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A. Appendices

A.1. Floppy motion of a triangular building block

The specific geometry of the triangular
building block introduced in chapter 2, as
shown in Fig. 2.1 and in Fig. A.la, gives
rise to a local floppy mode: the block
can change its internal shape without de-
forming any of the rigid bonds. During
this deformation, bonds pivot around the
freely hinging nodes that connect them
(Fig. A.1b).

The positions {p;}5_; of the block’s six
nodes during the floppy deformation can
be found via trigonometry. The deforma-
tion is prescribed by a single control pa-
rameter, the block strain § € [—1,1] such
that [(1+6) encodes the distance between
the two majority edge-nodes. The dimen-
sionless quantity § can be seen as a strain
measure: positive ¢ indicate expansion of
the block to a “fat” shape, associated with
a positive block spin, while negative values
signify contraction to a “thin” configura-
tion with a negative block spin.

We calculate all node positions in units
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Fig. A.1l.: Floppy motion of a building block.
a, Anisotropic building block consisting of edge
bonds (grey), internal bonds (black), corner nodes
(black), majority edge-nodes (light green), and a
minority edge-node (dark green). Node positions
p are indicated in the zy-plane: the nodes are
positioned at multiples of the lattice basis vec-
tors a1, ao with lattice constant I. b, Deformed
building block in fat, expanded state. In the lin-
ear regime of small deformations, the edge-nodes
move by a deflection w;. The two majority edge-
nodes are separated by a length I(1 + §), where
6 is a measure of block strain: it is positive for
expansion (fat state) and negative for contraction
(skinny state) of the block.

of the block’s bond lengths I, which is set by the triangular basis vectors a1 = [(1,0) and
az = 1(1/2,4/3/2); the block’s nodes are positioned at integer multiples of these vectors.
The node positions as indicated in Fig. 2.1a are then given by the expressions below.
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where the equality 6 = 2cos# — 1 has been used for legibility. Here, the origin of the zy-
plane is chosen to lie at the centroid of the triangular block (see Fig. A.1a). In the linear
regime of small shape changes such that § << 1, the node displacements {u;}%_;, again
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A. Appendices

in units of bond length [, are determined up to rigid-body translations and rotations by:
@) == (3)
ur = u2 = | 5
V3
o) e ()
us = Ugq4 = 1 (AQ)
(0 3v30

o (1) == ()
° 550 ¢~ \o)"

In short, during the floppy deformation, the block’s edge nodes move radially outward
or inward from the triangle’s centroid over a distance \% during expansion or contraction.

164



A.2. Constructing delocalized SS-states
A.2. Constructing delocalized SS-states

We show how to construct the H, — 1 delocalized SS-states for any H-superhexagon
metamaterial with H, > 1 odd local loops. We consider the schematic shown in Fig. A.2,
which illustrates how delocalized SS-states can be constructed iteratively. The network
shown contains H, = 5 odd local loops (numbered 1-5) that contains H, — 1 = 4 delo-
calized SS-states (Fig. A.2a).

We first show how to create a delocalized SS-state running between a pair of two odd
local loops (numbered 1, 2). We start by identifying a small subsection of the network to
construct the SS-state in, consisting of the two incompatible superhexagons containing
the odd local loops, and an arbitrary string of compatible superhexagons that connects
the pair (Fig. A.2a, orange infill). We then transform this metamaterial strip into a com-
patible structure—in which all SS-states are known exactly—via a series of supertriangle
rotations (Fig. A.2b, yellow triangles, arrows) that sequentially flip the parity of the local
loops. We are left with a compatible structure in which all loop and radial SS-states are
found by inspection (Fig. A.2c, radial SS-states not shown for clarity). As explained in
Fig. 4.5e-g, these loop SS-states may then be recombined via sequential application of
Eq. (4.4) under inversion of the applied supertriangle rotations, analogous to the con-
struction discussed in Sec. 4.6.1. The linear combination of loop SS-states thus produces
a delocalized SS-state of the metamaterial strip with the two odd local loops 1 and 2
(Fig. A.2d, arrows).

In a metamaterial with H, odd loops, we can find H, — 1 independent delocalized
states using the above procedure. Independence is ensured by selecting H, — 1 indepen-
dent pairs of incompatible superhexagons (such that each is selected at least once), with
strings of compatible superhexagons running between them. Figure A.2e demonstrates
the three remaining delocalized SS-states found between defect pairs (2,3), (3,4), and
(4,5) in our example.

It should be noted that the delocalized states are not unique: their shape depends
on the path between each defect pair, and the choice of supertriangle rotations. How-
ever, the space spanned by the resulting basis of SS-states does not depend on the path
choice. In particular, this procedure renders an independent, non-orthogonal set of H,—1
delocalized SS-states. Together with the known radial and loop SS-states, which are iden-
tified by inspection, a complete and independent basis of SS-space can be found for our
metamaterials with any defect configuration.

A.3. Evolution of LB-spaces under architectural transformations

In Sec. 4.6, we discussed the evolution of a metamaterial’s stress space (consisting of
the SS- and complementary LB-space) under architectural transformations. We demon-
strated that the evolution of the SS-space is limited to one, two, or no changing SS-states
for distinct types of supertriangle rotations, denoted process I, process 11, and process III,
respectively. Here, we derive the concomitant evolution of the metamaterial’s LB-space
for all three processes.
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tension
=2 =1 0

Fig. A.2.: a, An incompatible metamaterial architecture containing H, = 5 odd local loops (numbers
1-5, red bold lines) and H — Hy = 72 even ones (black bold lines). The metamaterial contains
H, — 1 = 4 delocalized SS-states, which are constructed on metamaterial paths connecting four
independent pairs of incompatible hexagons (infills in orange, 1-2; yellow, 2-3; green, 3-4; and blue,
4-5). b, The incompatible metamaterial strip between superhexagons 1,2 is made compatible by
sequential supertriangle rotations (yellow triangles, arrows) that change the parity of local loops.
¢, The compatible metamaterial's SS-states are spanned by radial (not shown) and loop SS-states
(colour bar). d, The loop SS-states are recombined into a delocalized SS-state of the incompatible
metamaterial strip using Eq. (4.4) (arrows), yielding a delocalized SS-state between the incompatible
superhexagons 1 and 2. e, With the procedure demonstrated in b—d, the other three delocalized
SS-states are constructed between the remaining pairs of odd local loops.
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A.3. Evolution of LB-spaces under architectural transformations
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Fig. A.3.: Evolution of the LB-space under a supertriangle rotation according to processes | and Il. a,
Process I: a compatible network A is transformed to an incompatible network B via an intermediate
network AB, by first removing bond r and then adding bond p (see Fig. 4.7). For network A,

we construct an orthogonal basis for the LB-space that contains those states {3’2} that remain in
network AB as well as B. The full bases of networks A and B additionally contain a state that
is added (3’5) and a state that is modified (52 to &%.7) during the architectural transformation;
for details on the execution of steps (i)-(iii), see text. b,Process II: an incompatible network B is
transformed to an incompatible network C' via an intermediate network BC', by first removing bond
r and then adding bond p (see Fig. 4.8). For network B (P), we construct an orthogonal basis for

the LB-space that contains states {5} ({35;}) without stress on 7 (p), and &2 (35) with finite
stress there. We construct a suitable basis of LB-space for the intermediate network BC' (with no

. . . . ~ B
stress on p or r) via an orthogonalization procedure, which produces LB-states {az,gp} that are
shared with networks B and C, and states aA'ZBpC,aA'ZB,,C that are modified to states 3‘573 and 3‘2 in
networks B and C' respectively. For details on the execution of steps (i)-(v), see text. Black squares

signify orthogonality, and arrows with numbers indicate changes in the dimensions of the LB-space.
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A.3.1. Process |: compatible to incompatible metamaterial

We describe the evolution of the LB-space when a compatible network A is transformed
into an incompatible network B; this evolution is shown schematically in Fig. A.3a. The
architectural transformation occurs via a supertriangle rotation that removes a bond r
and adds a bond p (see Fig. 4.7a). The LB-space evolution is closely related to the evo-
lution of the SS-space discussed in Sec. 4.6.2 (see Fig. 4.7b), and involves three separate
calculations (%)-(%ii) below.

(i) We aim to construct a basis for the LB-space of network A that consists of one
LB-state, 3':‘ , that has a finite stress on bond r, and a remaining set of orthogonal vectors
{3';47,} that have zero stress om bond r (Fig. 4.7¢c, left). Under removal of bond r, only
the LB-state 3';4 will be modified. Since the set {3';4r} is unaffected by removing r and

adding p, we do not need to construct it explicitly, and focus on identifying 3’? instead.
To construct this unique LB-state with nonzero stress on bond 7, note that the stress

state # must be a linear combination of the SS-state %:‘ (see Sec. 4.6.2) and 3f—the

. . 2 2 A .
only two stress states with nonzero stress on r—and since 7,. and &, are perpendicular,
we find

&1 o Rej(f,71) (A.3)

as shown in Fig. A.3a, left. Here, we define the vector rejection Rej( ) to be the com-
plement of vector projection: Proj(u,v) = 22v and u = Proj(u, v) + Rej(u, v), so that
Rej(u,v) :=u — 22w,

(i) When bond r is removed from network A, the LB-state 3:‘ must disappear; the
LB-states {3"2} remain. However, as the number of LB-states in AB is the same as in

network A (see above), the intermediate network AB must contain a new LB-state, 3'?TB,
with zero stress on bond r. This state must be perpendicular to the SS-space spanned
by {7%;47,}, and to the LB-states {3";}. However, éfTB does not need to be perpendicular
to the state ‘f"f, so that we can construct 3‘23 from the states ‘f"f and 7:

&L o« Rej(Fu,#) (A.4)

as shown in Fig. A.3a, middle.

(#it1) Finally, when network A B evolves to network B by adding bond p, a new LB-state
35 must appear. The new LB-state is perpendicular to both the SS-space spanned by
{‘f"fr} as well as the LB-space spanned by {{3;1}, 3';4:3}, and has a finite stress on bond

~

p. It is easy to check that the stress state p uniquely satisfies these criteria: 3’5 =p
(Fig. A.3a, right).

In summary, as we illustrate in Fig. A.3a and Fig. 4.7, the stress spaces of architec-
turally related networks A and B are identical up to the following four independent

vectors: the SS-state %f, present in network A, but not in B; the LB-state p, present in
B but not in A; and the LB-state 3';4 in network A that changes to the LB-state 3';4:3 in

network B. These four independent vectors are spanned by the set {%f, 7, P} consisting
of the mutated SS-state and the pure stress vectors on bonds p and r.
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A.3.2. Process Il: incompatible to incompatible metamaterial

We now describe the evolution of the LB-space when an incompatible network B is trans-
formed into a distinct incompatible network C as shown in Fig. A.3b, via a supertriangle
rotation that removes a bond r and adds a bond p (see Fig. 4.8a). This evolution is
closely related to the evolution of the SS-space discussed in Sec. 4.6.3 (see Fig. 4.8b), and
involves five separate calculations ()-(v) below.

We can construct the LB-spaces of networks B and C, analogous to step (i) in pro-
cess 1. This readily yields bases (i) {{3‘5},3’?} and (i) {{3‘2,},3’5} (Fig. A.3Db, left
and right). However, as the sets {3'5,.} and {3'2,} are not the same, the bases are not
suitable to compare the LB-spaces.

(iii) We now construct an appropriate basis for the LB-space of network BC', which

contains a set {3‘5,;,} that is shared with the LB-spaces of network B and C' (Fig. A.3b,

middle). First, we can start from the LB-basis (i), remove bond r, and analogous to
step (i) of process I, obtain a basis {{3’5}, 3'ZBTC}. Second, starting from the LB-basis
(ii) and removing bond p we obtain a basis {{3'51)},3'57,0}. These two bases both span

the LB-space of network BC. We now use this to construct the appropriate basis of the
LB-space, {3'51,0,3'507 {3’2,2,.}}, so that the set {3’2,%} is shared with the LB-spaces
of network B and C. We first perform a Gram-Schmidt process on the ordered set
{3'ZBPC, 5'5TC, «{fffr}}7 and then define {3fp§r} as the last Ny, — 2H — 1 vectors of the re-

sulting orthonormal basis. To facilitate comparison with networks B and C', we obtain a

full LB-space basis of network BC' by adding the vectors éfpc and 35;, so that all but
the first two basis vectors are orthogonal.

We now obtain appropriate bases for the LB-spaces of networks B and C as follows
(see Fig. A.3b, left and right).

(iv) We construct a basis for the LB-space of network B by ensuring the orthogonality
of the LB-space basis of network BC, {3'ZBPC, ézBTC, {35;;}}, with the SS-space of network

B. We do this by rejecting each vector on the SS-state %f , that is present in network

B but not in BC. This rejection procedure results in an LB-space basis of network B:
~ BC

~B 2B
{azp7 O, {szzr}}'

(v) A similar procedure results in an analogous LB-space basis for network C": {3’2, 3’5, {3'51,0”}}.

In summary, as shown in Fig. A.3b and Fig. 4.8, the stress spaces of architecturally
related networks B and C are identical up to the following vectors: the SS-state %f,

present in network B, but not in C'; the SS-state ‘f"f , present in network C, but not

in B (see Sec. 4.6.3); the LB-state &. in network B that changes to the LB-state 3’2
in network C'; and the LB-state 35 in network C' that changes to the LB-state 3'zBp

in network B. These four independent vectors are spanned by the set {"IA_'f ,%g,ﬁ,ﬁ}

consisting of the mutated SS-states and the pure stress vectors on bonds p and 7.
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A.3.3. Process lll: compatible to compatible metamaterial

A compatible network A may be transformed to a distinct compatible network A’ by
some supertriangle rotations that remove a bond r and add a bond p. Only supertrian-
gle rotations at the system’s edge that do not change the parity of any local loops (see
Sec. 4.5) can generate such a network pair. By construction, these special architectural
transformations do not change the shape of any local loops, and thus do not affect the
SS-space (see Sec. 4.6.1). As a consequence, under an externally applied load that is
supported by both networks A and A’, the stress response of both networks must be
identical. Since only the bonds r and p differ between the two networks, the stress spaces

of networks A and A’ are identical up to the following vectors: the LB-state 3';4 =7,

present in network A but not in A’, and the LB-state 3_;1’ = p, present in A’ but not
in A. Since the stress response to external loading that is supported by both networks
must be identical, the LB-states 7 and p will therefore not contribute to the network’s
mutual supported stress responses: the bonds r and p remain unstressed.

A.4. Mechanical interpretation of evolving LB-states

Having discussed the evolution of LB-space under supertriangle rotations in Appendix A.3,
we now present the mechanical interpretation of the mutated LB-states. We show here
that the few stress states that are added, removed, or modified in processes I and II
(Secs. 4.6.2 and 4.6.3) correspond to the metamaterials’ stress response to well-defined
external nodal loads. In particular, we show below that all mutated LB-states correspond
to nodal load dipoles along the two bonds 7, p that are mutually exclusive between the
post- and pre-transformation networks. A nodal load dipole generates equal and opposite
forces at two nodes, and is oriented along the connecting line between the two nodes.
The mutating LB-states either generate a large stress on a single bond and a diffuse field
around it, or an extended stress field around a missing bond, as illustrated in Fig. A.4.

We first consider the stress response evolution of process I, when a compatible material
A is transformed into an incompatible material B (Fig. A.4a). During this transforma-
tion, the LB-state &2 of network A changes. The physical interpretation of this stress
state is as follows. The state &2 is a linear combination of the SS-state ‘f"f and the unit
bond stress 7, such that the final LB-state is orthogonal to the SS-state (Eq. (A.3)). The
unit bond stress corresponds via Hooke’s law to a nodal load dipole v/2 fr: that is, the
two nodes connected by bond r undergo an equal and opposite force, extending the bond
(here, the prefactor v/2 is a consequence of normalization). The SS-state, by definition,

generates no nodal loads. Thus, the stress state &2 in network A must map to the nodal
load state v/2f,:

A =7 — (7 - FOFD o V2F, (A.5)

In network B, the LB-state &2 is replaced by a new LB-state 528 Tt is a linear

combination of the SS-state %f and the unit bond stress 7 such that any stress on r is
cancelled out (see Eq. (A.4)). Here, again, the unit bond stress 7 maps to the nodal load

V2 ﬁ«, while the SS-state ‘f"f generates no load. Hence, in network B,

1 “ ~
AP =p - — 7 o V2 (A.6)
T,
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A process I
LB-space

A

v tension X
g -1 0 1 V2§,
[ S
b Process 11
LB-space
B

Fig. A.4.: Mechanical interpretation of the LB-states that change under a supertriangle rotation for
processes | and Il. a, A compatible network A transforms into an incompatible network B according to
process |. One LB-state 3:‘ (colour bar) changes to 3';4,,3 under the transformation; both LB-states
map to the same nodal load dipole \/§f,~ along bond r (arrows). One LB-state 3’5 is added in
network B: it maps to the nodal load dipole \/§fp along bond p, which load is not supported in
network A. b, An incompatible network B transforms into an incompatible network C' according to

process |l. The LB-state 3’7],3 in network B changes to 32 in network C'. Both LB-states map to
the same nodal load dipole v/2f, along bond r (arrows). In addition, the LB-state 35 in network C

changes to &2 in network B. Both LB-states map to the same nodal load dipole \/§fp along bond

zp
p (arrows).
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Lastly, process I introduces a new LB-state 3’5 = p in network B. Using the same

arguments as above, we find that the new LB-state corresponds to a load dipole v/2 fp
along bond p:

gy =p < V2fy . (A7)

This LB-state has no counterpart in network A: there, the nodal load v/2 fp activates
the compatible material’s floppy mode, and is not supported. The remaining LB-states

{3';47,}, that are shared between networks A and B, are unchanged; they map to identical
loads in both networks. An overview of the mutated LB-states, and the nodal loads
corresponding to the latter, is shown in Fig. A .4a.

Secondly, we treat the stress response evolution of process II, where an incompatible
material B is mutated into an incompatible material C' (Fig. A.4b). There are two LB-
states that are modified during this transformation: 3? and 3'2,0 in network B are
changed into 3‘5 and &8¢ in network C. Using an analogous argument as for process I,
the LB-state 3’,{3 in network B maps to the nodal load v/2 fr:

gl = ¢ — (- 7#0)77 & V2. (A.8)
In intermediate network BC"

—_BC __
zr — T —

2 o V2, (A.9)

qQ

~ aB
T,

and finally in network C":

e B (R R)E :
= V2 (A.10)
T

_C .. _BC = .
O'ZTZRGJ(O'i Tp ) =T —

P
Similarly, the LB-state 3’5 maps to the nodal load v/2 fp in network C"

- C ~ ~ 2C\2C A

g, =p—(p-7,)7, & V2f, (A.11)

In intermediate network BC:

1 N ~
58 =p— —F, V2, (A.12)
P-Ty

and finally in network B:

7A__C (;__C %B)%B

— .,.—BC 2B A - Ty r A

5., = Rej(52, 7)) =p - +—L V2, (A.13)
P-Tp

The remaining LB-states {3’551)} are unmodified and map to the same nodal loads in
both networks. The mutated LB-states are illustrated in Fig. A.4b.

Lastly, we discuss the stress response evolution for process III, where a compatible
material A transforms to a distinct compatible material A’ There are two LB-states that
are modified during this transformation: 7 and p are mutually exclusive LB-states of
networks A and A’ respectively. Using similar arguments as above, the LB-state 7 in
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network A maps to the nodal load dipole v/2 fr:

This load dipole is not supported in network A’—it activates the global floppy mode of
the system—and there is no counterpart to the LB-state # in network A’. Analogously,
in network A’,

b V2f,, (A.15)

and this LB-state in network A’, being unsupported by network A, has no counterpart
in the LB-space of A.

A.5. Derivation of stress response differences

With our description of the stress space evolution and its physical interpretation in Ap-
pendices A.3 and A.4, we are now in a position to derive exactly how a metamaterial’s
stress response under external loading changes when its architecture is changed by ro-
tating a supertriangle. In particular, we found that the SS-space of two networks related
by a single supertriangle rotation are identical up to at most two mutually exclusive
SS-states. Comparing two networks, related by a supertriangle rotation, by calculating
their stress response difference Ao under identical supported loads, we will now show
that Ao is a linear combination of only those SS-states that have been changed by the
network’s architectural transformation.

In any network, the stress response o to an arbitrary supported load f can be written
as a unique linear combination of LB-states: o =) _._, (Cio;), where the set {0} is any
linearly independent basis of stress vectors spanning the LB-space, and the coefficients
C; depend on the applied load, the material’s geometry, and the choice of basis. The
exact coefficients can be calculated using the matrix formalism discussed in Sec. 4.2. We
use this representation to find an expression for the stress response difference between
two networks, related via process I, II, or III, under identical supported loads.

We first consider networks A and B, related via process I. When structure A is sub-
jected to a supported load f—that is, a load that does not excite the FM of network
A—the stress response o' is written in a straightforward way:

Nyp—2H—1
o= 3 (Oié;“m) +C.5Y (A.16)

=1

where we have chosen a basis of LB-space such that the LB-states {3‘;} are shared be-
tween the two networks, and the LB-state &2 is unique to network A (see Appendix A.3).
As discussed in Appendix A.4, when a supertriangle is rotated in network A to produce
network B, the nodal load dipole generated by the stress state &2 in network A is sup-
ported instead by the stress state 2B in network B; in addition, the basis of LB-space
now contains an extra LLB-state p that maps to a load dipole along bond p. For network

B, the stress response to the same external loading f is then written as:

Np—2H—1
o= Y (CEL) + Ol Cop (A7)

=1
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Comparing Egs. (A.16) and (A.17), we note that the LB-states {3';4,~,i} are shared between
networks A and B, and map to identical loads, so that the coefficients C; are equal.
Furthermore, C, = 0 by necessity, since the load dipole along bond p excites the FM of
network A and cannot be part of our load f, which must be supported by both networks.
Lastly, the stress field 522 corresponds to the stress field &2—both mapping to the load
dipole v2 fr—so that the coefficient C, in both equations is equal. Using Egs. (A.5-A.6)
and Eqs. (A.16-A.17), we find the following expression for the stress response difference
between networks A and B:
. aA\o
Ao =0 - = Crw%f € Sp(f“’f) . (A.18)
T,

Eq. (A.18) shows that the stress response difference between the two networks is parallel

to the single mutated SS-state 5"? . We confirm this finding via numerical calculations:
the stress response difference between network A with no defect and network B with
a structural defect, illustrated in Fig. 4.1a (right) corresponds exactly to the lost state
of self stress shown in Fig. 4.9b (top), resulting in a differential stress response that is
localized near the defect.

A similar procedure allows us to find the stress response difference between two distinct
incompatible networks B and C, related via process II. The stress response of network
B may be written as:

Ny—2H—1

o” = Y (CELL) +Cal 4Gl (A.19)

i=1
while the stress response of network C' is given by:
Np—2H—1

of= Y (ciéfpim) + 058 + 058 (A.20)

=1

Here, the LB-states {3‘2Bpir} are shared between networks B and C', while the LB-states

&2 and 6'5’;, that map to load dipoles v/2 fr and v/2 fp in network B, are replaced by their
commensurate counterparts &¢. and 6']? in network C, consistent with Appendix A.4.
Using Eqgs. (A.19-A.20) and Eqgs. (A.8-A.13), the stress response difference between the
two structures then reduces to the following equation:

No=0c" —0

(A.21)

€ Sp(Fr, 7y)

Once again, the two networks’ stress response difference is contained in the space spanned
by their two mutually exclusive SS-states, %f and 7%5 . Note that the stress response
difference of Eq. (A.18) (process I) is a special case of the general expression in Eq. (A.21)
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for process II.
Consider finally the two compatible networks A and A’, related via process II1I. With
the same procedure as for processes I and 1I, we can write:

Np—2H—1

o= 3 (cié—fm-) O, (A.22)

i=1
while the stress response of network C' is given by:

Ny—2H -1

o= > (CEh) +Cp (A.23)

i=1

By definition, under a load that is supported in both networks, the coefficients C) and
Cp must be zero (see Appendix A.4); and hence, there is no stress response difference
between the two structures A and A’ under identical, supported loads. Again, the stress
response difference for process I1I is a special case of Eq. (A.21) for process II.

In conclusion: the stress response difference between two networks (related by a single
supertriangle rotation) under identical, supported loading is contained in the span of the
structures’ mutually exclusive SS-states. There may be zero, one, or two such states,
corresponding to processes III, I, and II respectively. The precise magnitude of the stress
response difference can be found using Eqgs. (A.18) (process I) and (A.21) (process II);
the stress response difference for process 11l is trivially zero.
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A.6. BoPET film properties

To create multistable groovy sheets, their base material must be stiff under gravity; de-
formable with minimal permanent damage; and readily formable into a grooved geometry
(section 5.2). Here, we discuss to what extent polymer film meets these criteria.

PET is a thermoplastic polymer resin in the polyester family'®®, whose molecular

chain contains ester functional groups. BoPET film is typically formed by extruding
molten, amorphous resin in two orthogonal directions, and then partially crystallizing
the extruded film by heating it above the glass transition temperature under tension'®?.
BoPET film is widely used and produced; we use ‘Mylar-A’ films produced by Dupont
Teijin'®. The mechanical properties of PET film are consistent under a wide range
of environmental conditions, and it is therefore used for applications that range from
insulation to food packaging. Here, we use the consistency of commercially produced
BoPET film to ensure that our experimental findings show a minimal dependence on
material variations.

To confirm the reported'®® Young’s modulus and yield point at room temperature of
Mylar-A BoPET, we perform a series of tensile tests on the material following ASTM-
D882'7. These tensile tests produce stress-strain curves in the material’s elastic regime
(governed by the Young’s modulus) and the plastic regime (determined by the yield
point). A schematic of the experimental setup used is shown in Fig. A.5a. Mylar strips
of width W = 20+ 1 mm, total length 150+ 1 mm, and thickness t{ = 23 pm are mounted
manually in clamps connected to an Instron 3360 model universal testing machine (UMT)
outfitted with an Instron 2530 series static load cell with a capacity of 100 N'"*72, The
strip’s length from clamp to clamp is L = 100+ 1 mm. The initial configuration is chosen
such that the sample is slack in the testing machine, exerting only a gravitational force on
the load cell. The UMT’s translation stage extends the strip back and forth three times
over a range of 1.5 mm at a typical rate of 0.1 mm/s. The translation stage’s position
and the force exerted on the load cell by the extended sample are recorded at a typical
frequency of 5 Hz. Typical extensions u and forces (F'), averaged over the extension
cycles, are shown in Fig. A.5b). Force and extension are converted to engineering stress
and strain, o and e, via:

_F-F

7= (A.24)
o U — Ug

€=—7 (A.25)

where Fy and uo are the estimates force and extension at the onset of sample stretching.
We fit the relation between stress and strain with a Hookean model, o = Fe, over a
strain range of nearly 0.01 (Fig. A.5c) to obtain an estimate of the Young’s modulus E
(Fig. A.5d). We estimate the yield point as the stress and strain o, and €, at which the
curve deviates significantly from its initial linear trend, obtained from fracture tests on
three distinct samples at cycle speeds of 0.1 mm/s (Fig. A.5e-f).

Notably, for large strain rates and sudden extension reversals, the recorded force curves
exhibits unusual behaviour. The area under the force-displacement curve measures the
energy dissipated during a test cycle. Normally, this area has a positive magnitude, cor-
responding to hysteretic energy loss: the recorded force under extension is larger than
the force under compression. However, at large strain rates, this behaviour reverses due
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Fig. A.5.: Measuring material properties. a, A thin sheet of width W = 20 mm and thickness
t = 23 um (pink) is fastened between two clamps (grey) to obtain a gauge length L = 100 mm.
The clamps are mounted in an Instron UTM. Displacement u of the upper clamp produces a force F,
measured by a load cell mounted in the UTM. Forces and displacements are converted to engineering
stress and strain (main text). b, Left to right: typical curves of force (F') versus displacement u
averaged over three test cycles at variable extension speed v (legend). The corresponding engineering
stress and strain o and ¢ are linearly related via Young’s modulus E. The fitted Young’s modulus and
standard error (grey area, main text) show no significant dependence on speed. ¢, Force-displacement
curves until fracture for three samples at speed v = 0.1 mm/s (left). In the corresponding stress-
strain curves (right), the material’s yield point (grey area) is found where the curves deviate from
linear behaviour. d, Left: high-speed tests produce unphysical results. The extensile force is smaller
than the contractile force (arrows; light blue curve) rather than the reverse (normal hysteresis). Right:
The normalized work performed by the setup (main text) is measured as a function of test speed.
Negative values above 0.2 mm/s are unphysical.

to inertia of the static load cell’s response: the compressive force is larger than the ex-
tensile force (Fig. A.5g) indicating a testing issue unrelated to the sample’s properties.
To quantify this behaviour, we compare the energy input and output £ and £_ (that
is, the area under the force-displacement curve during extension and retraction) using a
ii IE: . Fig. A.5h shows that this measure is negative and unphysical
at cycle speeds over 0.2 mm/s positive. To ensure the measured material properties are
not affected by this issue, we choose a typical cycle speed of 0.1 mm/s.

normalized metric

The standard error on the Young’s modulus due to errors in length measurements is
estimated at (assuming uncorrelated errors and insignificant errors in force, thickness,
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and extension measurements):

AE ~ \/(AWI//V)? + (%)2 + (UA_—UU‘)OVE ~ 0.06F ~ 0.3 GPa , (A.26)

where AW and AL are estimated at 1 mm and Awuo at 0.1 mm.

The resulting experimental estimates of the Young’s modulus and yield stress are
FE = 54 0.3 GPa, averaged over 7 distinct samples; all measurements fall within the
error margin. Additionally, we find a yield stress and strain o, = 96 + 5 MPa and
ey = 0.025 £ 0.007, estimated from fracture tests on 3 samples. Our findings are consis-
tent with the reported material properties.
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A.7. Spring-back, yielding, and groove design

We would like to understand the effect that our thermoforming methods have on thin
BoPET films (section 5.2). Here, we relate the post-forming shape of groovy sheets to
the geometry imposed during thermoforming, via a simple model for plastic deforma-
tion'™. In this model, applying a moment to a flat sheet produces an internal stress and
strain field. If the stress exceeds a certain limit, the sheet deforms plastically. When the
external moment is removed, a residual strain remains and sets the final shape of the
sheet. Below, we quantify the difference between the imposed and final groove shape in
terms of spring-back.

We assume a bilinear constitutive model for the material’s stress-strain curve at room
temperature (Fig. A.6a). The model is given by the following relation between stress o
and strain e:

e <
o Ee €< €y (A.27)
Eey, :1e> ¢

This constitutive model has an elastic regime, set by the Young’s modulus E (the slope
of the stress-strain curve in the elastic regime) and a plastic regime, set by the yield
point (at a stress o, = Ee, and strain ¢,, beyond which the stress is independent of the
applied strain).

With the above model, we now make a prediction for the residual stresses, strains,
and final shape of a thin sheet section of length Rf and width W (Fig. A.6b) that is
forced to curve into a radius R over a subtended angle 6 by applying a bending moment
M (Fig. A.6c). The bending moment leads to a through-thickness strain e. Since the
sheet’s thickness is small compared to other relevant length scales, there are no strains
in any other directions. We calculate ¢ along the local coordinate ¢, which runs from the
sheet’s neutral axis along the surface normal. All (virtual) lines in the sheet parallel to
the neutral axis undergo a length change from RO to (R + (). Thus, the engineering
strain through the sheet’s thickness is given by

«0) = (R+%§—R9:%~

When the sheet is curved strongly, the yield point is exceeded at the outer layers of the
sheet, at a yield thickness { > (* = Re,. The corresponding engineering stress profile,
o((¢), is then

E% *
a(o:{Ej e (4.29)

(A.28)

The moment M that must be exerted on the sheet to obtain the curvature R is then
given by:

t/2
M=w y o (¢)¢d¢ = % <3t2 . 44*2) (A.30)

When this external moment is removed, the sheet relaxes into a new configuration, with
a residual strain € (¢) and stress o’(¢) that respect moment balance M’ = 0 and the
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Fig. A.6.: Modelling plastic deformations of a thin film. a, A stress-strain relation o(€) (yellow
line) to model plastic deformations. Small strains induce reversible stress proportional to the Young's
modulus E. Above yield stress oy, achieved at strain €, deformations are irreversible and the stress is
constant. The stress-strain trajectory (black line) of a material under (partially) plastic deformation
is illustrated. b, A thin flat sheet of thickness ¢ (left) with zero initial stress or strain along the
sheet’s normal direction ¢, measured from the sheet’s centre (middle, right). c, Bending the sheet to
a curvature R over a length OR by applying a moment M (left) induces plastic deformations up to
a thickness ¢* (middle), above which the yield stress is exceeded (right). d, Removing the moment
(left, middle) relaxes the sheet to a curvature R’ over length R’6’. The relaxed curvature is due to
residual stresses and strains in the material (right).
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constitutive equations, ¢'({) = o(¢) — F(e — €') (Fig. A.6d). Thus, we find

t)2
M=w [ o=,
2 12

%t:”(i “ L0, sy

<3t2 . 4g*2) +

from which we obtain an expression for the spring-back in terms of the difference between

imposed and relaxed curvatures k' = % and kK — %:

K — k= % (4(%)2 - 3) . (A.32)

From this equation, we see that the relaxed curvature ' is (of course) always smaller
than the imposed curvature k: there is always some spring-back that flattens the sheet
out after deformation. Note that the amount of spring-back is maximal when the yield

thickness lies outside the sheet, ¢* > t/2, in which case k" — k = —k: the sheet does not
deform plastically. Conversely, when the yield thickness is much smaller than the sheet
thickness, the spring-back decreases proportionally: k' — k = —3e,/t.

As an aside, note that the opening angle 6 and radius of curvature R before and after
forming are related, since the neutral axis’ length remains constant:

RO=RY . (A.33)

As a back-of-the-envelope check, observations show that a visible permanent deforma-
tion is left in thin sheets of thicknesses 15,23,50, and 100 pm at the following radii of
curvature: 0.2,0.5,1, and 2 mm. At these radii, the plasticity-free region inside the sheet
has a thickness of 2¢,R, or approximately (assuming ¢, = 0.02) 8,20,40, and 80 pm
respectively. These qualitative results support the validity of our simple model.

We use the model presented above to estimate which groove geometries do not give rise
to significant plastic deformation after the initial forming stage. During typical experi-
ments, the material’s yield stress may not be exceeded; in practise, this means that the
groove’s radius of curvature R must be much larger than the sheet’s thickness ¢. Here,
we estimate a lower bound for the ratio between R and t, above which we expect minimal
yielding of the sheets during our experiments.

Consider a sheet section where an applied moment produces a positive radius of cur-
vature R: this is the initial forming stage. A subsequent opposite moment changes the
radius of curvature to zero, flattening the sheet, which models subsequent probing of the
sheet. We now estimate the maximal initial radius of curvature that may be flattened
without inducing extra plasticity. The initially applied strain and stress profiles are, as
before,

_ <
€)= % (A.34)
_JEE ¢<¢
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where (* = Ro,/FE is the groove’s yield thickness. Applying a flattening strain Ae = —%
will lead to no yielding at the sheet surface under the following condition:
R E
= = A.36
t 4oy ( )

that is, the ratio between the initial radius of curvature and sheet thickness must be
larger than a quarter of the ratio between Young’s modulus and yield stress. Equiva-
lently, the yield thickness ¢* must be larger than a quarter of the sheet thickness ¢.

Note that the above result is derived from a model with no temperature increase during
the initial plastic deformation. If such a temperature increase is incorporated, the corre-
sponding stress relaxation inside the sheet allows for a stronger initial curvature without
plastic deformations under flattening. Therefore, our result above forms a sensible lower
limit for the ratio between the forming radius and sheet thickness.

Mylar-A BoPET has a reported Young’s modulus E = 4 GPa and a yield stress 71 MPa.
Thus, we find a safe shape limit as

We use BoPET sheets with thicknesses between 23 and 100 pm. The corresponding min-
imal radius of forming curvature to prevent plastic deformations under flattening then
lies between 0.3 and 1.4 mm. Thus, we aim for groove shapes with radii of curvature
above this size range.
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A.8. Elasticity of groovy sheets: accordion model

We present the mathematical analysis of the accordion model discussed in section 5.4.4
here. The accordion mimics the in-plane stretching response of a groovy sheet. The
accordion consists of 2N bars of length s° and stiffness k; connected by torsional springs
of stiffness ks and rest angle ¢°, forming a structure with N grooves. Extension by a
force F' produces an elongation u; the system’s Lagrangian L is given by

L= —2NL1ki(6— ¢0)? — 2Nk 02, Niscos® s 00 @
= 2N k(o - 0)" — 53(8—8) + u— 2 (scosa—s cos;) ,
(A.37)

where the first term on the right hand side corresponds to opening of the grooves, the
second to stretching of the bars, and the third to a length constraint enforced by the
Lagrange multiplier F'. Minimization of the Lagrangian with respect to the fold angle ¢,
bar length s, and force F' produce a system of coupled governing equations,

¢

ks(s —s”) = —F cos 5 (A.38)
k(g — ¢°) = 5 sm%5 (A.39)
Uz = 2N (s cos%S — 5% cos %0) (A.40)

There are analytic solutions for F' in terms of the extension u only in the limits of small
or large displacements, as we show now.

We first consider where a crossover from small to large values of the extension takes
place, by considering when the bar length changes significantly so that As = s — s°
becomes large compared to s°. With the equilibrium equations above, we express the
bar length as a function of fold angle:

i SO k?t qb — ¢O
S = E (1 + \/1 - 8(30)2k5 tang ) (A41)
As 1 N
— =3 <\/1 B )T n 2 1) . (A.42)

Evidently, bar stretching is important if the (positive) quantity —8-Ht

becomes

12k,
2
significant compared to unity. If we consider a value of 8C, where C is some small
constant below e.g. 0.01, we find a crossover inequality:

0 2
68 o
tan% ki

(A.43)

This transcendental inequality can be evaluated numerically for an accordion model of
fixed stiffness and geometry. From numerical investigations, we find that the quantities
¢ and % are typically of the same order of magnitude around the crossover region.
Assuming that realistic estimates for the bars and hinges’ stiffness scale with the real
sheet’s thickness ¢t < O (10_4) m to first and third order respectively, and that the bar
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length lies around s > O (10_3) m, we find % <O (10_2). This in turn implies
that the accordion must flatten out almost completely, ¢ < O (10_2), for bar stretching
to become significant.

Secondly, we consider the below-crossover regime, where the accordion has not flattened
out and bar stretching is not significant. In that case, from Eq. A.39, we find

0
lim u = 2Ns"(cos ¢ _ cos —) (A.44)
s—s0 2 2
_ 40
lim F = 2k .¢ ~— SthO u+ O (u?) (A.45)
s—»s0 s0sin £ (2Ns%sin%-)?

which corresponds to a rigid-bar model with infinitely large stretching stiffness. Note
here that the relation between force and displacement F'(u) is linear for small values of
u only.

Thirdly, we study the above-crossover regime, where the accordion is fully flattened
and bar stretching dominates the response. With the governing equations A.38- A.40,
we find

0
= s L
qlslir%)u—QN(s s cos 2) (A.46)
e e (e,
(}S%F—dl)l_%ks(s s)/cos2—k:S <2N s (1 c032> (A.A4T)

As expected, the force increase in this regime is purely due to bar stretching.

In short, when the accordion is stretched, fold opening dominates at first. If the
042
stiffness ratio (Slz—k"‘ is small, the model’s response crosses over to bar stretching after

the accordion is almost fully flattened.
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A.9. 3D numerical sheet model

We construct a simple numerical model that mimics the behaviour of groovy sheets.

A simulated groovy sheet is shown in Fig. A.7a. The structure consists of squares of
Hookean springs with unit length [ = 1 and unit stiffness ks = 1, cross-braced by diag-
onal springs (length /2] and stiffness k.q). The springs are connected at their corners
by nodes with a torsional stiffness k:. The square cells are arranged in an accordion-like
pattern at a fold angle ¢° to copy the geometry of a real groovy sheet.

T / ) an )

1 k.s': 1 0

Z y v,
TZ‘:I: N

Fig. A.7.: Computational model of a groovy sheet. a, Zoom-in of the model: a square lattice (grey
bars) of Hookean edge springs (length I, stiffness ks) cross-braced by diagonal springs (length /21,
stiffness ksq) and connected by nodes (pink circles) with torsional hinges (stiffness k¢, and resting
angle ¢° along & and 7 along §). b, A model sheet of N, by N, nodes; indices n are indicated to
show node numbering convention. c, The discrete structure aims to model to a groovy sheet with NV
grooves, width W, and length L.

A.9.1. Parameters

In order to mimic a groovy sheet’s elastic properties, the model is assigned the following
parameters. First, we rescale all lengths and stiffnesses by the square cell size and the
edge spring stiffness, [ = 1 and ks = 1. Lengths are thus measured in terms of the cell
size [, and energies are measured in units ks/>. One unit of energy then corresponds to
the work needed to stretch an edge spring to twice its length. To ensure an isotropic
in-plane response, the diagonal springs must have a stiffness 0.5k;. However, this value
overestimates the bending energy of the facets, and we choose a slightly lower value of
ksa = 0.1k instead. In addition, we expect the facet bending The torsional stiffness is
set to k; = 1-107*, which is the same order of magnitude as the ratio between torsional
and stretching stiffness in a real sheet (see section 5.4.5). Finally, the fold angle is set to
¢° = 2rad, which yields an amplitude-to-groove size ratio A/sy = 0.3, similar to that of
real grooves (section 5.2.2).

A.9.2. Algorithm

The simulated sheet’s mechanics are probed as follows. While all springs in the structure
are initially at rest at time ¢t = 0, with the nodes at position vector Q*=°, the springs
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can be deformed by displacing selected nodes to new positions Q*='. To find the sheet’s
final shape under the applied displacement, it is slowly relaxed to a mechanical equilib-
rium (that is, a minimal energy £(Q)) via a two-step gradient descent algorithm. First,
the restoring force V& on each node is calculated from the deformed sheet geometry.
Second, each node is displaced in the direction of its restoring force, modified by a multi-
plicative gradient descent parameter . These two steps are iterated: the restoring force
is calculated and corresponding node displacements are applied as follows:

Q" = Q' - avel(@") (A.48)

until either the system’s geometrical change |AQ| becomes insignificant compared to ma-
chine precision, or until a computationally reasonable maximal number of iterations (here,
we choose tmax = 10°) is reached. We choose a gradient descent parameter a = 0.25,
maximal 100ps tmax = 10°, and cutoff geometric change |AQ| = 1075, After this opti-
mization procedure, the sheet’s equilibrium configuration under the imposed constraints
is reached with good accuracy: the geometric change shows a steady, logarithmic decrease
below |AQ| < 107° (a reasonable size compared to the length and stiffness scales used)
by the end of all simulations presented here.

A.9.3. Energy and forces

We briefly summarize the mathematical implementation of the sheet model and its gra-
dient descent algorithm below. The model’s configuration is fully described by the node
positions g; n, collected in the position vector

Q = (qI,07Qy,07qZ707 "'7q$:Ntot_17quNtot_17qzthot_1) ’ (A49)

where n indexes the network’s Nyot nodes and 7 indexes the coordinates z,y and z. A
sheet with N grooves, width W and wavelength A is thus modelled by a network of N, =
2N + 1 by Ny = [W/A] nodes, totalling Niot = Ny N,. We adopt a standard numbering
convention using indices ng € [0, Ny — 1], ny € [0, Ny — 1], so that n = ny Ny +ny. With
this convention, the initial position g, of node n is given by

no+1l sin gs) . (A.50)

an :l(nx COS§’ny7(_]‘) 2 2

Each node is connected via harmonic springs to ¢) nearest neighbours (NN) by a Hookean
edge spring of length [ and stiffness k:; 4i) next-nearest neighbours (NNN) by a diagonal
Hookean spring of length v/2l and stiffness k;4; and 4i) next-next-nearest neighbour
(NNNN) pairs by a torsional spring of stiffness k: with rest angle § = m — ¢ along @,
and with rest angle 7 along y. Deformation of these springs costs elastic energy, which
is calculated from the node positions @ as follows:

1 1
£@Q) =3 D ka(lys —1ns)® + 3 > keallrs = lrs)” (A.51)
NN NNN
1
+§ Z ket (0750 — Orst)? (A.52)
NNNN
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where superscripts signify deformed spring lengths and angles. Spring lengths and angles
are calculated via

lrs == |q7’ - qsl (A53)

0rst = arccos ((qr —9.) (9 = qs)) . (A.54)

l'r‘slst

The force experienced by the network nodes, Vo&(Q), is calculated by taking the
derivative of the total energy £(Q) with respect to each node’s position g,:

65 lns
- ks l1— ——— n — (s
8qn Z ( |Qn - qs|> (q 1 )

l
+ ks (1_L> n — Ys
Z d |qn_qs| (q q)

neNNN

i Rej(ﬁst,ﬁsn)
Is |Rej(Tst, Usn )|

+ Z _kt(eq/q,st - enst)

NNNN nst

/ 1 ] An’Anr 1 ] A'm",An
+ Z kt(er"t _ernt)( ReJ(u ke ) + ReJ(u ke t) ) .

NNNN rnt l'/”n |Rej(ﬁ'nt’ ﬁ'n’")l lgn |R€J (’a"m"a ’ant)l

Here, Rej(u, v) indicates the vector rejection uw—(u-0)v of w on v. Indices (r, s, t) refer to
an ordered triad of next-next-nearest neighbour nodes at positions q,,qs and q; connected
by a torsional spring with rest angle 6,,,. The line connecting centre node s to node r is
described by @s, = %. Physically, forcible opening of the triad’s rest angle results in
restoring forces that bring nodes r and t away from (and node s toward) the triad’s centre
of mass, which produces in a fold-closing motion during gradient descent optimization.
To account for orientation during the angle calculation, we check the orientation of the
outer product of @ and s, with respect to the locations of nearest neighbour nodes;
a switch in alignment of this vector compared to the configuration at rest means that
the complement angle to the numerical value arccos cos 0,s; must be used instead. The
energy and restoring force are calculated at each time step by querying all nodes, which
results in an algorithm with complexity O (Neot)-
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A.10. Defect energetics in a 3D numerical sheet model

In section 5.6.2, Fig. 5.34, the elastic energy of an equal- and opposite-parity defect
pair was calculated with the computational model outlined in section 5.4.5. Reference
curves were shown that correspond to the energy needed to create the pair’s two defects
individually. The reference curves were obtained by calculating the energy of isolated
defects, as follows.

Fig. A.8a shows the network model consisting of square cells of Hookean springs (stiff-
ness ks = 1 for cell edges and 0.1k, for diagonal braces), connected by torsional springs
(stiffness ks = 1-107%). The model is discrete: the smallest length scale is the cell size,
[ = 1. Fig. A.8b shows a positive (negative) defect, created at a distance w from the
sheet centre, at energy cost &1 (£-). The defect’s energy varies with its position, as
shown in Fig. A.8c.

Defects can only be made along a groove at integer multiples of [. To ensure defect
pairs are as symmetrically spaced as possible at a mutual distance d, the first defect is
created at w = [4]; the second at w = [ |, where brackets [ ] and | ] refer to rounding
to the nearest larger and smaller integer, respectively. Thus, the pair energy &4 (d)
should be compared to the sum of individual energies

d
D Er(d) = &[5 1)+5+(L2J), (A.55)
and similarly, pair energy £, _(d) must be contrasted to the sum of individual energies
D Er(d)=E-([5 1)+5+(L J) (A.56)
a b £ £ C
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Fig. A.8.: Modelling defect energy. a, Zoom-in of network model consisting of Hookean springs
connected by torsional hinges. Lengths are measured in terms of cell size [ = 1. b, Model sheet with
N = 2 grooves and width W = 20 (left). A defect is made at distance w from the sheet centre,
either in a mountain fold at energy cost £4 (middle), or in a valley fold at energy cost £_ (right).
Spring strain indicated for clarity (colour bar). ¢, Energies £ (£_) as a function of w.
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A.11. Calculating surface curvature

We briefly review how we compute the curvature of a groovy sheet from its three-
dimensional profile, obtained via the 3D-scanning method described in section 5.3.2.

3D-scanned height profiles z on a square grid in the z, y-plane form our starting point.
The height profile’s discrete derivatives, % and 3—57 must be calculated to obtain surface
curvatures. Making use of the fact that our measurements produce height profiles with

a regular grid spacing, we use the following formula to calculate a five-point discrete

derivative at each grid site (x;,y:)'"*:
%My? ~ 8G(@it1,y1) — Z(Cﬂi_l,yi)) : (%($i+27yi) — 2(Ti-2,9i)) (A57)
6:13 6(l‘z+1 2177,_1)

Finally, we calculate the mean and Gaussian curvatures K,, and K, from the discrete
derivatives as follows'%®:

oz 9%z z 9%z 0z 0z 9=z oz
(1 + (a_a;)z)ayQ + (1 + (_)2)8 2 28_33% dxdy Oydx

oy T
_ A.
" 2(1+ Z2° + G27)32 A
z Yy
922 0% 0z 0z
K, — 27 077 ~ 90y Do (A.59)

822 | 922
I+3"+35.7)°
The principal curvatures, K1 and K5, can be obtained via:

K1 =Km — /K2 — K, (A.60)
Ky =Km+ K2 — K, . (A.61)

The principal curvatures are the minimal and maximal values of the local 2D curvature
field. As an example, Fig. A.9 shows the principal curvatures of groovy sheets with var-
ious defects and defect pairs. The presented data correspond directly to the mean and
Gaussian curvatures illustrated in Fig. 5.37.
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Fig. A.9.: Principal curvatures in the presence of defects. a, Principal curvatures K; and K» (right,
colour bar) in a groovy sheet with one defect. The sheet has thickness 75 ym, width W = 13 cm,
and N = 10 grooves (left; greyscale matches height z) b, Curvatures for an adjacent, equal-parity
defect pair at a distance of 0 ¢cm along v (and two grooves core separation along £). ¢, Results for
an adjacent equal-parity defect pair at a core separation of one groove. d, Adjacent opposite-parity
defect pair at half a groove core separation.
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Fig. A.10.: A helix and a corresponding ruled surface. a, A helical curve (pink line) with radius R and

wavelength 27T has local coordinate frame (f,ﬁ,f)). Binormal vector b has angle v = arctanT/R
with respect to the cylinder axis. b, Ruled surface generated by drawing straight lines (grey lines) of
length W, that point away from the helical curve at a small angle 3; local rule direction is given by

cos BB + sin Bn.

A.12. Elastic model of groovy sheets with a single scar line

Groovy sheets with a single central scar line orthogonal to their grooves roll up. If
the scar’s distance to the sheet edge, Wy, is large, the sheet undergoes a transition to a
twisted shape (see e.g. Fig. 5.40). Here, we construct an energetic model to investigate
the origin of this twisting bifurcation. Our findings suggest that this bifurcation arises
from an energetic competition between deformations of the scar line and deformations in
the rest of the sheet.

Intuitively, the twisting bifurcation takes place to relieve compressive strain between
neighbouring grooves. Consider a rolled sheet with a single curved scar line, where
grooves point away from the scar line at a small angle. The grooves form a conical cage:
they are far apart at the scar line, but converge away from the scar line. At large sheet
widths, the grooves must intersect to maintain the rolled sheet shape, indicating that
grooves are highly compressed. In order to relieve this compression, the scar line may
twist, which allows the grooves to spread (similar to a hyperboloid of one sheet, as seen
in wicker chairs). We capture this intuition in a simplified model, as follows.

We assume that rolled sheets can be described as ruled surfaces, as illustrated in
Fig. A.10: the scar line forms a generating curve, and grooves are modelled as straight
lines that point away from the base curve. We approximate the scar line as a helical base
curve h(t) with constant radius R and constant wavelength 277", which is described by
the parametrization

h(t) = (Rcoss, Rsins, Tt) , (A.62)
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as shown in Fig. A.10a. The base curve has a local coordinate frame (the Serret-Frénet
frame), which is given by the tangent, normal, and binormal vectors:

t= \/ﬁ(—}? sint, Rcost,T) (A.63)
n = (—cost,—sint,0) (A.64)
b= 1 (T'sint,—T cost, R) . (A.65)

JREIT?

The angle between the binormal vector and the cylinder axis is set by v = arctanT/R .

The helix’ curvature k and torsion g are constants, calculated to be k = |%| = %5

and g = b - |g—: = ﬁ?, where s = T2 + R?t is the arc length along the helix.
Fig. A.10b illustrates how grooves are modelled as straight lines of length W, that point
away from the scar line along vectors cos ,Bl; + sin Sn, where (3 is a constant, small an-
gle. Thus, the scar line and grooves, via radius R and twist 7', and angle 8 and groove
length Wy respectively, set the shape of the modelled sheet; we assume that these shape
parameters are constant along the entirety of the sheet.

In order to mimic the elastic properties of a real sheet, we now model the energy costs
for deformations of the scar line, and for distortions of the grooves.

We first consider the elasticity of the scar line. We assume that the scar line has

a preferred curvature k° = % and torsion ¢° = 0. We estimate the resting radius
R° ~ 254;19/—2 = O (10 mm), based on the experiments illustrated in Fig. 5.40 and the

geometric argument shown in Fig. 5.41. Note that we assume here, as before, that grooves
are flattened completely at the scar line to their full arc length s. Deviations from the
scar’s resting curvature and torsion for a scar line section of length sy, between two
grooves, are then penalized via:

Ep ~ (k—k°)%sy (A.66)
Eg~(g—9°)sx . (A.67)

Secondly, we assume that grooves point orthogonally away from the scar line at small
preferred folding angle 8°. We estimate 5° ~ 0.2 based on experiments (Fig. 5.40). We
assume that the folding of grooves around the scar line takes place over a characteristic
width comparable to the groove wavelength A. The energy cost for deviations of the
folding angle 8 over a scar line section of length s, is then modelled as

2
Ep ~ (B;BO> Sx . (A.68)

Lastly, we attribute an energy cost to sheet deformations away from the scar line.
The sheet prefers to remain flat, its grooves parallel; thus, rolling and splaying (either
in- or out-of-plane) of the grooves is penalized. We first consider how much the sheet
rolls. Specifically, if the scar line has a finite radius of curvature R, the sheet’s local

curvature at a distance w from the scar line is given by k(w) = %, where R(w) =

V/(R — wsin 3)2 + (wsin~y cos 3)2. The energy cost to deviate from the flat state, k(w) =
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0, is then given by
Wy
Eroll ~ / k(w)zdw . (A.69)
0

Finally, we assign an energy cost to splaying of the grooves. Neighbouring grooves have a
preferred constant distance A. When attached to a helical scar line, their distance d varies

with the length w away from the scar line. Defining a splay strain as e(w) = %, we
find a splay energy
1 (W 9
Esplay ~ ﬁ/ e(w) dw . (A.70)
0
(A.71)

Here, we assume that deformations that produce splaying take place over distances of
order A. For completeness, the distance d(w) between neighbouring grooves attached to
a scar line with radius of curvature R and pitch 27T is given by

2

2 2,2 2 2

cos® B)) — 2Rwsin 8 (A.72)
where ¢ is defined via sy = T?%t? + 2R?*(1 — cost) . While this expression is complex, we
hypothesize that the exact mathematical form of the splay strain is not crucial, as long
as non-zero splay is penalized.

Thus, the total energy is given by:
gtot = gk + gg + 85 + K(gsplay + groll) s (A73)

where K = 0.1 is a factor that we choose heuristically. Experience suggests that the scar
line is stiffer against deformations than the remainder of the sheet, which we take into
account via K, by penalizing sheet deformations less than scar line deformations.

In short: we have defined energetic terms corresponding to deformations of the scar
line and groovy sheet. We may now calculate the minimal-energy configurations of such
a sheet, given the equilibrium parameters k°, X, sx, and 8° for the scar curvature, groove
wavelength, groove arc length, and scar folding angle estimated above, using the degree
of freedom K to tune the relative cost of scar line versus sheet deformations.

We calculate equilibrium sheet shapes with a custom Python script, which numerically
finds a local energetic minimum in the sheet shape parameter space. The resulting shapes
are illustrated in Fig. A.11b for short, intermediate, and long widths. Sheet shapes match
experimental observations well: narrow sheets roll, while wide sheets twist. Fig. A.llc
shows how the sheet shape parameters vary with the sheet width W. The shape param-
eters show qualitative agreement with experimentally observed shapes (Fig. 5.40). First,
the rolling radius R starts at an initial, nonzero value at Wy = 0, and subsequently in-
creases with W;. Experiments show that the rolling radius reaches a plateau; this feature
is not reproduced by our model, which we attribute to the absence of groove bending in
our theory. Secondly, the scar folding angle £ lies near its equilibrium value. Lastly, the
twisting parameter T undergoes a bifurcation at some critical value of W;. The energy
of the corresponding configurations increases monotonically with W;.
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Fig. A.11.: Twisting transition in a simple elastic model. a, Sheets are modelled as ruled surfaces.
The scar line forms a helical directrix (pink line) with radius of curvature R and wavelength 27T
Grooves (grey lines) are approximated as straight lines of length Wy, pointing orthogonally away
from the scar line at a small angle 3. b, Equilibrium configurations of the model at increasing edge
width W (see text for details). Scar lines are either circular or helicoidal; grooves point away from
the scar line at a small angle and exhibit twisting at large W. c, Equilibrium shape parameters and
energy are shown as a function of W¢. The scar rolling radius R increases from its initial value RO
(Eq. 5.33) with Wy. Initially, the sheet does not twist; at a critical value of We, a bifurcation to
finite twisting is observed. The angle 3 at which grooves point away from the scars initially decreases
with W, but approaches its initial value once more as Wy increases. The total equilibrium energy
per sheet section increases monotonically. Initial values R?, T, and 3° are indicated by dashed grey
lines throughout.
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In conclusion: despite the need for manual tuning of the relative stiffnesses of scar and
sheet, our model suggests that an energetic competition (between twisting deformations
of the scar and splaying in the sheet) yields a twisting bifurcation at finite sheet width,
consistent with experimental observations.
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