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Heights and
orientations of
colloidal dumbbells
near a wall
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2Geometric confinement strongly influences the behavior
of microparticles in liquid environments. However, to date,
nonspherical particle behaviors close to confining boundaries,

even as simple as planar walls, remain largely unexplored. Here, we
measure the height distribution and orientation of colloidal
dumbbells above walls by means of digital in-line holographic
microscopy. We find that while larger dumbbells are oriented almost
parallel to the wall, smaller dumbbells of the same material are
surprisingly oriented at preferred angles. We determine the total
height-dependent force acting on the dumbbells by considering
gravitational effects and electrostatic particle-wall interactions. Our
modeling reveals that at specific heights both net forces and torques
on the dumbbells are simultaneously below the thermal force and
energy, respectively, which makes the observed orientations possible.
Our results highlight the rich near-wall dynamics of nonspherical
particles, and can further contribute to the development of
quantitative frameworks for arbitrarily-shaped microparticle
dynamics in confinement.

2.1 Introduction

The behavior of micron-sized colloidal particles under confinement has been a sub-
ject of intensive research in engineering, materials science, and soft matter physics.10

Such particles often serve as model systems for understanding the effects of con-
finement on microscale processes, e.g. structure formation and rheology, offering
quantitative insights into the behavior of biological systems.127–129 This understand-
ing is further desirable for various applications where confinement dictates the dy-
namics, ranging from improving microfluidic transport in lab-on-a-chip devices,130

growing low-defect photonic crystals1 and tuning pattern formation for materials
design.131–133

Confinement can strongly affect hydrodynamic and electrostatic (self-)interactions.
These effects depend on particle-wall separation as well as particle size and shape.134

Yet, the majority of research has focused on the behavior of spherical particles, both
from a theoretical and experimental standpoint. This includes the behavior of sin-
gle spheres close to a planar wall,32,135–142 between two walls143–146 and microchan-
nels.147,148 Going beyond single particle dynamics, the collective behavior of sphere
clusters and dense suspensions has also been examined close to,37,149 as well as in
between walls,150 microchannels151,152 and confining droplets.153

However, microparticles involved in biological processes and industrial applica-
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tions typically depart from the ideal spherical shape. Since the motion of nonspherical
particles is different from that of spherical ones,13,31,91,154,155 there is a need to study
the effect of confinement on nonspherical particles156 to gain proper understanding
of both naturally occurring and technologically relevant systems. For nonspherical
colloids, dynamics have typically been measured far from walls.13 Despite predic-
tions for axisymmetric particles157 and simulated studies for arbitrary shapes,158,159

the effect of particle-wall separation remains experimentally unexplored. Yet, the in-
terplay between shape anisotropy and wall separation ought to be examined as well,
to develop accurate model systems for molecular matter.

To date, a plethora of techniques has been employed for colloidal studies, includ-
ing optical microscopy,160 optical tweezers,144,161–163 light scattering,164–167 evanes-
cent wave dynamic light scattering (EWDLS),143,149,168–171 total internal reflection
microscopy (TIRM),139,172,173 TIRM combined with optical tweezers,174 holographic
microscopy,175,176 and holographic optical tweezers.37 Each of these techniques has
its own strengths and weaknesses, especially when it comes to measuring anisotropic
particle dynamics near walls with high spatiotemporal resolution in three dimensions.
For example, optical microscopy is a straightforward technique, yet lacks sensitivity
to out-of-plane motion. Confocal microscopy on the other hand provides accurate
three-dimensional measurements, but is relatively slow when recording image stacks
and additionally requires refractive index matching and fluorescent labeling. Optical
tweezers confine particle motion and hence hinder long-term three-dimensional mea-
surements, while light scattering determines ensemble properties and is thus difficult
to interpret in the case of anisotropic particles.177 TIRM is an elaborate technique that
provides high resolution, though its range is limited to the near-wall regime, typically
less than 400 nm from the wall.139,172–174

To overcome the above limitations, holographic microscopy may be employed
instead, as it records both position and shape178 with high resolution,176 also in the
out-of-plane direction. In addition, it is even capable of resolving weakly-scattering
objects as used in biology175,179–181 without the need for fluorescent labeling.182

Moreover, while measurements are typically performed using lasers, a cost-effective
holographic microscopy setup can also be constructed using an LED mounted on an
existing microscope.181 As a downside, analyzing holographic measurements may be
computationally expensive which, if desired, can be compensated by implementation
of a neural network183 at the expense of some accuracy loss.

In this chapter, we measure colloidal dumbbell dynamics above a planar wall, a
simple model system that enables the study of the effects of shape anisotropy on
confined dynamics. We accurately probe how the particle orientation is affected by
the presence of the wall, and specifically, the particle-wall separation by means of
digital in-line holographic microscopy. We find that smaller dumbbells are oriented
at nonzero angles with respect to the wall, while in contrast, larger dumbbells of the
same material are oriented mostly parallel to the wall. In all cases, we were able to
identify the relation between particle orientation and particle-wall separation. We
further compare our experimental findings to a minimal model for the dumbbell that
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Figure 2.1: Measuring particle-wall separation with in-line holographic microscopy

(HM). a) Schematic representation of the light path of our setup. b) Holograms are
formed by the interference of the reference field 𝐸ref with the scattered field 𝐸scat. We
are interested in the gap height ℎ𝑔 (or equivalently the center of mass (c.m.) height
ℎc.m.) with respect to a planar glass wall. c) We determine the position of the wall
by fitting a plane to the positions of at least three particles fixed on the wall (blue).
The gap height ℎ𝑔 between a diffusing particle (yellow) and the wall is the distance
between the particle’s measured position and its position projected on the plane
along 𝑛̂.

combines gravitational and electrostatic dumbbell-wall interactions. We find that,
despite its simplicity, the model provides qualitative insight into our observations.
Our results highlight the importance of wall effects on anisotropic particle motion,
and may ultimately contribute to the development of a quantitative framework for
the dynamics of particles with arbitrary shapes in confinement, not fully established
at present in the literature.

2.2 Methods

2.2.1 Materials

We used spherical silica particles∗ of diameter (1.10 ± 0.04)µm (size polydispersity
(PD) 3.7 %) prepared following the method of Zhang et al. 184 Briefly, 0.5 mL tetra-
ethyl orthosilicate (TEOS) diluted with 2 mL ethanol was added to a mixture of
50 mL ethanol and 10 mL ammonia (25 %). The mixture was stirred magnetically
for 2 h. The seed particles were grown to the desired size by adding 5 mL TEOS
diluted with 20 mL ethanol during 2 h using a peristaltic pump. The dispersion was
stirred overnight and washed by centrifuging and redispersing in ethanol three times.
We obtained their diameter and PD from transmission electron micrographs using
ImageJ,185 by fitting particle diameters with the software’s builtin functions.

In addition, we used (2.10 ± 0.06)µm diameter (PD 2.8 %) spherical silica particles

∗The 1.1µm spherical silica particles and the TEM images were provided by Dr. Samia Ouhajji.
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purchased from Microparticles GmbH. In all experiments, dumbbell particles are
naturally occurring aggregates of two spherical particles. All solutions were prepared
with fresh ultra-pure Milli-Q water (Milli-Q Gradient A10, 18.2 MΩ cm resistivity).
Glass cover slips were purchased from VWR and were used as received.

2.2.2 Holographic setup

We employed a digital inline holographic microscopy (DIHM) setup based on existing
examples.181 Our setup made use of an inverted microscope (Nikon Ti-E) equipped
with a 60× oil immersion objective (NA = 1.4). To generate a scatter pattern, we
used a 660 nm light-emitting diode (LED) source (Thorlabs M660L4) at its maximum
power (3120 mW, using a Thorlabs LEDD1B LED driver), mounted on the lamphouse
port of the microscope instead of the standard brightfield lamp (see Figure 2.1a
for a schematic). Prior to each measurement, we performed a Köhler illumination
procedure in brightfield mode to align the diaphragm and condenser. Additionally,
we employed a linear polarizer on top of the condenser to improve the quality of the
holograms by enforcing a specific polarization direction.

2.2.3 Sample preparation and measurement details

Spherical silica particles of either 1.1 or 2.1µm diameter were spin coated from etha-
nol at dilute concentration onto the glass cover slips, which fixated their position. The
cover slips were then placed at the base of the sample holder, serving as the walls rel-
ative to which particle motion was measured. The fixated-to-the-wall spheres served
as reference points for determining the position of said wall (see also Figure 2.1b and
2.1c as well as the discussion in Section 2.2.5). Afterwards, an aqueous dispersion of
particles of the same size was added in the sample holder, which was subsequently
entirely filled with water and covered at the top with a glass cover slip to prevent
drift. The dispersion contained single spheres as well as small fractions of dumbbell
particles that consisted of two touching spheres, see also Figure 2.1b for an illustra-
tion. The motion of all particles above the wall was recorded at a frame rate of 19 fps
for at least 6 minutes.

2.2.4 Analysis of holograms

For all measurements, the recorded holographic microscopy images were corrected
with background as well as darkfield images to minimize errors stemming from in-
terfering impurities along the optical train. Then, for each measurement, the particle
of interest was selected manually and a circular crop around its hologram was taken,
see also Figure 2.2 Plot 4a, to reduce the amount of pixels considered during model
fitting, thereby increasing computational efficiency. From the holograms, we deter-
mine the three-dimensional position, (𝑥, 𝑦, 𝑧), the radius, 𝑅, and refractive index, 𝑛,
of the spheres and dumbbells as described in subsections 2.2.4 and 2.2.4, respectively.
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Figure 2.2: Tracking particle positions with HM. The 3D position of the particles
in time is fitted in four steps: the first three are characterization steps, in which we
find the approximate 3D position (fitting step 1) as well as appropriate guesses for
the refractive index 𝑛 (fitting step 2) and radius 𝑅 (fitting step 3). In the fourth step,
we use these positions and the average 𝑛 and 𝑅 values to determine the 3D position
accurately (fitting step 4). All steps are explained in detail in Section 2.2.4. Plot 2)

Average 𝑛 obtained from fitting step 2 for both spheres and dumbbells, the inset
shows a distribution from a single measurement. Plot 3) Average 𝑅 obtained from
fitting step 3 for both spheres and dumbbells, the inset shows a distribution from a
single measurement. For comparison, we show particle radii measured using TEM.
Plot 4a) Comparison of an experimental image, the fitted model and the residual for a
sphere, the low values of which indicate the good agreement between experimental
data and model. Plot 4b) Final 3D position in time for an 𝑅 = 0.55µm sphere, as
obtained in fitting step 4.
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Spherical particles

To fit the experimental data, we performed least-squares fits of a model based on
Mie scattering theory175 using the Python package HoloPy186 (see Figure 2.2 Plot 4a
as an example). The 3D position of the particles in time was fitted in four steps, as
depicted in Figure 2.2: the first three are characterization steps to find the approximate
3D position (fitting step 1) as well as appropriate guesses for the refractive index 𝑛
(fitting step 2) and the radius 𝑅 (fitting step 3). In the fourth step, we used these
positions and the average values of the radius and refractive index to determine the
3D position accurately (fitting step 4). We will now discuss these steps in detail. The
subscripts correspond to the fitting step in which each parameter was determined.
Fitting step 1) For each frame, we determined the rough particle position (𝑥1, 𝑦1,
𝑧1), using reasonable estimates for the radius 𝑅𝑒 and refractive index 𝑛𝑒 .
Fitting step 2) For the current frame, we determined 𝑧2 and characterized the particle
refractive index 𝑛2, while keeping the (𝑥1, 𝑦1) position and the estimated radius 𝑅𝑒
fixed. Example distributions and average values of the refractive indices obtained in
this fitting step are shown in Figure 2.2 Plot 2.
Fitting step 3) Whilst keeping the (𝑥1, 𝑦1) position and the estimated refractive index
𝑛2 fixed, we fitted 𝑧3 and the radius 𝑅3. Example distributions and average values of
the radii obtained in this fitting step are shown in Figure 2.2 Plot 3.
Fitting step 4) Once the initial positions (𝑥1, 𝑦1, 𝑧3) and particle properties (𝑛2, 𝑅3)
were determined for all frames, we calculated the time averaged over all frames prop-
erties (⟨𝑛2⟩𝑡 , ⟨𝑅3⟩𝑡). Lastly, we performed a least-squares fit for each frame allowing
(𝑥, 𝑦, 𝑧) to vary, keeping (𝑛 = ⟨𝑛2⟩, 𝑅 = ⟨𝑅3⟩) fixed (Figure 2.2 Plot 4b).

Following this procedure, we minimized unwanted correlations between (𝑧, 𝑅, 𝑛)
that can arise when allowing all parameters to vary at once during the fit. For every
frame, save the initial one, we used the values of the previous frame as starting
guesses to speed up the (convergence of the) analysis.

Dumbbell particles

The steps followed to obtain particle properties and positions of the dumbbells were
analogous to those of the single spheres, only modified to additionally account for
determining the dumbbell orientations. The scattering pattern of the dumbbell, cal-
culated using the T matrix (or null-field) method,187 was modeled using the Python
package HoloPy.186 We used three characterization fitting steps to find the approx-
imate 3D position and orientation (fitting step 1) as well as appropriate guesses for
refractive indices 𝑛(𝐴), 𝑛(𝐵) (fitting step 2) and the radii 𝑅(𝐴), 𝑅(𝐵) (fitting step 3). 𝑅(𝐴),
𝑅(𝐵) are the radii of the respective ‘A’ and ‘B’ spheres of the dumbbell with refractive
indices 𝑛(𝐴), 𝑛(𝐵). In the fourth and final step, we used these positions, orientations
and the average values of the radii and refractive indices to determine the 3D posi-
tion and orientation accurately (fitting step 4). We will now discuss these steps in
detail. The subscripts correspond to the fitting step in which each parameter was
determined.
Fitting step 1) In this first step, we determined (𝑥1, 𝑦1, 𝑧1, 𝛼1, 𝛽1, 𝛾1) of the center

24



2

of mass (c.m.), with (𝑅(𝐴)
𝑒 , 𝑛(𝐴)𝑒 , 𝑅(𝐵)

𝑒 , 𝑛(𝐵)𝑒 ) set to reasonable estimates. Here, (𝛼, 𝛽,
𝛾) correspond to the three Euler angles using the 𝑍𝑌𝑍-convention, while (𝑥, 𝑦, 𝑧)
denote the c.m. positions and, again, numbered subscripts the fitting step in which
the parameter was obtained.

Fitting step 2) We determined the refractive indices and 𝑧-position (𝑛(𝐴)2 , 𝑛(𝐵)2 , 𝑧2)

while keeping the parameters (𝑥1, 𝑦1, 𝛼1, 𝛽1, 𝛾1, 𝑅(𝐴)
𝑒 , 𝑅(𝐵)

𝑒 ) fixed.

Fitting step 3) Radii and 𝑧-position (𝑅(𝐴)
3 , 𝑅(𝐵)

3 , 𝑧3) were fitted while (𝑥1, 𝑦1, 𝛼1, 𝛽1,

𝛾1, 𝑛(𝐴)2 , 𝑛(𝐵)2 ) were kept constant.

Fitting step 4) After determining the initial positions (𝑥1, 𝑦1, 𝑧3), orientations (𝛼1,
𝛽1, 𝛾1) and particle properties (𝑛(𝐴)2 , 𝑛(𝐵)2 , 𝑅(𝐴)

3 , 𝑅(𝐵)
3 ) for all frames, we calculated the

time averaged properties (𝑛(𝐴) = ⟨𝑛(𝐴)2 ⟩𝑡 , 𝑛(𝐵) = ⟨𝑛(𝐵)2 ⟩𝑡 , 𝑅(𝐴) = ⟨𝑅(𝐴)
3 ⟩𝑡 , 𝑅(𝐵) = ⟨𝑅(𝐵)

3 ⟩𝑡)
over all frames. Then, we performed a least-squares fit for each frame again, where
we allowed (𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾) to vary, keeping (𝑅(𝐴), 𝑅(𝐵), 𝑛(𝐴), 𝑛(𝐵)) fixed.

Following this procedure, we minimize unwanted correlations between (𝛼, 𝛽, 𝛾, 𝑧,
𝑅(𝐴), 𝑅(𝐵), 𝑛(𝐴), 𝑛(𝐵)) that can arise when allowing all parameters to vary at the same
time. For every frame, save the initial one, we used the values of the previous frame as
starting guesses to speed up the analysis. On that note, we additionally restricted the
differences in rotation angles between subsequent frames to be smaller than 90 deg.
Finally, we used the open-source TrackPy implementation188 of the Crocker-Grier
algorithm189 to link the individual sphere positions between frames into continuous
trajectories, ensuring a correct and consistent orientation of the dumbbell. Because
we assign specific labels to both particles in the first frame of the video, we can
distinguish the particles, and in turn, between positive and negative orientations,
throughout the video.

2.2.5 Particle-plane separation

The position and orientation of the wall was accurately determined from the three-
dimensional positions of at least three spin coated spheres that were irreversibly fixed
to the wall. This served two purposes: first, to speed up the fit of the mobile particles
under study by providing a reliable lower bound on their axial position, and second,
to accurately determine their height from the wall. A reference point on the plane
r𝑝 = (0, 0, 𝑧𝑝) and a normal vector n𝑝 (see the inset of Figure 2.1c) were determined for
all the fixed particles for each frame. Using r𝑝 and n𝑝 , the particle-plane separation
along the normal vector n𝑝 was determined for the mobile spheres (see also Figure 2.3)
from n𝑝 ·(r−r𝑝)−𝑅, with r and𝑅 the position and radius of the sphere, respectively. For
the dumbbells, particle-plane separation was determined using the same procedure
as the individual spheres; both the c.m. height, ℎc.m. = n𝑝 · (r𝑐.𝑚. − r𝑝), above the wall
is reported, as well as gap heights of both the lower and upper sphere. Note that since
the orientation of the dumbbell can flip, the lower (or upper) sphere is not necessarily
always the same physical particle.
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2.2.6 Sphere height distribution

To model the height distributions of the spherical particles above the wall in Sec-
tion 2.3.1, we used a model that combines electrostatic and gravitational effects39,134

to calculate the total height-dependent force 𝐹(ℎc.m.) in the z direction (see also
schematic in Figure 2.1b):

𝐹(ℎc.m.) = 𝐹𝑒(ℎc.m.) + 𝐹𝑔 (2.1)

𝐹𝑒(ℎc.m.) = 64𝜋𝜖𝜅𝑅
(
𝑘𝐵𝑇

𝑒

)2

tanh
(
𝑒Ψ𝑤

4𝑘𝐵𝑇

)
tanh

(
𝑒Ψ𝑝

4𝑘𝐵𝑇

)
𝑒−𝜅ℎc.m. (2.2)

𝐹𝑔 = −4
3
𝜋𝑅3

(
𝜌𝑝 − 𝜌 𝑓

)
𝑔 (2.3)

with ℎc.m. the height of the center of the sphere, 𝐹𝑒(ℎc.m.) the force due to overlapping
electric double layers of the particle and the wall, 𝐹𝑔 the gravitational force, 𝜖 the di-
electric permittivity of water, 𝑘𝐵 the Boltzmann constant, 𝑇 = 300 K the temperature,
𝑒 the elemental charge,Ψ𝑝 andΨ𝑤 the Stern potentials of the particle and wall respec-
tively, 𝜌𝑝 ≈ 2.0 g cm−3 the particle density, 𝜌 𝑓 the density of water, 𝑔 the gravitational
acceleration and 𝜅−1 the Debye length. Based on the pH of our solution (pH≈5.5),
we find that the solution ionic strength is approximately 𝐼 = 10−5.5 = 3 × 10−6 M.
Therefore, the Debye length is expected to be 𝜅−1(nm) = 0.304/

√
𝐼(𝑀) = 175 nm,20

in good agreement with the fit values of 100 to 230 nm that we obtained by fitting
Equations 2.7 and 2.11 to the experimental data for both sphere and dumbbell par-
ticles, respectively. We neglected van der Waals interactions; we used the Derjaguin
approximations for 𝐹𝑒 . For the electrostatic potential, we used the Debye-Hückel
approximation,

Ψ(𝑟) = Ψ𝑠
𝑅

𝑟
exp

(
−𝜅(𝑟 − 𝑅)

)
, (2.4)

with Ψ(𝑟) the electrostatic potential at a distance 𝑟 from the center of the particle and
Ψ𝑠 the Stern potential. By settingΨ(𝑟 = 1/𝜅) equal to the here measured zeta potential
of the spherical particles, see values in Section 2.3.1, we calculated an approximate
value for the Stern potential. This we subsequently used as a starting value for the
least-squares fit of the model to our experimental height distributions. For the wall,
we converted the zeta potential value of −55 mV190 to an approximate Stern potential
using Equation 2.4. For 𝜌𝑝 andΨ𝑝 we used±2𝜎 bounds; we fixedΨ𝑤 to the calculated
value as discussed above, and put no restrictions on 𝜅.

To calculate the expected height distribution, we first obtained the electrostatic and
gravitational potential energy, 𝜙𝑒(ℎc.m.) and 𝜙𝑔(ℎc.m.), respectively, from the force,

𝜙𝑒(ℎc.m.) = 𝐹𝑒(ℎc.m.)/𝜅 (2.5)

𝜙𝑔(ℎc.m.) = −𝐹𝑔ℎc.m. , (2.6)
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which we then used to derive the appropriate Boltzmann distribution,

𝑝(ℎc.m.) = 𝐴 exp

(
−
𝜙𝑒(ℎc.m.) + 𝜙𝑔(ℎc.m.)

𝑘𝐵𝑇

)
, (2.7)

up to a normalization constant 𝐴.134

2.2.7 Sphere near-wall diffusion

To test the validity of our measuring approach and the accuracy of our extracted
gap heights above the wall, we sought to compare our measurements to theoretical
predictions. To this end, and since well established predictions exist for spheres alone,
we determined the translational diffusion coefficient for our sphere measurements
as function of gap height. To calculate the translational diffusion coefficient with gap
height in Section 2.3.1, we proceeded as follows: instead of binning particle trajectories
in time leading to bins with large height variations, we split all trajectories into shorter
trajectories for which the gap height stayed within a certain height range, typically
binning the total height range in bins of 0.30µm and 0.12µm for the 1.1 and 2.1µm
spheres, respectively. For each height bin, the in-plane mean squared displacement
(MSD, ⟨Δ𝑟2⟩) was calculated. The in-plane translational diffusion coefficient 𝐷 and
its error (standard deviation), was obtained from the first data point, typically an
average of at least 300 measurements, of the MSD corresponding to a lagtime Δ𝑡 of
0.053 s using ⟨Δ𝑟2⟩ = 4𝐷Δ𝑡.

2.2.8 Modeling forces and torques on the dumbbell

To elucidate dumbbell behaviors above the wall presented in Section 2.3.3, we ex-
tended the sphere model of Section 2.2.6 to our dumbbells. To this end, we approx-
imated the gravitational and electrostatic forces acting on a dumbbell, by assuming
that the spheres which comprise the dumbbell interact with the wall individually, as
though the other is not present. That is, we use the expressions from Equations 2.1–
2.3 on each sphere, see Section 2.3.4 for the results. This approximation ignores the
distortion of the electrostatic double layer caused by the presence of the other sphere,
but allows us to derive predictions efficiently. We discuss the consequences of this
approximation in Section 2.3.4. The total force and torque acting on the dumbbell c.m.
are thus given by:

𝐹𝐷𝐵 = 𝐹(ℎ1) + 𝐹(ℎ2) (2.8)

𝑇𝐷𝐵 = ((r1 − r𝑐.𝑚.) × 𝐹(ℎ1)e𝑧 + (r2 − r𝑐.𝑚.) × 𝐹(ℎ2)e𝑧) · e𝑥 (2.9)

with ℎ𝑖 , r𝑖 the height and position of sphere 𝑖, 𝜃𝑝 the angle between the long axis
of the dumbbell and the wall and e𝑗 the unit vector along the 𝑗 ∈ [𝑥, 𝑦, 𝑧] axis (see
Figure 2.1b for a schematic).

From the force expressions acting on the individual spheres of the dumbbell, we
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calculated the corresponding potential energy:

𝜙𝐷𝐵(ℎc.m. , 𝜃𝑝) = −2𝐹𝑔ℎc.m. +
2𝐹𝑒(ℎc.m.)

𝜅
cosh

(
𝜅𝑅 sin𝜃𝑝

)
. (2.10)

Equation 2.10 assumes both spheres to have the same radius, see Equation 2.17 for
a general expression for dumbbells made of spheres of unequal radii. This potential
can be differentiated with respect to the ℎc.m. to obtain the force and to 𝜃𝑝 to obtain
the torque. We subsequently used the potential to derive the appropriate height
distribution for the dumbbell c.m. 𝑝𝐷𝐵(ℎc.m. , 𝜃𝑝) up to a normalization constant,

𝑝𝐷𝐵(ℎc.m. , 𝜃𝑝) ∝ 𝐾 exp

[
−
𝜙𝐷𝐵(ℎc.m. , 𝜃𝑝)

𝑘𝐵𝑇

]
(2.11)

𝑝𝐷𝐵(ℎc.m.) ∝
∫ 𝜋

2

− 𝜋
2

𝑑𝜃𝑝 cos (𝜃𝑝)𝐾 exp

[
−
𝜙𝐷𝐵(ℎc.m. , 𝜃𝑝)

𝑘𝐵𝑇

]
, (2.12)

𝑝𝐷𝐵(𝜃𝑝) ∝
∫ ℎ𝑚𝑎𝑥

𝑅

𝑑ℎc.m.𝐾 exp

[
−
𝜙𝐷𝐵(ℎc.m. , 𝜃𝑝)

𝑘𝐵𝑇

]
, (2.13)

where we evaluated Equation 2.12 by numeric integration over all possible plane
angles 𝜃𝑝 , and Equation 2.13 by numeric integration over all possible heights ℎc.m.;
ℎ𝑚𝑎𝑥 was set to 5µm. 𝐾 represents the particle-wall hard-core interaction potential
contribution to the Boltzmann weight:𝐾 = 1 if both spheres of the dumbbell are above
the wall; otherwise 𝐾 = 0. We have calculated the probability as function of the lowest
dumbbell gap height (i.e., the separation between the wall and the bottom of the lower
sphere of the dumbbell) by substituting ℎc.m. = ℎ𝑔 ,𝑙 + 𝑅 + 𝑅 sin𝜃𝑝 in Equation 2.12.
Equivalently, for the upper gap height, we substituted ℎc.m. = ℎ𝑔 ,𝑢 + 𝑅 − 𝑅 sin𝜃𝑝 in
Equation 2.12 to derive its distribution.

Modeling dumbbells of differently sized spheres

Next, we derive the electrostatic and gravitational forces on a dumbbell of two un-
equally sized spheres of radii 𝑅 = 𝑅1 , 𝑅2 and use it to calculate the potential energy
and probability density function in terms of c.m. height ℎc.m. and plane angle 𝜃𝑝 .
The force 𝐹(𝑅, ℎ) on one of the spheres is given by Equation 2.1. The net force
𝐹𝐷𝐵(𝑅1 , 𝑅2 , ℎc.m. , 𝜃𝑝) is then given by

𝐹𝐷𝐵 = 𝐹(𝑅1 , ℎ1) + 𝐹(𝑅2 , ℎ2), (2.14)

ℎ1 = ℎc.m. +
𝑅3

2(𝑅1 + 𝑅2) sin𝜃𝑝

𝑅3
1 + 𝑅3

2

(2.15)

ℎ2 = ℎ1 − (𝑅1 + 𝑅2) sin𝜃𝑝 (2.16)
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Equation 2.14 can be integrated to give the potential energy 𝜙𝐷𝐵(𝑅1 , 𝑅2 , ℎc.m. , 𝜃𝑝)

𝜙𝐷𝐵 = 𝜙𝐷𝐵,𝑔 + 𝜙𝐷𝐵,𝑒 (2.17)

𝜙𝐷𝐵,𝑔 = −
(
𝐹𝑔(𝑅1)ℎ1 + 𝐹𝑔(𝑅2)ℎ2

)
(2.18)

𝜙𝐷𝐵,𝑒 =
𝐵(𝑅1)
𝜅

exp [−𝜅ℎ1] +
𝐵(𝑅2)
𝜅

exp [−𝜅ℎ2] . (2.19)

This potential can be derived with respect to the ℎc.m. to obtain the force and to 𝜃𝑝
to obtain the torque. We subsequently used the potential to derive the appropriate
height distribution for the dumbbell c.m. 𝑝𝐷𝐵(𝑅1 , 𝑅2 , ℎc.m. , 𝜃𝑝) up to a normalization
constant,

𝑝𝐷𝐵(𝑅1 , 𝑅2 , ℎc.m. , 𝜃𝑝) ∝ 𝐾 exp
[
−
𝜙𝐷𝐵

𝑘𝐵𝑇

]
. (2.20)

𝐾 represents the particle-wall hard-core interaction potential contribution to the
Boltzmann weight:𝐾 = 1 if both spheres of the dumbbell are above the wall; otherwise
𝐾 = 0.

2.3 Results and Discussion

2.3.1 Characterization, height distribution and diffusion of

spherical particles above a substrate

First, we measured the sphere dynamics above a planar wall both to assess the
sensitivity of our LED-based in-line holographic microscopy setup, as well as to verify
our new method of using fixed particles to accurately locate the position of the wall.
Indeed, despite the simplicity of our setup, we find an excellent agreement between
the measured holograms and the Mie scattering-based model, see Figure 2.2 Plot 4a
for a direct comparison that additionally shows the residual between data and model.
Moreover, in steps 2 and 3 of Figure 2.2 we show the refractive indices and particle
radii that we obtained during characterization, respectively. Both parameters agree
with expectations: the refractive index, 𝑛silica = (1.42 ± 0.02) agrees with the value
provided by the supplier (1.42) and at the same time the radius of the particles
((0.51 ± 0.03)µm) follows our TEM results ((0.48 ± 0.03)µm).
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Figure 2.4: Sphere-wall gap height and translational diffusion above a planar wall.

a) Experimental sphere-wall gap height distributions together with a fit with the
model from Wu and Bevan 134 which combines gravitational and electrostatic effects
for 1.1µm (orange, fit parameters 𝜌𝑝 = 2.1 g cm−3, 1/𝜅 = 107 nm, 𝜁𝑝 = −41 mV) and
2.1µm (blue, fit parameters 𝜌𝑝 = 2.2 g cm−3, 1/𝜅 = 207 nm, 𝜁𝑝 = −52 mV) spheres. b)

Normalized translational near-wall in plane diffusion coefficient of 1.1µm (light) and
2.1µm (dark) spheres as function of normalized gap height. Error bars denote stan-
dard deviations. Experimental data are plotted against the theoretical prediction that
follows from Ketzetzi et al. 191 Inset shows the non-normalized diffusion coefficient
values for both sphere sizes with gap height.

For high precision measurements, careful consideration should be given to the
determination of both the position and local orientation of the wall, from which the
gap height can be derived, as walls in experiments may be tilted. Here, we achieved
such precision (see Figure 2.3), by using at least three fixed particles that define a
plane and by subsequently obtaining the position of the diffusing particle relative to
said plane. Note that the position and orientation of the plane is fitted accurately to
the positions of the bottom of the fixed particles, since our method also measures the
radii of the fixed particles at the same time.

In Figure 2.4a, we report the distribution of gap heights between the diffusing
spheres of two different sizes and the wall. We find that the height distributions
can faithfully be described using established methods that combine a barometric
height distribution with electrostatic interactions (see also Section 2.2.6 and Wu and
Bevan 134 ). In comparison, the height distributions of the 1.1µm and 2.1µm spheres
feature qualitatively different behaviors. As expected, the smaller spheres probe a
wider range of gap heights, while the axial motion of the larger spheres is more
confined. However, we note that the median gap height of the larger spheres is
slightly greater than that of the smaller ones, which is in line with the higher surface
charge that we measured for these particles using laser doppler micro-electrophoresis.
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The corresponding zeta potentials are (−35 ± 6)mV and (−54 ± 7)mV for the 1.1 and
2.1µm batches, respectively. The excellent agreement that we obtained between the
prediction and our experiment for different particle parameters further verifies the
sensitivity of our setup. We conclude that our method of localizing the plane, and
thereby the wall, using fixed control particles allows for high precision measurements
of colloidal systems near walls.

Finally, to further evaluate our method, we determined the height-dependent trans-
lational diffusivity of the spheres, presented in Figure 2.4b. Additionally, in the same
figure, we compared our data to the theoretical prediction for translational diffusion
with wall gap height of Ketzetzi et al.,191 which covers the entire separation range
from the far-field regime captured by Faxén192 and the near-wall regime captured by
lubrication theory.138 We find that both particle sizes follow the prediction within er-
ror, with small random variations between individual measurements, which demon-
strates that we can accurately determine the diffusion constant across the whole range
of here accessible sphere-wall gap heights.

2.3.2 Dumbbell height distribution above the wall

Having established the validity of our setup and method, we proceeded to study
the near-wall behavior of our colloidal dumbbells. These dumbbells were formed by
random aggregation of two individual spheres caused by Van der Waals attraction;
we expect that the spheres do not roll with respect to each other. Analogously to the
spheres, we measured the three-dimensional position of dumbbells of two sizes (long
axis 2.2 and 4.2 µm respectively), formed either by two 1.1 µm or two 2.1 µm spheres.
We first checked the quality of our hologram analysis in Figure 2.5a and b, where the
good agreement between the model and our experimental images is shown. In this
model, the free parameters are the c.m. position, the dumbbell orientation, the radii,
and the refractive indices of the two touching spheres comprising the dumbbell. We
note that the obtained values agreed with the single spheres results (Figure 2.2 step
2 and 3).

Figure 2.5c shows the positions of the 1.1µm spheres comprising the dumbbell
(dumbbell long axis 2.2µm) as function of time, revealing that one of the spheres is
positioned higher than the other in relation to the wall. Moreover, it clearly shows
that twice during the duration of our 8 min measurement, the spheres drastically
changed positions, i.e. a flipping between upper and lower spheres occurred. Based
on the estimated rotational diffusion time 𝜏𝑟 = 8𝜋𝜂𝑅3

eff/(𝑘𝐵𝑇) ≈ 2 s (with viscosity
𝜂 = 8.9 × 10−4 Pa s and the radius of a sphere of volume equal to the dumbbell
𝑅eff = (2𝑅3)1/3 ≈ 0.69µm), this flipping should have been observed more frequently
if it were a purely diffusive process, faraway from the wall. For the larger dumbbells
in Figure 2.5e, which move further from the wall, we observe despite their larger size
(𝜏𝑟 ≈ 13 s), frequent flipping between the upper and lower spheres.

By fitting the c.m. height distribution of the dumbbell in Figure 2.5d and f using
Equation 2.12 (solid black line), we conclude that our simple model for a dumbbell
particle near a wall describes the experimental height distribution very well. Further-
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Figure 2.5: Height distributions of colloidal dumbbells above a planar wall. a)

Comparison of an experimental image, the fitted model and the residual for a 2.2µm
dumbbell and b) for a 4.2µm dumbbell. The low values of the residuals in a and
b indicate the excellent agreement between data and model. c) Gap heights for the
two 1.1µm spheres that form the dumbbell as function of time. d) Center of mass
(c.m.) dumbbell height distributions (same particle as in b), with the corresponding
gap heights of the lower (L) and upper (U) spheres as inset. Solid lines indicate
the theoretical prediction of Equation 2.12 (fit parameters 𝜌𝑝 = 2.0 g cm−3, 1/𝜅 =

103 nm, 𝜁𝑝 = −30 mV). e) Gap heights for the two touching 2.1µm spheres that form
the dumbbell as function of time. The inset zooms in on a short sequence of the
measurement to indicate the frequent flipping of the dumbbell. f) Center of mass
(c.m.) dumbbell height distributions (same particle as in e), with the corresponding
dumbbell gap heights of the lower (L) and upper (U) spheres as inset. Solid lines
indicate the theoretical prediction of Equation 2.12 (fit parameters 𝜌𝑝 = 2.1 g cm−3,
1/𝜅 = 228 nm, 𝜁𝑝 = −61 mV).
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a)

t = 90 s t = 105 s t = 120 s t = 135 s t = 150 s t = 165 s

b)

t = 90 s t = 105 s t = 120 s t = 135 s t = 150 s t = 165 s

Figure 2.6: Dumbbell orientation and height as function of time. a) Schematics
based on the experimentally tracked positions of a 2.2µm dumbbell at random times,
showing out of plane rotations in addition to height variations. b) Schematics based
on the experimentally tracked positions of a 4.2µm dumbbell at the same times as in
panel a, showing significantly fewer out of plane rotations compared to the smaller
dumbbell of panel a.

more, the fit parameters we have obtained from this fit agree with the single sphere
fit parameters from the height distribution in Figure 2.4a. Additionally, we calculate
the height distribution of the dumbbell gap heights of the lower (L) and upper (U)
spheres, as shown in the inset of Figure 2.5d and f. Compared to the theoretical
prediction from Equation 2.12, we observe a slight shift towards smaller heights for
the lower and, conversely, greater heights for the upper sphere in the experiments.
This may indicate that to fully describe the experimental data, higher order effects
need to be taken into account, such as the distortion of the electric double layer of
one sphere by the presence of the other sphere and the wall. These effects become
more pronounced when the dumbbells are closer to the wall, as can be seen when
comparing panels d and f from Figure 2.5.

2.3.3 Dumbbell orientation with respect to the wall

The stable and significant differences in sphere positions of Figure 2.5c, already in-
dicated that these dumbbells are oriented at an angle relative to the wall. On the
other hand, for larger dumbbells of the same material, the spheres being approxi-
mately at the same height at all times in Figure 2.5e suggested a roughly parallel
orientation with the wall. We verify our observations in Figure 2.6a and 2.6b, where
we visualize orientations that the dumbbells assumed during the measurements at
15 s intervals. Indeed, from the snapshots we clearly see that, while flipping between
lower and upper sphere did occur, the height above as well as orientation with re-
spect to the wall remained relatively constant for the larger dumbbell (Figure 2.6b).
Conversely, the smaller dumbbell featured a richer behavior that includes notable
changes in height, orientation, as well as flipping between which of the two spheres
is the lowest (Figure 2.6a).
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Figure 2.7: Dumbbell orientation with respect to the planar wall as function of

height. a) Distribution of plane angles for a 2.2µm dumbbell. The difference in
peak heights is due to the respective length of the parts of the measurement where
the dumbbell assumed a negative or positive orientation (see inset). We distinguish
negative from positive orientations as outlined in Section 2.2.4. The solid line indicates
the expected distribution based on Equation 2.13 (same parameters as in Figure 2.5d).
The inset shows the plane angle in time. b) Plane angle with c.m. height for the
2.2µm dumbbell. The red area indicates geometrically forbidden configurations. c)

Distribution of plane angles for a 4.2µm dumbbell. The solid line indicates the
expected distribution based on Equation 2.13 (same parameters as in Figure 2.5f).
The inset shows the plane angle in time. d) Plane angle with c.m. height for the
4.2µm dumbbell. In panel c and f, the dashed lines are a contour plot of the kernel
density estimation, corresponding to 12.5 %, 25 %, 37.5 %, 50 %, 62.5 % and 75 % of
the data.
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In what follows, we further quantify our observations, by calculating the angle, 𝜃𝑝 ,
between the long dumbbell axis and wall (see schematic of Figure 2.7a). Strikingly,
we observe in Figure 2.7a a double-peaked structure not predicted by our model:
we find no parallel orientations with respect to the wall for the 2.2µm dumbbell.
Instead, the dumbbell is more likely to be oriented at an angle between 25 and 56 deg
(median 32 deg) with the wall. In separate brightfield microscopy measurements, we
verified that dumbbells of this size and material indeed show frequent out-of-plane
rotations. The preferred range of orientations is robust, and persists even when the
dumbbell flips, i.e. when the lower sphere becomes the upper sphere. The difference
in peak heights in Figure 2.7b is due to the respective length of the parts of the
measurement where the dumbbell assumed a negative or positive orientation. Such
preferred orientations are surprising, since an angle distribution centered around
zero degrees is naively expected in view of the effects of buoyancy and electrostatics,
see the expected distribution depicted by the solid line in Figure 2.7a and 2.7c.

Examining the larger and hence heavier 4.2µm dumbbells in Figure 2.7c, we no-
tice that these indeed have assumed mostly flat orientations with the wall, with the
most probable angles ranging between 2.2 and 9.6 deg (median 6 deg). However, the
double-peak structure in the angle probability density function that we observed for
the smaller dumbbells persists to some degree even for these larger particles, indi-
cating that the increased gravitational force leads to a suppression of the interaction
which causes the dumbbells to adopt a nonparallel orientation. We hypothesize that
the observed angle distributions for both dumbbell sizes stem from a higher-order
electrostatic effect not accounted for in our theory. However, we cannot exclude a
more subtle interplay of other effects, such as buoyancy and hydrodynamics.

Naturally, the question arises whether changes in height relate to changes in dumb-
bell orientation. To test for this, we plot the measured angles as function of center of
mass height. We find that for the smaller dumbbells, there is a clear preference for
lower angles at low heights in Figure 2.7b, the preference for which disappears with
height. That is, further from the wall, the dumbbells may adopt a wider range of
orientations. For the larger dumbbell, we also find a narrower distribution of angles
at lower heights in Figure 2.7d. However, we note that both angle and height distri-
butions are considerably narrower compared to those that correspond to the smaller
dumbbell. At the same time, the particle-wall separation distance is typically greater
than that of the smaller dumbbell: while the smaller dumbbell moves closely to the
wall (see also the red area in Figure 2.7b which indicates geometrically forbidden
configurations caused by particle-wall overlap), the larger dumbbell does not come
into close contact with the wall.

2.3.4 Theoretical considerations for preferred dumbbell

orientations

To gain insight into the preferred orientations and minimal angle measured in Sec-
tion 2.3.3, we extended the gravity and electrostatics model for a sphere above the wall
(Equations 2.1–2.3) to the dumbbell. Briefly, Equations 2.8–2.9 model the dumbbell
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Figure 2.8: Force and torque acting on a dumbbell by balancing electrostatics and

gravity. a) The force as function of 𝜃𝑝 and ℎc.m. for the 2.2µm dumbbell. For all
orientations, there is a height range for which the net force is zero. b) The torque as
function of 𝜃𝑝 and ℎc.m. for the 2.2µm dumbbell. c) The force as function of 𝜃𝑝 and
ℎc.m. for the 4.2µm dumbbell. The area where the net force is zero is smaller com-
pared to the smaller dumbbell in panel a. d) The torque as function of 𝜃𝑝 and ℎc.m.

for the 4.2µm dumbbell. For the same range of angles as in panel b, the torque on
the larger dumbbell is considerably higher than the thermal energy for the majority
of angles, causing the dumbbell to adopt a flat orientation with respect to the wall. In
all panels, the red lines indicate regions where both the force and torque are simulta-
neously small compared to the thermal energy, indicating a possibility of observing
the dumbbell at those heights and orientations. Values outside the indicated range
of the colorbars are clipped to visualize the low force and torque region relevant to
the experiments, while white regions represent sterically forbidden combinations of
height and angle. Dashed lines are a contour plot of the kernel density estimation of
the experimental data (see Figure 2.7).
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as two connected (but otherwise non-interacting) spheres, by balancing electrostatic
and gravitational forces. This approximation ignores the distortion of the electrostatic
double layer caused by the presence of the other sphere, but allowed us to probe the
origin of the dumbbell orientation described in Section 2.3.3, by examining whether
the combined effects of electrostatics and gravity would result in zero force and
torque solutions as function of plane angle and height above the wall.

By applying the reduced model of Section 2.2.8 to the experimental data, we reach
a number of interesting conclusions in Figure 2.8, where we plot the results from the
model. Figure 2.8a shows that the net force on the 2.2µm dumbbell vanishes for a
range of heights and orientations. That is, for each given orientation there exists a nar-
row distribution of heights where the force balance is zero. As expected for a particle
with a larger mass, for the 4.2µm dumbbell in Figure 2.8c the range of heights where
the net force vanishes is considerably narrower compared to the 2.2µm dumbbell
of Figure 2.8a. To answer whether such configurations are expected to be stable, one
must additionally consider the possibility of a reorienting torque stemming from the
combined effect of gravity and electrostatics acting on the dumbbell. We expect that
the interplay between the magnitude of this reorienting torque and a random torque,
stemming from thermal fluctuations, causes changes in the dumbbell orientations
with respect to the wall. In the case of a reorienting torque that is large in comparison
to the random torque (≈ 1 𝑘𝐵𝑇), we expect a mostly parallel orientation with respect
to the wall. In contrast, for a reorienting torque that is small compared to the random
torque, we expect largely fluctuating orientations. In what follows, we examine the
presence and magnitude of the reorienting torque.

Interestingly, for the smaller 2.2µm dumbbells, a regime arises where both net
forces and reorienting torques are simultaneously below the thermal force and energy,
respectively, for certain combinations of dumbbell-wall separations and nonzero
plane angles (as indicated by the red lines in Figure 2.8a and b). The presence of such
a regime that spans throughout state space suggests that the large variations of the
angle as found in Figure 2.7 (evidenced also in the dashed lines of Figure 2.8a and b)
are expected. This is further corroborated by the angle probability plot that follows
from our model in Figure 2.9a for heights relevant to our experiment. For the largest
dumbbells, our minimal modeling (Figure 2.8c-d and Figure 2.9b) agrees well with
the almost parallel orientations observed in the experiments (Figure 2.7d), which
mostly fall within the high reorienting torque regime (see dashed line in Figure 2.8c).

Our minimal dumbbell model also sheds light on the relation between height
and orientation observed in Figure 2.7b and d, indicated also by the dashed lines
in Figure 2.9. Although the agreement is not fully quantitative, the model shown
in Figure 2.9a and b predicts an increase in the most probable angle with greater
heights, similar to our experiments. Moreover, the height and orientation combina-
tions that the dumbbells experimentally adopt most often coincide with the zero net
force regime (and equivalently nonzero probabilities in Figure 2.9a and b) for both
dumbbell sizes, as evidenced by the overlap between the experimental data and the
areas of higher probability.
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Figure 2.9: Dumbbell PDF as function of height and orientation by balancing elec-

trostatics and gravity. a) The probability of observing a combination of 𝜃𝑝 and ℎc.m.

for the 2.2µm dumbbell, as predicted by Equation 2.11 and measured in the experi-
ments (dashed line). b) The probability of observing a combination of 𝜃𝑝 and ℎc.m.

for the 4.2µm dumbbell. White regions represent sterically forbidden combinations
of height and angle. Dashed lines are a contour plot of the kernel density estimation
of the experimental data (see Figure 2.7).

Finally, we notice that the range of experimentally observed angles for the 2.2µm
dumbbells does not fully coincide with the range of angles that fall within the low
force and torque regime from the model. For torques below the thermal energy, the
model also allows for angles below 17 deg, which we did not observe here for these
dumbbells. We note that the discrepancy between our model and experiment does not
stem from a difference in size between the two spheres in the dumbbell. As can be seen
in Figure 2.10 and Figure 2.11 where we additionally account for (an experimentally
relevant) 5 % dispersity in the sphere sizes, the most probable heights are only slightly
shifted towards greater values. The individual contributions of the gravitational and
electrostatic potential to the net potential energy are shown in the first and second
column, respectively, in Figure 2.10 (dumbbells of the same volume as the 2.2µm
dumbbells) and Figure 2.11 (dumbbells of the same volume as the 4.2µm dumbbells).
It is clear that the electrostatic potential is not negligible compared to the gravitational
potential, therefore, the height from the surface is greatly influenced by electrostatic
repulsion despite the relatively short Debye length (on the order of 150 nm). We have
calculated two experimentally relevant size dispersities: an experimentally relevant
5 % size dispersity and a highly anisotropic dumbbell (snowman particle) for which
𝑅2 ≈ 2𝑅1. We have chosen the 𝑅1 , 𝑅2 in such a way that the total mass of the
dumbbell is the same as the 𝑅1 = 𝑅2 = 𝑅 case. As a convention, positive angles
denote the orientation where the sphere of the smaller radius 𝑅1 is higher than the
sphere of the larger radius 𝑅2, as given in Equations 2.15–2.16.
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Figure 2.10: Effect of sphere size dispersity on dumbbell plane height and orienta-

tion probability density for dumbbells of the same volume as the 2.2µm dumbbells
(𝑅 = 0.54µm). All gravitational and electrostatic potentials were calculated accord-
ing to Equation 2.18 and Equation 2.19, respectively, and given in units of 𝑘𝐵𝑇. All
probabilities were calculated according to Equation 2.20. a) Gravitational potential
for 𝑅1 = 𝑅2 = 𝑅. b) Electrostatic potential for 𝑅1 = 𝑅2 = 𝑅. c) PDF for 𝑅1 = 𝑅2 = 𝑅.
d) Gravitational potential for 𝑅1 = 0.975𝑅, 𝑅2 = 1.024𝑅. e) Electrostatic potential
for 𝑅1 = 0.975𝑅, 𝑅2 = 1.024𝑅. f) PDF for 𝑅1 = 0.975𝑅, 𝑅2 = 1.024𝑅. g) Probabil-
ity difference Δ𝑝 = 𝑝(0.975𝑅, 1.024𝑅) − 𝑝(𝑅, 𝑅). h) Gravitational potential for 𝑅1 =

0.605𝑅, 𝑅2 = 1.212𝑅. i) Electrostatic potential for𝑅1 = 0.605𝑅, 𝑅2 = 1.212𝑅. j) PDF for
𝑅1 = 0.605𝑅, 𝑅2 = 1.212𝑅. k) Probability difference Δ𝑝 = 𝑝(0.605𝑅, 1.212𝑅)−𝑝(𝑅, 𝑅).
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Compared to the case where both spheres are equal, increasing the size dispersity
between the two spheres has two effects: firstly, the distribution around 𝜃𝑝 = 0 is no
longer symmetric, as shown in Figure 2.10 and Figure 2.11d-k. Secondly, a larger range
of both angles and c.m. heights become accessible. However, the overall dumbbell
behavior that the model yields remains the same with or without polydispersity in
the sphere size. We hypothesize that the discrepancy between our minimal model
and the experimental data may be resolved by considering higher-order electrostatic
effects. However, higher-order effects, together with the possibility of dynamic charge
redistribution in the double layers which may be relevant here, cannot be described
by a simple analytical model.

2.4 Summary and Conclusions

We have measured the height of colloidal particles relative to planar walls with high
precision by means of holographic microscopy. The position of the wall was tracked
in time by following the position of spheres fixed on its surface, thereby allowing
for an accurate measurement of the location and orientation of the plane and wall.
For spheres, the obtained height distributions and diffusivities as function of height
agree with well known theoretical predictions. More importantly, we studied the
height distributions and orientations of colloidal dumbbells relative to walls. We
found that smaller dumbbells assume nonparallel orientations with the wall and
further examined the connection between orientation and particle-wall separation.
Conversely, we found that larger dumbbells of the same material were always oriented
almost parallel to the wall.

We showed that, despite its simplicity, a minimal model accounting for gravity and
electrostatics not only faithfully describes the dumbbell height distribution, but also
predicts stable configurations for a large range of orientations and dumbbell-wall sep-
arations. However, our model predicts a larger range of stable orientations than was
found in our experiment, indicating that refinements that account for higher-order
electrostatic effects may need to be considered. We thus hope that our findings will
encourage further investigations of near-wall particle dynamics. Our results high-
light the rich dynamics that nonspherical particles exhibit in the proximity of walls
and can aid in developing quantitative frameworks for arbitrarily-shaped particle
dynamics in confinement.
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Figure 2.11: Effect of sphere size dispersity on dumbbell plane height and orienta-

tion probability density for dumbbells of the same volume as the 4.2µm dumbbells
(𝑅 = 1.04µm). All gravitational and electrostatic potentials were calculated accord-
ing to Equation 2.18 and Equation 2.19, respectively, and given in units of 𝑘𝐵𝑇. All
probabilities were calculated according to Equation 2.20. a) Gravitational potential
for 𝑅1 = 𝑅2 = 𝑅. b) Electrostatic potential for 𝑅1 = 𝑅2 = 𝑅. c) PDF for 𝑅1 = 𝑅2 = 𝑅.
d) Gravitational potential for 𝑅1 = 0.975𝑅, 𝑅2 = 1.024𝑅. e) Electrostatic potential
for 𝑅1 = 0.975𝑅, 𝑅2 = 1.024𝑅. f) PDF for 𝑅1 = 0.975𝑅, 𝑅2 = 1.024𝑅. g) Probabil-
ity difference Δ𝑝 = 𝑝(0.975𝑅, 1.024𝑅) − 𝑝(𝑅, 𝑅). h) Gravitational potential for 𝑅1 =

0.605𝑅, 𝑅2 = 1.212𝑅. i) Electrostatic potential for𝑅1 = 0.605𝑅, 𝑅2 = 1.212𝑅. j) PDF for
𝑅1 = 0.605𝑅, 𝑅2 = 1.212𝑅. k) Probability difference Δ𝑝 = 𝑝(0.605𝑅, 1.212𝑅)−𝑝(𝑅, 𝑅).
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