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Flexibility-induced
effects in the diffusion
of colloidal trimers
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Shape changes resulting from segmental flexibility are ubiquitous
in molecular and biological systems, and are expected to affect
both the diffusive motion and (biological) function of dispersed

objects. The recent development of colloidal structures with
freely-jointed bonds have now made a direct experimental
investigation of diffusive shape-changing objects possible. Here, we
show the effect of segmental flexibility on the simplest possible model
system, a freely-jointed cluster of three spherical particles, and
validate longstanding theoretical predictions. We find that in addition
to the rotational diffusion time, an analogous conformational
diffusion time governs the relaxation of the diffusive motion, unique
to flexible assemblies, and that their translational diffusivity differs by
a small but measurable amount. We also uncovered a Brownian
quasiscallop mode, where diffusive motion is coupled to Brownian
shape changes. Our findings could have implications for molecular
and biological systems where diffusion plays an important role, such
as functional site availability in lock-and-key protein interactions.

5.1 Introduction

Many (macro)molecular systems display segmental flexibility, e.g. biopolymers such
as transfer RNA,251 intrinsically disordered proteins,252 myosin,251 immunoglobu-
lins,251 and other antibodies.101,103,253,254 For most of these systems, the flexibility not
only affects the motion of the complex but also its (biological) function.100–104 For ex-
ample, proteins often function through shape-dependent lock-and-key interactions
where active sites of enzymes are reshaped during the interaction, leading to an in-
duced fit.255 Additionally, enzymes like adenylate kinase can accelerate biochemical
reactions with remarkable specificity and efficacy thanks to a flexible “lid" that opens
and closes at each reaction cycle. Because shape has a large effect on the diffusive mo-
tion of structures at the short timescales relevant to these reactions, it is expected that
the diffusion of reconfigurable objects is different from rigid ones.251,256–258 Moreover,
Adeleke-Larodo et al. 155 recently proposed that changes in an enzymes flexibility
upon substrate binding could be responsible for the observed enhanced diffusion of
active enzymes.259,260 Therefore, a rigorous understanding of enzyme function and
diffusion requires quantitative knowledge of protein flexibility.261

However, direct experimental measurements of flexibility in molecular systems are
challenging because they require single-molecule measurement techniques with high
spatial and temporal resolution. One way to circumvent this problem is to employ
colloidal particles, which have been used as model systems for (macro)molecular
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structures,17–19 because of their unique combination of microscopic size and sensi-
tivity to thermal fluctuations. Studies on the Brownian motion of rigid colloids of
various shapes such as ellipsoids,91,95,96 boomerangs,14,97,98 and clusters12,13 have
revealed that shape affects the diffusive motion at short timescales. Additionally,
displacements are larger in directions that correspond to smaller hydrodynamic
drag12–14,16,91,97 and different diffusive modes can be coupled, e.g. helical particles
rotate as they translate and vice versa.99 At longer timescales, the influence of particle
shape decreases because of rotational diffusion.91

While rigid assemblies have been extensively studied, little is known about the
effect of flexibility. In order to numerically and experimentally investigate the effect
of segmental flexibility, we study a simple model system consisting of a freely-jointed
chain of three spherical colloidal particles, called flexible trimers or “trumbbells”.107,262

Numerical models were proposed to capture the diffusion of segmentally flexible ob-
jects105–107 and the long time diffusive motion was predicted to be determined by
the shape average of the instantaneous diffusivities (so called rigid-body approxi-
mation101,263,264). For the first time, we are able to test these models using direct
experimental measurements of the diffusion of colloidal particles, thanks to the re-
cent development of colloidal structures with freely-jointed bonds,56,85,110,112,194,242,265

and flexible chains.266 First, we discuss the short-time diffusion tensor of the flexible
trimers, which we compared to numerical calculations and found a good agreement.
Furthermore, we uncovered a Brownian quasiscallop mode, where diffusive motion
is coupled to Brownian shape changes. Next, we considered the diffusive behavior at
longer timescales and found that in addition to the rotational diffusion time, an anal-
ogous conformational diffusion time governs the relaxation of the diffusive motion,
unique to flexible assemblies.

5.2 Methods

5.2.1 Experimental

Flexible clusters of three colloid-supported lipid bilayers (CSLBs) were prepared as
described in previous work.85,110,112,242 To test the generality of the results presented
here, we used two particle sizes, namely 1.93µm and 2.12µm silica particles, with
different methods of functionalization.

The CSLBs consisting of 2.12µm silica particles were prepared as described in
our recent work.242 Briefly, the particles were coated with a fluid lipid bilayer by
deposition of small unilamellar vesicles consisting of 98.8 mol % of the unsaturated
phospholipid DOPC ((Δ9-Cis) 1,2-dioleoyl-sn-glycero-3-phosphocholine), 1 mol % of
the lipopolymer DOPE-PEG(2000) (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-
N-[methoxy(polyethylene glycol)-2000]) and 0.2 mol % of the dyed lipids TopFluor-
Cholesterol (3-(dipyrrometheneboron difluoride)-24-norcholesterol) or DOPE-Rho-
damine (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B
sulfonyl)). The bilayer coating was performed in a buffer at pH 7.4 containing 50 mm

sodium chloride (NaCl) and 10 mm 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic
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Figure 5.1: Diffusion of flexible trimers. a) Schematic (not to scale) of flexible trimers
that are self-assembled from colloid-supported lipid bilayers. We inserted DNA link-
ers into the fluid lipid bilayer surrounding the particle, resulting in bonded particles
that can rearrange with respect to each other. Bottom: confocal microscopy image of
a flexible trimer. Scalebar is 2µm. b) Overlay of brightfield microscopy images of a
flexible trimer with the position of its center of mass as function of time. c) Illustration
of the body-centered coordinate system. d) The mean squared displacement of rigid
and flexible trimers. The translational mean squared displacement of flexible trimers
in the 𝑦-direction is angle dependent for short lag times, at longer lag times this an-
gle dependence is no longer present due to rotational and conformational relaxation,
which happens on a shorter timescale than for rigid trimers (raw data).
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acid (HEPES). We added double-stranded DNA (of respectively strands DS-H-A and
DS-H-B of Table A.1) with an 11 base pair long sticky end and a double stearyl anchor,
which inserts itself into the bilayer via hydrophobic interactions (see Figure 5.1a).
When two particles with complementary DNA linkers come into contact, the sticky
ends hybridize and a bond is formed. Self-assembly experiments were performed in a
different buffer of pH 7.4, containing 200 mm NaCl and 10 mm HEPES. We imaged 21
trimers of 2.12µm CSLBs, that were formed by self-assembly in a sample holder made
of polyacrylamide (PAA) coated cover glass. The PAA functionalization was carried
out using a protocol202 which we modified by adding 0.008 mol % bis-acrylamide
and performing the coating under a nitrogen atmosphere, both of which resulted
in a more stable coating. Using an optical microscope, we imaged the clusters for
5 min at frame rates between 5 fps to 10 fps. Particle positions were tracked using a
custom algorithm242 available in TrackPy by using the locate_brightfield_ring
function,188 as depicted schematically in Figure 3.1.

Additionally, we analyzed 9 trimers of 1.93µm CSLBs, with silica particles pur-
chased from Microparticles GmbH (product code SiO2−R-B1072). For these parti-
cles, we used a similar protocol to form supported lipid bilayers with only 2 minor
modifications: first, the lipid composition we used was 98.9 mol % DOPC, 1 mol %
DOPE-PEG(2000) and 0.1 mol % DOPE-Rhodamine. Second, we added Cy3-labeled
DNA with a self-complementary 12 base pair sticky end and a cholesterol anchor
that inserts itself into the lipid bilayer due to hydrophobic interactions. We used the
DNA sequence from Leunissen et al. 72 (see Table A.1, strands PA-A and PA-B).

To image the 1.93µm CSLBs we used a flow cell produced as detailed in the
Supplementary of Montanarella et al. 267 As the base of our flow cell we used a
single capillary with dimensions 3 cm × 2 mm × 200µm. To prevent the lipid coated
clusters from sticking to the class capillary, we coated the inside of the capillary with
poly(2-hydroxyethyl acrylate) (pHEA) polymers. To this end, we first flushed the cell
with consecutively 2 mL 2 mm NaOH solution, 2 mL water and 2 mL EtOH. We then
functionalized the glass surface with the silane coupling agent 3-(methoxysilyl)propyl
methacrylate (TPM) by filling the flow cell with a mixture of 1 mL EtOH, 25µL TPM,
and 5µL 25 % v/v NH3 in water and leaving it for 1 hour. We then washed and dried
the flow cell by flushing with 2 mL ethanol and subsequently with nitrogen. We grew
pHEA brushes from the surface through a radical polymerization by filling the cell
with a mixture of 2.5 mL EtOH, 500µL HEA and 20µL Darocur 1173 photoinitiator.
We initiated the reaction by placing the cell under a UV lamp with wavelength 𝜆 =

360 nm for 10 minutes. Finally, we flushed the cells with 10 mL EtOH or Millipore
filtered water. We stored the coated cells filled with EtOH or Millipore filtered water
and for no more than one day. Self-assembly experiments were performed in a buffer
of pH 7.4, containing 50 mm NaCl and 10 mm HEPES. We imaged 9 freely-jointed
trimers and 13 rigid trimers stuck in various opening angles shown in Figure 5.2
for 30 minutes with a frame rate of 5 fps. Particle positions were tracked using the
2007 Matlab implementation by Blair and Dufresne of the Crocker and Grier tracking
code.189
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Figure 5.2: Opening angles of rigid

trimers. The number of rigid clusters
of different opening angles used in this
study. Six rigid trimers have a ‘compact’
opening angle (below 120°) while the
other six are more extended.

5.2.2 Diffusion analysis

For all analysis, we only selected trimers that showed all bond angles during the
measurement time, experienced no drift and were not stuck to the substrate. After
the particle positions were tracked, we determined the short-time diffusivity of the
trimers as described by Equation 5.4 separately for all trimers. For each pair of frames,
we determined the initial average opening angle𝜃 of the trimer between 𝑡 and 𝑡+𝜏short,
with 𝜏short = 0.25 s. Then, we stored the diffusion tensor elements separately for each
initial opening angle. For short times up to 𝜏short = 0.25 s, we used a bin size of
15° while for longer times, we used two bins of 60° covering the range of [60°, 120°)
and [120°, 180°]. We scaled each element with the friction factors we obtained for
that measurement, based on the diffusion coefficient for lag times up to 𝜏short. The
average diffusion tensor elements were then obtained by fitting the overall slope of
the mean (squared) displacements of all the individual diffusion tensor elements as a
function of lag time (see Figure 5.9a, c, e and Figure 5.11a, c). We used a linear function
(with zero intercept) divided into ten segments with slopes 2𝐷𝑖 (spaced evenly on a
log scale), which correspond to the 𝑖th diffusion coefficient for those lag times. This
resulted in the average diffusion tensor for all binned average opening angles 𝜃 as a
function of the lag time 𝜏. For fitting, we used a standard least squares method and
we estimated the error using a Bayesian method to find an estimate of the posterior
probability distribution, by using a Markov chain Monte Carlo (MCMC) approach
as implemented in the Python packages lmfit246 and emcee.207 We estimated the
autocorrelation time 𝜏acor of the chain using the builtin methods and ran the analysis
for at least 100𝜏acor steps, where we discarded the first 2𝜏acor steps (corresponding to
a burnin phase) and subsequently used every other 𝜏acor/2 steps (known as thinning).
The reported values correspond to the maximum likelihood estimate of the resulting
MCMC chain, the reported uncertainties correspond to the minimum and maximum
of the obtained posterior probability distribution.

5.2.3 Hydrodynamic modeling

The diffusion of segmentally flexible objects can be described using hydrodynamic
modeling.107,268 To compare our experimental results to these predictions, we fol-
lowed the procedure described by Harvey and coworkers.107 Of the seven degrees
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of freedom in three dimensions (three translational, three rotational, one internal de-
gree of freedom), we considered only the four degrees of freedom of interest for our
quasi-two dimensional system of sedimented clusters. Briefly, following the method
outlined by Harvey and coworkers,107 we determined the hydrodynamic resistance
(or friction) tensor 𝑹0 with respect to the central particle. Using this resistance tensor,
we calculated the diffusion tensor 𝑫0 = 𝑘𝑇𝑹−1

0 , to which we apply the appropriate
coordinate transformation to obtain the 7 × 7 diffusion tensor 𝑫c.m. relative to the
center of mass of the cluster. We chose the center of mass as reference point because
it is a good approximation of the center of diffusion of a flexible particle: in fact, it
was found to be a better choice than either the center of diffusion or resistance of
a rigid cluster of the same shape.107 In Chapter 6, we will discuss how to calculate
the center of diffusion for a flexible cluster269 and what effect it has on the diffusion
tensor when used as a tracking point instead of the center of mass. Additionally, we
have calculated the diffusion tensor with respect to the central particle and these
results are shown in Figure 5.7.

The diffusivity of flexible colloidal clusters can be modeled using bead or bead-shell
models.270 We used three different models to describe the hydrodynamic properties
of the flexible trimers: a bead model (Figure 5.3a), a bead-shell model for a rigid
trimer using HydroSub263 (Figure 5.3b) and a bead-shell model for flexible trimers
(Figure 5.3c). For the bead model, we modeled the trimer using three beads (diameter
of 2µm). For the bead-shell models, we modeled the trimer using approximately 2500
to 9500 smaller beads with bead radii ranging from 54 nm to 31 nm respectively, where
the beads where placed to form three 2µm shells. We followed existing methods271,272

for constructing the bead shell model: to summarize, the positions of the small beads
were calculated by placing them on concentric circles, starting at the equator of an
individual 2µm sphere and continuing the process towards the poles of the sphere
using circles of decreasing radius and finally putting one sphere at each of the poles.
Three spherical bead-shell models were then put together to form a trimer and we
removed overlapping beads at the contact points between the particles. The results
were evaluated for multiple small bead sizes, so that the result could be linearly
extrapolated271,272 to the limit where the small bead radius approaches zero.

In Figure 5.3d, the calculated diffusivities are shown for all three models. The
bead model predicts higher diffusivities compared to both bead-shell models for all
different elements of the diffusion tensor. The bead-shell models agree qualitatively,
but predict different magnitudes of the diffusivities due to differences in hydrody-
namic interactions between the outer beads, which are higher for the flexibly-linked
clusters.251,256–258

Because drag forces act on the surface of the particles, the bead-shell model is
more accurate in describing the diffusive properties of the clusters.263,271,272 The
accurate consideration of hydrodynamic effects was found to be important for the
segmentally flexible system we study: hydrodynamic interactions lead to a slower
decay of the autocorrelation of the particle shape273 and lead to an increase in the
translational diffusivity.101,251 We have used the bead-shell model of Figure 5.3c (solid
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line) to model our experimental data, because it best describes our experimental data
and because it can be used to model conformational changes, which are not yet
implemented in the HydroSub model.

To calculate the diffusion tensor elements, we used the Rotne-Prager-Yamakawa
(RPY) interaction tensor34,275 𝑻𝑖 𝑗 to model hydrodynamic interactions between parti-
cles 𝑖 and 𝑗:

𝑻𝑖 𝑗 =
1

8𝜋𝜂0𝑅𝑖 𝑗


𝑰 +

𝑹𝑖 𝑗𝑹𝑖 𝑗

𝑅2
𝑖 𝑗

+ 2𝜎2

𝑅2
𝑖 𝑗

©­«
𝑰

3
−

𝑹𝑖 𝑗𝑹𝑖 𝑗

𝑅2
𝑖 𝑗

ª®¬

, (5.1)

where 𝜎 is the particle radius, 𝑹𝑖 𝑗 is the vector between particles 𝑖 and 𝑗, 𝑰 is the 3× 3
identity matrix, 𝜂0 is the viscosity of the medium. Using the RPY tensor prevents
singularities that may lead to the large, nonphysical numerical fluctuations276 found
when using lower order terms (Oseen tensor), higher order terms or multi-body
effects.277

We used the RPY tensor to model the hydrodynamic interactions between the
beads and followed the procedure outlined by Harvey and coworkers107 to obtain
the diffusion tensor, as explained in Section 5.3. This was done for all small bead
radii and we used a linear extrapolation to zero bead size to obtain the final diffusion
tensor elements.271,272 Additionally, we used HydroSub263 to model the diffusivity
of rigid trimers of the same opening angles.

Near-wall diffusion: friction factors

Here, we have modeled the effect of the substrate using simple friction scaling factors.
A comparison with more sophisticated simulations that take hydrodynamic interac-
tions between the particles and the wall into account is given in Chapter 6. The three
friction correction factors that account for substrate friction were determined in the
following way:

𝜙𝑡𝑡 =
〈
𝑫[𝑡𝑡]𝑡/(𝜎𝑒𝑫[𝑡𝑡]𝑒 ,0)

〉
𝜙(𝛼𝛼,𝜃𝜃) =

〈
𝑫[(𝛼𝛼, 𝜃𝜃)]𝑡/(𝜎3

𝑒𝑫[(𝛼𝛼, 𝜃𝜃)]𝑒 ,0)
〉

𝜙𝑖 𝑗 =
√
𝜙𝑖𝑖𝜙 𝑗 𝑗 for 𝑖 ≠ 𝑗 , (5.2)

where 𝑫[𝑖 𝑗]𝑘 denotes the theoretical (𝑘 = 𝑡) or experimental (𝑘 = 𝑒) diffusion ten-
sor element and 𝜎𝑒 the experimental particle radius. The subscript 𝑡𝑡 denotes the
translational component of the diffusivity. These factors were determined separately
for each experiment, because differences in surface and particle functionalizations
resulted in differences in substrate-particle and particle-particle friction, that in turn
affect the diffusivity of the cluster. We separated the correction factors into these three
factors because different modes of diffusion are expected to lead to different amounts
of friction with the substrate.154
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Figure 5.3: Comparison of the diffusion tensor calculated by different hydrody-

namic models. Renderings made using FreeWRL274 of a) the simple bead model,
b) the bead-shell model (minimum radius of the small spheres 𝑟 = 55 nm) used by
HydroSub263 for rigid trimers, c) the bead-shell model (radius of the small spheres
𝑟 = 31 nm to 54 nm, 𝑟 = 45 nm is shown) we used for calculating hydrodynamic prop-
erties of flexible trimers. For all models, the radius of the large particles is 𝑅 = 1µm.
d) Top row, left to right: the translational diffusivity, rotational diffusivity and cou-
pling between translational and rotational diffusivity for the bead model (a, dotted
lines), the rigid bead-shell model generated with HydroSub (b, dashed lines) and the
segmentally flexible bead-shell model (c, solid lines). Bottom row, left to right: the
joint flexibility, coupling between shape changes and rotation and couplings between
shape changes and translational diffusion.
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coincides with the friction factors we find for flexible clusters.

As a first approximation to compare the experimental diffusion of freely-jointed
trimers above a substrate to models of trimers diffusing in the bulk, we use Faxen’s
theorem:192

𝐷𝑤(ℎ)
𝐷0

= 1 − 9
16

𝑅

ℎ + 𝑅 + 1
8

(
𝑅

ℎ + 𝑅

)3

− 45
256

(
𝑅

ℎ + 𝑅

)4

+ 𝑂
((

𝑅

ℎ + 𝑅

)5
)
, (5.3)

with 𝐷0 the translational diffusion coefficient in the bulk, 𝐷𝑤(ℎ) the in-plane trans-
lational diffusion coefficient near a wall at height ℎ and 𝑅 the particle radius. We
calculate an effective particle radius

𝑅eff =
𝑘𝐵𝑇

6𝜋𝜂𝐷
= 1.8µm

from the short-time translational diffusion coefficient,278 with 𝑘𝐵 Boltzmann’s con-
stant, 𝑇 the temperature, 𝜂 the viscosity of the medium and 𝐷 = 0.136µm2 s−1 the
lowest short-time translational diffusion coefficient of the trimer as predicted by the
bead-shell model.

The expected Debye length20 of our medium (at 𝐼 = 200 mM) is

𝜅−1
=

0.304√
𝐼

≈ 0.7 nm

and so we neglect electrostatic interactions between the trimer and substrate. There-
fore, the height of the particle above the substrate is set by balancing the effect of
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sedimentation and thermal fluctuations as expressed by the gravitational length 𝑙𝑔 :

𝑙𝑔 =
𝑘𝐵𝑇

𝑔Δ𝜌𝑉
,

with 𝑔 the gravitational acceleration constant, Δ𝜌 the density difference between the
particle and the medium and 𝑉 the volume of the particle.

Using the appropriate values for the trimer, we find 𝑙𝑔 = 20 nm. By setting this as
input for ℎ in Equation 5.3, we obtain a upper bound for 𝐷𝑤(ℎ)/𝐷0, equal to 0.40. A
lower bound is found at ℎ = 0, which gives a value of 0.39. The translational friction
coefficient 𝐷𝑤(ℎ)/𝐷0 that we find has an average value of 0.29 ± 0.04, as shown in
Figure 5.4, which is close to the lower bound we have calculated above. The experi-
mental value is slightly lower than the predicted lower bound, because Equation 5.3
accounts for hydrodynamic interactions only and real experiments typically show
lower diffusivities because of additional sources of friction,279 which in the present
case could be explained by additional friction between the polymer coating and the
particles. Moreover, a comparison with more sophisticated simulations that take hy-
drodynamic interactions between the particles and the wall into account is given in
Chapter 6.

5.3 Results and Discussion

5.3.1 Short-time Brownian motion of flexible trimers

The flexibly-linked colloidal trimers are made by self-assembly of colloid-supported
lipid bilayers (CSLBs).85,110,112,242 Briefly, spherical colloidal silica particles are coated
with a fluid lipid bilayer. DNA linkers with complementary sticky ends are inserted
into the bilayer using a hydrophobic anchor. The particles are self-assembled by hy-
bridization of the DNA sticky ends, which provide strong and specific interactions.
The trimers are freely-jointed because the DNA linkers can diffuse on the fluid lipid
bilayer that surrounds the particles (see Figure 5.1a). The clusters undergo transla-
tional and rotational diffusion while they are also free to change their shape (see
Figure 5.1b and Supplementary Movie 1 of Verweĳ & Moerman et al.244 ). For simplic-
ity, we used heavy silica particles so that their mobility is confined to the bottom of
the container by gravity, which leads to two-dimensional Brownian motion.

For rigid objects in two dimensions, the diffusive motion can be described by a
3 × 3 diffusion tensor calculated from the linear increase of the mean squared dis-
placements of the particle as function of lag time.31 For flexible objects, this diffusion
tensor has to be extended with an additional degree of freedom107 for each internal
deformation mode (here: one), and we therefore consider the 4 × 4 diffusion tensor
𝑫[𝑖 𝑗]. Here, 𝑖 , 𝑗 ∈ [𝑥, 𝑦, 𝛼, 𝜃] are elements of a body-centered coordinate system (see
Figure 5.1c) at the center of mass. We chose the center of mass as reference point,
because for flexible objects, it is more appropriate than either the center of diffusion
or resistance of a rigid cluster of the same shape.107 In Chapter 6, we will discuss how
to calculate the center of diffusion for a flexible cluster269 and what effect it has on
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Figure 5.5: Probability and free energy as a function of the opening angle of flexible

trimers. Probability and corresponding free energy of the opening angle of the flexible
trimers used in this work (with the reference set at 180°). There is no preference for
a specific opening angle within the experimental error, meaning the particles are
freely-jointed, as was shown before.242 Note that the slightly lower probability at
angles smaller than 60° +

√
2𝐽𝜏 ≈ 69° (with 𝐽 the joint flexibility and 𝜏 the sampling

interval) is caused by boundary effects inherent to our analysis method.242

the diffusion tensor when used as a tracking point instead of the center of mass. In
the coordinate system used here, the 𝑦-axis is perpendicular to the end-to-end vector
and points away from the central particle, and the direction of the 𝑥-axis is chosen
to form a right-handed coordinate system. We label the opening angle of the trimer
𝜃 and the (anticlockwise) rotation angle of the 𝑥-axis with respect to the lab frame
𝛼. We align the lab frame such that it coincides with the body-centered coordinate
system at 𝜏 = 0.

Shape determines the diffusion tensor for rigid objects and therefore we expect
it to be important for flexible objects as well, but due to its flexibility, the cluster
shape is continuously changing. Therefore, we categorize the trajectories by their
(initial) average opening angle 𝜃 of the smallest lag time interval and we use angular
bins to summarize the results. The short-time diffusion tensor is calculated from
experimental measurements in the following way:

𝑫[𝑖 𝑗](𝜃) ≡ 1
2
𝜙𝑖 𝑗

𝜕⟨Δ𝑖Δ𝑗⟩𝜏
𝜕𝜏

, (5.4)

with 𝜏 the lag time between frames, ⟨· · · ⟩𝜏 denotes a time average over all pairs
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of frames 𝜏 apart and Δ𝑖 = 𝑖(𝑡 + 𝜏) − 𝑖(𝑡), 𝜙𝑖 𝑗 is a correction factor that accounts
for particle-particle and particle-substrate friction (see Section 5.2.3 and Figure 5.4).
The correction factors 𝜙𝑖 𝑗 are a first-order approximation to model the wall effect of
the glass surface, that for translational diffusion agrees closely with predictions from
hydrodynamic theory, as shown in Figure 5.4. A comparison with more sophisticated
simulations that take hydrodynamic interactions between the particles and the wall
into account is given in Chapter 6. We evaluated Equation 5.4 at 𝜏 = 0.25𝑠, set by the
frame rate of our camera.

Using Equation 5.4, the resulting shape and time dependent translational diffusiv-
ity in the 𝑦-direction of twelve rigid and one flexible trimer are shown in Figure 5.1d.
Initially, at short timescales, there is a clear effect of cluster shape for both flexible
and rigid trimers: translational diffusion in 𝑦 is highest for compact shapes. In com-
parison to rigid trimers, the diffusivity of the flexible trimer is slightly enhanced. Two
other features unique to flexible clusters are that using a measurement of only one
cluster, all possible cluster shapes are sampled and that the effect of shape vanishes
on a much shorter timescale compared to the rigid clusters.

To study the diffusivity more carefully, we determined the average short time
diffusion tensor of thirty flexible trimers. As shown in Figure 5.6a, the diffusion
tensor elements were obtained by fitting the slope of the mean squared displacement
versus lag time. We find three features that are in line with previous findings for
rigid clusters13 and that give confidence in the used analysis: first, translational
diffusivity is higher along the longitudinal 𝑥-direction compared to the lateral 𝑦-
direction (Figure 5.6d). Additionally, the rotational diffusivity shown in Figure 5.6b
is higher for compact trimers as opposed to fully extended trimers and we observe a
coupling between translational diffusion and rotational diffusion in the 𝑥-direction
(Figure 5.6e).

However, flexibility gives rise to other modes that are not present in rigid assem-
blies. We found that the flexibility itself, as shown in Figure 5.6c, increases as function
of the opening angle, leading to a four fold increase of flexibility for extended shapes
compared to closed shapes. It is most likely caused by hydrodynamic interactions
between the outer particles, as was predicted by earlier works.106

Even more strikingly, the hydrodynamic drag on the outer particles leads to an
increase in opening angle 𝜃 for positive displacements along the 𝑦-axis (Figure 5.6f),
which we call the Brownian quasiscallop mode. This Brownian quasiscallop mode
may have implications for the accessibility of the functional site in induced fit lock-
and-key interactions commonly observed in proteins.255 We stress that this correla-
tion does not lead to self-propulsion because it has time reversal symmetry. As the
opening angle 𝜃 increases, the location of the center of mass moves in the negative
𝑦-direction of the original particle coordinate system. Therefore, this correlation is
larger when the central particle is chosen as the origin of the coordinate center.
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Figure 5.6: Short-time translational, rotational, internal and coupled diffusivity of
flexible trimers (up to 0.25 s). a) Mean squared rotational displacements for lag times
up to 𝜏 = 0.25 s, for two different instantaneous opening angles 𝜃. b) The rotational
diffusivity is highest for the most compact shapes. c) The joint flexibility increases
as function of opening angle 𝜃. d) While equal for bent trimers, the translational
diffusivity along the long axis (𝑥) is higher than along the short axis (𝑦). e) We find a
correlation between counterclockwise rotation and positive 𝑥 displacements. f) There
is a coupling between translational diffusion in the 𝑦-direction and shape changes:
as the cluster diffuses in the positive 𝑦-direction, the angle 𝜃 increases, leading to
a Brownian scallop-like motion at short timescales. In panels b-f, the scatter points
show the experimental measurements and the lines show the numerical calculations
based on Harvey et al. 107
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Figure 5.7: Influence of the reference point on the diffusion tensor. a-c) The trans-
lational (a), translational-rotational (b) and translational-conformational (c) diffusiv-
ities with the reference point chosen in the center of the central particle. d-f) The
translational (d), translational-rotational (e) and translational-conformational (f) dif-
fusivities with the reference point at the center of mass of the cluster. For these
graphs, we transformed the data from panels a-c using the coordinate transformation
described in the text from the “center particle”-based to the “center of mass”-based
diffusivity. Note that the combination of experimental errors of the 𝐷[𝑡𝛼], 𝐷[𝛼2],
𝐷[𝑡𝜃], 𝐷[𝜃2] and 𝐷[𝛼𝜃] terms lead to large uncertainties and deviations, especially
for the translational diffusivities. In all panels, the points show the experimental data
and the lines are the predictions of the bead-shell model.
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The influence of the tracking point

For purely rotational and conformational terms, the diffusivity is expected to be
independent of the chosen reference point, however, for terms that include translation,
the location of the reference point has a large effect on the measured diffusivity.105,107

This can be seen in Figure 5.7: in panels a-c), we show the diffusivities calculated
using the central particle as reference point. The results are remarkably different
from the center of mass based results shown in Figure 5.7d-f), where we have used
the diffusivities relative to the central particle to calculate the diffusivities relative to
the center of mass using the coordinate transformations determined by Harvey and
coworkers107:

𝐷[𝑡𝑡]𝐶𝑀 = 𝐷[𝑡𝑡]0 + 𝐷[𝑡𝛼]⊺0 ·𝑈 −𝑈 · 𝐷[𝑡𝛼]0 +𝑈 · 𝐷[𝛼2] ·𝑈
+ 𝐷[𝑡𝜃]⊺0 ·𝑊 +𝑊⊺ · 𝐷[𝑡𝜃]0 −𝑈 · 𝐷[𝛼𝜃]⊺ ·𝑊
+𝑊⊺ · 𝐷[𝛼𝜃] ·𝑈 +𝑊⊺ · 𝐷[𝜃2] ·𝑊 (5.5)

𝐷[𝑡𝛼]𝐶𝑀 = 𝐷[𝑡𝛼]0 + 𝐷[𝛼2] ·𝑈 + 𝐷[𝛼𝜃]⊺ ·𝑊 (5.6)

𝐷[𝑡𝜃]𝐶𝑀 = 𝐷[𝑡𝜃]0 + 𝐷[𝛼𝜃] ·𝑈 + 𝐷[𝜃2] ·𝑊 (5.7)

We have made this comparison because the coupling terms are expected to be larger
in the central particle frame. The results indeed show this larger coupling and exclude
the possibility that the coupling modes we observed are artifacts of the coordinate
system we used. In Chapter 6, we will discuss how to calculate the center of diffusion
for a flexible cluster269 and what effect it has on the diffusion tensor when used as a
tracking point instead of the center of mass.

Because the rotational and conformational diffusivities are independent of the
reference point, localization uncertainties in the determination of the position of
the reference point may have a larger effect on 𝐷[𝑥𝑥, 𝑦𝑦, 𝑥𝑦, 𝑥𝛼, 𝑦𝛼, 𝑥𝜃, 𝑦𝜃] than
on 𝐷[𝛼2 , 𝜃2 , 𝛼𝜃]. Because of the uncertainties that are propagated when we first
determine the diffusivity with respect to the central particle and then transform this
to the diffusivity with respect to the center of mass (in Figure 5.7d-f), the error is
larger for this method compared to the direct calculation of the diffusivities with
respect to the center of mass. Therefore, the latter method should be preferred.

In summary, our experimental data allow us to test for the first time theoretical
predictions made by Harvey and coworkers,107 who modeled the diffusion of seg-
mentally flexible objects by calculating the hydrodynamic interactions between two
sub units. We applied their calculations to a bead-shell model, adapted to match
the conditions of our experiments (see Section 5.2.3 and Figure 5.3) and find good
agreement between the numerical calculations and the experimental data. The good
agreement between the numerical results and the experimental data validates their
model for the diffusivity of microscopic objects with internal degrees of freedom. For
some angles and entries of the diffusion tensor, the experimental data shows small
deviations from the predicted model values, especially for translational diffusion,
the Brownian quasiscallop mode and the flexibility (see Figure 5.6c, d and f). We
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Figure 5.8: Short-time diffusion of

rigid trimers. The a) translational,
b) rotational and c) translational-
rotational diffusivities of rigid
trimers with various opening an-
gles (see Figure 5.2 for details). In
all panels, the points correspond to
the experimental diffusivities (up
to lag times of 𝜏 = 0.25 s) and
the solid lines correspond to the
numerical calculations performed
using HydroSub,263 as detailed in
Figure 5.3. All points are scaled by
the same average friction factor as
shown in Figure 5.4 in order to com-
pare the experiments to the numer-
ical simulations.

hypothesize that these differences may arise because the numerical calculations do
not take particle-particle and particle-substrate friction into account, other than as
a first-order approximate scaling using the friction factors 𝜙𝑖 𝑗 as defined in Equa-
tion 5.4. For example, substrate interactions were found to lead to enhanced diffusion
for a model dumbbell consisting of two hydrodynamically coupled subunits.104 More
elaborate models may be used to provide higher-order corrections to the model we
used here,35 however their validity for flexible objects needs to be investigated. More-
over, our model also does not account for some out-of-plane diffusive motions against
gravity, that might occur in the experiments. We will discuss these effects in greater
detail in Chapter 6.

5.3.2 Flexible trimers compared to rigid trimers

In addition to flexibly-linked trimers of CSLBs, we have also studied rigid trimers
of CSLBs that are frozen in a specific shape, as shown in Figure 5.2. First, we have
compared their short-time diffusivity as function of their shape to bead-shell model
calculations performed using HydroSub.263 As shown in Figure 5.8, bead-shell mod-
els accurately describe their translational (Figure 5.8a), rotational (Figure 5.8b) and
translational-rotational (Figure 5.8c) short-time shape-dependent diffusivities.

Then, we compared the short-term translational, rotational and coupled diffusion
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Figure 5.9: Comparison between rigid and flexible trimers. a) Mean squared dis-
placements in 𝑥 and 𝑦 for all flexible trimers. b) Diffusivity in 𝑥 and 𝑦 as function
of lag time for flexible (left) and rigid (right) trimers. The average translational dif-
fusivity ⟨𝐷𝑇(𝜏0 = 0.25 s)⟩ (dotted lines) is (2.7 ± 0.3)% higher for flexible clusters
compared to rigid clusters. c) Mean squared angular displacements for all flexible
trimers. d) Rotational diffusivity as function of lag time for flexible (left) and rigid
(right) trimers. Bent configurations (Ben.) correspond to 𝜃 < 120° and extended con-
figurations (Ext.) to 𝜃 ≥ 120°. e) Mean squared coupled displacements in 𝑥 and 𝛼
for all flexible trimers. f) Rotation-translation coupling in 𝑥 and 𝛼 as function of lag
time for flexible (left) and rigid (right) trimers. In panels a, c and e, colored points
are experimental data, black points and lines represent the fitted slopes. In panels b,
d and f, numerical short-time diffusivities calculated based on Harvey et al. 107 are
indicated by colored ticks on the 𝑦-axis, showing minimum, mean, and maximum
shape-dependent values from bottom to top.
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coefficients of flexible trimers to rigid trimers that are frozen in a particular shape and
find that while they are qualitatively similar, there are experimentally measurable
differences. Specifically, we measure that the average short time diffusion constant
⟨𝐷𝑇(𝜏0 = 0.25 s)⟩ of rigid trimers is (2.7 ± 0.3)% lower ((15 ± 2)% lower without fric-
tion scaling) than that of flexible trimers (Figure 5.9b, dotted lines), a small but mea-
surable effect corroborated by the numerical models (see Section 5.2.3 and Figure 5.3).
The rotational diffusion constants for flexible and rigid trimers are equal within
the experimental uncertainty (Figure 5.9d), while the rotation-translation coupling
mode between 𝑥 and 𝛼 is slightly higher for flexible trimers at the shortest lag time
(Figure 5.9f). These findings agree qualitatively with numerical predictions256–258 for
hinged chains of spheres of higher aspect ratio (20:1 instead of 3:1 for the trimers).
For these hinged rods, a 10 % increase in the translational diffusivity and a higher
rotational diffusivity were found compared to rigid rods, which was attributed to
hydrodynamic interactions between the subunits.108,251

The collective diffusion constant depends on size polydispersity

We have shown that freely-jointed trimers diffuse slightly faster than rigid trimers;
their diffusion constant differs by approximately 3 %. When reporting such a small
difference, it is important to exclude other effects that could lead to similar variations
in the diffusion constant. Therefore, we here address the effect of size polydispersity
on the average diffusion constant of a collection of particles. We consider an ensemble
of particles, whose sizes are normally distributed around an average radius, 𝑎̄, and
with a standard deviation, 𝜎. We assume that the particles exhibit Stokes diffusion so
that each particle 𝑖 has a size dependent diffusion constant

𝐷𝑖 =
𝑘𝐵𝑇

6𝜋𝜂𝑎𝑖
.

Therefore, the smaller particles in the ensemble diffuse faster than the larger particles.
The experimental average diffusion constant of this ensemble of particles, 𝐷̄, can

be found by tracking the motion of many individual particles, calculating their indi-
vidual diffusion constants and averaging those. One might assume that this average
diffusion constant equals the diffusion constant of a monodisperse sample of particles
with the same average size, but this turns out to be generally not true:

𝐷̄ ≠
𝑘𝐵𝑇

6𝜋𝜂𝑎̄
≡ 𝐷𝑎̄ .

The reason for this inequality is that the diffusion constant scales nonlinearly with
size. Therefore, the diffusion constants of small particles are weighted more heavily
than those of large particles, which skews the distribution of diffusion constant and
shifts the average away from 𝐷𝑎̄ .

We asked how much the collective diffusion constant of a polydisperse sample
would deviate from that of a monodisperse sample and how this deviation depends
on size polydispersity. To this end, we first define the relative polydispersity as
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Figure 5.10: The collective diffusion constant depends on size polydispersity. a)

Three hypothetical particle size distribution with an average particle radius of 1µm
and relative polydispersities of 5 %, 10 % and 20 %. b) The distributions in diffusion
constant corresponding to the three particle size distribution in panel a. The average
diffusion constants are indicated by dashed lines. The average diffusion constant of
a monodisperse sample is indicated by a black dashed line.

𝜎′ = 𝜎/𝑎̄, which is a value between 0 and 1. The normalized distribution of particle
sizes is then

𝑓 (𝑎) = 1

𝜎′ 𝑎̄
√

2𝜋
exp

[
−1

2

(
𝑎 − 𝑎̄
𝜎′ 𝑎̄

)2
]
. (5.8)

Because the size is normally distributed and the diffusion constant scales with size
as 1/𝑎, the diffusion constant exhibits a reciprocal normal distribution:

𝑔(𝐷) = 𝐷𝑎̄

𝐷2𝜎′
√

2𝜋
exp

[
−1

2

(
𝐷𝑎̄

𝜎′
(1/𝐷 − 1/𝐷𝑎̄)

)2
]
. (5.9)

Figure 5.10a shows the hypothetical size distributions of three sets of particles
with an average radius of 1µm and relative polydispersities of 5 %, 10 % and 20 %.
Figure 5.10b shows the diffusion constant distributions that correspond to these
particle ensembles. Note that the diffusion constant is, unlike the size, not normally
distributed. Instead, it has a tail of faster diffusion coefficients, corresponding to
small particle sizes. Note also that the most probable diffusion constant shifts with
polydispersity. This is also due to the 1/𝑎 scaling of the diffusion constant and can
intuitively be explained by the fact that a range of large particles give a similarly small
diffusion constant. This increases the probability of measuring this small diffusion
constant and shifts the peak in the distribution. These properties of the distribution
cause the average diffusion constant of a polydisperse sample (indicated by dashed
lines in Figure 5.10b) to shift compared to the monodisperse case (indicated by a
black dashed line). How much the diffusion constant is underestimated depends
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on the size polydispersity. We intentionally chose large polydispersities to show the
effect clearly. Note that at for a size polydispersity of 5 % the distribution of diffusion
constants still looks rather symmetric.

The average diffusion constant of the particle ensemble is

𝐷̄ =

∫ 𝐷=∞

𝐷=−∞
𝐷 𝑔(𝐷) 𝑑𝐷. (5.10)

The integral in Equation 5.10 cannot be solved analytically, but we solved it numer-
ically and compared it to the diffusion constant corresponding to particles with an
average size 𝐷𝑎̄ . As integration limits we used 0 and 100 × 𝐷𝑎̄ in order to probe all
nonzero elements of the distribution function. We found that a 5 % polydispersity
results in an underestimation of the diffusion constant by only 0.25 %. To underes-
timate the diffusion constant by 3 %, the relative polydispersity needs to be at least
17 %. We found that these results are independent of the particle size. This finding
indicates that the measured 3 % increase of flexible trimers compared to rigid trimers
cannot be due to size polydispersity alone, because the employed particles have a
size polydispersity of only 2.6 %.

While polydispersity does not drastically alter the collective diffusion of micropar-
ticle suspensions, where 𝜎′ is typically around 5 %, it could play a large role in the
diffusion of nanoparticles, where a 𝜎′ on the order of 100 % is not uncommon.280

For example, gold nanoparticles with relative polydispersities on order of 10 % are
considered very monodisperse and can only be made in a small parameter range.281

Using Equation 5.10 we predict that the collective diffusion constant of a sample
with 100 % polydispersity is 63 % larger than a monodisperse sample with the same
average size, highlighting the importance of considering this effect in nanoparticle
suspensions.

Flexibility-induced relaxation effects

The last way in which flexibility affects the diffusivity of a cluster is through the
timescales on which effects of the initial cluster shape and orientation on the diffu-
sive motions vanish. For rigid elongated particles it was shown that the timescale on
which translational diffusivity in the 𝑥- and 𝑦-directions become equal with respect
to the lab frame is set by the rotational diffusion time 𝛾𝑟 = (𝐷[𝛼𝛼])−1, with 𝐷[𝛼𝛼]
in rad2/s.91 To study this effect for our rigid and freely-jointed trimers, we analyze
the motion of the clusters by defining the lab frame in such a way that the center of
mass of the trimer at lag time 𝜏 = 0 is at the origin and the body-centered 𝑥- and
𝑦-axes coincide with the original lab frame (see Figure 5.1c), an approach inspired
by earlier works on rigid anisotropic particles.97 Using the values for the short time
rotational diffusion coefficients for compact and extended trimers, we find that for
both rigid and flexible trimers 30 s ≤ 𝛾𝑟 ≤ 60 s. Indeed, by looking at the translational
(Figure 5.9b) diffusivity of rigid trimers, we see that the effect of shape on the dif-
fusivity is preserved up to the maximum lag time we consider (10 s). The rotational
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diffusivity (Figure 5.9d) of the rigid trimers stays constant within error (up to at least
10 s).

However, for flexible trimers, the story is different. There exists a second timescale
that can average out orientation-dependent effects in diffusion: the timescale of shape
changes, which we define as 𝛾𝑠 = (𝐷[𝜃𝜃])−1, analogous to the definition of the
rotational diffusion time. Using the values for the short time flexibility coefficients
for compact and extended trimers, we find that for our flexible trimers 8 s ≤ 𝛾𝑠 ≤ 35 s.
Therefore, we hypothesize that for flexible trimers, internal deformations lead to faster
relaxation of the shape-dependency we observe at short lag times and therefore also
the relaxation of differences between translational diffusion in the 𝑥- and 𝑦-directions.

Consistent with our hypothesis, the effect of the initial opening angle appears to be
lost on a shorter timescale than what one would expect from the rotational diffusion
time. In Figure 5.9d, the rotational diffusivity of flexible trimers is not constant in
time, as is the case for rigid trimers, which shows that shape changes affect the
diffusivity at longer lag times. The same effect can be seen in Figure 5.11b, where
the cluster flexibility of compact and extended clusters become equal after about
a second. Therefore, for lag times longer than 0.5 s, we only consider the shape-
averaged diffusivities. As can be seen from the translational diffusivity (Figure 5.9b),
the shape-averaged diffusivity in 𝑥 and 𝑦 become equal after 1 s to 3 s and this is also
the timescale on which the rotational diffusivity is no longer constant (Figure 5.9d)
and the translation-rotation coupling vanishes (Figure 5.9f). Moreover, we observe
for both translational, rotational and translation-rotation coupled diffusion that after
lag times larger than 2 s, larger fluctuations occur which we attribute to the effect of
continuous shape changes (see Figure 5.9b, d and f).

Short timescale relaxation of differences between clusters in extended and com-
pact conformations exist also for the conformational diffusion tensor elements. The
flexibility (shown in Figure 5.11a, b) is smaller for trimers in bent conformations
than in extended conformations and the difference vanishes after approximately 2 s
due to shape changes. Figure 5.11b shows an overall decrease of flexibility with lag
time, because the range wherein the joint angle can vary is bounded by the two out-
ermost particles. Furthermore, the magnitude of 𝐷[𝑦𝜃] (shown in Figure 5.11c, d),
which represents the Brownian quasiscallop mode, vanishes on the same timescale
of approximately 2 s, set by the conformational relaxation time 8 s ≤ 𝛾𝑠 ≤ 35 s.

5.4 Conclusions

In conclusion, we studied the Brownian motion of flexible trimers and found features
that are unique to flexible objects. We found a hydrodynamic coupling between
conformational changes and translations perpendicular to the particle’s long axis (𝑦-
direction), which we call the Brownian quasiscallop mode because of its resemblance
to scallop propulsion at high Reynolds numbers. We found that this coupling persists
over several seconds, a timescale relevant for biomolecular interactions, implying that
it might affect the association of flexible proteins and other biomolecules. Secondly, we

115



5

103

〈(
d
θ
)2
〉

[d
e
g

2
]

〈(dθ)2
〉 (Ben.)

〈(dθ)2
〉 (Ext.)

0

200

400

D
[θ
θ
]
[d

e
g

2
/s

]

Ben.

Avg.

Ext.

10−1

101

〈d
y

d
θ
〉

[µ
m

d
e
g
]

〈dydθ〉

10−1 100 101

Lag time τ [s]

−1

0

1

D
[y
θ
]
[µ

m
d
e
g
/s

]

Avg.

a)

b)

c)

d)

θ

+y
+θ

Figure 5.11: Cluster flexibility and Brownian quasiscallop mode as function of

time. a) Mean squared angular displacements of 𝜃 for all flexible trimers. b) The
flexibility decreases as function of lag time because of hard-sphere repulsion between
the two outer particles. c) Mean squared coupled displacements of 𝑦 and 𝜃 for all
flexible trimers. d) The Brownian quasiscallop mode relaxes on a timescale of a few
seconds because of conformational and rotational diffusion. In panels a and b, bent
configurations (Ben.) correspond to 𝜃 < 120° and extended configurations (Ext.) to
𝜃 ≥ 120°. In panels a and c, colored points are experimental data, black points and
lines represent the fitted slopes. In panels b and d, numerical short time diffusivities
calculated based on Harvey et al. 107 are indicated by colored ticks on the 𝑦-axis,
showing minimum, mean, and maximum shape-dependent values from bottom to
top.
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found that the long-time translational diffusion of the freely-jointed trimers was three
to fifteen per cent higher than that of their rigid counterparts. This enhancement was
predicted for hinged rods,256–258 but contrasts with theoretical results on dumbbells of
two hydrodynamically-coupled subunits, in which extensile shape fluctuations were
shown to decrease the translational diffusion coefficient.104,155 Further theoretical
and experimental studies are needed to predict the effect of flexibility on diffusivity,
since different internal degrees of freedom can have opposing effects. Finally, we
showed that the transition from short- to long-time diffusion depends not (only) on
the rotational diffusion time but mainly on a timescale related to conformational
changes of the particle. We were able to describe our experimental findings using
a hydrodynamic modeling procedure that combines bead-shell modeling with the
approach of Harvey and coworkers.107 We hope this work inspires other researchers
to more confidently apply this method in the context of the diffusion of segmentally
flexible systems such as biopolymers and proteins.
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