen to point away from the central part of the cluster
towards the tracking point, i.e. along 𝒓𝑡.𝑝. −

(
𝒓𝑠1 + 𝒓𝑠2

)
/2. This orientation was deter-

mined for every frame, which fixed the orientation of the body-centered coordinate
system 𝒙(𝜏 = 0), 𝒚(𝜏 = 0). For subsequent lag times, the direction of 𝒚(𝜏) was cho-
sen such that 𝒚(𝜏 = 0) · 𝒚(𝜏) > 0, i.e. the direction of 𝒚 does not change sign. The
resulting coordinate system relative to the c.d. is visualized for the tetramer chains
in Figure 6.1b and c.
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Figure 6.1: Flexibly linked colloidal tetramers. a) Flexibly linked colloidal chains
are created from DNA functionalized colloid-supported lipid bilayers (CSLBs). The
particles are bound by the DNA linkers, which can diffuse in the fluid lipid bilayer,
yielding reconfigurable assemblies. Right: Confocal image of a tetramer chain, where
the different colors, stemming from fluorescently labeled lipids, indicate the two
different particle types that are functionalized with complementary DNA linkers.
Scalebar is 2µm. b) The coordinate system used for quantifying the diffusion of
tetramer chains, relative to the center of diffusion (see Section 6.2.5). c) Schematics
of possible configurations for the tetramer, as function of the two opening angles
𝜃1 , 𝜃2. Some configurations are sterically prohibited because the particles cannot
interpenetrate (as indicated by the dark grey area). The dashed lines indicate the two
symmetry axes of the opening angles, 𝜃2 = 𝜃1 and 𝜃2 = 360 deg − 𝜃1. d) The free
energy of both experimental (left) and simulated (right) chains of four particles in
terms of 𝜃1 , 𝜃2.
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6.3 Results and Discussion

6.3.1 Conformations of flexible chains

Shape as function of the trimer segments

Does a diffusing flexible chain of micron-sized spherical particles have preferred
configurations? This is a natural question to ask, because increasing the number
of spheres per chain increases the percentage of overlapping configurations (see
Table 6.2) and could potentially change the hydrodynamic interactions. We answer
this question by considering the free energy of such chains, which were made by the
assembly of colloid-supported lipid bilayers (CSLBs).85,110,112,242,244 These particles
are bonded by DNA linkers, which provide specific bonds between the particles.
Because the linkers can diffuse in the fluid lipid bilayer, the bonded particles can
move with respect to each other (see Figure 6.1a for a schematic). We compared
our experimental data to Brownian dynamics simulation data, where hydrodynamic
interactions between particles and the substrate are taken into account via the Rotne-
Prager-Blake (RPB) tensor,35 overlap corrections292 and a local pairwise lubrication
correction290 (see Section 6.2.3 for details).

We analyzed the free energy of clusters of 𝑛 = 3 to 6 particles as function of
their conformation using different methods. For a chain of three particles, a trimer, a
single parameter, the opening angle 𝜃, can describe the conformations.244 We have
shown before that flexible trimers do not show a preference for any given opening
angle and therefore conformation.242,244 For a chain of four of such particles (see
Figure 6.1a for a microscopy image), there are two angles that characterize the shape
of the cluster, 𝜃1 and 𝜃2, which are the opening angles of the two “trimer segments”
(groups of three adjacent, bonded spheres) that make up the chain. The definition of
the opening angles is shown in Figure 6.1b. For the tetramer chains, we obtained a
2D-histogram of opening angles for 𝜃1 , 𝜃2 between 60° to 300°, using the simulated
and experimental data. These two internal degrees of freedom lead to a large number
of possible chain configurations, as shown in Figure 6.1c. Some configurations are
forbidden because of steric exclusions, as indicated by the grey areas. The symmetry
lines of the opening angles 𝜃2 = 𝜃1 and 𝜃2 = 360 deg − 𝜃1 are indicated as well. The
configurations are symmetric around these lines except for the fact that we break this
symmetry by choosing which angle to label as 𝜃1 and which as 𝜃2, because this has
consequences for the orientation of the body centered coordinate system, as shown
in Figure 6.1b and defined in Equation 6.4.

From the probability density function calculated from the histogram, we deter-
mined the free energy using Boltzmann weighing,

𝐹

𝑘𝐵𝑇
= − ln 𝑝 + 𝐹0

𝑘𝐵𝑇
, (6.6)

where 𝐹 is the free energy, 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, 𝑝 is
the probability density and 𝐹0 is an arbitrary constant offset to the free energy that
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Figure 6.2: Flexibly-linked colloidal chains. a) Confocal microscopy images of, left to
right, a trimer (𝑛 = 3), tetramer (𝑛 = 4), pentamer (𝑛 = 5) and hexamer (𝑛 = 6) chain.
Scalebars are 2µm. b) The free energy in terms of the opening angles of groups of
three particles (“trimer segments”), of, left to right, trimers, tetramers, pentamers and
hexamers. The main contribution to the free energy is the configurational entropy
of the chains. ◦ Experimental, ⋄ simulated and permutation data (Perm.) are shown,
different colors indicate different opening angles.

we have chosen such that the average free energy is equal to zero. Except for steric
restrictions and hydrodynamic interactions, we expect inter-particle interactions to
be weak. Therefore, we hypothesize that there are mainly entropic contributions to
the free energy and that enthalpic contributions are small. The resulting free energy
is shown in Figure 6.1d. Like flexible trimers,242,244 chains of four particles are freely-
jointed, as evidenced by the fact that differences in their free energy as function of
opening angles 𝜃1 , 𝜃2 are on the order of 1 kBT in Figure 6.1d in the experiments
and below 0.1 kBT in the simulations. Differences smaller than or comparable to the
thermal energy are difficult to measure experimentally and are of limited physical
relevance. Therefore, we conclude that there is no appreciable preference for any
given conformation and the tetramer chains are thus freely-jointed. We use the term
“freely-jointed” in the sense that the chains are free to move without any preferred
state, up to steric exclusions stemming from short-range repulsions between the
particles that prevent them from interpenetrating.

Increasing the number of beads in the chain increases the percentage of sterically
inaccessible configurations (see Table 6.2) and could potentially alter the hydrody-
namic interactions. To answer whether these effects lead to preferred configurations,
we study chains consisting of 𝑛=3 to 6 particles, as shown in confocal microscopy
images in Figure 6.2a. Because visualization as a joined histogram becomes increas-
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ingly complex as the chain length increases, we first consider the free energy of their
separate (𝑛 − 2) opening angles, as shown in Figure 6.2b. First, we obtained probabil-
ity density functions of their 𝑛 − 2 opening angles 𝜃𝑖 , where 𝜃𝑖 is the 𝑖-th opening
angle, as defined in Figure 6.3a, analogously to the choice of opening angles 𝜃1 , 𝜃2 in
Figure 6.1b. In other words, we consider the free energy as function of the opening
angles of the trimer segments of the chains. We label the first particle with 𝑖 = 1 and
number the rest of the chain consecutively. Because there are two choices for the first
particle on either end of the chain, which opening angle is labeled by the first index
is not unique. Therefore, we include both choices in our analysis. Additionally, we
include both choices of defining 𝜃1 as either obtuse or acute and then use the same
convention for the other opening angles.

Whilst a trimer (𝑛=3) shows no preference for any specific configuration,242,244 the
tetramer chains do show a small preference for straight opening angles, as evidenced
by the differences in free energy between compact opening angles and straight open-
ing angles in Figure 6.2b. These deviations are largest in the experimental data, but
also present to a lesser degree in the simulation data and the permutation data.
The deviations in the simulated and permutation data can only stem from steric
exclusions, which cause some configurations to be inaccessible: for a tetramer chain,
angles below 60 deg or above 300 deg and combinations where 𝜃1 + 𝜃2 < 180 deg or
𝜃1+𝜃2 > 540 deg are not possible due to steric restrictions. Seeing that we have strong
indications that the bond angles are freely-jointed up to steric exclusions in the simu-
lated and permutation data, we believe that the larger deviations in the experimental
data in Figure 6.1d and Figure 6.2b, compared to the simulation and permutation
data, are mostly caused by experimental noise. This can be mitigated by collecting
more data, however, the amount of data needed to characterize the free energy in
sufficient angular detail is very large (see Table 6.1 for a comparison between the
amount of simulated and experimental data). Because the experimental deviations
are below the thermal energy, we conclude that also in the experiments, there is no
preference for any of the sterically allowed configurations.

For the free energy of the pentamer chains in Figure 6.2b, we observe some larger
deviations of the experimental data compared to the permutation and simulated
data. Specifically, the central angle seems to show a preference for closed angles,
as evidenced by the lower free energy for 𝜃2 = 60 deg and 300 deg. However, the
difference between the compact angles and the stretched angles is small, i.e. less
than 1.5 kBT. Considering the free energy of the hexamer chains, we observe that
the distribution of the outer opening angles 𝜃1 , 𝜃4 is flatter than the distribution of
the inner opening angles 𝜃2 , 𝜃3, especially in the simulated and permutation data.
Interestingly, there is a clear trend in the free energy of flexible chains, going from a flat
free energy for 𝑛 = 3 to a free energy that shows a minimum at 180 deg and becomes
increasingly smooth as the chain length increases. The location of the minimum and
the good agreement with the permutation data show that the deviations from a flat
free energy most likely stem from the steric exclusions at compact opening angles.
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Figure 6.3: Average bending angle of flexible colloidal chains. a) Top: we define
a quantity Δ𝜙 which measures how much the chain shape deviates from a straight
line. Bottom: Markers for the ◦ experimental and ⋄ simulated data, together with the
color coding legend for the different chain lengths 𝑛, as used in panels b and c are
shown above those panels. b) Comparison between the free energy calculated for
experimental, simulated and the 𝑃(𝑁𝜃 , 𝑛 − 2) permutation data, as function of Δ𝜙.
c) Free energy in terms of Δ𝜙 and fit of Equation 6.8 (fit values shown in the insets).
Additionally, we fit Equation 6.9 to determine the scaling of 𝜅 as function of 𝑛, as
shown in the inset.

Shape as function of the average bending angle 𝚫𝝓

So far, we have considered the free energy in terms of the individual opening angles
or trimer segments. To analyze the overall shapes these colloidal chains can adopt
in more detail, we define the average bending angle Δ𝜙, as shown schematically in
Figure 6.3a. This allows us to study the overall shape of the chains by collapsing
the (𝑛 − 2)-dimensional description of the shape in terms of opening angle, onto a
single measure of chain shape. We converted all pairs of opening angles to the single
average bending angle,

Δ𝜙 =
1

𝑛 − 2

𝑛−2∑
𝑖=1

��𝜙𝑖 �� , (6.7)
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as defined in Figure 6.3a. We then obtained the probability density function in terms of
Δ𝜙 and converted this to a free energy using Equation 6.6, as shown in Figure 6.3b. By
taking this approach, we find that as the number of particles 𝑛 is increased, a preferred
average bending angle arises at Δ𝜙0 = (56 ± 4)deg, close to the average of 60 deg
between no bending (0 deg) and maximal bending (120 deg), for the experimental,
simulated and permutation data. Additionally, the free energy profiles of all chain
lengths show the same shape, where the difference in free energy between the most
likely and least likely configurations increases as the chain length increases.

The free energy in terms of Δ𝜙 effectively quantifies the average bending angle, or
put simply, bending free energy, which is expected to be harmonic based on the worm
like chain model.294 We fitted a harmonic potential 𝑉 to the resulting free energy of
the form

𝑉 =
𝜅

2𝑏
(
Δ𝜙 − Δ𝜙0

)2
, (6.8)

with fit parameters 𝜅 the stiffness of the potential well in units of kBT/deg2 and Δ𝜙0

the center of the potential well in deg, as shown in Figure 6.3c. We find that the
potential well stiffness 𝜅 increases as the number of particles increases (see second
inset of Figure 6.3c) as predicted by polymer theory.294 Namely, we fit

𝜅 = 𝛼
𝑏

4
(𝑛 − 1)𝜈 − 𝜅0 , (6.9)

where 𝜅0 = (5.1 ± 0.7) × 10−3 kBT/deg2 fixes the value of 𝜅 for 𝑛 = 3 and 𝛼 =

(13 ± 1) × 10−3 kBT/deg2 is a positive constant. We added 𝜅0 to the model described
by Wiggins and Nelson 294 to ensure that 𝜅 = 0 for 𝑛 = 3 as we observe from our
data. Additionally, we added the scaling parameter 𝛼 to ensure the proper magni-
tude of 𝜅. Clearly, for 𝑛 = 3, the chain is freely-jointed and therefore 𝜅 = 0. For larger
chains, the probability to observe deviations from a straight configuration decreases
as the number of configurations with steric exclusions increases (see Table 6.2), as
is evidenced by the agreement between the permutation, the experimental and the
simulated data in Figure 6.3b. Therefore, the bending stiffness that we measure is an
effective parameter, purely arising from these steric exclusions.

Distribution of the end-to-end distance and radius of gyration: a comparison

with polymer theory

We now compare the behavior of our flexibly linked particle chains to predictions
from two-dimensional Flory theory for self-avoiding polymers. We are interested in
first testing whether our colloidal chains show the same behavior as long polymers in
terms of RMS end-to-end distance and radius of gyration, as was shown for chains of
flexibly linked oil droplets.194 Then, we compare the distributions of the end-to-end
distance and radius of gyration of the colloidal chains to predictions from polymer
theory, to elucidate where finite-size effects start to play a dominant role in the config-
urational free energy of chain-like molecules. In Figures 6.4–6.5, we have compared

132



6

a)
Re = |rn − r1| ri − rc.m.

R
2
g

=
1

n

∑
n

i=1
(ri − rc.m.)

2
B

b)

3 4 5 6

n

2

3

〈R
2 e
〉1

/
2

[B
]

ν = 0.726
+0.005

–0.005

b =
(

1.03
+0.01

–0.01

)

B

b(n−1)
ν c)

3 4 5 6

n

0.7

1.0

1.3

〈R
2 g
〉1

/
2

[B
]

a = 0.349
+0.002

–0.002

ab[(n
2
−1)/n]

ν

Figure 6.4: RMS end-to-end distance and radius of gyration of flexible colloidal

chains. a) Left: the bond length𝐵. Center: the end-to-end distance𝑅𝑒 . Right: definition
of the radius of gyration 𝑅𝑔 . b) Average 𝑅𝑒 and fit of Equation 6.12 (fit values shown).
c) Average 𝑅𝑔 and fit of Equation 6.13 (fit values shown).

different measures for the conformations found in our experimental and simulated
data, which we will discuss shortly. We compare these to predictions from polymer
theory by simultaneously fitting Equations 6.12–6.15 to the corresponding values.
We used 𝑎, 𝑏, 𝜈, 𝐾, 𝛾 and 𝐶𝑔 as fit parameters and report the maximum likelihood
estimates (MLE), the error is given by the 16th and 84th percentiles of the posterior
probability distributions (see Section 6.2.4 for details).

To compare our data to predictions based on polymer theory, we calculated the
end-to-end distance 𝑅𝑒 , where

𝑅𝑒 = |𝒓𝑛 − 𝒓1 | , (6.10)

here 𝒓𝑖 is the position of the 𝑖-th sphere. Additionally, we determined the radius of
gyration 𝑅𝑔 as follows,

𝑅𝑔 =


1
𝑛2

𝑛∑
𝑖=1

|𝒓𝑖 − 𝒓𝑐.𝑚. |2


1/2

, (6.11)

with 𝒓𝑐.𝑚. the center of mass (c.m.) of the cluster. Both 𝑅𝑒 and 𝑅𝑔 were normalized
by the average interparticle distance 𝐵 of each measurement and are schematically
shown in Figure 6.4a. For long polymers, the root mean square (RMS) value of 𝑅𝑒 can
be described by a power law,295

⟨𝑅2
𝑒⟩1/2

= 𝑏(𝑛 − 1)𝜈 , (6.12)
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where 𝑏 is the Kuhn length (we expect 𝑏 ≈ 𝐵) and the Flory exponent 𝜈 = 3/(𝑑 + 2) =
3/4 for a self-avoiding walk in 𝑑 = 2 dimensions.296 Analogously, the RMS of 𝑅𝑔

scales as295

⟨𝑅2
𝑔⟩1/2

= 𝑎𝑏[(𝑛2 − 1)/𝑛]𝜈 , (6.13)

where the scaling constant 𝑎 ≈ 1/
√

6 ≈ 0.41.297 We first test whether the behavior
of our colloidal chains is comparable to long polymers in terms of RMS end-to-
end distance and radius of gyration, as was shown for chains of flexibly linked oil
droplets.194

Indeed, we find that the scaling of the RMS end-to-end distance and the RMS
radius of gyration of these colloidal chains agree well with the predictions from
polymer theory, as shown in Figure 6.4b (RMS end-to-end distance) and Figure 6.4c
(RMS radius of gyration). For the Flory exponent we find 𝜈 = 0.726 ± 0.005, which
is close to the exact value of 3/4 for self-avoiding polymers in 2D and in agreement
with the value found for flexibly linked chains of droplets (𝜈 = 0.72 ± 0.03).194

The Flory exponent is slightly lower than the expected value of 3/4, this might be
explained by the fact that we study a quasi-2D system, in which the particles have
some freedom to move in the out-of-plane direction (for three dimensions 𝜈 ≈ 0.6297).
In the simulations, we find an average center height of (1.03+0.05

−0.02)𝑅 above the substrate
(over a random subset of 1 % of the data, 7 × 105 positions). Although these excursions
are small, they may lead to the slightly lower value of 𝜈. On top of that, the slightly
lower 𝜈 may be caused by the small number of beads per chain.

Next, we find that the Kuhn length 𝑏 = (1.03 ± 0.01)𝐵 is in agreement with the
hypothesis that it should be equal to the average bond length. In the experiments,
the bond length is approximately twice the particle radius, plus the thickness of
the bilayer (≈ 4 nm) and the length of the DNA linkers (≈ 30 nm). This leads to an
estimated experimental bond length of 𝐵 ≈ 1.03(2𝑅). In the simulations, because of
the harmonic potential that keeps the particles bonded, we find an average bond
length of 𝐵 ≈ (1.01 ± 0.01)2𝑅 (over a random subset of 1 % of the data, 6 × 107

bonds). The fact that the Kuhn length is slightly greater than the bond length 𝐵 may
be explained by the greater-than-zero effective bending stiffness we have found in
Figure 6.3c. As shown in Figure 6.4b, we find a shape factor 𝑎 = 0.349 ± 0.002, which
is close to the expected value of 𝑎 ≈ 0.41297 and the value found for flexibly linked
chains of droplets (𝑎 = 0.30 ± 0.02).194

So far we have found that the RMS end-to-end distance and radius of gyration
of our colloidal chains show the same behavior as long polymers. When we look in
greater detail into the free energy as function of end-to-end distances in Figure 6.5a,
we see that our simulated data agrees very well with the permutation data, as well
as the experimental data. Slightly larger deviations can be seen in the experimental
data for 𝑛=5 and 6, this is due to the fact that because the number of configurations is
very large for longer chains, increasingly larger amounts of data are needed to probe
the equilibrium distribution (see Table 6.1 for a comparison between the amount of
simulated and experimental data).
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Figure 6.5: Distributions of end-to-end distances and radii of gyration of flexible

colloidal chains. Markers for the ◦ experimental and ⋄ simulated data, together with
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top. a-b) Comparison between the free energy calculated for experimental, simulated
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Free energy in terms of 𝑟𝑒 and fit of Equation 6.14 (fit values shown). d) Free energy
in terms of 𝑟𝑔 and fit of Equation 6.15 (fit values shown).
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Based on polymer theory, the free energy of the reduced end-to-end distance
𝑟𝑒 ≡ 𝑅𝑒/⟨𝑅2

𝑒⟩1/2 should collapse onto a master curve. For long, self-avoiding polymers,
the free energy 𝐹𝑒(𝑟𝑒) is expected to be equal to298,299

𝐹𝑒(𝑟𝑒)
𝑘𝐵𝑇

= (𝐾𝑟𝑒)𝛿 − (𝑡 + 2) ln 𝑟𝑒 − 𝐾𝛿 (6.14)

with 𝛿 = 1/(1 − 𝜈), 𝑡 = (𝛾 − 1)/𝜈, 𝐾 a positive constant and 𝛾 a positive exponent.
This is indeed what we observe in Figure 6.5c. Furthermore, we see the agreement
between model and simulated data is better for longer chains of 𝑛=5,6 compared to
the shorter chains of 𝑛=3,4, where finite size effects play a larger role.

Finally, the free energy as function of the radius of gyration in Figure 6.5b is also
very well described by the permutation data. It can be collapsed onto a master curve
as function of the reduced radius of gyration 𝑟𝑔 ≡ 𝑅𝑔/⟨𝑅2

𝑔⟩1/2 as given by300

𝐹𝑔(𝑟𝑔)
𝑘𝐵𝑇

= 2𝐶𝑔

[
1
𝛼
(𝑟𝑔)−𝑑𝛼 + 𝑑

𝛿
(𝑟𝑔)𝛿 + 1 − 𝑑

]
, (6.15)

with 𝛼 = 1/(𝑑𝜈 − 1) and 𝐶𝑔 a positive normalization constant. The resulting free
energy is shown in Figure 6.5d. In terms of the reduced radius of gyration, deviations
from the model are small even for 𝑛=4, while only the shortest chains of 𝑛=3 spheres
show some deviations because of their finite size.

In summary, in this section we have characterized the conformations of flexibly
linked colloidal chains of 𝑛=3 to 6 spheres. We find that while the chains are com-
pletely freely-jointed, some configurations are forbidden because they would result
in interpenetrating particles. This affects the measured end-to-end distance and ra-
dius of gyration, especially for the shorter chains of 𝑛=3 and 4. Despite these finite
size effects, we conclude that the conformations of all chains can be well described
by polymer theory based on self-avoiding random walks. Based on the generality
of the model and the agreement between model and data, we expect this to be true
in general for other micron-sized objects in which self-avoidance plays a significant
role.

6.3.2 Shape effects in the diffusion of flexible trimer and tetramer

chains

Having characterized the equilibrium conformations of flexibly linked colloidal
chains, we now analyze their shape-dependent short-time diffusive properties. Re-
cently, we have studied the effect of flexibility on the diffusivity of the shortest chain,
a freely-jointed trimer.244 Similar to rigid particles, we found that shape affects the
diffusive motion of the colloid at short timescales and that displacements are larger
in directions that correspond to smaller hydrodynamic drag. Furthermore, we uncov-
ered a Brownian quasiscallop mode, where diffusive motion is coupled to Brownian
shape changes. At longer timescales, in addition to the rotational diffusion time,
an analogous conformational diffusion time governs the relaxation of the diffusive
motion, unique to flexible assemblies.244
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The choice of coordinate system affects the magnitude of the diffusion tensor. For
all rigid objects, there exist a tracking point relative to which the diffusion elements
are independent of the lag time considered, called the center of hydrodynamic stress.
Although such a point does not exist in general for flexible objects,301 an analogous
tracking point can be found where the magnitude of the diffusion tensor elements is
minimal and therefore, close to the time-independent values at long lag times, called
the center of diffusivity (c.d.).269 We compare the results of two choices of tracking
points, namely, the center of mass (c.m.) of the cluster which is another common
choice, and the center of diffusivity (c.d.).105,269

The calculation of the c.d. is described in Section 6.2.5. We find that the c.d. is very
close to the c.m. for all chain lengths, but a slightly larger weight is given to the outer
particles compared to the particles in the center of the chain, as shown in Figure 6.7.
The directions of the 𝑥- and 𝑦-axis of the body-centered coordinate system depends
on the choice of reference point as given by Equation 6.4. For the trimer and tetramer
chains, using the c.d. as tracking point, the body centered coordinate systems are
shown in Figure 6.6a and Figure 6.1b/c, respectively. The rotational diffusivity is
calculated from the angular displacements of the 𝑥-axis, or equivalently, rotations
around an out-of-plane 𝑧 axis perpendicular to 𝑥 and 𝑦, as indicated in Figure 6.1b
and Figure 6.6a. All diffusion tensor elements are calculated from Equation 6.1, the
method is explained in detail in Section 6.2.5. The magnitude of the diffusion tensor
elements relative to the c.m. compared to their magnitude relative to the c.d. is given
in Figure 6.8 for a trimer. We find that for a trimer, differences in diffusivities relative
to the c.m. and c.d. are only measurable for the rotational-translational coupling term
and the Brownian quasiscallop mode, because the c.m. is very close to the c.d, as is
shown in Figure 6.6a and in Figure 6.7.

The diffusivity of flexible trimers: simulations compared to experiments

We have analyzed the diffusivity of flexibly-linked trimers with respect to the c.d.
and we now compare the experimental measurements to our simulations. As shown
in Figure 6.6c, for the shape-dependent short-time rotational diffusivity, there is a
quantitative agreement between the experiments and simulations for most opening
angles. Next, we consider the flexibility, which is defined as half the slope of the mean
squared angular displacements of the opening angle 𝜃 and defines how fast the chain
changes its shape, defined analogously to Equation 6.1 for the tetramer chains and
given for the trimers in our previous work.244 As shown in Figure 6.6d, we measure
a lower flexibility in the experiments compared to the simulations. This is caused by
inter-particle friction stemming from the DNA linker patch embedded in the lipid
membrane. Namely, it was found that increasing the DNA linker concentration leads
to a decrease in the flexibility.85

Finally, we note that the experimental translational diffusivity is higher than the
translational diffusivity obtained from the simulated data, as can be seen in Fig-
ure 6.6b. As a consequence, the experimentally determined translation-rotation cou-
pling in Figure 6.6e, as well as the Brownian quasiscallop mode in Figure 6.6f are
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Figure 6.6: Diffusivity of flexible trimers: experimental and simulated values. Com-
parison between • experimental data and ⋄ simulated data (both 0.1 ≤ 𝜏 ≤ 0.25 s). a)

Schematic depiction of the coordinate system of a trimer, as given by Equation 6.4.
The colored arrows are calculated with respect to the c.d., while the black arrows are
relative to the c.m. The difference between the two tracking points is very small, as
shown in Figure 6.7. b) The experimental translational diffusivities are larger than
the simulated ones, most likely caused by the difference in slip conditions in the
experiments and simulations. c) The experimental rotational diffusivity is very close
to the simulated values. d) The experimental flexibility is lower than the simulated
values, because of friction stemming from the DNA linker patch. e) Translation-ro-
tation coupling term 𝐷[𝑥𝛼]. f) Translation-flexibility coupling term: the Brownian
quasiscallop mode 𝐷[𝑦𝜃].244
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Figure 6.7: Center of diffusion (c.d.) versus center of mass (c.m.): weight factors.

Weight factors 𝝆 for the c.m. and the c.d., for a) trimer (n=3) b) tetramer (n=4) c)

pentamer (n=5) d) hexamer (n=6) chains. For the c.d., more weight is accorded to
the outer particles compared to the inner particles of the chain. However, differences
between the c.m. and the c.d. are small for all chain lengths.

also higher than the values determined from the simulations. This is likely caused by
the fact that we model the substrate as a no-slip surface in the simulations, whereas
in the experiment the substrate is coated with a hydrogel to prevent particles from
sticking, which has a nonzero slip length. We think that this nonzero slip length in
the experiments leads to higher translational diffusivities in the experiments, because
the particles move further away from the glass and so there is less friction caused by
the effectively more viscous water layer close to the no-slip glass substrate.

Effect of tracking point, bin width and lag time on the diffusivity of flexible

trimers

The choice of coordinate system affects the magnitude of the diffusion tensor. For
all rigid objects, there exist a tracking point relative to which the diffusion elements
are independent of the lag time considered, called the center of hydrodynamic stress.
Although such a point does not exist in general for flexible objects,301 an analogous
tracking point can be found where the magnitude of the diffusion tensor elements is
minimal and therefore, close to the time-independent values at long lag times, called
the center of diffusivity (c.d.).269 We compare the results of two choices of tracking
points, namely, the center of mass (c.m.) of the cluster which is another common
choice, and the center of diffusivity (c.d.).105,269
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First, as shown in Figure 6.7, the c.d. is very close to the c.m. for all chain lengths. A
slightly larger weight is given to the outer particles for the c.d. compared to the c.m.,
but this has only a very small effect on the location of the c.d. Second, we compare
the magnitude of the diffusion tensor of a flexible trimer relative to the c.m. as in
our previous work244 and relative to the c.d. (this work). As shown in Figure 6.8, the
translational (Figure 6.8b), rotational (Figure 6.8c) and flexibility (Figure 6.8d) terms
of the diffusion tensor are only slightly affected by changing the tracking point from
the c.m. to the c.d. This is easily explained by the fact that the position of the c.d.
only changes by approximately 6 % for the smallest opening angle compared to the
c.m., as shown in Figure 6.8a. However, the coupling terms are lower with respect
to the c.d. as shown in Figure 6.8e for the translation-rotation coupling term and in
Figure 6.8f for the Brownian quasiscallop mode. The fact that these coupling terms
are lower is expected, because the magnitude of the diffusion tensor is expected to
be the lowest relative to the c.d., as it is closest to the long-time diffusion tensor, for
which short-time correlations or memory effects are expected to vanish.

The simulations allow us to probe the diffusivity at arbitrarily high frame rates and
thus arbitrarily short lag times 𝜏, which is the time delay between the pairs of frames
considered in the calculation of the mean squared displacements. There is a marked
effect of lag time on the flexibility, as shown in Figure 6.9d. For the simulated data,
we show the results for a lag time of 0.05 s (diamonds) and 0.1 to 0.25 s (squares, same
lag time as experimental data). The lag times of the experimental data range from 0.1
to 0.25 s, as set by the frame rate of the camera. The simulated data with longer lag
times are close to the experimental data. However, when we analyze the simulated
data using a shorter lag time, we find a large increase in the flexibility. This difference
can easily be explained by considering the mean squared angular displacement of
the opening angle in Figure 6.9a. Especially for the larger opening angles, we see
that the mean squared displacements show a plateau at longer lag times, leading
to a smaller apparent flexibility when the data is fitted using a linear model. The
effect of lag time is also present in the Brownian quasiscallop mode in Figure 6.9f. For
terms not directly related to flexibility, such as translational diffusivity in Figure 6.9b,
rotational diffusivity in Figure 6.9c and translation-rotation coupling in Figure 6.9e,
we see there is no appreciable effect of different lag times.

This plateauing for flexibility-related diffusion terms is caused by the calculation
method of the shape-dependent diffusivity. That is, we consider only those pairs of
frames where the shape of the particle stays within the limits of the particular opening
angle bin of the first frame. Therefore, if the flexibility is high, a large percentage of
frames will exceed the initial bin and these will not be considered in the analysis. The
frames where the bin is not exceeded, as a result, are those in which the flexibility is
lower, which leads to the apparent decrease in flexibility at longer lag times.

To solve this, larger bin widths can be used at the expense of a lower resolution
in opening angle. We tested this in Figure 6.9d and found that indeed, the values
for the flexibility were higher, while the other diffusion tensor elements were not
affected (see Figure 6.9, crosses). In fact, by using a larger bin width, we measure
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Figure 6.8: Center of diffusion (c.d.) versus center of mass (c.m.) as tracking point.

For all panels, open points correspond to the c.m. as tracking point while filled
points refer to the c.d. as tracking point. ◦ experimental data, ⋄ simulated data (both
0.1 ≤ 𝜏 ≤ 0.25 s). a) The c.d. of flexible trimers is very close to the c.m.: there is only a
small deviation of approximately 6 % for the smallest opening angles. The difference
𝒓c.d.− 𝒓c.m. on the 𝑦-axis is given in terms of 𝑅. b) The translational diffusivity changes
only slightly with respect to a different tracking point. c) The rotational diffusivity
does not change as function of tracking point. d) Also for the flexibility term, there is
no influence of tracking point. e) The effect of tracking point for rotation-translation
coupling is more pronounced: values are lower when the c.d. is used as tracking
point. f) Also for the Brownian quasiscallop mode, the values are lower when using
the c.d. as tracking point instead of the c.m.
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Figure 6.9: Trimer: effect of varying the bin size / lag time Comparison between •
experimental data, experimental data with a larger bin width (both 0.1 ≤ 𝜏 ≤ 0.25 s)
and simulated data: ⋄ 𝜏 ≤ 0.05 s, □ 0.1 ≤ 𝜏 ≤ 0.25 s. a) Mean-squared angular dis-
placement of the opening angle reveals caging effects at longer lagtimes, which are
more pronounced for higher flexibilities, an effect inherent to the analysis method. b)

The translational diffusivities are less sensitive to the choice of lagtimes. The experi-
mental translational diffusivities are larger than the simulated ones. c) The rotational
diffusivities are largely unaffected by the different choices for lagtimes (except for
small opening angles), the experimental data agrees with the simulated data. d)

The flexibility is highly sensitive for the choice of lagtimes. e) Translation-rotation
coupling terms. f) Translation-flexibility coupling terms, including the Brownian
quasiscallop mode 𝐷[𝑦𝜃],244 which is sensitive to the choice of lagtimes.
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Figure 6.10: Rotational diffusion of flexible tetramer chains. a) The mean squared
angular displacement for a compact configuration (green) is larger than that of an
extended configuration (purple). The elements of the diffusion tensor are obtained
by fitting the slope of mean squared displacements. b) The rotational diffusivity is
highest for compact shapes. The left plot shows experimental data and the right
plot shows simulated data. For fitting, we use a maximum lag time 𝜏 = 0.17 s. The
dashed lines indicate the two symmetry axes of the opening angles, 𝜃2 = 𝜃1 and
𝜃2 = 360 deg − 𝜃1.

the “true” short-time flexibility: the ratio between the experimental flexibility for the
smaller bins (circles in Figure 6.9d) and the simulated flexibility for the experimental
lag times (squares in Figure 6.9d) is equal to 0.78 ± 0.07. By using the larger bins, the
ratio between the experimental flexibility and the simulated flexibility at short lag
times (diamonds in Figure 6.9d) is also equal to 0.77 ± 0.07.

In conclusion, the diffusivity of the c.d. is very close to that relative to the c.m.
Interestingly, the interplay of lag time and bin width has a critical effect on the
measured short-time diffusion tensor elements related to shape changes and should
be carefully considered in the analysis of experimental data.

The diffusivity of flexible colloidal tetramer chains

Having established that the simulations can faithfully describe the short-time shape
dependent diffusivity of flexible trimers, in addition to the equilibrium conforma-
tions of flexible chains, we now analyze the diffusivity of flexible tetramer chains. In
Figure 6.10a, we show that the rotational diffusivity for compacter shapes is higher
than that of more extended shapes for two examples, 𝜃1 , 𝜃2 = 65, 120 deg (compact)
and 𝜃1 , 𝜃2 = 141, 185 deg (extended). Furthermore, we conclude that the simulated
data agrees with the experimental data, within experimental error. This can also be
seen for the rotational diffusivity as function of opening angles 𝜃1 , 𝜃2 in Figure 6.10b.
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Figure 6.11: Translational diffusion of flexible tetramer chains. In both panels, the
left plot shows experimental data and the right plot shows simulated data. For fitting,
we use a maximum lag time 𝜏 = 0.17 s. The dashed lines indicate the two symmetry
axes of the opening angles, 𝜃2 = 𝜃1 and 𝜃2 = 360 deg − 𝜃1. a) The translational
diffusivity in the x-direction as function of the opening angles 𝜃1 , 𝜃2, as depicted in
Figure 6.1b and c. b) Translational diffusivity in the y-direction, which is lower for
chains with a stretched angle (𝜃1 , 𝜃2 close to 180 deg). For both translational terms,
we use different color scales for the experimental and simulated data, because the
experimental diffusivities are higher than the simulated ones.

The symmetry lines of the opening angles 𝜃2 = 𝜃1 and 𝜃2 = 360 deg−𝜃1 are indicated
as well. The configurations are symmetric around these lines except for the fact that
we break this symmetry by choosing which angle to label as 𝜃1 and which as 𝜃2,
because this has consequences for the orientation of the body centered coordinate
system, as shown in Figure 6.1c and defined in Equation 6.4. However, for the rota-
tional diffusivity we only consider angular rotations of the 𝑥-axis and therefore the
rotational diffusivity is indeed symmetric with respect to the symmetry lines of the
opening angles.

For the translational diffusivity in the 𝑥-direction (Figure 6.11a) and 𝑦-direction
(Figure 6.11b) we note that the experimental diffusivity is again slightly larger than
the simulated one, similar to the trimers in Figure 6.6b. Again, this is because of the
no-slip condition in the simulations versus the hydrogel surface used in experiments
to prevent particles from sticking, which has a nonzero slip length. Because the
translational diffusivity does not depend on whether the 𝑥-axis points to one end of
the chain or the other, or equivalently, whether the 𝑦-axis points towards one side
or the other, we expect that translational diffusivity is symmetric with respect to the
symmetry lines of the opening angles. This is indeed true: we observe little shape
dependence for translational diffusivity in the 𝑥-direction in Figure 6.11a, variations
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Figure 6.12: Flexibility of tetramer chains. In both panels, the left plot shows experi-
mental data and the right plot shows simulated data. For fitting, we use a maximum
lag time 𝜏 = 0.17 s. The dashed lines indicate the two symmetry axes of the opening
angles, 𝜃2 = 𝜃1 and 𝜃2 = 360 deg−𝜃1. a) The flexibility in the opening angle 𝜃1 shows
a maximum for 𝜃1 = 180 deg. b) The flexibility in the opening angle 𝜃2 also has its
maximum value for 𝜃2 = 180 deg.

are likely due to experimental noise. On the contrary, the diffusivity in the 𝑦-direction
in Figure 6.11b is lower for more extended shapes, which correspond to larger surface
areas and therefore, a larger hydrodynamic drag. We note that it is also symmetric
with respect to the opening angle symmetry lines.

Interestingly, for the diffusivity of the opening angles in Figure 6.12a (𝜃1) and
Figure 6.12b (𝜃2), we note that the flexibility is highest for opening angles 𝜃1 , 𝜃2 close
to 180 deg (i.e. more extended chains). This is in agreement with the trends we have
observed for the flexible trimers in Figure 6.6d and our previous work244 and suggests
that hydrodynamic interactions between the particles slow down shape changes for
small inter-particle separation distances. Furthermore, we note that the flexibility is
not symmetric around the opening angle symmetry lines, because we have broken
the symmetry in this case, by labeling one angle as 𝜃1 and the other one as 𝜃2.

The experimental flexibility data in Figure 6.6d shows the same trends as the
simulated data but is lower in magnitude. Because the flexibility depends on the
concentration of DNA linkers,85 which cause additional friction in the bond area,
this could also explain the lower flexibility found in the experimental data, absent in
the simulations. Similarly to what we have found for the trimers in Figure 6.6d, we
find that the experimental flexibility in 𝜃1 is (71 ± 12)% of the simulated one, for 𝜃2

this is (75 ± 14)%. Therefore, we conclude that the lower magnitude is indeed caused
by friction stemming from the DNA linker patch.

The off-diagonal elements of the diffusion tensor describe possible coupling terms.
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Figure 6.13: Diffusion of flexible tetramer chains: coupling terms. In all panels, the
left plot shows experimental data and the right plot shows simulated data. For fitting,
we use a maximum lag time 𝜏 = 0.17 s. The dashed lines indicate the two symmetry
axes of the opening angles, 𝜃2 = 𝜃1 and 𝜃2 = 360 deg − 𝜃1. a) The rotation-flexibility
coupling D[𝛼𝜃1] is close to zero. b) The rotation-flexibility coupling D[𝛼𝜃2] is also
close to zero. c) There is a strong negative coupling in flexibilities of the two opening
angles 𝜃1 , 𝜃2.

We have calculated those terms and find that there is no significant coupling between
rotational diffusivity and flexibility, as shown in Figure 6.13a for the coupling between
𝛼 and 𝜃1 and in Figure 6.13b for D[𝛼𝜃2]. This is the same result we have found for
flexible trimers244 and we hypothesize this can be generalized to larger chain lengths
as well.

However, there is a strong negative coupling between diffusivities in the two open-
ing angles𝜃1 , 𝜃2, as shown in Figure 6.13c, which is symmetric with respect to the sym-
metry lines of the opening angles. In fact, the negative coupling is strongest around
the symmetry line 𝜃1 = 𝜃2 and lowest for zig-zag like structures near 𝜃1 = 60 deg and
𝜃2 = 300 deg. By comparing Figure 6.13c to the schematics of possible conformations
in Figure 6.1c, the configurations where the negative couplings are highest, are those
where the outer particles are both on the same side of the coordinate system, namely
the positive 𝑦 plane. There, the hydrodynamic interactions between the particles are
largest and therefore also the negative coupling is largest.

Interestingly, we also find small, but nonzero coupling terms for translation-rota-
tion coupling. By comparing the two translation-rotation coupling terms, we note
that 𝑦𝛼 in Figure 6.14d is small compared to 𝑥𝛼 in Figure 6.14a, for both the experi-
mental and simulated data. This means that displacements in the positive 𝑥-direction
(see Figure 6.1c) will lead to counter-clockwise rotations of the chain, similarly to the
𝑥𝛼 coupling we found for the trimers,244 as also shown here in Figure 6.6e.

Lastly, by comparing the translation-flexibility coupling terms for both opening
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Figure 6.14: Diffusion of flexible tetramer chains: translational coupling terms. In
all panels, the left plot shows experimental data and the right plot shows simulated
data. The color scales of the experimental and simulated data are different, because
the experimental translational diffusivity is higher than the simulated one. For fitting,
we use a maximum lag time 𝜏 = 0.17 s. The dashed lines indicate the two symmetry
axes of the opening angles, 𝜃2 = 𝜃1 and 𝜃2 = 360 deg − 𝜃1. a) There is a small
translation-rotation coupling D[x𝛼]. b) The translation-flexibility coupling D[x𝜃1] is
close to zero. c) The translation-flexibility coupling D[x𝜃2] is also close to zero. d)

The translation-rotation coupling D[y𝛼] is zero as well. e) There exists a nonzero
translation-flexibility coupling D[y𝜃1]. f) The translation-flexibility coupling D[y𝜃2]
is also nonzero.
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angles in the 𝑥-direction, shown in Figure 6.14b for 𝑥𝜃1 and Figure 6.14c for 𝑥𝜃2,
and in the 𝑦-direction, see Figure 6.14e for 𝑦𝜃1 and Figure 6.14f for 𝑦𝜃2, we observe
that the coupling terms related to the 𝑦-direction are larger in magnitude than those
in the 𝑥-direction. For the 𝑥-direction, there are no clear trends for either opening
angle, in both the simulated and the experimental data, as shown in Figure 6.14b
and c. On the contrary, for translation-flexibility coupling terms in the 𝑦-direction,
we find couplings, analogously to the Brownian quasiscallop mode we have found
for trimers,244 also shown in Figure 6.6f.

By looking closely at the coupling between 𝑦 and 𝜃1 diffusivity in Figure 6.14e, we
observe that the coupling is positive for angles above the symmetry line 𝜃1 = 𝜃2 and
below the symmetry line 𝜃1 = 360 deg− 𝜃2. If we look at the configurations for these
angles in Figure 6.1c, we observe that positive 𝑦-displacements lead to an opening of
one end of the chain, namely the trimer segment with opening angle 𝜃1, similar to the
Brownian quasiscallop mode for trimers. We see the same effect for configurations
below the symmetry line 𝜃1 = 𝜃2 and in fact, the coupling is symmetric around this
symmetry line. For configurations above the other symmetry line, 𝜃1 = 360 deg − 𝜃2,
there are strongly negative correlation terms, especially near 𝜃2 = 300 deg. By again
studying the configurations for these angles in Figure 6.1c, we note that this is indeed
what would be expected to happen for the trimer segment with opening angle 𝜃1,
based on our earlier findings of the Brownian quasiscallop mode in trimers. Apart
from the expected negative correlations we expect from the Brownian quasiscallop
mode of a trimer, there are also positive values in this region. However, we cannot
compare them directly, because the coordinate system, and therefore the direction of
the 𝑦-axis, is different in the case of a tetramer chain. Specifically, it is not centered
on the trimer segment. Therefore, the coupling we have observed is similar to, but
more complex than the Brownian quasiscallop mode in trimers.

Analogously, we observe the same effects for the coupling between diffusivity in
the 𝑦-direction and the other opening angle 𝜃2, as shown in Figure 6.14f. Starting
below the symmetry line 𝜃1 = 𝜃2, the coupling is positive, as expected. Above the
other symmetry line 𝜃1 = 360 deg − 𝜃2, we observe the opposite, negative coupling,
which is in line with our previous results for the opening angle 𝜃1. Between the two
symmetry lines, something more complicated happens, analogously to the area above
the symmetry line 𝜃1 = 360 deg − 𝜃2 for the D[y𝜃1] coupling discussed previously.
There, we observe a positive coupling for configurations close to 𝜃1 = 60 deg, as
expected from the Brownian quasiscallop mode and the other coupling term D[y𝜃1].
For the other configurations in the area between the symmetry lines, we observe
both positive and negative coupling terms. Therefore, we conclude that there the
behavior is also more complex than one would expect based on the assumption that
the individual trimer segments show Brownian quasiscallop modes. This is likely due
to the displacement of the coordinate system from the center of the trimer segment,
as well as possible hydrodynamic couplings between shape changes, as we have
observed in Figure 6.13c.

In summary, in this section we have shown that for both trimers and tetramers,
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the flexibility determined from the experimental data is reduced to approximately
75 to 80 % of the flexibility determined from simulations, because of friction of the
DNA linker patch, which is not modeled in the simulations. We have found marked
flexibility-induced effects on the diffusivity of flexible tetramer chains, namely an
increase in flexibility for the more elongated configurations and nonzero couplings
between translational diffusivity and both rotational diffusivity and flexibility, as
well as a strongly negative coupling between diffusivity of the two opening angles.
We have established that the simulations can adequately model our experimental
findings, especially for terms that do not relate to translational diffusivity. For the
translational terms, the slip conditions on the surface play a crucial role and require
further careful consideration in future works.

6.3.3 Shape-averaged diffusion of flexible chains

We have studied the short-time, shape dependent diffusivity of flexible trimer and
tetramer chains. For the longer pentamer (𝑛=5) and hexamer (𝑛=6) chains, studying
the diffusion tensor as function of shape is more challenging because of the greater
number of opening angles and consequently, greater number of degrees of freedom.
Therefore, we take an approach known as the rigid-body approximation101,264,286,287

and study the shape-averaged short-time diffusivity.
In Figure 6.15a we show the translational diffusivity as function of chain length

for experimental and simulated data, relative to the c.d. and the c.m. As we have
argued before in Section 6.3.2, different choices of tracking points can lead to differ-
ent magnitudes of the diffusion tensor elements. For flexible objects, the c.d. is the
most appropriate tracking point to use, because it gives the smallest values of the
diffusion tensor elements and therefore the obtained values are closer to the long
time diffusivities.269 For the flexible colloidal chains, the c.d. turns out to be very
close to the c.m. for all chain lengths, but a slightly larger weight is given to the outer
particles compared to the particles in the center of the chain. Because the c.m. is very
close to the c.d. (see Figure 6.7 for a comparison), we conclude that for our flexibly
linked chains, there is no appreciable difference between the two different choices of
tracking point, both for the experimental and simulated data.

In Figure 6.15a, we see a clear scaling of diffusion coefficient 𝐷𝑇 with chain
length and hypothesize that this scaling can be described by polymer theory. In
Kirkwood-Riseman theory,286 the translational diffusion coefficient is expected to be
proportional to ∝ ⟨𝑅2

𝑔⟩−𝜈/2. Indeed, we find that for the experimental data, the fitted
𝜈 = 0.7 ± 0.5 is close to the expected value of 3/4. More clearly, for the simulated data,
we find 𝜈 = 0.77 ± 0.02. Again, the average experimental translational diffusivity is
higher than the simulated one, because of differences in the surface slip conditions,
as explained in Section 6.3.2. Therefore, Kirkwood-Riseman theory can be used to
describe the scaling of the translational diffusivity of the chains as function of their
length.

Additionally, we have calculated the lower bound on the short-time diffusion coef-
ficient 𝐷𝑐.𝑑., because its value should be close to the long-time diffusion coefficient
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Figure 6.15: Average diffusivity of flexible colloidal chains. All panels: ◦ experimen-
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150



6

typically measured in scattering experiments.269 We determined 𝐷𝑐.𝑑. from the ma-
trix 𝑨𝑖 𝑗 defined by Equation 2.16 of Cichocki et al. 269 using the RPB tensor35 with
lubrication corrections as the inter-particle mobility matrix 𝝁𝑖 𝑗 (see also Section 6.2.5
for details). Indeed, we find that its value is always lower than the simulated or
experimental values, which indicates that memory effects, or in other words, time
correlations, play a large role in the translational diffusivity of our clusters. We find
the same scaling as function of chain length as for the experimental and simulated
data, namely, 𝜈 = 0.77 ± 0.02, as predicted by Kirkwood-Riseman theory.

Next, having characterized the translational diffusivity of the flexible chains, we
now consider their rotational diffusivity 𝐷[𝛼𝛼]. While there is no unique choice for
which axis to use to quantify the rotational diffusivity of a shape-changing object,
we use the definition in Equation 6.4 for consistency. As shown in Figure 6.15b, the
simulated data agree with the experimental data and the differences between using
the c.m. or the c.d. as tracking point are minimal. We use an approximate expression
to describe the rotational diffusivity of our flexible chains in the rigid rod limit:286

𝐷[𝛼𝛼] ∝
ln

(
2𝐿/𝑑

)
𝐿3 , (6.16)

with 𝐿 the length of the rod and 𝑑 its diameter. Setting 𝑑 = 𝑏 (the Kuhn length) and
𝐿 = 𝑏

(
1 + (𝑛 − 1)𝜈

)
, which is the average end-to-end distance plus the Kuhn length,

we obtain a reasonable fit with 𝜈 close to the expected 3/4, as shown in Figure 6.15b.
Specifically, we find 𝜈 = 0.8 ± 0.2 for the experimental data and 𝜈 = 0.83 ± 0.04 for the
simulated data. Therefore, we conclude that while the shape dependent short time
diffusivity of flexible colloidal chains shows clear flexibility effects as discussed in
Section 6.3.2, the scaling of the shape-averaged translational and rotational diffusion
coefficients can be described very well by the rigid body approximation.

In Section 6.3.2, we have found couplings between translational diffusivity and
both rotational diffusivity and the flexibility of trimers and tetramers, for the shape-
dependent diffusion tensor. We have calculated the shape-averaged translation-flex-
ibility and translational-rotational coupling terms with respect to both the c.m. and
the c.d., as shown in Figure 6.16. The shape-averaged translation-flexibility coupling
modes in the 𝑦-direction are positive for a trimer, which corresponds to the Brow-
nian quasiscallop mode244 of the shape-dependent diffusion tensor, as shown in
Figure 6.16a. For longer chain lengths, this coupling term is averaged out, most likely
because of the negative correlation we have found between the flexibility of the two
opening angles of the tetramer chain, which indicates that such coupling terms may
be present for longer chain lengths as well. Because the coordinate system is not
centered on the trimer segment, overall shape changes are taken into account. We
find that overall, there is no average coupling between translational diffusivity in the
𝑦-direction and the overall flexibility 𝐷[𝜽𝜽].

On the contrary, in Figure 6.16b, we see that there is a positive coupling between
rotational diffusivity and translational diffusivity in the 𝑥-direction, which decreases
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Figure 6.16: Shape-averaged coupling terms as function of chain length. In all
panels, filled symbols are with respect to the c.d. and unfilled symbols are with
respect to the c.m. a) The shape-averaged translation-flexibility coupling modes in
the 𝑦-direction are positive for a trimer (Brownian quasiscallop mode) but average out
for larger chain lengths. b) The shape-averaged translation-rotation coupling mode
in the 𝑥-direction is positive for trimers and decreases as function of chain length.

as function of chain length. This is the same coupling we have found for the shape-
dependent diffusion tensor of both trimers244 and tetramers.

Finally, we consider the shape-averaged flexibility 𝐷[𝜽𝜽] by calculating the slope
of the mean squared angular displacements of the 𝑛 − 2 opening angles ⟨|𝚫𝜽 |2⟩ as
function of lag time, as defined by Equations 6.2–6.3. First, we observe that the mean
squared displacements of 𝚫𝜽 increase linearly with lag time, similarly to the other
diffusion tensor terms. Moreover, we find that the flexibility is independent of the
length of the chain, as shown in Figure 6.15c.

As we have seen for the shape-dependent short-time flexibilities of the trimer and
tetramer in Figure 6.6d and Figure 6.12 respectively, the average experimental flex-
ibility is approximately 75 to 80 % of the average flexibility in the simulations. We
hypothesize that the lower flexibility in the experiments is caused by inter-particle fric-
tion stemming from the DNA linkers. This is also supported by the observation that
while the experimental flexibility shows large fluctuations, that are due to experimen-
tal differences in DNA concentration between particles and samples, the flexibility in
the simulations shows a very narrow distribution. For the shape-averaged flexibility,
we find that the experimental flexibility averaged over all chain lengths is (60 ± 15)%
of the simulated one, where the spread is most likely caused by the spread in the
DNA linker concentration.

For trimers of flexibly-linked emulsion droplets, it was proposed that for small
displacements of the opening angle, the maximum value of the flexibility is expected
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to be dominated by the translational friction coefficient of the particles.194 However,
in the droplet-based system, the flexibility was found to be unaffected by the DNA
linker concentration.194 Because of this difference, we test whether the same behavior
applies to our flexibly linked chains of colloidal particles, in spite of the presumably
different dynamics, caused by the friction of the DNA linker patch in the lipid bilayer
and with the particle surface. By considering small displacements of the particles, one
can define an equivalent “translational” flexibility coefficient𝐷𝑇[𝜽𝜽], which is linked
to 𝐷𝑇 as 𝐷𝑇[𝜽𝜽] = (𝜋𝑅/180 deg)−2𝐷𝑇 . If the flexibility is dominated by translational
diffusivity of the individual spheres, we can calculate its maximum magnitude from
𝐷𝑇 . This would in turn mean that the flexibility scales with the particle radius as
1/𝑅, in the same way as translational diffusivity and not as 1/𝑅3, as we244 and others
assumed in previous works.107

Indeed, using the methods explained in Section 6.2.3, for an individual sphere
at a height of (1.03+0.05

−0.02)𝑅 above the substrate, which corresponds to the heights of
the spheres in the chains as found in the simulations, we find a translational diffu-
sion coefficient between 0.046 and 0.071µm2 s−1. For comparison, the bulk diffusion
coefficient of the spheres, far from the substrate, is 0.229µm2 s−1. Note that even a
small change in the height above the substrate has a large effect on the calculated
diffusion coefficient, therefore, the spread in the translational diffusion coefficient in
Figure 6.15 is most likely larger than the reported spread, which is estimated from the
fit of a linear model to the MSD using the method described in Section 6.2.4. In the
same way, the uncertainty in the expected flexibility calculated from the translational
diffusivity of an individual sphere is also large. The equivalent range of flexibilities
𝐷𝑇[𝜽𝜽] based on these values is shown in green in Figure 6.15c. Because the value
of the equivalent 𝐷𝑇[𝜽𝜽] of an individual sphere is very close to the flexibilities we
find in our simulations, we conclude that the maximum flexibility is indeed set by
the translational diffusion coefficient of the individual spheres.

6.4 Conclusions

In conclusion, we have studied flexibly linked colloidal chains of three to six spheres
using both simulations and experiments. We have analyzed their conformational free
energy in several different ways. First, we found that the chains are freely-jointed,
except for configurations that are forbidden because of steric restrictions due to
interpenetrating particles. Furthermore, apart from some deviations because of their
finite length, two-dimensional Flory theory for infinitely long polymers can describe
their conformational free energy in terms of reduced end-to-end distance and radius
of gyration very well. We found that the effective bending stiffness, which measures
deviations from opening angles close to straight angles, scales according to the worm-
like chain model.

Then, we have studied the shape-dependent short-time diffusivity of the trimer
and tetramer chains. We found that the simulations can adequately model the exper-
imental diffusion tensor of flexible trimers. For the flexibly-linked tetramers, we have
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found that shape affects the short-time diffusion tensor in ways similar to what we
have found for the shorter trimers. Namely, translational and rotational diffusivity
are highest in directions that correspond to the lowest projected surface area, in other
words, the more compact shapes, and the flexibility is highest for the more elongated
shapes. Furthermore, there are nonzero couplings between translational diffusivity
and both rotational diffusivity and flexibility, similar to what we found for the flexible
trimers. Additionally, there is a strong negative coupling between the diffusivities of
the two opening angles.

By determining the shape-averaged translational and rotational diffusivity for
chains of three to six spheres, we found that these scale as function of chain length
according to Kirkwood-Riseman theory. Their maximum flexibility does not depend
on the length of the chain, but is determined by the near-wall in-plane translational
diffusion coefficient of an individual sphere. The experimental flexibility is approx-
imately 75 to 80 % of the flexibility calculated from the simulated data, because of
friction of the DNA linker patch.

Overall, we found a good agreement between the experimental measurements and
the simulations, except for translational diffusivity. In that case, we hypothesize that
the difference in surface slip in the experiments, where there is a finite slip length
due to the hydrogel surface, and in the simulations, where we use a no-slip boundary
condition, lead to a higher translational diffusivity in the experiments. We hope
our work aids the study of diffusivity of flexible objects found in complex mixtures
relevant in, for example, the cosmetic, pharmaceutical and food industries, as well
as in biological systems. Our findings may have implications for understanding both
the diffusive behavior and the most likely conformations of macromolecular systems
in biology and industry, such as polymers, single-stranded DNA and other chain-like
molecules.
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