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5. Reshapeable groovy sheets

Abstract

Shape-morphing materials find applications in many areas of our lives, from controlled-
drag surfaces to pop-up tents. However, designing them poses a challenge. We introduce
a novel platform: thin materials with parallel undulations, or groovy sheets. Groovy
sheets snap quickly and reversibly between multiple stable shapes under external manip-
ulation. We show that individual snap-through events in each groove produce defects
that lie at the heart of the sheets’ elastic shape-morphing. Adjacent defects show short-
range attraction which favours their alignment into chains, or scars, of defects. Scar lines
have the ability to change the sheet’s equilibrium shape; we show that these shapes fall
into distinct categories, depending on the internal configuration of scar lines. Finally, we
show that scarred sheets can be modelled as ruled surfaces, whose elastic behaviour can
be captured by simple mean-field models. Our work provides the groundwork for using
corrugated sheets to design and model shape-morphing materials.
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5. Reshapeable groovy sheets

5.1. Introduction

Foreword

Fig. 5.1.: Thin structures reshape easily. a, A typical thin sheet: a book page, around the thickness
of a human hair. b, The page bends and rolls smoothly, at low energy cost. ¢, Under the wrong
conditions, the sheet crumples: there is no smooth way to wrap the sheet around a spherical apple.
As a result, local stretching in the form of folding, dimpling and buckling takes over.

From unfurling leaves and snapping fly-traps to bendy straws and folded maps: shape-
shifting materials, both natural and man-made, are useful and all around us. However,
inventing, designing, and modelling reshapeable materials is challenging. In this chapter,
we propose a novel approach: we make, measure, and model shape-morphing structures
made from thin, corrugated, groovy sheets.

Why thin sheets? Because they deform easily?!- think of crumpled paper®® 1% bud-
ding leaves'®1% origami, and kirigami®46:64766:105-107 " Thig makes them prime candi-
dates to create materials that can deform from one shape to another. The reason behind
a thin sheet’s deformability (illustrated in Fig. 5.1a) is its dimensional contrast: it is
much thinner than it is wide. This has mechanical consequences. Generally, sheets de-
form in two ways: they either bend or stretch'®®. Bending is easy to do, because the
material’s bending stiffness scales with the cube of its thickness (Fig. 5.1b). The thinner
the sheet, the better it bends. On the other hand, the stretching stiffness scales linearly
with how thick the material is, so stretching is hard. This is why rolling up a piece
of paper is much easier than crumpling: crumples involve local stretching (focussed in
patches, minimizing the energy cost) to create folds, bumps, and corners.

Thus, thin sheets do not just deform easily, but interestingly. Imagine wrapping a flat
sheet around a sphere (Fig. 5.1c): it can’t be done without crumpling. In spite of its
cost, stretching is sometimes preferred over bending. Gauss’ Theorema Egregium [108,
109] gives an intuitive explanation for this interesting behaviour. From his mathematical
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5.1. Introduction

point of view, the shape of a sheet can be described with two types of curvatures: mean
(which measures how much a sheet bends), and Gaussian (which measures whether or not
the sheet is intrinsically flat). Loosely, bending and stretching deformations correspond
to changes in mean and Gaussian curvature respectively. Thus, there is a local compe-
tition between stretching and bending deformations, mediated by the sheet’s curvature.
Bending and stretching are geometrically coupled!'?.

Fig. 5.2.: Thin structures can be multistable. a, Examples from the natural world: a Venus flytrap’s
leaves snap shut around its next meal. Image: Beatrice Murch (CC BY-SA 2.0). b, Man-made tape
springs snap from straight to rolled. Image adapted from Ref. [111]. ¢, Unintentional bistability in a
buckled water tank. Image: D. and W.D. Bushnell, shellbuckling.com (CC BY-NC-ND 3.0).

In short: thin sheets deform easily and interestingly. Both these features are hallmarks
of the geometric nonlinearity that thin sheets naturally produce. And it is precisely such
nonlinearity that allows structures to take on multiple stable shapes''?. Consider the
mechanical point of view: most structures live at rest, in a mechanical equilibrium. When
left alone, they stay right where they are. Their elastic energy is at a local minimum.
In order to create a shape-morphing material, the structure’s energetic landscape (or,
formally, its internal energy as a function of its configuration) must have multiple local
minima. One way of getting multiple energetic wells is by ensuring that structural strains
(deformations relative to the resting shape) depend non-linearly on the structure’s in-
ternal configuration. Such geometric nonlinearity arises naturally in thin sheets'%%109,
in two ways. First, they bend easily, and finite bending is nonlinear; and second, the
geometry-mediated competition arises between stretching and bending leads to complex
higher-order effects. In other words: thin sheets with surface patterns are good candidates
for designing multistable materials''® *!?  which has been recognized and researched both
in natural*?® %2 and man-made systems!651237128

Unfortunately, nonlinear reshaping behaviour in thin structures is challenging to model*?? 32,
Phenomena that we understand intuitively, from twisting ribbons'** 3¢ and poking vol-
leyballs'®7'138  to wrinkling skin'3® and fabric'4®'*, are not easy to capture and predict
with simple theories. Many innovations in the field of shape-morphing structures deal
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5. Reshapeable groovy sheets

with this issue by drawing inspiration from nature*%%142144 (Rig. 5.2a), or focussing on
ecasier-to-model small*!! or discrete systems, such as origami3%19%:106,145,146 (Fig. 5.2b).
In addition, instabilities are traditionally seen as failure modes (a fair point for grain
silos and aeroplane cabins), and engineering research is focussed on preventing*” rather
than using them (Fig. 5.2¢).

In this work, we propose to harness rather than avoid the instabilities that naturally
occur in thin sheets. We aim to create materials that can shape-shift in a robust, re-
versible, and fast way. To that end, we use thin sheets with a special corrugated geometry:
reshapeable groovy sheets.

Fig. 5.3.: A groovy sheet. A thin, rubber-coated plastic sheet with thickness 0.075 mm is shown.
The sheet has parallel corrugations, or grooves. The thickness is much smaller than the sheet's size
and the groove wavelength.
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5.1. Introduction

Fig. 5.3 shows what a typical groovy sheet looks like. Its underlying material is thin
and flat, much wider and longer than it is thick. Straight grooves (whose width and
height are also much bigger than the thickness) run like parallel waves along one direc-
tion. While the example shown is of just the right size to be held in hand, their absolute
size is not very important. As long as the material’s thickness is much smaller than any
other relevant lengths, we consider it a groovy sheet.

Fig. 5.4.: Groovy sheets deform easily. Left to right, top to bottom: a sheet can easily be stretched,
bent, splayed, and twisted by pulling or rotating its sides uniformly. These deformations appear to
dominate the sheet’'s mechanical behaviour.

Fig. 5.4 gives some intuition on how groovy sheets deform when they are manipu-
lated. Stretching, twisting, splaying, and bending of the groovy sheet are easy to do.
Interestingly, these deformation modes are dominated by bending of the underlying sheet
material: overall sheet stretching does not require local material stretching.

Groovy sheets can do more than just bend and twist. Strange things happen when we
apply the right boundary conditions, illustrated in Fig. 5.5. There, we pull on a groovy
sheet by pinching it at two points at its edges. Initially, the sheet stretches as usual
(Fig. 5.5a). But as we continue to pull, something unusual happens: the sheet’s grooves
snap through one by one, starting from the pinching points (reminiscent of the popping
of a tape spring!' 14819 " Small divots are formed in each snapped groove; we call these
divots snap-through defects (Fig. 5.5b). As we stretch the sheet further, more and more
grooves snap through, starting from the edge and into the bulk of the sheet (Fig. 5.5¢).
At a critical point, all remaining grooves snap through nearly simultaneously at high
speed, creating a contiguous line of defects (Fig. 5.5d). Intriguingly, even when we stop
pulling, the defects remain, and the sheet curves (Fig. 5.5e). Finally, when the sheet is
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5. Reshapeable groovy sheets

Fig. 5.5.: Groovy sheets reshape, if manipulated right. A sheet is pulled at two points (a). At
first, the sheet stretches. Then, grooves near the pulling points pop into a new configuration with
snap-through defects (b, circles). As the sheet is pulled farther, more defects appear slowly (c). At a
critical point, the remaining grooves snap through rapidly, and defects form a chain (d). When the
pulling force is released, defects remain and the sheet curves (e). Finally, the sheet is free and curls
into a compact roll (f).

let go completely, it finds a new equilibrium shape: a compact roll (Fig. 5.5f). In other
words: the sheet quickly snaps into a new, stable, rolled shape.

But this is not the end: groovy sheets can morph back and forth into much more
complex shapes, as we show in Fig. 5.6. There, we show what happens to a groovy
sheet (Fig. 5.6a) that is gently crumpled up (Fig. 5.6b,c). When the crumpling force is
removed, the sheet has a disordered pattern of snap-through defects and a correspond-
ing irregular shape (Fig. 5.6d). However, when the sheet is gently stretched (Fig. 5.6e),
the defects unpop, and the sheet returns with negligible permanent deformation to its
original, flat state (Fig. 5.6f). Groovy sheets morph quickly and reversibly into many
different shapes, and these are exactly the kinds of features that could make them useful
in real-life applications.

Morphing sheets could even find application across scales: crucially, all groovy sheets
can shapeshift, whether they are big or small. Fig. 5.7 shows two extreme examples. In
Fig. 5.7a, we see a commercial plastic corrugated roofing sheet of around 1 mm thick,
its corrugations around 10 cm) wide. Two people, with some persistence, can pop the
stiff plastic sheeting into a robust, twisted shape that withstands bumps, scrapes and
drops. On the other hand, Fig. 5.7b showcases a small, twisted sheet made using a thin
plastic coating that has been detached from corrugated craft paper in an acetone bath.
The film is 0.015 mm thick, with grooves around 0.5 cm. Although the two sheets differ
by almost a factor one hundred in size, they reshape the same way. The sheet’s grooves
govern shape-morphing, not its size.
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5.1. Introduction

Fig. 5.6.: Groovy sheets reshape reversibly. A groovy sheet (a) is crumpled (b,c). Afterwards, the
sheet shows a complex shape and snap-through defect pattern (d). Stretching the sheet unpops the
defects (e) and reverts the sheet to its original flat state (f).

Over the course of four years, we have had the opportunity to present our reshap-
ing groovy sheets to many people, both specialists and laypersons. Their response has
been consistent. First, the sheet’s popping behaviour proved to be evocative. Parallels
were drawn to buckling in corrugated roofing, dimpling in pleated fabrics, and childhood
memories of playing with packaging material. And second: there seems to be no record
of using snapping groovy sheets to create shape-shifting materials.

Here, we address that gap. We explore, quantify, and model how groovy sheets re-
shape, and discuss prospects for geometry-controlled shape-morphing.

We first define the general shape and size of a groovy sheet in section 5.2, and discuss
fabrication methods for plastic and rubber sheets on the centimetre scale. In order to
quantify groovy sheet shapes, we introduce two imaging techniques in section 5.3, using
both photographic projections as well as full 3D image scanning. Which shapes a groovy
sheet can take on depends not only on its starting shape, but also on its (in-plane) elas-
tic properties, which we describe both experimentally and theoretically in section 5.4.
As discussed above, groovy sheets reshape due to the introduction of individual snap-
through defects in their grooves. We explore the snapping of single defects in section 5.5.
However, when more defects appear in the sheet, they start interacting (section 5.6): we
will show that adjacent defects attract, which causes them to organize into scar lines of
contiguous defects. Stable scar lines have the capacity to dramatically alter the three-
dimensional shape of groovy sheets. We quantify this reshaping in the presence of scar
lines in section 5.7, and present a hybrid model using both geometric and elastic models
that explain groovy sheet’s complex shapes. We review our findings in section 5.8, dis-
cuss the use of groovy sheets as a novel platform to create reshaping materials, and point
out directions to both deepen our insight in and broaden the applications of reshapeable
groovy sheets.
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5. Reshapeable groovy sheets

Fig. 5.7.: Groovy sheets of all sizes can reshape. a, A commercial plastic corrugated roofing sheet
(1 mm thick, with groove wavelengths around 10 cm) is reshaped into a robust twisted configuration
with the combined strength of two physicists. b, Plastic coating film, detached from corrugated craft
paper. The film is 0.015 mm thick, with grooves around 0.5 cm. Although the two sheets differ by
a factor of almost one hundred in size, they reshape the same way. Modelling courtesy of Hadrien
Bense.
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5.2. Making groovy sheets

5.2. Making groovy sheets

To study the behaviour of groovy sheets, real samples with well-defined geometric and
elastic properties must be made. We present a geometric model and three experimental
fabrication processes in sections 5.2.1 and 5.2.2 below, and show that thermoforming of
polyethylene sheets inside a rigid mould produces suitable groovy sheets that support
re-shaping behaviour.

5.2.1. Geometry

Groovy sheets can come in many shapes. Fig. 5.8 shows the parameters that govern the
groove geometry. Specifically, a sheet with IN grooves has an overall length L and width
W. We assign a local coordinate frame that corresponds to directions orthogonal (&) and
parallel (v) to the grooves, and normal (¢) to the surface (Fig. 5.8a). Zooming in on the
groove geometry in Fig. 5.8b, the sheet has a uniform thickness t. The groove amplitude
A, wavelength A, and groove arc length s, determine the groove shape.

We assume that the grooves are well-approximated by cylindrical sections of radius
of curvature R and opening angle 6, connected by flat facets of length lfeet. Relations
between these shape parameters are given by the following equations:

A =2R(1 — cos g) + lfacet sing (5.1)

A =4Rsin g + 2lfacet COS g (5.2)

5x = 2(lfacet + OR) (5.3)
tang _ _ARA4 (A= 2R)lncet (5.4)

2" INface — 2(A—2R)R

>\2
lracer = \[ A2 —4AR+ 7 . (5.5)

Note that the sheet shape is set by any three independent parameters, for example by
the triplet (R’ 0, lfacet).

In short, groovy sheets are thin surfaces, uniform along one material direction v, but
with alternating positive- and negative-curvature zones along the orthogonal direction &.
Borrowing origami terminology, we refer to high- and low-curvature zones as folds and
facets respectively.

5.2.2. Fabrication

To study groovy sheets, we must first make them. Below, we briefly discuss three fabrica-
tion methods and their drawbacks and benefits. We study heat-forming thin plastic films
with a dynamic and a static method, and review a method to create thin rubber groovy
sheets via spin-coating. We show that static heat-forming provides the best results to
create reshapeable groovy sheets, and use our experimental findings to identify which
groove shapes we can manufacture with this method.
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5. Reshapeable groovy sheets

Fig. 5.8.: The shape of groovy sheets. a, A thin sheet of length L, width W, with N parallel grooves.
Cartesian coordinates x, y, z are indicated. Inset: local sheet coordinates £, v, (. b, Cross-section of
a groove with thickness ¢, wavelength A\, amplitude A and arc length sy. We think of grooves as
cylindrical sections with radius of curvature R and subtended angle 6, connected by flat facets of

length lfacet.
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5.2. Making groovy sheets

Material choice

Making experimental groovy sheets starts with choosing a suitable material. We need
a material that is easily formed into a thin sheet with grooves; that has a large range
of elastic rather than plastic behaviour; and that is sufficiently stiff not to be influenced
strongly by gravity. We consider biaxially-oriented polyethylene terephthalate (BoPET)
film, which softens under heating and can be thermoformed, and polyvinyl siloxane (PVS)
rubber, which can be spin-cast as a fluid.

Thermoforming plastic film

We discuss here how to fabricate samples by heat-forming plastic via two methods: a
dynamic method, using counterrotating, heated gears; and a static method, using a com-
pression mould and oven. We use biaxially-oriented polyethylene terephthalate (BoPET)
as our base material: specifically, uncoated ‘Mylar-A’ films produced by Dupont Teijin**°
in a thickness range of 23 to 125 pm.

In order to create suitable groovy sheets
out of BoPET film, the following mate- g4 b c d
rial properties are important (Fig. 5.9).
First, the temperature to which the ma-
terial needs to be heated in order to effec-

tively re-form the film is set by the glass
transition temperature. Secondly, the im-
portance of gravity is determined by the SSSﬂ

film’s bending modulus, which is set by

the structure’s size, specific weight, and

Young’s modulus. Lastly, to what ex- Fig, 5.9.: Important material properties for mak-
tent the film can be deformed without ing groovy sheets. a, A piece of thermoplastic
incurring permanent, plastic damage is film has a stiffness (b), yield point (c), and glass
set by the yield point at room tempera- transition temperature (d).

ture.

The reported average properties of Mylar-A BoPET'®® at 23 pm thickness suit our
needs. First of all, the glass transition temperature of BoPET lies around 80 °C, while
the melting temperature lies at 250 °C: the material can be formed in a conventional oven.

Second, the material’s tensile modulus lies between 4.8 and 5 GPa in its two orthogonal
directions. We experimentally confirm the Young’s modulus, to be £ = 5+ 0.3 GPa
(appendix A.6). The high Young’s modulus and low specific weight (1.39 gram/cm?)
of the material mean that thin sheets will be weakly affected by gravity. Consider how
a sheet of length L, width W, thickness ¢, and density p deflects under gravity. When
subjected to a gravitational force per unit length f, = twpg, where g is the gravitational
constant, the sheet deforms. Euler-Bernoulli beam theory*®! tells us that the deflection

4
has a typical length d; = C %, where I = M{—f is the sheet’s area moment of inertia.

C is a numerical constant that depends on how the sheet is held, and is typically of
magnitude O (10_2) to O (100). We consider gravitational deflections to be small as

long as dy < L, and find a condition ggg < 2—23 that must hold for gravity to have a
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5. Reshapeable groovy sheets

small influence. We define a dimensionless gravity number:

3
_ pyL

If Ny is much smaller than unity, gravity is negligible. An order-of-magnitude estimate

for our sheets produces gravity numbers below O (10_1) for thicknesses above 50 jpm,

indicating that gravity plays a minor role for sheets of sufficient thickness.

Lastly, BoPET’s yield point at room temperature lies around a yield strain of 0.02 and
corresponding yield stress of about 100 MPa, in line with experimental measurements of
the yield strain and stress ¢, = 0.025 4+ 0.007 and o, = 96 + 5 MPa respectively (ap-
pendix A.6). The material’s yield strain is relatively low, and samples may be affected
by plastic yielding. However, when the groove’s radius of curvature R is much bigger
than the sheet thickness ¢, plastic damage is expected to be minimal as long as % =14
(appendix A.7).

Thermoforming plastic sheets can be done in several ways. We first discuss a dynamic
forming method using counterrotating gears, illustrated in Fig. 5.10a. The basic idea is
that a PET film is guided between two counterrotating, heated gears, in order to shape
it into a groovy sheet. To do this, two hollow elongated gears of around 20 cm length,
machined from aluminium plate, are mounted inside a metal casing on parallel spindles
with heating rods inserted in their centres. The gears, driven by an external high-torque
motor, counterrotate. The heating rods are connected to a PID controller and a heat-
sensitive camera, which allows the gear temperature to be controlled with an accuracy
of around 5 °C. PET sheets are fed into the gear system via a slot in the casing, and
emerge with a groovy shape.

To obtain a controlled groove geometry, the gears have a specific size (Fig. 5.10b): the
gear diameter D lies at 23.5 mm, while the teeth have amplitude A = 5.2 mm, pitch
A = 4.6 mm, inner and outer radii of curvature Ry = 0.6 mm and R2 = 1.3 mm, and an
adjustable separation distance d close to the sheet thickness, tens to hundreds of microm-
eters. The typical resulting groove shape is shown in Fig. 5.11. Samples are fabricated at
an average feed-through speed of 1.5+ 0.5 mm/s and a temperature of 90 + 5 °C. While
the sheets have a clearly visible groove profile, the amplitude is limited by a short forming
time and a long cooling time; typical ratios of groove amplitude A to pitch A lie around
0.3, with thicker sheets producing larger ratios. The forming time is limited by the gears’
speed, which must be high enough to overcome the setup’s frictional torque; and the cool-
ing time is limited by a high gear temperature and the sheet’s specific heat, which causes
the grooves to sag outside the confines of the gears before hardening. Thus, while the dy-
namic forming method is fast, it is not suitable for making grooves with large amplitudes.

Besides the dynamic method above, static thermoforming can also be done using heated
moulds as shown in Fig. 5.12a. Here, a PET film is placed on a corrugated mould of
around 30 by 30 cm, machined from aluminium plate. Matching inserts are used to
push the film into each corrugation, and are fastened on the mould with screws. The
entire assembly is placed into a commercial oven and heated for one to two hours. After
cooling for several hours, the thermoformed groovy sheet can be removed from the mould.

The mould’s geometry sets the size of the grooves (Fig. 5.12b): the mould’s corruga-
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Fig. 5.10.: Dynamic thermoforming with heated gears. a, A schematic presentation of the setup.
Two aluminium gears (grey), 20 cm long and with diameter D, are mounted on parallel spindles.
One spindle is rotated by an external motor; a serpentine belt passively drives the second spindle. A
heating rod (red) is inserted into the hollow centre of each gear. The gears are kept at temperature
via a heat-sensitive camera connected to a PID controller. The gears are mounted inside a metallic
casing. Flat plastic film (pink) is fed into the gears via a slot in the casing, and emerges with plastically
deformed grooves. b, Gear geometry. Tooth amplitude A, tooth pitch A, inner and outer radii Ry
and Ry, and gear spacing d are shown (values: see main text). The sides of each tooth are concave
to ensure smooth rotation. An inserted sheet (pink line) deforms accordingly.
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Fig. 5.11.: Typical shape of gear-thermoformed sheets. a, The post-forming shape of a 50 pm-thick
sheet (grey line), fed through the machine shown in Fig. 5.10. The location of the groove centres (pink
dots) is used to calculate an average amplitude A = 2.9+0.3 mm and wavelength A = 8.8+ 0.3mm.
b Zoom-in of a CCD-camera image of the sheet’s side (greyscale). The sheet profile (pink dots) is
obtained from the image with a custom Python program. c Left: averaging over the grooves (grey
lines) produces a mean groove height y (pink line) as a function of path length s, which can be used
to calculate an average local curvature k (right, pink line). The average maximum radius of curvature
R =1.44 0.2 mm lies near the average radius of curvature 1/2(R1 4+ R2) = 1.05 mm of the gears’
teeth (black dashed line). The curvature flattens to zero along the grooves’ facets, as expected. The
typical facet length lies around R = 3 mm.
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Fig. 5.12.: Static thermoforming with a heated mould. a, Schematic illustration of the process.
Flat plastic film (pink) is placed on an aluminium mould (grey) with machined grooves. Rods with a
complementary shape push the film into each groove and are fastened on the mould with screws. The
effective forming surface is 30 cm in each direction. The mould is heated in a commercial oven to
thermoform the confined film. b, Mould groove geometry. Amplitude A, wavelength A, mean radius
R, curve angle 6, facet length lf,cet and mould spacing d to accommodate the film’s finite thickness
are shown. The film's mid-surface (pink line) is indicated.

tions have amplitude A = 6.812 mm, wavelength A = 7.437 mm, mean radius of curvature
R = 1.5 mm, groove angle 8 = 160 °, facet length | = 4.4 mm, and a spacing d = 50 pm
between the mould and the inserts. We fabricate samples by thermoforming sheets in
the mould for an average of 1.5 h at 120 °C and cooling for at least 2 h to allow the
assembly to cool below PET’s glass transition temperature at 80 °C. The typical groove
shape is illustrated in Fig. 5.13. The resulting sheets have a clear groove profile, and
achieve a higher ratio of groove amplitude versus pitch than the dynamic method above
at a typical ratio of A/\ ~ 0.5. In addition, the statically formed sheet have less shape
variation across the grooves (compare Figs. 5.11c and 5.13c ). Thus, while the static
forming method is slow, it produces consistently shaped grooves with large amplitudes.

Spin-coating rubber

Groovy sheets can be made by letting liquid rubber cure on a corrugated mould, as we
show below. We use polyvinyl siloxane (PVS) rubber, a silicone elastomer that is formed
from two liquid polymer compounds via a platinum-based addition reaction. Specifically,
we use ‘Elite Double’ PVS rubber produced by Zhermack'®® of Shore hardness 22 to 32,
corresponding to Young’s moduli between 0.8 and 1.24 MPa'%.

We fabricate thin groovy sheets out of PVS by spin-coating the liquid rubber on
3D-printed moulds (Fig. 5.14a; for geometry, see Fig. 5.12). We use a simple setup, con-
sisting of a platform mounted on a rotating motor running at (several) hundred RPM*54.
The rubber-coated mould is placed at the edge of the platform while the liquid rubber
cures over a timespan of several minutes. A centrifugal force spreads the rubber across
the mould’s surface. This method produces groovy sheets with an average thickness of
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Fig. 5.13.: Typical geometry of mould-thermoformed sheets. a, Cross-section of a 75 pm-thick
sheet after forming in the mould setup shown in Fig. 5.12a (grey line). Automatically detected groove
positions (pink dots) yield an average amplitude and pitch A = 5.4+0.3 mm and A = 10.94+ 0.3mm.
b, Zoom-in of a CCD image (greyscale) and detected groove pixels (pink dots). ¢, The groove height
as a function of arc length s along the sheet (left) is used to calculate the local curvature  (right).
The average radius of curvature of the fold, R = 2 & 0.2 mm, lies close to the mould’s corrugation
design (black dashed lines); the facet size lfycet matches well with their target length (grey dashed
lines).

several hundreds of microns, with variations of tens of microns between upward- and
downward-curving grooves'®*.

While PVS rubber has a much larger elastic regime than plastic sheet material, its low
Young’s modulus compared to its specific weight (somewhat larger than that of water)
makes rubber groovy sheets sensitive to gravity. For comparison, the gravity number of
PVS compared to BoPET sheets (Eq. 5.6) is larger by three orders of magnitude: PVS
groovy sheets must be suspended in a density-matched medium to counteract the effects
of gravity.

Crucially, as Fig. 5.14b shows, rubber groovy sheets suspended in a solution of water
and table salt exhibit multistability. They support defects and can be reshaped, imply-
ing that neither plasticity and residual stresses or strains nor a constant thickness are
necessary to induce multistability in groovy sheets.

Conclusion

We have explored three distinct methods to fabricate groovy sheets: dynamic thermo-
forming of PET film; static thermoforming of PET film; and spin-coating silicone rubber.

Summarizing this section’s findings, we find that thin plastic film has a high Young’s
modulus and small specific weight, which reduces the impact of gravity. Commercially
produced film is widely available in a range of well-controlled thicknesses. While plastic
has a relatively low yield point, a large ratio between groove radius of curvature and
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5.2. Making groovy sheets

Fig. 5.14.: Spin-coating rubber groovy sheets. a, Schematic spin-coating setup. Liquid rubber
(blue) is poured on a corrugated mould (dark grey) that is mounted on a motorized rotating platform
(light grey). The rotation induces a centrifugal force F. that spreads the liquid across the mould
as it cures over several minutes. b, Example of a spin-coated rubber groovy sheet, suspended in
an approximately density-matched solution of water and table salt (left). The sheet supports stable
pop-through defects (right), suggesting that the reshaping of groovy sheets is in principle an elastic
process. Scale bar: 1 cm.

sheet thickness will reduce the impact of plastic yielding. With static thermoforming, we
may use temperature and forming time to vary the groove shape within a small range.
In addition, bistability in groovy sheets occurs only for a range of groove geometries, as
we discuss in more detail below; typically, the material’s thickness must be much smaller
than the groove’s other length scales. The small thickness of plastic film means that the
grooves, and our samples, remain of a suitable size for laboratory experiments. Static
thermoforming, where a thin plastic sheet is confined in a heated metal mould, therefore
meets the project’s needs best.
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Fig. 5.15.: Photography setup for deformed groovy sheets. Images of a groovy sheet are taken by
a Canon EOS 750D camera mounted over the sample. An LED light source backlights an alignment
grid etched onto a transparent acrylic sheet (blue). A linearly polarising sheet (pl) is placed on the
grid, and the transparent, birefringent BoPET sample is placed on top (red). A second linear polariser
(p2) ensures that the light sample is contrasted by a dark background in the image recorded by the
camera.

5.3. Measuring groovy sheet shapes

Groovy sheets deform in intricate ways, and their complex shapes must be quantified
carefully. We use two imaging methods for shape measurements, which we discuss be-
low. Section 5.3.1 lays out how we use photography to extract 3D shape information
from a projected 2D image; and section 5.3.2 treats a 3D-scanning method, where we
analyse groovy sheet shapes by projecting phase-shifted fringe patterns on them.

5.3.1. 2D photography

Groovy sheets can deform to cylindrical and helical shapes that are symmetric and reg-
ular. Their overall features can be captured by analysing 2D projections of a deformed
sheet. We record such 2D images with a Canon EOS 750D camera at a resolution of
22 px/cm behind a linear polariser (see Fig. 5.15) mounted over a flat transparent surface,
back-lit with LED lights and covered with a second linearly polarizing sheet. Samples
are aligned manually on the surface, aided by a semi-transparent sheet with regular grid
lines. Representative examples are shown in Fig 5.16; characteristic shape measures such
as cylinder diameters (Fig 5.16a-b) or twisting angles (Fig 5.16¢) can be extracted from
these images with custom-built Python scripts as reported in section 5.7.

5.3.2. 3D imaging

In order to record the full three-dimensional shapes of our groovy sheets, we use an imag-
ing method based on phase shifts in projected fringe pattern'®®*7. We review the 3D
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5.3. Measuring groovy sheet shapes

Fig. 5.16.: Typical 2D images of groovy sheets with one or two scars. a, A groovy sheet deformed
into a twisted cylindrical shape (white) by the presence of a scar (dashed line) has a diameter and
twist angle (red markers) that will be measured with an automated script in section 5.7. b, Two
scars (dashed lines) on the same side of a groovy sheet produce a cylindrical, twisted shape with a
measurable diameter and twist angle. ¢, Top view of a sheet with two scars on opposite sides. The
helix-like surface with side lobes has a twist angle that will be measured manually in section 5.7.
Scale bars: 5 cm.

reference

Py
Pe

Fig. 5.17.: Schematic top view of the 3D imaging setup. A projector (top right) projects a sinusoidal
fringe pattern on the reference plane (left) at a distance I1. The projector’s optical axis (grey dashed
line) is orthogonal to the reference. A CCD camera (bottom right) captures the fringe pattern, after
being placed at distances [; from the reference plane and l2 from the projector. The camera’s optical
axis is indicated (grey dashed line). The imaging coordinates x,y, z are shown (top left). Placing a
sample in front of the reference plane (red line) distorts the captured fringe pattern. The original and
distorted pattern’s phase shift between points p, and pg may then be used to calculate the sample’'s
height profile Az = p. — pp (see main text) via trigonometric relations.
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Fig. 5.18.: Image reconstruction to extract a 3D shape from a set of 2D images. a, A reference
image of a projected sinusoidal intensity profile, recorded using the scanning setup of Fig. 5.18. Scale
bar: light intensity (bit). b, Typical data image, in which the intensity profile is distorted by the
presence of a groovy sheet with a central scar. Scale bar: see a. ¢, Phase difference A¢ (colour bar)
of the distorted intensity profile, extracted from four doublets of reference and data images. Each
doublet uses the same projected intensity profile, but is phase-shifted by [0, 7/4, 7 /4, 7 /4] respectively.
d, Axes are rescaled to obtain width y, length z, and height z (colour bar) of the scanned surface.
The approximate region of interest (red outline) is identified via a custom edge detection algorithm.

setup, image reconstruction, and typical results here.

A schematic view of the 3D imaging setup is shown in Fig. 5.17. We use an Epson
EMP-X3 projector to project images of a sinusoidal fringe pattern on a blank, flat refer-
ence surface at 110 cm distance. A Basler acA2040-25gm camera, fitted with a Kowa lens
of focal distance 75 cm, is positioned next to the projector at a distance of 15 ¢m from
the projector and 110 cm from the reference surface. The fringe pattern has a wavelength
of 52.7 px. The spatial resolution of the setup is 0.075 mm per pixel, which allows us to
resolve the groove shape to a good degree of detail.

We now briefly describe how to obtain 3D shapes with this imaging setup, in line
with the methods described in Refs. [155-157]. Basically, we project a sinusoidal fringe
pattern on the reference surface and record it with a camera. The planar intensity profile
of the sinusoidal pattern is given by

Ig¢(r) _ akez’k.(rerb) , (5.7)
where A1) is the pattern’s phase offset. When an object is placed in front of the reference
surface, the projected fringe pattern is distorted (red line in Fig. 5.17). The object creates
a height offset Az(r). The distorted sinusoidal pattern can be described via

Ing(r) = ape’™ I AY (5.8)

where u(r) is the in-plane pattern distortion (e.g. ps —pq in Fig. 5.17). The height offset
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5.3. Measuring groovy sheet shapes

Az(r) is then reconstructed from the reference and distorted fringe images by comparing
their respective phase maps. To obtain difference between the two phase maps, we
take four variations of the projected fringe pattern with distinct phase offsets Ay €
[0,7/2,7,37/2]. The phase difference A¢ between the recorded reference and distorted
patterns can then be calculated, based on a linearisation of the intensity distortion:

A¢ = ¢(pa) — ¢°(pa) (5.9)
where

Igﬂ’/2 - IO/Q

¢° = arctan 70 Iér (5.10)
I ™ - I7T
¢ = arctan % (5.11)
(5.12)
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Fig. 5.19.: Noise reduction by low-pass filtering. a, Representative image of a noisy height profile
(colour bar) of a groovy sheet near a defect. Residual noise from both the beamer’s limited resolution
as well as the fringe pattern’s deviation from a perfect sine can be seen. b, Smoothing with a 2D low-
pass Gaussian filter (legend: filter 1) to remove resolution noise from the signal. ¢, Sine-deviation
noise is reduced with a second 1D low-pass Gaussian filter (legend: filter 2). d, Cross section of
height profile corresponding to horizontal dashed line in a. Data passed through filter 1 still shows
sine deviation noise, while data passed through filter 2 does not (legend). e, Height profile along
vertical dashed line in a. Both filters show reduction of resolution-limited noise. Shifting of the profile
is due to the two-dimensional smoothing of filter 1.

In turn, the phase difference is related to the height offset via the following geometric
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5. Reshapeable groovy sheets

relation, which assumes our setup behaves as an optically linear system:

A

Pa — Pc = %A(b (513)
_ (pa - pc)ll
Axfr) = o B (5.14)

where p,, pc are shown in Fig. 5.17, and A is the fringe spacing on the reference plane. In
short: projecting phase-shifted fringe profiles on groovy sheets allows us to reconstruct
their three-dimensional shape using a limited number of recorded images.

The steps of the reconstruction procedure are illustrated in Fig. 5.18, where panel 5.18a
shows an example of a sinusoidal intensity profile projected on a flat reference surface.
The presence of a reshaped groovy sheet sporting a central scar distorts the pattern
(Fig. 5.18b). With Eqgs. 5.7-5.10 above, the phase profile of the groovy sheet is found
(Fig. 5.18¢c). Finally, the sheet’s height profile is calculated via Eq. 5.10, and custom
Python scripts detect the region that contains relevant data (Fig. 5.18d).

Fig. 5.20.: Typical sections of 3D-scanned groovy sheets. a, A groovy sheet deformed into a twisted
cylindrical shape by the presence of a scar (dashed line). Grooves and defects can be detected, as
well as the cylinder diameter and twist angle (red markers). Colours indicate height z qualitatively.
b, Two scars (dashed lines) on the same side of a groovy sheet produce similar twisting cylinders.
c, Top view of a sheet with two scars on opposite sides. Full details of the surface can be used to
quantify the exact shape of the central, helicoidal portion.

Fig. 5.19a shows a small section of a 3D height profile; the recorded signal shows
high-frequency noise, which we reduce with low-pass filtering. The high-frequency noise
arises from two main sources. First, the beamer’s projection resolution is limited, which
shows up as high-frequency noise. We tackle this issue via Gaussian smoothing with a
standard deviation of 10 pixels (corresponding to 0.75 mm on the sample) parallel to the
fringes (Fig. 5.19b). Second, the projected fringe pattern is not completely sinusoidal,
which induces noise orthogonal to the fringes at high frequencies. We improve this noise
with Gaussian smoothing orthogonal to the fringes, with a standard deviation of half the
fringe wavelength (corresponding to 2 mm on the sample, Fig. 5.19¢). While low-pass
filtering reduces the scanning accuracy, the typical length scales of the sheet’s important
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5.3. Measuring groovy sheet shapes

features (on the order of the groove size, 10 mm) lie above the filtered lengths and are
preserved (Fig. 5.19d-e).

In short, 3D scanning allows us to measure the shape of groovy sheets. Fig. 5.20 shows
representative examples of 3D scans of cylindrical and twisted shapes that sheets take
on in the presence of one (Fig. 5.20a) or two scar lines (Fig. 5.20b-c); these 3D scans
contain more information than the corresponding 2D projections shown in Fig. 5.16.
Shape measures such as curvatures and twisting angles, but also defect positions, groove
trajectories, and twisting angles can be measured in detail, as we will report in section 5.7.
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5. Reshapeable groovy sheets

5.4. In-plane elasticity of groovy sheets

5.4.1. Groovy sheets are not symmetric

Groovy sheets have an orthotropic geometry. That means the elastic response in both
in-plane directions, along the grooves and across the grooves, is very different (Fig. 5.21).
Along the grooves (Fig. 5.21a), the sheet is stiff: its behaviour is governed by stretching
of the underlying film material, and its Young’s modulus determines the stretchiness.
Across the grooves (Fig. 5.21b), the response is soft with a sudden stiffening behaviour:
this deformation is dominated by low-stiffness bending that flattens the grooves before
the sheet’s material is stretched. This type of soft-to-hard transition is typical for many
biological tissues, and helps prevent instabilities (such as aneurysms in blood vessels)*®®.
By contrast, in our groovy sheets, we find that this particular stress-strain behaviour
creates a multistable energy landscape.

i 7o "
ZI :y ZZ i i
:E
Fig. 5.21.: Groovy sheets are not symmetric under stretching. a, Stretching along the grooves
(direction g) results in elongation of the underlying material; this typically costs a lot of energy. b,

Pulling across the grooves (direction &) results in bending of the sheet and flattening of the grooves.
This deformation mode requires less energy.

In the following sections, we quantify the in-plane elasticity of groovy sheets. We
perform experiments and simulations to study the dependence of their response on the
groove geometry. In section 5.4.2, we start by estimating the sheet stiffness parallel to the
grooves, and contrast this with the experimentally measured stiffness across the grooves
in section 5.4.3. Via comparison to a simple discrete model as well as numerical simula-
tions (section 5.4.4), we find a predictive model for a sheet’s stiffness. Notably, we find an
effective stiffness, based on a simple rescaling, that predicts the response of sheets across
groove geometries. Finally, we use our findings to create a simple 3D model built from
discrete springs (section 5.4.5) whose geometry and stiffness mimics the elastic properties
of real groovy sheets. Crucially, the 3D model also mimics the reshaping behaviour of
real groovy sheets. Our findings showcase the crucial connection between geometry and
energy in our groovy sheets, and show that their shape-morphing behaviour is elastic
and reversible.
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5.4. In-plane elasticity of groovy sheets

5.4.2. Stiffness along the grooves

When a groovy sheet is stretched by a uniform force F, applied along the grooves
(Fig. 5.21a), the underlying sheet material must stretch by an amount u,. We esti-
mate the stretching stiffness as follows, assuming Hookean behaviour and small strains
below the material’s yield point (see appendix A.6):

ENtsy
W

where F is the material’s Young’s modulus, W the N the number of grooves, and sy the
arc length of a groove (see Fig. 5.8). The relation above shows that the sheet stiffness
along the grooves, £ IVVVS*, is set by the material’s Young’s modulus- unlike the sheet’s
behaviour in the orthogonal direction.

F, =

Uy , (5.15)

5.4.3. Stiffness across the grooves

Experimental measurements show that extending sheets across their grooves with a uni-
form force does not stretch the underlying material immediately; the grooves flatten our
first (Fig. 5.21b). Our experimental setup is shown schematically in Fig. 5.22a: a corru-
gated sheet, mounted in two clamps, is extended by a displacement u while its response
force F' is measured (see appendix A.8). The experimental force-displacement curves
shown in Fig. 5.22b-c shows the sheet’s soft-to-stiff behaviour: at the onset of extension,
deformations are bending-dominated and need little force (regime I). Once the sheet is
fully flattened out, stretching deformations take over and the force-displacement curve
rises rapidly, proportionally to the underlying material’s Young’s modulus (regime II).

5.4.4. Modelling stiffness

To understand the sheet’s behaviour under stretching across its grooves, we present two
models here: a discrete simplified one, and a continuum model. While the discrete model
helps us understand the qualitative behaviour of the sheet, we will show that the contin-
uum model allows us to predict the experimentally found sheet stiffness quantitatively;
surprisingly, this prediction turns out to be largely independent of the sheet’s detailed
groove shape.

We first discuss a groovy sheet model made with discrete building blocks (Fig. 5.23a).
The two-dimensional structure consists of 2N bars with rest length s and Hookean
stretching stiffness ks, connected in an accordion-like pattern by torsional springs of rest
angle ¢° and stiffness k;. This creates a sheet-like structure with N grooves. Deviations
from the rest length and angle are penalized with a stretching energy £ = %k’sAS2
and a torsional energy & = %k:tAq§2. The accordion’s overall rest length is given by
L = 2Nscos %, and extensions u = L — L° of the structure are measured from the rest

length L° = 2Ns° cos % The force F' needed to extend the accordion by a distance
can then be calculated via variation of the structure’s Lagrangian L:

L==-2N=ki(¢p—¢o)” —2N-ks(s—s )"+ F|u—2N(s os =~ — s” cos —
2™ ) 2 s ) (sc 2 2) '
(5.16)
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Fig. 5.22.: Experimental measurement of a groovy sheet’s stiffness under tension. a, A corrugated
BoPET sample with N = 18 grooves of thickness t = 23 pm, width W = 3 cm, total relaxed
length 160.5 mm and total flattened length 192.5 mm is mounted between the clamps of an Instron
universal testing machine. Displacement u of the upper clamp produces a force F' that is measured
by a load cell. b, Top: reproducible force-displacement curves of three distinct sheets (samples 1-3,
see legend), stretched over 33 mm. Insets illustrate the deformed sheet (pink lines). Two regimes, |
and Il, can be distinguished. c, In regime | (left), grooves bend and flatten at low force. In regime Il
(right), the sheet stretches at high force. Slopes correspond to a distinct stretching stiffness in both
regimes (dashed lines).

While there is no analytical expression for the force F'(u) for all values of w, it is possible
to divide the response into three regimes: bending-dominated at small displacements,
stretching-dominated at large displacements, and a mixed response in a narrow crossover
regime at intermediate displacements (see appendix A.8 for details).

We briefly review the force response in the regimes of small, intermediate, and large
displacements. First, at small values of u, we find

Ad
F=2k—— 5.17
"5 sin £ (5:17)
8Nk

where S = 2Ns? and L° = 2Ns° cos %0 are the lengths of the accordion in its flattened
and rest states, respectively. Evidently, the force response in this regime depends only
on the torsional hinges, and the accordion has an effective stiffness —ﬁ’m to
displacements in a small linear regime. However, we can obtain a governing relation for
the sheet’s elastic behaviour in a much larger regime:

d)/

u [
W = / Fdu' =— | Ns%sin —Fd¢ = 1(2th)A¢2 : (5.19)
0 ¢O 2 2

Here, W is the work performed on the sheet during its extension. In the bending-
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Fig. 5.23.: Discrete model for the extension of a groovy sheet. a, Top: stiff bars with length s0
and stretching stiffness ks (purple lines) are connected by soft torsional springs with a rest angle ¢"
and torsional stiffness k; (pink circles) in an accordion pattern. Bottom: a structure with 2N bars
and N grooves has rest length LO. Extension by a displacement u to new length L requires a force
F. b,

dominated regime, it has a purely quadratic dependence on the angle change A¢, with
a corresponding stiffness of 2Nk;. Since the contrast between bending and stretching
stiffness is large, this quadratic relation holds in a large regime of extensions. Secondly,
in the crossover regime, the accordion is nearly flattened and the bars start stretching;
the force is due to a mixture of hinge bending and bar stretching, and has no analytical
form. Finally, when displacements are larger than S° — L°, stretching of the bars must
take place. In that case, the force reads

ks

F =
2N

(u+L°—5%, (5.20)

which equation shows that the accordion’s stiffness 2’&1\, in the final regime comes purely
from stretching of the bars. These findings match our experimental results, which also
show a splitting into a soft, bending-dominated and a stiff, stretching-dominated regime.

We now investigate whether the stiffness parameters of the accordion model, k; and
k¢, can be derived from the geometry of real samples. Using the data of Fig. 5.22 and
Egs. 5.19 and 5.20, we first estimate experimental values of k; and ks. In Fig. 5.23b, we
present the work W performed on the sample versus the square of the effective angular
change Ager = get — ¢°q, defined via ¢pog = 2 arccos L(;Jgu: the relation is linear to good
approximation. In Fig. 5.23c shows the force F versus extension u in the sheet-stretching
regime. We find Nk; = 1.68 4+ 0.08 mN m and 2’“]‘;‘, = 16.0 £ 0.5 N/mm for samples with
N = 18 grooves, resulting in the following experimental stiffnesses:

ki =93+4pNm (5.21)
ks = 576 + 18 N/mm . (5.22)
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Fig. 5.24.: Elastica model of half a groove. a, The groove section has thickness ¢, width W, arc
length s9, and projected length 9. b, The section’s centroid, which determines its shape, is described
by the angle 09 between the centroid’s tangent and the &-axis as a function of arc length s. Under
a force F along the applied uniformly at the sheet's edge, the centroid deforms to 6(s).

The question remains how these values are related to the experimental samples’ shape.
We estimate the magnitude of the torsional and stretching stiffnesses of a real groovy
sheet, assuming all bending takes place in the groove’s fold (its curved section, see 5.2.1),
while stretching takes place across the entire groove. Our experimental samples have a
Young’s modulus £ = 5 + 0.3 GPa (see appendix A.6), width W = 30 mm, thickness
t = 23 pm, flattened length S° = 192.5 mm, curved groove length R = 2 4 1 mm, and
number of grooves N = 18. We first estimate k; of the groove fold using Winkler-Bach

theory'®®. A curved sheet section of thickness ¢, depth W, and Young’s modulus E,
pre-bent to a radius of curvature R and subtending an angle 6, has a torsional stiffness
EW#
ke = 2
"~ 12R6 (5:23)
~ 105 £+ 50 ptNm |, (5.24)

in the limit of reasonably small thickness, # < 1. Secondly, we estimate k; using linear
elasticity. The stretching stiffness of half a flattened groove (corresponding to a single
accordion bar) is, to first order,

EWt
~ 650 £ 50 N/mm . (5.26)

While the shape-derived values for model parameters ks and k; match the experimentally
measured values, this is mostly due to their large error margin. The accordion structure
is a good toy model to understand a groovy sheet’s stretching response, but it does not
help us to quantitatively predict its stiffness; we need a different model for that.

We now discuss a predictive continuum model for groovy sheets. Previous work has
shown that the entire groove deforms during stretching'®®, and our assumption in the
accordion structure above that hinging takes place near the fold may not be correct.
We take this into account in a more realistic elastica model. We show below that the
mechanics of these elastica grooves depends only weakly on the details of the groove’s
geometry.

The elastica geometry is shown in Fig. 5.24, which shows half a groove under a stretch-
ing force F' and extension u. In the elastica framework, the angle profile 6(s) of the sheet
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Fig. 5.25.: The mechanical response of sheets with various shapes can be rescaled to collapse on
a curve. The dimensionless work W performed on a sheet section during stretching (Fig. 5. 24) is
+u

shown as a function of the effective angle change Ad.g = et — ¢eﬁ" where ¢eg = 2 arccos

Both axes are rescaled by (Agbgff)z. The relation at small deformations is linear, with a slope C’.
Data for a broad range of groove shapes are shown (grey); several shape examples are highlighted in
colour (see legend).

unit under an applied force F' must minimize the sheet’s bending-energy Lagrangian
£108.

S0 S0
c:%p/o (0u(s) — 09(s))*ds — F u—/o (cosO(s) — cos0°(s)) ds| , (5.27)

Et3W
12(1—v?2)
that minimize the energy obey the elastica equation

where D = is the sheet’s bending stiffness and v its Poisson ratio. Angle profiles

F
0ss(5) = 05 () = 55 sin0(s) = 0 . (5.28)
Numerical solutions found using the Mathematica software suite'®! yield the force-displacement
response for grooves of widely varying geometries (see appendix A.8). Notably, the re-
sponse across geometries can be rescaled to a master curve with fair accuracy, as shown
in Fig. 5.25. There, we show the relation between the adimensional work W = Ws° / D

performed on the groove, and the square of the effective angle change Ageg = dot — P g,
l0+u
s0

where ¢.g = 2 arccos Both quantities are rescaled by the square of the rest angle
¢°. The data show that the relation between the plotted quantities is linear to good
approximation, especially at small angle changes. In addition, the curves for widely
varying groove shapes overlap to a fair degree. Defining an effective linear slope C so
that W = CAg¢%s, we find that its values lie between limiting values 1.25 < C' < 1.5
for any groove geometry (see appendix A.8). The relation between the slope C and the
experimentally measured torsional stiffness k; is then found by combining our elastica
result and Eq. 5.19:

W= %ktmiﬂ; (5.29)
W = CApZg (5.30)
- EWt3
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Fig. 5.26.: 3D simulation of groovy sheets. a, Left: discrete 3D model of a groovy sheet with N
grooves, length L, and width W. Right: zoom-in of the model’s unit cell. Springs with stiffness kg
and length 1 (purple lines) are connected in a square by torsional hinges (pink circles) of stiffness

k: and rest angles ¢V along & and 0 along 9. Cross-braces springs (grey lines) of length V2 and
resistance 0.1k stiffen the cell. b, Force F' exerted by the structure under uniform extension u
along @& across the grooves (compare Fig. 5.22). Data were obtained for a structure with W =9,
N =4, gbo =21rad, ks =1 and k¢ = 10~% via a gradient descent algorithm. The force shows a
soft hinge-dominated regime (red data points, y-scale magnified 100x) and a stiff stretch-dominated
regime (black data points).

Substituting our sample’s properties in Eq. 5.31, we find
ke =94+ 14 pNm , (5.32)

regardless of the exact groove geometry; comparing this value to our experimental mea-
surement k; = 93 =4 nN m, we find an excellent agreement between our general elastica
model and the real samples.

With the above models, we have explored the behaviour of groovy sheets under stretch-
ing across their grooves. Most significantly, we have shown that the sheet’s initial response
(that is, groove flattening) is dominated by a torsional stiffness that we can predict quan-
titatively within a small error margin, without needing detailed knowledge of the groove
geometry.

5.4.5. A 3D sheet simulation

We now showcase a simple 3D model to simulate the reshaping behaviour of groovy
sheets. In section 5.4.4, we showed that abstract models are useful tools to study the
(qualitative) mechanics of groovy sheets. These models are easy to manipulate: quan-
tities that are difficult to measure in experiments (for example, the total elastic energy
contained in a deformed sheet) can be extracted straightforwardly. Here, we build on our
results in the sections above to create a model mesh that mimics groovy sheet’s in-plane
stretching mechanics. We show that the model mesh matches the behaviour of a real
groovy sheet to a good degree. Most importantly, we find that the modelled groovy sheet
can sustain defects, and reshapes like a real sheet when a scar line of defects is introduced.

The 3D model mesh is shown in Fig. 5.26a, where the mesh unit cell is highlighted.

Like the accordion model that we considered in Fig. 5.23, the mesh is built up out of lin-
ear springs of unit length and stretching stiffness ks = 1, connected by torsional springs
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strain

Fig. 5.27.: Simulated groovy sheets reshape via defects. Top to bottom: a modelled sheet with
parameters W =9, N = 10, ¢° = 2.1 rad, ks = 1 and k; = 10~% is extended by pulling at two
nodes at its edges (black arrows). Defects snap through in the edge grooves and produce a local strain
(colour bar). Further extension snaps the entire sheet and creates a scar line of adjacent defects.
Subsequent relaxation lets the sheet curl up to a cylindrical equilibrium state with residual elastic

energy.
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5. Reshapeable groovy sheets

with rest angle ¢° = 2.1 rad and hinging stiffness k; = 10~* along the &-direction. Note
here that we have chosen a (dimensionless) ratio between hinging and stretching stiffness
ﬁ(’) (le — 4) similar to what we find in our experimental samples (see e.g. 5.21-

5.22), in order to mimic real structures. Along the g-direction, neighbouring accordions
are connected by additional linear springs as well as torsional springs with rest angle
0 rad. Cross-bracing springs are added with a stiffness 0.1k to mimic a real sheet’s resis-
tance to in-plane shearing (see appendix A.8). The model can be actuated by displacing
its connecting nodes and letting the structure relax to equilibrium via a gradient descent
method (appendix A.8).

We now show that the model’s mechanics qualitatively match those of a real groovy
sheet. First, Fig. 5.26b shows the force-extension curve of a mesh model under uniform
stretching across its grooves. Like the experimental curves shown in Fig. 5.22, the force
response shows two regimes: the first regime is dominated by hinge bending and the
second by spring stretching. Secondly, Fig. 5.27 shows the mesh model’s response under
stretching at two point contacts on opposite sides of the sheet. The model mimics the
behaviour of real sheets well (see section 5.1): initially, the entire mesh stretches out; at
a critical strain, defects are formed at the sheet’s edges; and finally, a scar line of aligned
defects is created. When the scarred sheet is released to relax freely, it curls up into a
cylindrical shape as expected.

In conclusion: our simple 3D mesh qualitatively matches the reshaping behaviour of
a real groovy sheet. We will use this result to investigate energetic interactions between
defects later, in section 5.6. Notably, the 3D model’s success shows that groovy sheet’s
ability to sustain defects does not depend on pre-strain, pre-stress, or plasticity: it is a
purely elastic effect.
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5.5. Bistability of grooves

5.5. Bistability of grooves

In section 5.1, we showed that defects pop in groovy sheets if they are stretched at
two points along their two opposite edges. Here, we show that single defects can also
be created by pushing down on a groove. We study their formation by experimentally
popping through single grooves in their centres, and recording their force response and
local shape (section 5.5.1). In section 5.5.1, we review previous research on similar struc-
tures to understand the origins of the stability of snapped-through grooves, and study
the stabilizing effect of the groove’s flat facets. Finally, section 5.5.2 investigates the
introduction of a single defect at any position in a large groovy sheet. We show that
the sheet’s size influences when defects are stable, suggesting that defects do not only
rely on local, but also on long-range deformations. We study these long-range effects
as a function of sheet size, and show that single defects are not stable above a certain
critical groove length, suggesting that the aspect ratio of grooves is a limiting factor in
the design of shape-morphing groovy sheets.

5.5.1. Making single defects

Re-shaping a groovy sheet means snapping defects into it, for example via stretching
(see section 5.1). But while snapping lots of defects at once by stretching the sheet is
effective, it is also uncontrolled. Here, we show that defects can be popped through in
a controlled way by indenting a groove from the top. We examine how the indentation
force varies with the indentation depth, and find that the popping (and un-popping) of
defects is a multi-step process that involves several snap-through events.

To study the force needed to pop a groove, we use the experimental setup shown in
Fig. 5.28a. A groovy sheet is placed on two stiff support, 50 mm apart, under its cen-
tral groove. The assembly is placed in an Instron 4900-series universal testing machine
(UTM), modified to work horizontally. An indenter is fastened on the centre of the groovy
sheet with a small ball magnet. The indenter is mounted in the UTM and attached to
its translation stage and a 10 N-rated 2530-series load cell. Forces F' on the indenter are
measured as it moves by a displacement between v = —0.5 and 5 mm from the starting
position at a speed of 0.1 mm/s. Moving the indenter far enough pops the groove.

Fig. 5.28b shows a typical force-displacement curve of a popping and un-popping sheet,
with two distinct snap-through events (stars) in the popping stage. Data shown were ob-
tained for a sample with N = 5 grooves, created with the mould-thermoforming method
shown in section 5.2.2. The sheet has width W = 100 + 5 mm and thickness ¢ = 75 pm.
During the initial indentation (Fig. 5.28, upper curve), the force rises steeply as expected
for any material, but then flattens off and becomes irregular. At a critical indenta-
tion depth, two audible snap-through events happen in short succession, and result in a
popped groove with a defect. Performing the same experiment with the groovy, popped
sheet reversed in the setup allows us to measure the un-popping force (Fig. 5.28b, lower
curve). Comparing the popping and un-popping energies by calculating the area under
the two curves, we find that popping costs 1.7mN m and un-popping 0.ImN m. In other
words, the popped sheet’s energy is 1.6mN m, and the barrier for reversal is more than
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Fig. 5.28.: Popping a single defect. a, Experimental setup. An indenter (light grey) is stuck to the
centre of a sheet (pink) with N grooves and width W = 100 + 5mm by a magnet (dark grey). The
indented groove is held by two supports at distance d = 50 mm. Forces I’ generated by moving the
indenter by a displacement u are measured by a universal testing machine. b, Force-displacement
curve measured while popping (upper) and un-popping (lower) a sheet with N = 5 grooves. The
onset is smooth, corresponding to slow indentation of the groove. Popping is complete after two
audible snap-through events (stars) and 1.7mNm of work has been done: releasing the indenter
brings the force below zero. Un-popping the defect costs 0.lmNm. ¢, Popping of sheets with
decreasing numbers of grooves: N =5 to N = 1/2. Snap-through events ¢ and i (grey areas) and
stable defects are seen for N = 1 to 5. At N = 1/2 (dark blue curve), the onset force is smaller,
and the popped state snaps back. d, Work done during indentation, measured as the area under the
force-displacement curves in (c), for N = 5 to N = 1/2. The work initially increases with N, then
saturates. e, Force curve (green) measured when a sheet with 5 grooves is held by a magnet on each
support. Forces are measured over the full range of displacements (free curve in yellow shown for
comparison). Two snap-through events are seen while popping (¢ — 4z), and three while un-popping
(i5t — v).

120



5.5. Bistability of grooves
ten times as small: the bistable state lies in a fairly shallow energy well.

We investigate the importance of the number of grooves, N, in Fig. 5.28¢c-d. There,
we show force curves for sheets of width W = 100 &+ 5 mm, but with different numbers
of grooves: N =1/2 to N = 5. Interestingly, there is no obvious quantitative difference
between sheets with one or five grooves, or any number in between. The initial stiffness of
all measured samples is similar; the curves show two snap-through events while popping,
as expected (areas i and 4i in Fig. 5.28¢c); and the final, popped state of the sheets is
stable (that is, the force exerted by the indenter dips below zero). By contrast, the half-
groove N = 1/2 is softer, needs a much smaller indentation force to snap through, and
it is not stable in its popped state. These results imply that the influence of the number
of grooves is only significant for very small values of N. This idea is supported by the
results shown in Fig. 5.28d, where we show the work done on each sample during cyclic
loading by measuring the areas under their force-displacement curves. The work done
on a sample with N = 1/2 grooves is much smaller than the work done on samples with
larger numbers of grooves. In addition, the work depends only weakly on the number of
grooves, saturating to a plateau value as N grows. Thus, the behaviour of the popped
central groove appears to only depend on its nearest-neighbour grooves.

To build an intuition for the snap-through events that happen inside the groove, we
measure both the popping and un-popping response of a sheet with N = 5 grooves
(Fig. 5.28c). We slightly modify the setup for these measurements: two extra magnets
are used to attach the sheet to the two supports, which allows us to measure forces when
the indenter pulls as well as pushes the sheet. The experimental force curve shows that
indentation of the sheet produces two snap-through events (which we call ¢ and i) be-
fore the groove is popped through; during un-popping, pulling on the groove snaps the
structure through three times (events iii, iv, and v).

Fig. 5.29 explores what happens to the local shape of a groove during popping and
un-popping. Fig. 5.29a shows the experimental setup, while in Fig. 5.29b, we show qual-
itative sketches of the local mean curvature near the indenter as it is pushed and pulled.
Blue and pink lines indicate positive and negative mean curvature, respectively (moun-
tains and valleys, see legend). The sketches, based on observations, indicate that patterns
of mean curvature in the groove are fairly regular and consistent across samples. Inter-
estingly, snap-through events appear to be related to symmetry-breaking transitions in
the curvature patterns. Snap-through transitions ¢ and i, which create a stable popped
defect, both occur by annealing small regions of high negative curvature with adjacent
valley grooves. Transition 4i¢, which happens when the defect is un-popped, switches the
defect’s shape from a regular diamond to an asymmetric chevron. Finally, transitions v
and v create local regions of high negative curvature by detachment from the neighbour-
ing valley grooves: they are the counterparts of transitions ¢ and 4.

In short: defects in groovy sheets can be controllably popped in from the top. Our
measurements show that defects do not feel much of the sheet beyond their neighbouring
grooves; that they are created via multi-step snap-through events that are related to
changes in the local groove curvature; and that defects live in a fairly shallow energy
well, compared to their creation barrier.
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Fig. 5.29.: Local shape of a groove while snapping. a, Experimental setup as in Fig. 5.28, with
the sheet being held by a magnet (dark grey) on each support. The indenter is pushed to pop a
defect, and pulled to un-pop it. b, Sketches of the groove's mean curvature (blue and pink lines
for mountains and valleys, see legend) during snap-through events ¢ — v shown in Fig. 5.28c. Top:
pushing the groove produces a local mean curvature pattern. Regions of high mean curvature snap
and disappear by annealing with a nearby valley groove (i and i), resulting in a symmetric defect.
Bottom: pulling the groove breaks the defect’s symmetry (iiz). Regions of high local curvature detach
from neighbouring valley grooves in two snap-through steps (iv, v).

5.5.2. Sheet size dependence

In section 5.5.1 above, we showed that a defect can be popped into the centre of a
sheet. For the particular sheet shape studied, we saw that this central defect is stable
when the sheet has at least one groove. In addition, adding more grooves to the sheet
did not significantly change the force needed to create a defect, implying that across the
grooves (in the y-direction shown in Fig. 5.28a), interactions are weak: defects do not
feel the neighbouring grooves much.

Here, we investigate the other direction: how do defects respond to their environment
along the grooves (the z-direction in Fig. 5.28a)? We address this issue by studying the
stability of single defects as a function of two variable sets, illustrated in Fig. 5.30a: the
sheet size, set by the number of grooves N and the sheet width W; and the defect’s
position, set by its distance from the sheet’s edges in terms of the number of grooves n
and the edge width w.

As we show below, our findings confirm that the number of grooves does not impact
defect stability much- except when defects are close to the sheet’s edge. By contrast, the
sheet width is very important: defects are sensitive to the length of the groove in which
they live, and they are only stable if this length is neither too small, nor too large, but
exactly right.
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Fig. 5.30.: Probing stability of defect in a sheet. a, A sheet with N grooves, width W and thickness
t = 75 pm (pink) is placed on two supports (grey). The sheet is manually popped through with an
indenter at various distances n across and w along the grooves away from the centre at (w,n) = (0, 0).
b, Stability of popped defects for a sheet with N = 2 and W = 30 cm. The sheet outline is indicated
(grey box) in the (n,w)-coordinate frame. Pink and grey dots (legend) indicate where defects are
stable and unstable, respectively. ¢, Stability results for N = 2 grooves and progressively shorter
widths W are shown (scale: top left). Data were obtained by cutting to size and probing of a single
sample. Only defects near the lateral edges are not stable.
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Fig. 5.31.: Defect stability depends on sheet size and location. Maps of defect stability are shown
for sheets of systematically varied width W and number of grooves N. Top left: the sheet outline
is indicated (grey box) in the (n,w)-coordinate frame. Pink and grey dots (legend) indicate where
defects are stable and unstable, respectively. Scale is identical for each panel. Data in each column
correspond to a distinct sample with N € [0.5,1,2, 3,5, 7] grooves that is cut down progressively to
a smaller width W € [30, 28, ..., 20] cm. a, Defects in narrow sheets with half a groove, N = 0.5, are
unstable. b, For N = 1,2, only defects near the lateral edges are unstable.
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Fig. 5.31.: (continued) Defect stability depends on sheet size and location. ¢, For N = 3 and
upward, defects near the lateral edges are unstable. In addition, sheets with a large width W > 28 cm
show unusual behaviour: defects near the sheet centre are unstable. This difference between sheets
with few and many grooves disappears, after a transition regime, at width W < 22 cm.
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In Fig. 5.30a, we show our strategy to probe the stability of defects in a sheet of size
N by W as a function of its position. The sheet is placed on two supports and a thin
indenter is used to push the sheet down manually until no more snap-through events
occur; the indenter’s location is measured by distances n and w away from the sheet’s
centre. Fig. 5.30b shows typical stability results for a sheet of thickness t = 75 pm, N = 2
grooves, and width W = 30 cm. A top view of the sheet is shown, its edges indicated by
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a grey outline. Dots on the sheet surface correspond to probed points: pink dots indicate
that a stable defect has been created there, while grey dots indicate unstable points.
Here, we take ‘stable’ to mean that a pop-through defect has been created successfully at
this location, at least once, with a minimal lifetime of 10 seconds to account for viscous
effects. Note that this definition includes points that may have been probed multiple
times, producing a stable defect only once; our results may thus include false positives.
Regardless, our results show a good consistency, as we show in Fig. 5.30c, where we show
stability results of the sheet in Fig. 5.30b as it is gradually cut down to smaller and
smaller widths W. Across the measurements shown, defects close to the lateral edges are
unstable, while those near the centre are stable.

However, not every sheet supports stable defects near their centre, as we illustrate in
Fig. 5.31. There, we show a grid of stability results for sheets with N € [0.5,1,2,3,5,7]
grooves (columns) that are gradually cut down to widths W € [30, 28, 26, 24, 22, 20] cm
(rows). We first note that the stability results for each sheet are up-down and left-right
symmetric to a good degree, consistent with our expectation that the sheet’s geometry
is uniform across each sample. The stability results fall into three classes, depending on
the number of grooves; they are shown in panels 5.31a, b and c. First, Fig. 5.31a shows
that sheets that are very narrow (only half a groove long, N = 0.5) do not support stable
defects. While they can undergo snap-through transitions, they pop back to their start-
ing shape, consistent with our mechanically controlled experiments in Fig. 5.28. Second,
Fig. 5.31b indicates that defects in moderately narrow sheets (1 or 2 grooves long) are
stable, except if they are too close to the lateral edges. Third, Fig. 5.31c illustrates that
sheets with a larger number of grooves (N = 3, 5 and 7) show distinct behaviour. When
such sheets are wide enough (above W = 28 cm), stable defects are only found where they
are both far away from the sheet’s lateral edges and close to the vertical edges. When
the sheets are cut down to sufficiently small widths (below W = 22 cm), their behaviour
reverts to the familiar pattern of defects that are only unstable near the lateral edges.
In between these two widths, an area of stable defects near the sheet’s centre appears in
a typical hourglass-like shape that widens to a rectangular area at decreasing width W.
Thus, the stability of defects in a sheet varies strongly with the sheet size and the defect
location.

We condense the large amount of data in Fig. 5.31 in Fig. 5.32. We focus on the
stability of defects at each sheet’s centre (Fig. 5.32a, central cross), and on the width of
the unstable regime near a sheet’s lateral edges (Fig. 5.32a, arrows), which we call the
unstable edge width w.; u, varies with the sheet’s size, and with the minimal distance
of a groove to the sheet’s vertical edges, nedge. Fig. 5.32b shows a stability diagram that
shows whether or not a defect, created in the centre of a sheet with width W and number
of grooves N, is stable (legend). Based on these results, we conclude that sheets can only
support stable defects near their centre if they have enough grooves (here, N > 0.5) and
are neither too narrow nor too wide (1 < W < 28 cm for this particular groove geometry).

Fig. 5.32c¢ finally explores the unstable edges of our sheets: we show the unstable edge
width u,, as a function of sheet width W for sheets with increasing numbers of grooves
(left to right). u,, is measured for each groove of a given sheet, and colour-coded by the
minimal distance of the groove to the sheet’s vertical edges, 7edge (legend). Error bars
correspond to the minimal and maximal measured values of u,,. Three features stand
out: first, at small sheet widths, w, grows proportionally to W. Second, at intermediate
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sheet widths W = 8 cm, u,, plateaus to a constant value for grooves that are near the
sheet’s vertical edges. Finally, at large sheet widths, u,, increases with W (corresponding
to the hourglass-shaped stability regimes in Fig. 5.31c); the magnitude of the increase
is larger for grooves that are farther away from the sheet edge, but this trend seems to
saturate beyond nedge = 2. In essence, these results give us a design guideline for using
sheets to make shape-shifting materials: sheets show consistent single-defect stability be-
haviour across their surface if they have a high enough number of grooves (here, N > 3)
and their width lies in a goldilocks zone that is neither too small (W 2 8 cm), nor too
large (W < 20 c¢m), but just right.

In summary: the stability of a single defect depends on the size of the surrounding
groovy sheet. Specifically, the sheet width is important, more so than the number of
grooves. The sheet energetics are complex, which gives rise to stable defects only in an
intermediate range of sheet widths. This result has design consequences: sheets that are
too big or too small may not support defects and may not be capable of shape-morphing-
unless defects stabilize each other by interacting together.
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Fig. 5.32.: Stability of defects close to and far from the sheet edges. a, In a sheet of size N by W,
defects are not stable if they are close to the lateral edges (legend: see b). We quantify an unstable
edge width w, that varies with the smallest distance to the edge along the grooves, neqge (black
arrows). The stability of defects at the centre (black cross) depends unambiguously on sheet size.
b, Stability of central defects (legend) as a function of sheet size. Defects are unstable for sheets
that are less than one groove long; defects are also unstable for sheets of too small or too large a
width W. ¢, Unstable edge width w, as a function of sheet width W is shown. Colours indicate
the distance to the nearest edge along the grooves negge (legend). Data were obtained for sheets of
various groove numbers N (left to right). The data show three effects. First, at small sheet size W,
Wy, increases proportionally with WW. Second, w,, stabilizes to a plateau for grooves that are within
1 groove distance from the edge, negge < 1. Third, wy, increases from its plateau value for grooves
farther away from the edge, meqge > 1.5; the magnitude of the increase depends weakly on negge,
appearing to saturate beyond megge = 2.
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5.6. Interactions between defects

In this section, we explore interactions between multiple defects in a groovy sheet.
Recall that in section 5.1, we observed the formation of straight scar lines. The fact
that defects in adjacent grooves align in such scars provides strong evidence for the
existence of interactions. First, scars are seen to run reasonably straight across the
sheet, suggesting that defects in neighbouring grooves attract; second, the fact that scars
are stable in rather large sheets, while individual defects are not (see section 5.5 above),
further suggests a crucial role for interactions. We therefore probe the interaction of
defect pairs, first experimentally (section 5.6.1) and then theoretically (section 5.6.2). To
interpret our results, we study how defects affect a sheet’s shape: interactions between
defect pairs must ultimately be mediated elastically, via geometrical deformations. Based
on experimental curvature measurements, we give an intuitive geometric explanation for
the observed interactions and organization of defects in a groovy sheet (section 5.6.3).

5.6.1. Defects interact with their nearest neighbours

To explore the interactions between nearby defects, we first turn to qualitative experi-
ments.

Our experiments start by creating a defect in the centre of a groovy sheet, using a
small indenter. Importantly, defects are mobile: it may be moved along the groove at a
low energy cost due to the high degree of structural symmetry along the groove direction.
That is: barring edge effects, a defect produces a constant deformation (and thus strain
energy) field, no matter where it is placed in the groove. Thus, in the ideal case, a defect
is not prevented from moving by any elastic energy barrier: it is a Goldstone mode of
the groovy sheet'%?. However, in practise, edge effects, dissipative losses and geometric
irregularities tend to create small energetic barriers that cause defects to be pinned at
certain preferred positions.

We use the central defect’s mobility and pinning properties to probe defect interac-
tions. A second defect is created in a nearby groove and allowed to glide freely to find
a stable (possibly pinned) position. From this stable configuration, the second defect is
moved relative to the central defect by applying a small guiding force with an indenter.
When the guiding force is removed, the mobility of the second defect gives some infor-
mation on how the pair interacts. We explore three scenarios for defects whose cores are
close together: separated by 1/2, 1 and 2 grooves along z. (Fig. 5.33).

We start in Fig. 5.33a with two positive defects: they are made in the crests of two ad-
jacent grooves, at a separation of n = 1 groove along &. Scar lines are made from chains
of just such equal-parity defects, each separated by a single groove from its nearest neigh-
bours. Fig. 5.33a-i shows the starting configuration. Two defects are made in a sheet
of thickness ¢t = 50 pm, width W = 10 cm and N > 10, fabricated with the corrugating
method described in section 5.2.2. The sheet is visualized between crossed polarisers (see
Fig. 5.15), which yields a colour pattern that depends on the sheet’s local curvature and
orientation. The defect pair is stable at a mutual distance d =~ 0 along §. One defect
is moved to a small separation d (ii, black arrow), after which it spontaneously moves
to an even larger stable distance d (red arrow). This repulsive motion is observed to be
repeatable, though the stable distance varies somewhat. When the defects are brought
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Fig. 5.33.: Defects feel their neighbours. a, Two positive (++) defects are introduced in the
mountain folds of two neighbouring grooves (schematic, left) in a sheet with thickness ¢ = 50 pm
(photos, ) created with the moulding method of section 5.2.2. Moving one defect away from its
neighbour with a small indenter (i, black arrow) causes the defect to move farther spontaneously
(red arrow). Joining the defects together (iii) creates a stable complex. b, A positive and negative
(+-) defect are created in the mountain and the valley fold of one groove (7). Moving one defect
toward its neighbour (i) causes a spontaneous coalescence into a stable complex. This behaviour
reproduces under repeated separation (%i%). c, Two defects, whose cores are separated by two full

back together to d ~ 0, they remain stable (iii): there is a short-range attraction. Note
that the defect’s size is comparable to the groove wavelength A (Fig. 5.8b). In terms of
this typical size, the range of attraction between equal-parity defects lies below d ~ A,
while the repulsive effect is lost beyond d ~ 4\, where defects come to rest.

Fig. 5.33b shows two defects made at a separation n = 1/2 along x. One negative
defect is created in the valley of a groove, while the neighbouring crest sports a positive
defect. Initially, the defects are stable at a distance d & 4\ (i). When the positive de-
fect is brought closer to its companion (#), it moves spontaneously anneal into a defect
complex with a separation d =~ 0. Forcibly separating the defects back to d ~ 4\ does
not prevent the complex from re-forming (7i7), indicating that pinning effects may be
responsible for the defects’ initial stability in ¢. Thus, opposite-parity defects experience
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a fairly wide range of attraction, at least up to d ~ 4\.

Finally, we explore how defects interact when their cores are separated by two full
grooves (Fig. 5.33c). A pair of equal-parity defects is created at a separation n = 2
along & and a distance d = 0 along y (7). Varying the defect distance does not lead to
significant motion(#4, iii): there is no discernible interaction between the pair, implying
that interactions between defects that are not directly adjacent are comparatively small.

The experiments in Fig. 5.33 show that defects in directly adjacent grooves interact
with one another significantly. Their interaction is attractive at small distances compared
to the groove wavelength. These findings are general: they reproduce across samples
created with the fabrication methods shown in section 5.2.2. It is precisely this attraction
between defects that allows for the creation of scar lines consisting of locked-in defect
chains.

5.6.2. Defects attract and repel

The interaction between defects explored in Fig. 5.33 should be governed by defect-
induced deformations of the groovy sheet, which cost work to create. While this elastic
energy is challenging to measure experimentally, the simple computational model intro-
duced in section 5.4.5 allows us to estimate the collective energy of a defect pair.

Fig. 5.34 shows our strategy. A small section of our model network is illustrated in
Fig. 5.34a; a sheet with two grooves and its coordinate system are shown. The network
consists of stiff Hookean springs (grey lines) with stretching stiffness ks = 1, connected
by soft torsional harmonic springs of stiffness k; = 1-10™* (see section 5.4.5). Lengths
are measured by the model’s cell spacing, [, which we set to unity. To get a sense of
scale: elastic energies £ in this system are thus measured in dimensionless units, where
&£ = 1 corresponds to the energy needed to stretch a single spring to twice its original
length. This model allows us to estimate how much energy it costs to create defects; it
is especially useful for comparing the energies of different defect configurations, such as
a pair of equal-parity defects at various mutual distances.

In line with our experimental findings (recall Fig. 5.33), we study the energetics of
a pair of equal-parity defects at various mutual distances (Fig. 5.34b). Starting from a
sheet with N = 2 grooves and length W = 20, we introduce a defect at a position d/2
away from the sheet centre. The total elastic energy of the sheet, £;, can be calculated
from the structure’s deformed geometry. A second defect is then made at a distance d
with respect to the first defect, ensuring that the defects are as symmetrically spaced as
possible (see appendix A.10 for details). The total elastic energy of the sheet with its
two positive defects, £+, is then calculated as a function of defect distance d.

The resulting energy curve is shown in Fig. 5.34c, as well as a reference curve for the
energy > &4 needed to create either defect on its own. Several features stand out here,
and we discuss them from large to small distances d. First, defects whose spacing is
close to W are not stable, and no computational data could be obtained there. This
is consistent with our experimental findings in section 5.5.2, where it was shown that
defects cannot be created too close to a groove’s lateral edges. Secondly, the total energy
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Fig. 5.34.: Defect interaction energies calculated with a computational model. a, Computational
model of a groovy sheet, made with Hookean springs (grey bars) connected by torsional hinges. Sizes
are measured in units of cell size [ = 1. b, A sheet of of width W = 20 and N = 2 grooves (left)
supports a positive defect (middle, marker) at distance d/2 from the sheet centre at an elastic energy
cost 4. A second positive defect (right, marker) creates an equal-parity defect pair with spacing d
at total energy cost £ . Strain in the network’s springs is indicated for clarity (colour bar). ¢, Total
energy £4 4 of the defect pair as a function of distance d (red circles). Baseline energy > £ needed
to create defects individually is shown for reference (red dashed line). d, A sheet (left) supports a
negative defect in its central valley fold at energy £_ (middle). A positive defect in a neighbouring
mountain fold at distance d increases stored energy to £4_ (right). e, Defect pair energy £4_ is
shown, as well as the baseline > &+ (legend). f, Two positive defects separated by a groove are
made in a sheet with N = 3 grooves (left to right) at total energy cost £+ 1 g, Defect pair energy
&4+ + and baseline >~ &4 (legend).

increases gradually as d shrinks, until an approximate plateau is reached at 15 2 d = 5.
In this regime, the energy of the defect pair is nearly the same as the summed energies
of the individual defects. Third, £4+4+ increases between 5 2 d 2 1, indicating a short-
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range repulsion. Finally and crucially, the energy shows a small dip at d < 1. While
our results are limited by the model’s finite lattice spacing, these results are consistent
with the experiments in section 5.6.1. That is, equal-parity defects attract at very short
length scales compared to the typical groove width (d < [); they repel at intermediate
distances(! < d < 5l); and their interaction becomes very low after that (d > 5I), imply-
ing that in practise, secondary energetic effects (geometric irregularities, dissipation, and
similar) may lead to defect pinning there.

We now investigate the long-range attraction of a defect pair with opposite parity with
the strategy outlined above (Fig. 5.34d). The resulting energy £4_ and a reference curve
> &4 as a function of defect distance d is shown in Fig. 5.34e. Interestingly, the energetic
trend is similar to the positive-pair energy of Fig. 5.34c, indicating a loss of stability for
defects too close to the groove’s lateral edges, a lack of interaction at large distances,
an intermediate-range repulsion, and short-range attraction. However, there are three
differences. First, no plateau is visible, which we attribute to the finite width W of the
sheet; however, the pair energy £4_ is nearly equal to the summed energy of individual
defects, > &4, for d < 12. Second, the overall energy €4 is higher than £, which
is due to the larger amount of (deformed) sheet material flanking the negative defect
compared to the positive defects. Most importantly, consistent with the experiments in
section 5.6.1, the regions of attraction and repulsion between the opposite-parity defects
are much larger (d < 4 and 4 < d < 12, respectively) than those between two equal-parity
defects.

Finally, Fig. 5.34f-g explores how defects interact when they are separated by a full
groove. A pair of equal-parity defects is created at an energy cost £+ 4, which exhibits
a small increase in energy at smaller values of d, indicating a repulsive effect. However,
the energetic increase is significantly lower than for directly adjacent defects. Repulsive
effects between spaced-out defects are thus comparatively small; here, too, secondary
energetic effects can produce defect pinning in real groovy sheets.

In summary: our simple computational model shows that defects sense one another
significantly only if they are separated by less than one full groove. We found that an
equal-parity defect pair attracts at very small distances (compared to the typical groove
size); repels at intermediate separations; and does not interact beyond that. A pair of
opposite defects shows a similar interaction, but the pair senses each other over a larger
range. Most importantly, both defect pairs exhibit short-range attraction. Thus, it is
energetically favourable for a set of adjacent stable defects in a groovy sheet to align,
which explains why defects form scar lines.

5.6.3. Interactions via curvature

Our simple computational model shows that defects interact. Given the simple ingre-
dients of the model (elastic elements arranged in an accordion geometry), these interac-
tions must be a product of geometrical effects that occur when defects are close together.
However, the model’s discreteness does not allow for an in-depth study of defect-induced
deformations. Here, we turn instead to the 3D geometry of real sheets to study the
geometric origins of defect interactions.
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Fig. 5.35.: Defects affect both mean and Gaussian sheet curvature. a, Mean and Gaussian curva-
tures K,, and K, (middle, right) in a groovy sheet with thickness 75 pm, width W = 13 c¢m, and
N = 10 grooves (left; greyscale matches height z). Curvatures, obtained by numerical differentiation
of the height profile, are shown as a function of local surface coordinates v and £ (colour bar). b,
Mean and Gaussian curvatures (middle, right) in a groovy sheet with no defects (left). ¢, Difference
between mean and Gaussian curvatures, AK,, and AK, of groovy sheets with and without a defect.
Long-range changes in mean curvature, as well as localized changes in Gaussian curvature are seen.
d, Zoom-in of curvatures and curvature differences in the presence of a defect (black box in a).
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Fig. 5.36.: Defects pairs at large distances do not interact. a, Mean curvature K,,, deviation AK,,
and Gaussian curvatures Ky and Ky (right) in a groovy sheet sporting one defect. Sheet details as
in Fig. 5.35. Curvatures are shown as a function of local surface coordinates v and £ (colour bar). b,
Mean and Gaussian curvatures in a groovy sheet with equal-parity defect pair at a core separation of
two grooves along x4 and at distance 5 cm along v. ¢, Equal-parity defect pair at distance 5 cm and
core separation of one groove. d, Opposite-parity defect pair at half a groove core separation and
5 cm distance. Curvature patterns for pairs do not differ from those of single-defects.

The energetics of real groovy sheets are governed by bending and stretching deforma-
tions, which we quantify as follows. Bending deformations produce a mean curvature
K,,. For example, a sheet rolled into a cylinder with radius a goes from zero mean cur-
vature to K,, = a. Thin sheets resist such deformations with a typical bending stiffness

3 . . . . .
kbend = %108. Contrariwise, local stretching deformations produce a Gaussian cur-
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vature K4 that may be positive or negative. Typical examples of such local stretching is
dimpling of a flat sheet into a spherical shell (from zero to positive Gaussian curvature)
or into a saddle-shaped section (from zero to negative Gaussian curvature). Changes
in Gaussian curvature are resisted by the sheet with a stiffness kstretch = 125fry) 108
The different thickness-dependence of the bending and stretching stiffnesses show that
stretching is more energetically costly than bending for thin sheets. As a consequence,
in thin sheets, stretching deformations are often much more localized than bending—
crumpling in paper being a typical example—though exceptions do exist!®* 1% On a
practical note: uniform stretching deformations do not produce either mean or Gaussian
curvature; however, given the high energy cost of uniform stretching and the lack of its
experimental observation in groovy sheets with defects, we do not consider it here. To-
gether, the mean and Gaussian curvatures describe how a (groovy) sheet curves in space,
and how it deforms in the presence of defects.

Thus, measuring a groovy sheet’s curvature with 3-D scans (section 5.3.2) allows us to
understand where defect-induced bending and stretching deformations take place. Below,
we compare how these deformation distributions look for different defect pair arrange-
ments. Our data suggest that defect pairs experience long-range interactions mediated
by bending deformations, while stretching deformations play an important role at close
quarters. We propose that stretching deformations are responsible for the short-range
attraction between equal-parity defect pairs, explaining the formation and stability of
scar lines of contiguous defects in groovy sheets.

To study the geometric interactions between defects, we first look at a reference sce-
nario: a groovy sheet with one defect. Fig. 5.35a shows the height profile of a sheet with
N = 10 grooves, width W = 13 cm and thickness ¢ = 75 pm, produced using static
thermoforming (section 5.2.2). A single defect has been popped into the sheet, away
from its edges. The mean and Gaussian curvatures, K,, and K, are calculated from the
scanned height profile z(x,y) by calculating its discrete derivatives (section A.11). Via
comparison with the curvature of a sheet with no defects (Fig. 5.35b), the differences in
Gaussian and mean curvatures, AK,, and AK,, are calculated across the sheet surface
and shown in Fig. 5.35c. The following features stand out. First, the defect affects mean
curvature along its groove (direction v) over several centimetres; a larger span than across
its groove (direction &), where differences in mean curvature become indistinguishable
from noise over the span of about one groove. This limited effect of defects beyond their
nearest neighbours is consistent with our experimental and computational results in the
previous sections. Second, the Gaussian curvature shows a focussed peak around the
defect location. While the Gaussian curvature’s spatial pattern reproduces across many
samples, its measured magnitude fluctuates significantly. We attribute these fluctuations
to the use of squares of higher-order discrete derivatives during its calculation. Thus,
we should compare its spatial distribution rather than its magnitude between different
measurements. Inspecting the curvature more closely via the zoom-in in (Fig. 5.35d), we
see that the defect produces a regular, reflection-symmetric change in mean and Gaussian
curvature.

135



5. Reshapeable groovy sheets

AK,, Ky : ’
204 - S
£ 101 ]
E o + 123 354
A
—104 ! 4
—204
60 80 100
€ [mm] K, 002 00 o002
K -0.2 0.0 0.2 s E
Ber

40 60 80

& [mm]

C ot
) = s <
| it
GIU 8I0 I(IJO.-

¢ [mm]
d Y e N
. v
SRR

-
i

60 80 100

€ [mm]

Fig. 5.37.: Defects pairs at small distances interact. a, Mean curvature change and Gaussian
curvature, AKy, and K, (middle, right), correspond to bending and stretching deformations in a
groovy sheet with one defect. Sheet details as in Fig. 5.35. Inset: colour-saturated zoom-in of
defect locus to highlight K, distribution. b, Bending and stretching deformations for an adjacent,
equal-parity defect pair at a distance of 0 cm along v (and two grooves core separation along &).
Deformation fields match those of isolated defects. ¢, Deformations for an adjacent equal-parity
defect pair at a core separation of one groove. Bending and stretching between the pair does not
match single-defect deformations. d, Deformations for an adjacent opposite-parity defect pair at half
a groove core separation. Bending and stretching around the pair differs significantly compared to a
single defect.
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Most notably, differences in mean curvature are centred on the defect’s core groove,
while differences in Gaussian curvature show up as small, alternately positive and neg-
ative stretching patches in the grooves directly next to the defect. We now investigate
whether these off-centre stretching deformations could be responsible for inter-defect in-
teractions. We first look at various defect pairs at a large distances, and show that their
curvature distributions look similar to those of isolated defects. By contrast, we then
show that the curvature distribution for defect pairs at small distances differs significantly.

Fig. 5.36 shows curvature distributions of a sheet sporting defect pairs at a large mu-
tual distance d along sheet direction v. For reference, Fig. 5.36a shows a sheet with a
single defect; its mean curvature K,,; its mean curvature deviation AK,, with respect
to the undeformed sheet; and its Gaussian curvature K,. Fig. 5.36b—d show the same
curvature measures for three defect pairs. In order, we show: an equal-parity defect pair
whose cores are separated by two grooves; an equal-parity defect pair at a core separa-
tion of one groove; and finally, an opposite-parity defect pair separated by half a groove.
Inspection of K, and AK,, shows that each defect produces a local curvature distribu-
tion that is qualitatively indistinguishable from that of a single defect, supporting our
experimental and numerical observations that defects at large separations do not interact.

However, the curvature behaves differently when defects are close together, as illus-
trated in Fig. 5.37. Here, too, Fig. 5.37a shows a groovy sheet with a single central defect
for reference; the sheet’s bending and stretching deformations (AK,, and K,) away from
its initial state are included. Zoomed-in insets of Gaussian curvatures near the defect
locus are shown; the colour map for these insets is chosen with tighter limits for larger
visual contrast, highlighting the different curvature distributions. High-frequency noise
is observed in the Gaussian curvature along direction v, which we attribute to scanning
errors (the noise matches the scan fringe frequency of 1.6 mm, see section 5.3.2).

Fig. 5.37b shows an equal-parity defect pair with a core separation of two grooves. In-
terestingly, the sheet deformations around each defect appear similar to those of isolated
defects, consistent with our previous observation that such defect pairs do not interact
strongly.

Fig. 5.37c also shows an equal-parity defect pair, with a smaller core separation of one
groove. Here, the deformation field around the defects is different: the mean curvature
of the groove right between the defect pair changes significantly, signalling local groove
flattening. In addition, the defects’ Gaussian curvature peaks at the central groove merge
into a complex in a diamond pattern, where the amount of curvature appears to be less
than for independent defects. Thus, while bending deformations appear to increase,
stretching deformations may be reduced. We hypothesize that the competition between
increased bending and reduced stretching in the samples studied here results in a net
energetic benefit when the two defects are aligned.

Finally, we consider an opposite-parity defect pair with a core separation of half a
groove in Fig. 5.37d. The defects’ bending and stretching deformations show rather dif-
ferent distributions compared to isolated defects. Two features stand out. First, the
opposing bending deformations of the two defects (quantified by AK,,) appear to be
‘slotted’ into place in a way that preserves their bending distribution symmetry. By
inspection, increasing the defects’ mutual distance breaks this symmetry, suggesting an
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increased bending energy cost at larger distances. Second, the stretching distribution
(Ky) of the two defects merges into a complex. Notably, the stretching pattern of one
defect’s core merges with the off-centre stretching of the other. Separating the defects
thus requires the creation of more stretching patches, at an energetic penalty. Both fea-
tures are consistent with the mid- and short-range attraction (mediated here via bending
and stretching, respectively) that was observed experimentally and computationally.

The groovy-sheet deformation fields studied above show that interactions between
defects are mediated by bending and stretching, visible as changes in mean and Gaus-
sian curvature. Defects produce bending deformations at medium range across and along
grooves, respectively (compared to the typical groove size). By contrast, stretching defor-
mations are highly localized within half a groove from the defect’s core. This means that
bending-mediated interactions play a role over medium-range distances, while stretching-
mediated interactions become significant if the defect pair’s cores are close together.
While the exact merging of defect’s deformation fields at short distances may be com-
plex, the outcome is simple: defect pairs in adjacent grooves show short-range attraction.
In summary: defects attract at close range, and this interaction allows scar lines of ad-
jacent, equal-parity defects to be formed in large sheets.
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5.7. Shaping groovy sheets with scar lines

Defects in groovy sheets organize to form scar lines, as we discussed above. In the
previous sections, we showed that short-range, geometrically-driven attraction between
defects lies at the heart of scar line formation. Here, we explore the natural next ques-
tion: how do scar lines reshape groovy sheets?

Figure 5.38 revisits some of the complex groovy sheet shapes first shown in section 5.1.
While Fig. 5.38a—c showcase samples with intricate shapes due to their various scar line
configurations—short and long, diagonal and straight—Fig. 5.38d shows our starting
point: a groovy sheet with a single central scar line, orthogonal to its grooves. The
resulting shape appears geometrically straightforward: the sheet is rolled up into a cylin-
drical shape, distended near the scar line. In other words: isolated scar lines orthogonal
to the sheet’s grooves lead to geometrically simple shapes.

Fig. 5.38.: Scars reshape groovy sheets. Several scar configurations of a groovy sheet (100 pm
thick, fabricated using the dynamic forming method described in section 5.2.2) are illustrated. a, A
multitude of small scar lines, each spanning several grooves, produce a rough landscape with hills
and dips. b, Three alternating scar lines create a slit surface. ¢, Spiralling shape formed via two
equal-parity scar lines. d, A single scar line forces the sheet to roll up.

In this section, we therefore systematically study the reshaping effect of scar lines,
starting with a single scar in section 5.7.1. We discuss a geometric argument that shows
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why a scar line produces a rolled sheet shape, and show experimental data to support
this. In addition, we show that small sheets (with a small width W) roll, while larger
sheets undergo a symmetry-breaking transition that produces both a figurative and literal
twist in the sheet shape. We argue in section 5.7.2 that a sheet section with a single scar
line can be viewed as a puzzle piece: different configurations of scar lines can be obtained
by tiling and connecting such puzzle pieces. We show that simple geometric arguments
are not always sufficient to predict the resulting sheet shapes, especially when parallel
scar lines are present. The shaping effect of multiple parallel scar lines is subsequently
explored in section 5.7.3, where we present sheet shapes resulting from two scar lines.
We show experimentally that the sheet shapes fall into two distinct categories: twisted
cylinders and helicoids, whose detailed geometry is dominated mostly by the distance
between scar lines. Finally, we conclude in section 5.7.4 by briefly discussing a way to
model groovy sheet shapes as ruled surfaces.

5.7.1. A single scar

Here, we study the shaping effect of a single scar line. To keep things simple, we stick
to scar lines placed centrally in a groovy sheet, orthogonal to its grooves. Fig. 5.38d
above illustrates what happens next: the scarred sheet reshapes into a roll. To explain
this behaviour, we first consider the effect that a defect has on a single groove, and then
discuss how to tile defected grooves together to form a groovy sheet with a single scar
line in Fig. 5.39. After this purely geometric consideration, we then measure actual rolled
sheet shapes experimentally in Fig. 5.40. We will show that the rolling radius increases
with the sheet’s size, and present geometric arguments for this behaviour in Fig. 5.41; in
addition, large sheets show twisting as well as rolling, which we capture qualitatively in
a simple energetic model in Fig. 5.42. Together, our findings show that scarred sheets
roll and twist; and that the amount of rolling and twisting depends on the sheet’s initial
geometry, as well as its elastic behaviour.

We start in Fig. 5.39 with a purely geometric model of a scarred sheet. First, Fig. 5.39a-
b shows a single groove in which a defect is popped. The defect locally flattens the
groove’s natural curvature, and folds the groove orthogonal to the flattening direction.
Thus, while the groove’s footprint (the polygon spanned by its corners) is initially rect-
angular, the defect causes the rectangle to stretch and fold along its midline. As a result,
the groove’s footprint becomes a trapezoidal fold that consists of two isosceles trapezoids
that meet at their bases at a shallow angle (Fig. 5.39b). The trapezoidal fold’s geometry
is set by its base length and base angle, as well as its folding angle. There is a unique way
to tile our trapezoidal folds in space without distorting them, as shown in Fig. 5.39c: they
can be stacked together into a rolled shape by mirroring the folds in the plane spanned by
their edge points (pink dots in Fig. 5.39c). This suggest that the scarred sheet’s rolling
is, to first order, governed purely by geometry.

In practise, rolling of groovy sheets in the presence of a single scar line is observed
consistently across a wide range of groove geometries and sheet sizes, although sheets do
not support single scar lines at widths that are either too small or too large (reminiscent
of our findings in section 5.5.2). Notably, we expect the precise geometry of the roll—its
radius of curvature—to depend on the elastic behaviour of the sheet: after all, there is a
competition between groove flattening and folding at the defect locus, and a competition
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Fig. 5.39.: Geometry of a single scar line. a, A single groove (top, cropped and outlined image of
a real sheet viewed between crossed polarisers) has a rectangular footprint (bottom). b, A defect
stretches and bends the groove. Its footprint now consists of two opposing trapezoids at a mutual
angle (dashed arc): a trapezoidal fold. Its geometry is set by the base length and angle of the
trapezoids (arrow, solid arc). ¢, Tiling grooves with defects corresponds to tiling trapezoidal folds.
There is a unique configuration, obtained by mirroring folds in the plane spanned by their edge points
(pink dots), that does not distort the folds. This configuration produces a rolled structure.
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between bending and twisting deformations away from the scar line. Thus, while the
geometric picture is a useful qualitative tool to explain rolling, experiments are needed
to quantify the exact sheet shape.

The exact rolling shape of groovy sheets can indeed be measured experimentally with
photography and 3D scanning (recall sections ??7-?7, and Figs. 5.16 and Figs. 5.20 in
particular). We report our shape measurements in Fig. 5.40. Besides helping quantify
sheet rolling, the data show that wide sheets twist as well as roll, as we will discuss below.

First, Fig. 5.40a illustrates the sheets’ experimental parameters: thickness ¢ = 75 pm,
N = 10 grooves, and a variable total width W € [2,30] cm. Scar lines are introduced in
the centre of the sheet at a distance Wy = W/2 from the free edges. We explore two sheet
types with deep and shallow grooves, fabricated using static and dynamic thermoforming
respectively (see section 5.2.2). The deep grooves have wavelength A = 12.7 + 0.5 mm,
amplitude A = 4.3 £ 0.5 mm, arc length sy = 16 £ 0.5 mm, maximal radius of curvature
r = 2.240.3 mm, and fold angle 8 = 1.65+0.1 rad. By contrast, the shallow grooves have
wavelength A = 7.94+0.5 mm, amplitude A = 2.6+0.5 mm, arc length s, = 10+0.5 mm,
maximal radius of curvature r = 1.4 + 0.1 mm, and fold angle § = 1.55 + 0.1 rad.

In Fig. 5.40b, we present 3D-scanned shapes of two rolled groovy sheets with deep
grooves: one narrow (W = 6 cm), and one wide (W=29 cm). While the short sheet
shows a classical rolled shape, the longer sheet has an additional twist: the sheet forms
a cylindrical roll, while its grooves twist at a small angle around the cylinder’s axis. We
quantify the rolling by the sheet’s radius of curvature Rs..r measured at the scar line, and
the amount of twisting by the groove angle defined in Fig. 5.40b. Fig. 5.40c shows these
two shape measures as a function of edge distance Wy. Two trends stand out here: first,
the radius of curvature appears to be non-zero at Wy = 0, and increases with W; until a
plateau value is reached. The radius of curvature is of the same order of magnitude as the
groove size. Second, the groove angle is negligible for a large range of edge distances W,
until an abrupt bifurcation takes place. After this bifurcation, the groove’s twisting angle
jumps to a nearly constant positive (left-twisting) or negative (right-twisting) value. We
have observed that the twisted roll can be flipped from right-to left-twisting by applying
a small torque to the sheet’s edges.

To study the effect of groove geometry, we study shallow-grooved as well as deep-
grooved sheets. Typical images of a short and long sheet with shallow grooves are shown
in Fig. 5.40d, similar to the 3D scans of Fig. 5.40b. The rolling radius at the scar as well
as the groove angle are extracted using a custom Python script; Fig. 5.40e shows the
results as a function of varying edge width Wp. Similar to the deep-grooved sheet, the
radius of curvature is of the same order of magnitude as the groove size, and increases
with Wy; in addition, a sudden twisting transition is seen as W; increases beyond a
critical value. We note that edge width at which the twisting transition takes place is
different for the two groove shapes: shallower grooves twist at shorter widths.

Our experiments show that scarred sheets roll, and undergo a twisting bifurcation. We
discuss below why these two reshaping effects take place.

First, we explore why the sheet’s rolling radius varies with the sheet size in Fig. 5.41.
For clarity, we again show the rolling radius of a deep-grooved sheet as a function of
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Fig. 5.40.: Detailed shaping effect of a single scar line. a, A single scar line (blue dots) is introduced
in a groovy sheet of length L, N grooves, and width WW. The scar line lies in the middle of the sheet,
at distance W to both free edges. Right: experimental sheet profiles for shallow and deep grooves
b, 3D scans of a sheet with a single scar, thickness ¢t = 75 nm, and N = 10 deep grooves, fabricated
with static thermoforming (colour bar indicates height). Top: Wy = 3 £ 0.3 cm, bottom:W; =
14.5 £+ 0.3 c¢m (only central portion near the scar is shown). The sheet rolls up, and twists at large
W¢. ¢, 3D shape measures of the scarred sheet. Left: radius of curvature measured at the scar locus,
Rscar, as a function of free edge width W;. Right: angle between groove direction and rolling axis.
Colours (legend) indicate whether sample was prepared with bias toward left- or right-twisting. d,
2D photography of a sheet with a single scar, thickness ¢ = 75 pm, and N = 10 shallow grooves,
fabricated with dynamic thermoforming. Scale bar: 5 cm. e, 2D shape measures of the scarred sheet.
Left: scar radius of curvature Rscar for varying free edge width Wp;. Right: angle between groove
direction and rolling axis.
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Fig. 5.41.: Variation of scar line curvature R with sheet edge width W;. a, b, Top to bottom:
A single groove has facet length I, radius of curvature r, and angle #°. Grooves have a resulting
wavelength A\ and arc length s). A narrow strip near a scar line is deformed: the groove's valleys
are flattened, while mountains retain heir original shape. The strip takes on a rolled shape with
outer radius of curvature R?. RO can be calculated from the flattened geometry (Eq. 5.33). ¢, Top:
geometry of a rolled sheet at intermediate Wy, following the model in Fig. 5.39. Grooves between
two mountain folds are flattened at the scar line to length sy, and relax over sheet width Wy to
length A;. Straight grooves meet at the scar line at a small angle 3. Bottom: the scar’s radius of
curvature, R, is calculated using the groove angle 6; under certain assumptions, R increases linearly
with Wy (Eq. 5.34). d, In sheets with large Wy, grooves bend and relax to their initial wavelength
A over a fixed neutral width W,,. Increase in Wy does not lead to an increasing rolling radius R.
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5.7. Shaping groovy sheets with scar lines

edge width in Fig. 5.41a. Our experiments show that the sheet’s rolling radius Rscar has
finite value at zero sheet width (regime I); initially increases linearly with W (regime II);
and then plateaus (regime III). The behaviour in these three regimes can be understood,
based on geometric considerations.

We start with regime I, where the rolling radius is finite as Wy goes to zero. In
Fig. 5.41b, we consider a small strip of material around the scar line. The scar line
consists of a chain of defects, created in the valleys of the grooves. Near the scar line, the
defects are observed to flatten the valley folds. Assuming the mountains of the grooves
remain undeformed, we can make an estimate of the rolling radius, disregarding the
influence of the rest of the sheet. The groove is characterized by its arc length s,, radius
of curvature r, and opening angle #. Assuming that the folds are alternately flattened
and at rest, we can define an outer rolling radius R°:

S

0 _
R=r+osnem

(5.33)

For our sheets, we estimate R® ~ 13 mm and 8.5 mm for the deep- and shallow-grooved
sheets, respectively, in fair agreement with our measurements (Fig. 5.40c,e).

In regime II, the increase of the rolling radius R with sheet edge width W, can be
understood via the geometric model presented earlier in Fig. 5.39, where the grooves of
a sheet are modelled as trapezoidal folds. As we illustrate in Fig. 5.41c, we assume that
valley folds are flattened near the scar to length sy, and that the angle 5 at which grooves
meet at the scar remains constant as Wy is increased. Finally, assuming that the folds
relax to their equilibrium configuration at the sheet’s edges to a typical length A, we find
a geometric expression for the outer rolling radius as a function of Wj:

ROW,) ~ sin gwf , (5.34)

S\ — A
which shows that the rolling radius should increase approximately linearly with Wp. Es-
timating 5 ~ 0.1 rad, the slope of R as a function of Wy should lie between 0.2 and
0.3, which is in fair agreement with the experimentally observed slope 0.15 =+ 0.5 in this
intermediate regime. Finally, we suggest in Fig. 5.41d that the roll radius’ plateau value
at large Wy can be understood by assuming that at large widths, the folds relax to their
equilibrium state at a fixed neutral axis W, < W/}, resulting in a constant value for
R. Thus, while the details of the roll radius’ variation with Wy depend on the sheet’s
shape parameters, the initial value of R, its increase, and its plateau can be understood
geometrically.

Finally, we explore why wide scarred sheets twist, while narrow sheets do not. We at-
tribute the twisting transition to an energetic competition between elastic deformations
at the scar line and in the sheet’s wings. This idea is based on a simple elastic model, for-
mulated in detail in appendix A.12, in which a twisting transition is observed for scarred
sheets with a large width. The main results, in the form of equilibrium scarred sheet
shapes and their corresponding shape parameters, are shown in Fig. 5.42. Though no
saturation of the rolling radius is observed (which we attribute to the absence of groove
bending deformations in our simple model), we see an otherwise fair agreement between
the modelled and experimental shape measures: the order of magnitude for the rolling
radius, groove angle, and twisting transition width correspond reasonably well (compare

145



5. Reshapeable groovy sheets

a
—. 0.2
E=]
{2
[ 0'1-
Q
2 0.0 Jemesess-----oooe--
__________________ o 0 left
é —0.11 . @ right
5 0.2 =
50 100 150 "o 50 100 150
We [mm] Wi [mm]

Fig. 5.42.: Twisting transition in a simple elastic model. a, Equilibrium configurations of the model
at increasing edge width W;. Scar line (pink) is either circular or helicoidal; grooves (grey lines) point
away from the scar line at a small angle. See appendix A.12 for details. b, The scar rolling radius
R increases from its initial value Ry (Eq. 5.33, dashed line) with We. Initially, the sheet does not
twist; at a critical value of W, a bifurcation to finite values of the groove angle is observed.

Fig. 5.40f).

In summary: sheets with single scar lines roll up into a cylindrical shape. The rolling
can be understood by considering the geometry of a single groove. The rolled shape’s
details are set by an interplay of elastic bending and twisting energies. While the exact
interplay is challenging to model exactly, experiments show three facts: first, the roll’s
radius of curvature is finite even for narrow sheets, and increases with sheet width be-
fore saturating to a plateau value; second, beyond a critical width, a symmetry-breaking
transition causes the sheet’s grooves to twist around the cylinder axis; and third, the
critical twisting width depends on the groove geometry, with shallower grooves twisting
at smaller sheet widths.

5.7.2. Combining scars

Above, we studied the shaping effect of a single scar line- but sheets can support more
than one scar. Just a few scar lines can produce complex shapes, as we saw in Fig. 5.38.
Can we connect single-scar reshaping to the much more complex multi-scar picture? We
propose a simple framework, in which we limit ourselves to a small class of scar line
configurations.

We consider only scar lines that are perpendicular to a sheet’s grooves. These scar
lines can be placed in sertes aligned in a chain, or in parallel, side by side. Recall that
scar lines also have a parity: they can be made on the crests or in the valleys of grooves,
and the two types of scar line yield line curvatures of opposite sign. Given these two
options for our scar lines—series or parallel, positive or negative curvature—we can have
four basic scar line configurations, which we explore in Fig. 5.43.

Recall the impact of a single scar line, shown in Fig. 5.43a: if made in the groove’s
valleys, the scar rolls up the sheet into a positive-curvature cylinder section. Fig. 5.43b
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5.7. Shaping groovy sheets with scar lines

Fig. 5.43.: Combining scar lines. a, A scar line introduced in the crests of a groovy sheet (green line,
top) produces a rolled shape (bottom). Groovy sheets shown are cropped and outlined photographs
of real samples, viewed between crossed polarisers. b, Tiling scar lines in series. Two scar lines of
equal parity (green lines) is geometrically equivalent to a single scar line: the sheet rolls up. Two
scar lines of opposite parity, one in the sheet’s crests (green) and one in the valleys (blue), lead to
two rolls of opposite curvature, connected by a flat half-groove at their interface. d, Parallel scar
lines form complex shapes. Two isolated equal-parity scar lines (green lines, left) form two rolls
(middle). When connected, the sheet forms a rolled cylinder, its grooves always twisting around the
cylinder’s axis (right). e, Isolated opposite-parity scar lines (green and blue lines) form two rolls of
opposite curvature. There is no simple geometric solution to connect the two rolls at their edges.
Experimentally, the sheet section demarcated by the scar lines forms a helicoid; the free ‘wings’ twist
and curve.
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shows what happens when scar lines are placed in series. Evidently, two equal-parity scar
lines are equivalent to a single scar line, and the sheet rolls up into a positive-curvature
cylinder as before. Two opposite-parity scar lines in series (one scar in the grooves’
crests, the other scar in their valleys) changes the sheet shape in an intuitive way. The
two scar lines produce two cylinder sections, with opposite curvature, that must meet
at their long edges. In practise, the two rolls are indeed connected together by a single
(minimally-deformed) half-groove, into an S-shape. Thus, a purely geometric picture
suffices to capture the shaping effect of scar lines in series: they produce sheets rolled
into snake-like cylinder segments, whose sections have alternately positive or negative
curvature, consistent with the scar parity. In short: scar lines in series form a stable
route to complex shapes with a rolled geometry.

By contrast, geometry alone cannot tell us how scar lines in parallel reshape a sheet.
This is illustrated in Fig. 5.43c, where two equal-parity scar lines are created side by
side. Based on our simple geometric picture, the sheet should deform into two rolled
sections, which must be connected at their lateral edges. It is not possible to create this
connection without distorting the sheet: geometric frustration must arise. In practise,
while the sheet does roll into a cylindrical shape, its grooves simultaneously twist around
the rolling axis. Intriguingly, this twisting behaviour is universally observed across sheet
sizes, groove shapes, and thicknesses. Here, both elasticity and geometry govern the
sheet shape.

Opposite-parity scar lines in parallel, shown in Fig. 5.43d, are an even more egregious
example of the importance of geometric frustration and resulting elastic deformation.
The two scar lines now form two rolled sections that must be stitched together along
edges with opposite curvature. A real sheet tackles this problem by forming a helicoidal
surface, twisted around a straight central axis, allowing the scar lines to bend into helices
of opposite curvature. While the geometric details vary, the helicoidal shape is present
across a diversity of groovy sheets.

In conclusion: sheet shapes are geometrically predictable for scar lines that run in
series. However, when scars lines are placed in parallel, elasticity and deformation play
a crucial role. We explore this interplay between elasticity and geometry below.

5.7.3. Parallel scars

In this section, we investigate sheets with parallel scar lines. As illustrated previously in
Fig. 5.43d-e, parallel scar lines produce complex sheet shapes that depend on the scars’
parity. Below, we experimentally study sheet shapes for equal-parity and opposite-parity
scars. As for single scars (section 5.7.1), we investigate the effect of the groove geometry
on the final sheet shape by performing our experiments on two sheet types, with deep
and with shallow grooves respectively (see Fig. 5.44). In addition, we quantify how sheet
width and scar positioning affects the final shape. We present the shaping effect of two
equal-parity scars in Fig. 5.45, and show there that sheets with two equal-parity paral-
lel scar lines universally form cylindrical, slightly twisted rolls. By contrast, we show in
Fig. 5.46 that sheets with opposite-parity scar lines form helicoid-like shapes. Our results
show that parallel scar lines produce intricate but consistent rolling and helixing shapes,
whose general attributes can be captured by simple shape measures across groove shapes,
sheet widths, and scar positions.
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Fig. 5.44.: Geometry of sheets with deep and shallow grooves. a, Photography-derived profile of
a sheet with deep grooves. Groove arc length sy, radius of curvature r, fold angle 6, wavelength A
and amplitude A are indicated; see section 5.7.1 for estimated errors. b, Profile of a shallow-grooved
sheet with shape measures indicated as in a. c, Overall sheet size. We investigate sheets with fixed
thickness ¢t = 75 pm, variable width W € [4,29] cm, and large number of grooves N € [8,10].

Equal-parity scars

We start in Fig. 5.45 by experimentally measuring the shape of sheets with two equal-
parity scar lines. As illustrated in Fig. 5.45a, the sheets have a fixed thickness ¢t = 75 pm,
N = 10 or 8 grooves, and a variable width W. The scar lines are placed symmetrically
at a mutual distance D, each scar line at a distance Wy = (W — D)/2 to the nearest
sheet edge (Fig. 5.45a). As first noted in Fig. 5.43c, we observe that sheets deform into
cylindrical rolls, where the sheet’s grooves consistently show a small amount of twisting
around the rolling axis.

We first investigate the shape of a sheet with N = 10 deep grooves in Fig. 5.45b,
where we show a typical example of a 3D-scanned, scarred sheet. Its cylindrical shape
can be quantified via the roll’s radius of curvature, which is maximal at the scar lines and
decreases t0 Reentre in between the two scars. We use the central rolling radius, Recentre,
to quantify rolling. The sheet’s grooves consistently show a finite twisting around the
rolling axis, which we quantify using the groove angle as before for single scar lines (recall
Fig. 5.40Db).

The rolling and twisting shape of deep-grooved sheets is measured for a variety of sheet
widths W € [17,29] cm and scar spacings D € [9,21] cm. Note that the two scar lines
are not stable if either D < 7 cm or Wy < 3 cm: in order not to unpop, the scar lines
must be a sufficient distance away from each other and from the sheet’s edge. The two
shape measures—the central rolling radius and groove angle—are shown in Fig. 5.45c.
We consider the rolling radius Reentre as a function of sheet width W. As for single scars,
the rolling radius increases approximately linearly with the sheet width. Extrapolating
this trend to small widths W, a finite rolling radius is expected even at vanishing sheet
width. Generally, the order of magnitude of the rolling radius is comparable to the typi-
cal groove arc length sy. Both the finite (extrapolated) magnitude of Rcentre at vanishing
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Fig. 5.45.: Shaping effect of equal-parity scar lines. a, Left: two parallel scar lines (green dots) are
popped in a groovy sheet of width W at a mutual distance D. Each scar lies at distance Wy to its
nearest free edge. Right: as a result, the sheet rolls up and twists around a straight axis (dashed line).
b, 3D scan of a double-scarred sheet (N = 10 deep grooves), fabricated with static thermoforming.
Here, Wy = 44+ 0.5 cm and D = 94+ 0.5 cm. The sheet’'s edges lie out of frame. Scar lines are
indicated with green dashed lines. ¢, 3D shape measures of a scarred sheet. Left: radius of curvature
measured at the middle of the sheet, Rcentre, as a function of total length W. Right: angle between
groove direction and rolling axis as a function of scar distance over total length D/W. Colours
indicate constant value of D as a guide to the eye (inset). d, 2D photography of a shallow-grooved
sheet of total width W = 16 4+ 0.5 cm with scars at mutual distance D = 8 + 0.5 cm and N = 8
grooves, fabricated with dynamic thermoforming. Dark rectangles are opaque supports; red marks on
the sheet were used for alignment. Scale bar: 5 cm. e, 2D shape measures of a scarred sheet. Left:

central radius of curvature Rcentre for varying sheet width W, right: angle between groove direction
and rolling axis.
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Fig. 5.45.: (continued) Shaping effect of equal-parity scar lines. f, Extended overview of the shape
of sheets with deep grooves, corresponding to panels b-c. We show the central curvature radius
Rcentre and groove angle (rows) as a function of sheet size and scar positioning, quantified by sheet
width W, scar line spacing D, and edge width W (columns). Colours correspond to the magnitude
of D. g, Shape of sheets with shallow grooves, as in d-e. Rolling radius Rcentre and groove angle
(rows) are shown versus sheet width W, scar line spacing D, and edge width W, (columns).
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sheet width, as well as its linear increase, are consistent with the behaviour for a single
scar explored in section 5.7.1. By contrast, the double-scarred sheet’s twisting behaviour
deviates from that of a single-scarred sheet. Fig. 5.45¢ reports the sheet’s twist using
the groove angle, which is shown as a function of scar separation relative to sheet width,
D/W. The groove angle lies around 0.1 rad, similar to the groove angle for a single scar
(recall Fig. 5.40c). The groove angle declines linearly as the ratio between scar spacing
and sheet width grows; however, no twisting bifurcation is observed. That is, double-
scarred sheets always twist.

Secondly, we explore the effect of groove geometry. We investigate the shape of scarred
sheets with N = 8 shallow grooves, using 2D photography; a typical example is shown
in Fig. 5.45d. The sheet’s rolling and twisting shape measures, extracted using a custom
Python script, are reported in Fig. 5.45e. Note that for these shallow-grooved sheets,
scar lines must be more than D 2 3 cm away from each other, and Wy 2 1.5 cm away
from the sheet edges; while the halving of these critical distances compared to those for
deep-grooved sheets above is suggestive, we do not explore it further here. As before, the
rolling radius Recentre is shown for shallow-grooved sheets in Fig. 5.45e (left) as a function
of sheet width W. Consistent with previous results, the rolling radius is of the same order
of magnitude as the typical groove arc length; it is, by extrapolation, finite at vanishing
sheet width; and increases linearly with W. The sheet’s groove angle is always finite, and
lies near 0.2 rad for all probed ratios of scar spacing to sheet width, D/W. Note that
the twisting angle for shallow grooves is about twice as large as the twist angle for deep
grooves. While it is not clear where this difference in twisting magnitudes comes from,
it is consistent with the twisting magnitude in the presence of a single scar line (recall
Fig. 5.40c,e), which is twice larger for shallow grooves than for deep grooves.

For completeness, we show the rolling radius and the groove angle as a function of
scar distance D, sheet width W, and edge width W for both deep- and shallow-grooved
sheets in Fig. 5.45f—g. We observe the following two general trends. The rolling radius
Reentre increases with W, but does not show a clear correlation with either D or Wy. In
addition, the groove angle decreases with D, but shows an increase with W and W;.
Thus, while both shape measures vary to some degree with the scar and sheet widths,
we propose that the sheet width W shows a good correlation with Rcentre, while the scar-
to-sheet-width ratio D /W (which metric unifies the groove angle’s dependence on D and
W) is a strong predictor for the groove angle.

In summary: sheets with two equal-parity scars always roll and twist. While the exact
rolling and twisting magnitude depend on the groove geometry, the scar separation D,
and the sheet width W, the typical twisted cylindrical shape is observed throughout.

Opposite-parity scars

We now move on to explore the shape of sheets with two opposite-parity scar lines in
Fig. 5.46. Fig. 5.46a shows how we create two opposite-parity scar lines at mutual distance
D in a sheet with width W; the scar lines are located at edge width Wy = (W — D)/2
to their nearest boundary. How the scarred sheet deforms is illustrated in Fig. 5.46a
(right): the central portion of the sheet, between the scar lines, twists into a helicoidal
shape (recall Fig. 5.43d). The sheet’s central axis (around which the helicoid twists)
remains straight, while the sheet’s side lobes curve freely. Our experiments show that
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Fig. 5.46.: Shaping effect of opposite-parity scar lines. a, Left: two parallel, opposite-parity scar
lines are popped into the top (green dots) and bottom(blue dots) of a groovy sheet of width W at a
mutual distance D. Each scar lies at distance W} to its nearest free edge. Right: the sheet's centre
forms into a helicoidal shape, with curving side wings. The helicoid's central axis is shown (dashed
line). b, 3D scan of a deep-grooved, double-scarred sheet (N = 10 grooves), fabricated with static
thermoforming. Here, Wy = 4.5£0.5 cm and D = 840.5 cm. Twisting of the central sheet portion
is quantified by the twisting angle per traversed groove; stretching of the axis is measured via the
central groove wavelength A, as indicated. ¢, 3D shape measures of a scarred sheet. Left: groove
wavelength A\. measured at sheet’s central axis as a function of scar separation D, where dashed lines
indicate the approximate resting and maximal wavelengths A and s). Average predicted values are
shown (grey line, Eq.5.35). Right: twist angle per groove as a function of scar distance D. Colours
correspond to constant values of D as a guide to the eye. d, Top-view photograph of a shallow-
grooved sheet of total width W = 14 + 0.5 cm and N = 9.5 grooves with scars at mutual distance
D = 8+ 0.5 cm. Dashed lines indicate scars. Orange block functions as sample support; markings
on the sheet are used for alignment and calibration. Scale bar: 5 cm. e, 2D shape measures of a
scarred sheet. Left: central axis wavelength for varying scar distance D (dashed lines are extremal
wavelengths, solid line as in Eq.5.35), right: average twisting of grooves.
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Fig. 5.46.: (continued) Shaping effect of opposite-parity scar lines. f, Extended overview of the shape
of sheets with deep grooves, corresponding to panels b-c. We show the central axis’ groove wavelength
Ac and twist angle per groove (rows) as a function of sheet size and scar positioning, quantified by
sheet width W, scar line spacing D, and edge width W, (columns). Colours correspond to the
magnitude of D. Dashed lines correspond to the resting value of groove wavelength A throughout.
g, Shape of sheets with shallow grooves, as in d-e. Axial wavelength A\ and twist per groove (rows)
are shown versus sheet width W, scar line spacing D, and edge width W (columns).
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the sheet between the two scar lines is well-approximated by a helicoid, as we will argue
below.

Sheets with deep grooves are first studied via 3D scans (Fig. 5.46b). We study sheets
with N = 10 grooves, variable width W € [9,29] cm, and variable groove distance
D € [4,24] cm. Opposing scar lines are observed to be unstable if their mutual separa-
tion D is smaller than 3 cm, or when their edge distance W is smaller than about 2 cm.
Opposite-parity scar lines thus have a larger range of stability than their equal-parity
counterparts, which become unstable for D < 7 and Wy < 3 cm. Notably, the sheets
show a consistent shape across the parameter space. Between the two scar lines, the
sheet’s folds remain approximately straight, but twist with respect to each other around
the sheet’s central axis to form a helicoidal surface (that is, the plane spanned by a
double helix). Two shape measures characterize the helicoid: the average angular twist
between two subsequent grooves, and the groove wavelength A. along the central axis.

Fig. 5.46¢ shows the central wavelength and the twisting per groove of the deformed
sheet’s helicoidal section. We first show the central wavelength as a function of scar
line distance D. Note that the central wavelength may be longer or shorter than the
resting length A due to axial extension or compression of the sheet; it should not be
larger than sy, which is the full arc length of a flattened groove. As shown in Fig. 5.46¢
(left), the central wavelength is maximal at small scar line separations. \. appears to lie
above its maximal value of s), which we tentatively attribute to image warping in our
3D-scanning procedure. As the scar lines are moved farther apart, A. decreases smoothly
to approximately its equilibrium value A\. The measured data (21 data points) collapse
with good accuracy to a single curve. Our data suggest that the sheet’s central axis
is nearly fully stretched at small scar separations, but relaxes to around its preferred
length at large separations. Second, the average twisting angle per groove is shown in
Fig. 5.46¢ (right) as a function of scar spacing D. We observe two regimes that cross over
around D =~ 8 cm: the twisting angle initially grows when the scars are close together,
but subsequently decreases as the scars are brought farther apart. The twisting angle lies
around 0.1 Jradian, and is similar in magnitude to the groove angle reported for sheets
with one or two equal-parity scars (Figs. 5.40c,e and 5.45c,e).

We now argue that the experimental data support that the sheet’s central section is
helicoidal. Bolstered by the success of our helix-based model in section 5.7.1, we assume
that the two opposite-parity scar lines are helical. The two scars spiral around a cylinder
of radius D /2. At the cylinder’s axis, each groove has central wavelength A.; at the scar, a
groove is stretched out to its maximal arc length sy. The relation between helix arc length

and corresponding axis length is given by wavelength is given by sx = Acy/1 + (%i—)2 for
helices. Thus, if the sheet is helicoidal, the central wavelength A. may be calculated via

the known scar separation D, average twist angle per groove (, and groove arc length sy
via

de=1/55 - (502 . (5.35)

The predicted central wavelength, based on the experimentally measured average twist
per groove, is plotted in Fig. 5.46c. The prediction shows a reasonable quantitative
agreement with experiments. Most importantly, the qualitative behaviour of the central
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wavelength with varying D is reproduced: its initial maximal value sy at D = 0 decreases
to a plateau value, around A, for large scar separations. Thus, the sheet’s central section
is well-approximated by a helicoidal plane.

Secondly, we investigate the effect of groove shape in Fig. 5.46d, where the helicoidal
shape of sheets with N = 9.5 shallow grooves is studied via photography. The sheet width
and scar separation are varied between W € [4, 20] cm and scar separation D € [2,16] cm.
For these shallow-grooved sheets, opposite-parity scar lines are not stable if the scar sep-
aration or edge distance is too small: D < 2 cm or D < 1 cm, respectively. The
sheet’s total central length and total twisting angle are extracted manually from the
photographs via graphical angle- and distance-measurement tools, and divided by the
number of grooves to obtain the central wavelength A. and the average twisting angle
per groove. The results are shown in Fig. 5.46e. First and foremost, we note that the
trends in axial stretch and groove twist observed for deep-grooved sheets are reproduced
here. Specifically, consider the sheet’s central wavelength A. as a function of scar sep-
aration D. The central wavelength lies near its maximal value of sy at small D, and
decreases to a plateau value around A as the scars are moved farther apart. In addition,
the average twist angle per groove is small for scars that are close together; however,
the twisting increases to a peak value around D =~ 4cm, and subsequently decreases
with D. The magnitude of the twisting per groove, around 0.1 Jradian, appears to be
similar for both deep- and shallow-grooved sheets. Finally, the central wavelength pre-
dicted using the helicoid model in Eq. 5.35 is shown in Fig. 5.46e (left). The predicted
and experimental values match both qualitatively and quantitatively. In conclusion: for
shallow-grooved sheets, the sheet shape between the two scar lines is helicoidal.

Finally, we show the sheets’ helicoidal shape parameters (centre wavelength A. and
twisting per groove) as a function of scar distance D, sheet width W, and edge width W
for both deep- and shallow-grooved sheets in Fig. 5.46f-g. Intriguingly, the scar spacing
D is correlated most strongly with variations of the shape parameters. By contrast, nei-
ther the central wavelength nor the twisting appear to be significantly affected by either
W or Wy. Thus, the scar spacing D is the strongest predictor for variations of the sheet
shape.

Our findings above show that parallel scar lines produce distinct shapes, depending
on their parity. Equal-parity scar lines consistently produce twisted, cylindrical rolls,
while opposite-parity scar lines yield helicoidal sheet sections flanked by curving wings.
The exact shape details—the amount of rolling, twisting, and helixing—depends on the
sheet’s size, the scar separation, and the groove geometry. However, the general shape
of double-scarred sheets (a twisted roll; a helicoid) is retained throughout. We therefore
envision a geometrical model, in which sheet sections flanked by scar lines can be seen
as puzzle pieces. These puzzle pieces may be tiled and connected in series or in paral-
lel as first illustrated in Fig. 5.43, based on rules of geometric compatibility and elastic
deformation. Such a model could form a solid basis for future complex shape design of
scarred groovy sheets.
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5.7.4. Understanding sheet shapes: outlook

The experiments of the previous sections demonstrated that sheets with scar lines orthog-
onal to their grooves can roll, twist, and helix. Phenomenologically, the overall shape
of the sheet depends mostly on its internal configuration of scar lines rather than its
geometric details such as size and groove shape. This leads us to the question: is there
a way to model sheet shapes geometrically?

We argue that there is. Our experiments show three important features of sheets with
scars orthogonal to their grooves. First, their grooves are approximately straight, ex-
cept very close to scar lines; second, scar lines have circular or helical shapes; and third,
grooves appear to lie orthogonal to scar lines. There is a geometrical model for sheets
with these properties: ruled surfaces. We previously used ruled surfaces to build an elas-
tic model of sheets with a single scar line (recall section 5.7.1); here, we briefly review the
basics of ruled surface geometry, and show that we can construct simple ruled surfaces
whose shape closely mimics that of real groovy sheets.

Ruled surfaces are a subclass of geometrical surfaces that can be created as follows.
The process starts with a base curve (or directrix) in 3D space, g. The directrix has a
local coordinate frame'%®, the Serret-Frénet frame (£, 72, b) (defined via the derivatives of
g) that describes how the curve bends and twists in space. Moving along the curve’s arc
length, straight lines (or rules) are drawn, starting from the curve and radiating out in
space. Each rule can be described by its components along the local coordinate frame.
Together, the directrix and rules form a surface in space.

Based on our observations, we propose to model our sheets as ruled surfaces under the
following constraints. First, we assume that the scar line can be described as a helical
directrix. Recall that we used the same assumption for our simple energetic model for
single-scarred sheets in section 5.7.1. The helical scar line, g, is then given by

g(t) = (Rcoss, Rsins, Tt) , (5.36)

where R is the helix’ radius of curvature, and 27T is the pitch along coordinate ¢ over
which the helix repeats itself. Note that the directrix is a simple circle if the pitch is
zero. The directrix’ coordinate frame is then given by:

- 1

t = ————=—(—Rsint, Rcost,T 5.37
VR T ) (5.37)

n = (—cost, —sint,0) (5.38)

- 1

b= ——(Tsint,—T cost, R 5.39
VT ) (5:39)

Secondly, we assume that groove facets can be modelled with straight rules. They lie
orthogonal to the scar line: rules are linear combinations # = cos ,BB + sin Bn of the
directrix’ normal and binormal vectors. Lastly, given the periodicity of our sheets, we
only consider rules that have fixed components along n and b across the entire directrix.

We illustrate in Fig. 5.47 how to use this constrained ruled-surface model to mimic
sheet shapes with one or two scar lines. Fig. 5.47a shows a sheet with one central scar
line with small width W, without any groove twisting. The scar line is modelled by
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Fig. 5.47.: Groovy sheets look like ruled surfaces. a, A small sheet with a single central scar (left) is
approximated by the ruled surface (right). The directrix (green) and rules (grey) corresponding to the
scar line and groove facets are shown. The directrix is a circle with constant radius of curvature. Rules
lie along a linear combination # = cos b + sin B of the directrix' normal and binormal vectors 7, b
at small 8 = 0.1. b, A wide sheet with a central scar rolls as well as twists. The scar line is modelled
by a helical directrix with T'/R = 0.15, while rules lie along the directrix’ normal and binormal vector
at a fixed ratio with 8 = 0.1. ¢, Rolling, twisting sheet with two equal-parity scar lines. Scar lines
are helical (T'/R = 0.15); rules lie along a fixed angle in the directrix’ normal-binormal plane with
B = 0.1 d, Helicoidal sheet with two opposite-parity scar lines (green, blue curves). Scar lines are
helical (T'/R=1) with a large pitch-to-curvature ratio. Rules between the scar lines are oriented along
the directrix’ normal vector; wing rules are chosen in the normal-binormal plane with g8 = 0.5

a circular directrix with zero twist T, while the groove facets are approximated with
rules # = cos 8b + sin SR at a fixed normal-binormal ratio set by small values of 5 (see
Fig. 5.47 for the values chosen to generate the illustrated surfaces). The resulting surface
shape looks like two truncated cones, their bases aligned, similar to the real rolled sheet.
Fig. 5.47b shows a sheet with larger width W that twists as well as rolls. We therefore
model the scar line as a helical directrix with a small twist, 7/R < 1. The rules can be
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modelled, as before, to lie mostly along the local binormal with a small normal compo-
nent. The model surface matches the real sheet’s overall shape well. To show that our
model can work for parallel scar lines, too, we consider a sheet with two equal-parity scar
lines in Fig. 5.47c. Notably, the directrices and rules corresponding to the two scar lines
and their connecting grooves can be modelled identically to those for a single scar line;
the two scar lines do have a small phase offset due to their finite twist. As in the real
sheet, the model surface has a rolled and twisted shape, where the radius of curvature of
the roll decreases away from the scar lines. Finally, a sheet with two opposite-parity scars
is illustrated in Fig. 5.47d. Here, the two directrices are identical helices with a twist
comparable to the radius of curvature: T/R = 1. The directrices form a double helix,
differing by a phase 7, so that their mutual distance is constant at 2R. The helices circle
around the 2Z-axis, while the rules that connect them lie perpendicular to 2: the rules are
oriented fully along the normal vector nn. Rules in the surface’s wings, that extend away
from the central helicoidal surface, are chosen here to lie in the normal-binormal plane.
The model surface’s helicoidal section compares favourably to the real sheet.

Thus, groovy sheet shapes can be approximated as ruled surfaces. Specifically, we hy-
pothesize that sheets with one or more scar lines may be modelled by surfaces generated
from helicoidal base scars, where rules that mimic grooves point perpendicularly away
from the scars. We envision an energetic extension to this purely geometric model that
may be used to model groovy sheets more precisely, analogous to the simple model dis-
cussed in section 5.7.1. For example, it costs energy to open, close, and twist grooves in
real sheets. This can be modelled by associating an energetic cost to deviations from par-
allelity of the surface’s rules. In addition, scar lines appear to carry an intrinsic, constant
curvature, which may be included in the surface model by penalizing deviations from this
value. In short: we propose decorating our geometric model with elastic properties that
mimic the mechanics of a real sheet. This strategy provides a clear avenue for predicting
and designing the shapes of real groovy sheets.
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5.8. Conclusions and outlook

In the preceding chapter, we showcased the unique shape-morphing capacities of groovy
sheets. Several sheet fabrication methods were presented, including thermoforming plas-
tic and spin-coating rubber, to create groovy sheets at the centimetre scale. We showed
that elastic instabilities lie at the heart of groovy sheet’s shape-shifting: each groove can
support snap-through defects that locally change the structure’s shape. We saw that
snap-through defects are stable in sheets whose size lie in a goldilocks zone: they must
be neither too narrow, nor too wide. Adjacent defects were shown to interact and at-
tract at short range, resulting in their alignment into scar lines of contiguous defects.
We explored and modelled the reshaping effect of individual scar lines, and argued that
sheet shapes can be classified systematically according to their internal configuration of
scar lines. Finally, we presented a novel approach for modelling groovy sheets with ruled
surfaces- a strategy that proved successful for sheets with single scar lines.

Several avenues for deeper research present themselves now, and we discuss them
briefly. First, the stability and interaction of defects in groovy sheets depends on the
grooves’ geometry. Preliminary experimental evidence shows that defect attraction is de-
creased in sheets with shallow grooves, which precludes the creation of stable scar lines.
In such systems, staggered defect patterns rather than contiguous chains are observed.
In short: tuning the interactions between defects could give rise to a host of new defect
configurations besides scar lines, and corresponding exotic new shapes. Exploring the
relation between geometry and defect interactions could thus provide a rich vein of new
sheet shapes. Secondly, we have shown that the shape of scarred sheets can be captured
successfully with ruled surfaces. Such ruled surfaces provide a convenient way to sum-
marize sheet shape in a few parameters. However, quantitative models for sheets with
multiple scars has yet to be developed; we envision that decorating ruled surfaces with
energetic constraints, as we have done for sheets with single scars, will provide the means
to predict and design complex sheet shapes.

What makes groovy sheets unique is their geometry-driven shape-morphing. In ex-
tant work, a variety of structural morphing strategies has been proposed: flat sheets can
transform into complex 3D target shapes using patterns of folds, cuts, or regions that
swell under mechanical forcing, heat or light. However, these strategies have their draw-
backs. The resulting structures are only stable under sustained forcing, morph slowly or
irreversibly, or need a distinct design for each desired target shape. By contrast, groovy
sheets morph fast, via snap-through instabilities that occur on the order of the speed of
sound in the underlying material. Groovy sheets morph elastically, since they are thin
enough not to exceed plastic strains even under large deformations. And finally, groovy
sheets morph into many different shapes with minimal programming. We propose that
groovy sheets are one realization of a conceptual class of shape-morphing materials, whose
reshaping properties come from their geometry, not their underlying material or size. We
expect that our geometric approach can be extended to thin materials with different sur-
face patterns, thus establishing a new paradigm for fast and reversibly shape-morphing
sheets, with applications from stretchable electronics!®”1®® to soft robotics®' 3.
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