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4. Response evolution of mechanical metamaterials
under architectural transformations!

Abstract

Architectural transformations play a key role in the evolution of complex systems, from
design algorithms for metamaterials to flow and plasticity of disordered media. Here, we
develop a general framework for the evolution of the linear mechanical response of network
structures under discrete architectural transformations via sequential bond swapping: the
removal and addition of elastic elements. We focus on a class of spatially complex meta-
materials, consisting of triangular building blocks. Rotations of these building blocks,
corresponding to removing and adding elastic elements, introduce (topological) architec-
tural defects. We show that the metamaterials’ states of self stress play a crucial role in
the mechanical response, and that the mutually exclusive self stress states between two
different network architectures span the difference in their mechanical response. For our
class of metamaterials, we identify a localized representation of these states of self stress,
which allows us to capture the evolving response. We use our insights to understand the
unusual stress-steering behaviour of topological defects.

4.1. Introduction

The unique properties of mechanical metamaterials emerge from the assembly of simple
structural unit cells connected by local interactions. Targeted design of such assemblies
has aided the creation of metamaterials with a broad range of responses and poten-
tial functionalities®'®22:°0:64°67 "G5 far, most metamaterial design has been focused on
the creation of metamaterials with compatible or floppy motions: low-energy deforma-
tions, which dominate the material’s response to external probing, and lead to unusual
properties such as negative Poisson ratio or vanishing shear modulus®®®®. However, in-
compatibility or frustration offers a new avenue for designing material responses at higher
energies, for example to produce materials with tunable stiffness?®. Such frustration in
mechanical metamaterials is closely related to other artificial frustrated systems, such as
artificial spin ice?®??, colloidal ice?®™ and colloidal antiferromagnets” 3.

Recently, we presented a systematic strategy to introduce defects, and in particular
topological defects, in a novel class of mechanical metamaterials'®. These consist of 2D
triangular building blocks, and are a mechanical analogue of spin systems with tunable
ferromagnetic and antiferromagnetic interactions, where the nature of the interaction is
set by the orientation of the building blocks. We showed how to design a large number
of compatible structures in this class—including the well-known rotating square mecha-
nism*31% ™. We subsequently introduced (topological) defects in our metamaterials by
rotating one or more building blocks. These architectural transformations affect the me-

chanical response and allow us to direct the stress concentration in these structures!'®.

! The work presented in this chapter is based on Refs.[13] and [14].
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4. Response evolution of mechanical metamaterials under architectural transformations
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Fig. 4.1.: a, Under the same applied load (black arrows), two mechanical networks differing by a small
number of bonds, highlighted by the yellow triangles (left vs. centre) differ in their stress response
(colour bar). Depending on the material's changing internal architecture, the stress difference (Ao,
right) can be either quasilocalized when an ordinary defect is introduced (a) or diffuse if a topological
defect is created (b). The same physical principles underlie both cases: the stress difference is
governed by the networks' states of self stress.

Similarly, bond cutting strategies have recently been used to modify the elastic mod-
uli of disordered networks™ 77, and spatial deformations in allosteric networks™. More
widely, discrete changes in contact networks of flowing disordered media similarly lead
to the evolution of mechanical properties’® 2. A formalism for calculating the changes
in linear response under bond cutting has been worked out recently”®®°. Here we ex-
tend this formalism to bond swapping, which involves the sequential cutting and adding
of bonds. We focus on rotations of building blocks for a particular class of mechanical
metamaterials'®, in which the resulting mechanical consequences are tractable.

To motivate our work, consider two examples of the response evolution under archi-
tectural transformations, illustrated in Fig. 4.1. The examples show two architectural
transformations that produce an ordinary (Fig. 4.1a) and a topological defect (Fig. 4.1b)
respectively. For each case, we show the stress response under an applied load before and
after transformation, and focus on the stress difference as a measure of the evolution of
the response. In the former case, where a single triangular building block is rotated, the
stress difference is localized around the rotated block (Fig. 4.1a). In the latter case, the
stress difference spreads throughout the system (Fig. 4.1b).

Our goal is to understand what controls these distinct stress differences. To do so, we
study the linear response of spring networks under architectural transformations. The
possible stress fields inside such a network form the stress space, which is composed of
load-bearing states (LB-states), accessible via external loading, and states of self-stress
(SS-states), which are stress configurations with zero net force on all nodes. Under-
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4.2. Linear mechanics: states of self stress and floppy modes

standing the evolution of the mechanical response entails describing the evolution of
these spaces. For the overconstrained system at hand, the states of self-stress can be
obtained in closed form, and we show how to use this information to completely capture
the response evolution. Specifically, we find that the stress field difference between two
networks as shown in Fig. 4.1, is spanned by their small number of mutually exclusive
SS-states. The presence of closed form SS-states in our metamaterials therefore enables
us to determine a priori how small modifications in network architecture affect the me-
chanical response.

In the following sections, we discuss the linear mechanical formalism underlying our
findings, which states that stress distributions inside mechanical networks under external
loading are spanned by LB-states, while SS-states—which produce zero net forces—are
inaccessible stress states of the network. We conclude that the stress response difference
between networks with related architectures must be spanned by their mutually exclusive
SS-states (Sec. 4.2). We then present our non-periodic compatible mechanical metamate-
rials, consisting of stacked anisotropic unit cells that can deform in harmony'® (Sec. 4.3),
and in which the SS-space can be represented as a set of localized states (Sec. 4.4).
We demonstrate how sequential building-block rotations produce architectural changes
that introduce controlled frustration, producing varying configurations of (topological)
defects (Sec. 4.5). In spite of the presence of such frustration, all SS-states can still
be constructed straightforwardly (Sec. 4.6.1). As a consequence, SS-states that are not
shared between any two architecturally-related networks are easily identified, and are
confirmed to span the stress response difference under identical loads (Sec. 4.6.2-4.6.4).
Lastly, we use our knowledge of the SS-states to understand how topological defects steer
stresses into different parts of a metamaterial, illustrating that our findings may be useful
for designing metamaterials with targeted stress responses (Sec. 4.7).

4.2. Linear mechanics: states of self stress and floppy modes

In order to understand the comparative response of mechanical networks with closely re-
lated architectures, we recall the linear-elastic material model described in section 3.2.2
that underlies our findings®**® We discuss how a mechanical metamaterial’s floppy modes
(FM), load-bearing stresses (LB-states), and states of self stress (SS-states) naturally
arise from this model, and show that knowledge of the SS-states suffices to understand
the difference in mechanical response of two architecturally related materials.

We model our networks as freely hinging nodes connected by Hookean springs. The
network’s mechanics are described by three linear-algebraic matrix equations that relate
forces exerted by each bond—which we refer to as stresses—to the net forces on and dis-
placements of each node. First, node forces f are related to bond stresses (or tensions),
o via a kinematic matrix, RT, which is constructed using the network’s architectural
layout, such that f = R”o. Similarly, node displacements u map to bond elongations
e via the transpose of the kinematic matrix, known as the rigidity matrix R, so that
e = Ru. Finally, bond elongations and bond stresses are related by a Hookean consti-
tutive law, o = Ke, where K is a diagonal matrix of spring constants, which we will
set to unity in what follows. The three matrix equations above relate all possible node
forces, bond stresses, bond elongations, and node displacements of the network, and thus
govern the material’s linear mechanical response.
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4. Response evolution of mechanical metamaterials under architectural transformations

In practice, we construct a material’s kinematic matrix as follows. Consider two
nodes 4,7 in a 2D plane, connected by a bond 5. Their linearized elongation un-

der planar displacements of the nodes w = (wiz, Uiy, Ujz, ujy) is then given by e;; =
[Nz, =Ny, N, ny|u, where n is the unit vector along the bond running from i to j. The
4 x 1 kinematic matrix is then given by R* = [~ng, —ny,ns, ny]", and maps the bond’s

stress due to bond elongation, s;; = Ke;j, to node forces f = (fiz, fiy, fiz» fiv) = R sij.
Extending this 2D network to include N,, nodes and N, bonds produces a 2N,, X N, kine-
matic matrix, where each of the columns corresponds to a particular bond’s connection
between two end nodes, as above. Therefore, the domain of the kinematic matrix is an
Np-dimensional space of stress vectors, in which each vector component corresponds to
a bond.

The vector subspaces of the kinematic matrix—its kernel and row space, which form
the domain, and its cokernel and column space, which form the codomain—have a partic-
ular insightful physical interpretation®®. First, the row space is spanned by the LB-states,
symbolized by &, or stress eigenvectors that produce finite node forces. Secondly, if the
system is overconstrained®®, the kinematic matrix’s kernel is nontrivial and spanned by a
finite number of zero eigenvectors, or bond stress configurations that lead to zero net node
forces. These are the network’s SS-states, symbolized by 7. Similarly, if the network is
underconstrained, the cokernel consists of floppy modes (FM), node displacement vectors
that produce no bond elongations and thus cost no elastic energy. In two dimensions,
these FM include a total of three rigid-body motions, a rotation and two translations.
Lastly, the column space contains all displacement vectors that produce finite bond elon-
gations: this column space corresponds one-to-one to the LB-states of the row space.
Thus, the SS-space and LB-space together span the entire space of possible bond stress
configurations—the former being inaccessible states, and the latter supported states—
and they therefore govern the network’s response to external loading.

While the subspaces’ bases are often not simple to determine, their dimensions fol-
low directly from the rank-nullity theorem that relates the subspace dimensions of the
network’s kinematic matrix®8* 7. The rank-nullity theorem states that the sum of the
number of independent FM (Ngar) and the number of independent LB-states is equal to
2Ny, while the sum of the number of independent SS-states (Ngsgs) and LB-states must
be equal to N,. Therefore, the difference between the number of SS-states and FM has
a consistent expression for all 2D materials:

v=Nppy — Ngss —3=2N,, — Ny — 3, (4.1)

where the final term of —3 represents the three trivial rigid-body motions in 2D, so that
Nrpar includes only internal floppy deformations of the structure.

The above linear-elastic model helps understand the difference in stress response be-
tween two networks with closely related architectures that differ by a small number of
bonds, but have the same number and spatial configuration of nodes. In either network,
the SS-space and LB-space together span the entire space of possible bond stress con-
figurations. Some SS-states and LB-states are shared between the two materials, while
others are unique to either of the pair. Any SS-state unique to one network must be an
LB-state—up to stresses on the networks’ distinct bonds—in the other structure. Since
the stress response of any network is a linear combination of its LB-states, the stress
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4.3. Structurally complex mechanical metamaterials

response difference between the two networks must therefore lie in the space spanned by
their unique, non-shared SS-states. In other words, with knowledge of the mutually ex-
clusive SS-states of two mechanical networks, we can a priori determine how their stress
response differs under arbitrary external loading.

We note here that our analysis concerns the material’s response under an applied sup-
ported load: external forces that actuate a floppy motion of the material lead to an
indeterminate response®®, which we do not consider here.

4.3. Structurally complex mechanical metamaterials

We now demonstrate the efficacy of predicting the stress response difference using SS-
states—an approach valid for any mechanical network architecture—in the particular
class of structurally complex mechanical metamaterials'® introduced in chapter 2. The
specific architecture of these metamaterials allows us to easily enumerate and construct
a basis of SS-space consisting of highly spatially localized states, and we show later that
this complete description of SS-space produces a direct prediction of the stress response
difference between two networks of differing designs under identical, external, supported
loads.

Our complex mechanical metamaterials are assembled by stacking together copies of
an anisotropic triangular building block® (Fig. 4.2a, first introduced in chapter 2.2) that
we will refer to in the remainder of this chapter as a supertriangle.

The smallest nontrivial structure, made with six supertriangles, is a hexagonal stack
or superhexagon (Fig. 4.2¢). Such stacks are called compatible when there is a collective
FM, such that all individual supertriangles can deform according to their local FM simul-
taneously; otherwise, the stack is incompatible or frustrated. Evidently, even though the
number of nodes and bonds of compatible and incompatible superhexagons are identical
(N, = 19 and N, = 8), they show distinct mechanical behaviour. Using Eq. (4.1), we
find that incompatible superhexagons have no FM and a single SS-state, while compati-
ble superhexagons have a single FM and two SS-states.

We map the local FM of a supertriangle to the ground state of an Ising model with
antiferromagnetic interactions'®. Specifically, each internal node corresponds to a spin
site, while each internal bond represents an antiferromagnetic interaction. Spins may be
in an ‘out’ state or an ‘in’ state; mechanically, this corresponds to an outward or inward
motion of the internal nodes with respect to the centre for upward-pointing supertrian-
gles (and vice versa for downward-pointing supertriangles) indicated by the red and blue
arrows in Fig. 4.2b. The supertriangle’s mechanical FM then corresponds uniquely to a
spin configuration that satisfies both antiferromagnetic interactions: the internal bonds
connect spin sites at two internal nodes in opposite states, while nodes not connected by
an internal bond both move inward (or both outward), representing two ferromagneti-

cally interacting spins.
For a compatible superhexagon, the spin orientations of all adjacent supertriangles

have to match up exactly.This requirement is only met if the local loop contains an even
number of interactions. Hence, a superhexagon is only compatible if the local loop con-
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4. Response evolution of mechanical metamaterials under architectural transformations
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Fig. 4.2.: a, Our mechanical building block, or supertriangle, consists of three corner nodes (black
circles) and three edge nodes (purple), connected by a perimeter of edge bonds (grey lines). The
edge nodes are connected by two internal bonds (black). b, Internal node motions and internal bonds
map to Ising spins and antiferromagnetic interactions. Compatible deformations of the supertriangle
correspond to ground states of this Ising model. The correspondence between spin states (‘in’ and
‘out’, indicated with blue and red arrows) and motion of the edge nodes is opposite for upward-
and downward-pointing building blocks. ¢, Supertriangles (yellow triangle) are stacked together to
create a superhexagon. Superhexagons contain a closed local loop of internal bonds (bold black
lines). The metamaterial deforms harmoniously only when a spin ground states exists that satisfies
all antiferromagnetic constraints simultaneously. Local loops with an even number of bonds satisfy
this requirement (left): the superhexagon is compatible. Incompatible superhexagons have loops
containing an odd number of bonds (right) that frustrate at least one antiferromagnetic interaction
(purple cross). The odd local loop represents a defect in the system. d, The eight possible even local
loop shapes (number of bonds indicated) in a compatible superhexagon are shown (bold black lines).
Internal bonds outside the local loop were chosen arbitrarily, and the corresponding floppy modes are
illustrated as deformations of the superhexagons. e, A large compatible metamaterial is created by

stacking building blocks, ensuring that the local loops inside each superhexagon (orange hexagon)
contain an even number of bonds. The compatible metamaterial deforms harmoniously (zoom-in).
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4.4. States of self stress in superhexagons and larger metamaterials

tains an even number of internal bonds (Fig. 4.2c¢, left).

By contrast, when the local loop has an odd number of internal bonds, the super-
hexagon is geometrically frustrated and incompatible**®®. In the Ising model language,
there is then always an antiferromagnetic interaction that cannot be satisfied (Fig. 4.2c,
right), so that the odd local loop represents a defect in the mechanical system.

In Fig. 4.2d, we show the FM in compatible superhexagons for each of the eight pos-
sible even local loop shapes (with six, eight, ten or twelve bonds, bold black lines); the
FM is present independently of the choice of internal bonds outside the local loop (thin
black lines).

Metamaterials consisting of large stacks containing many supertriangles (Fig. 4.2e)
typically contain many superhexagons, each sporting a local loop of internal bonds. De-
signing the material so that there are only even local loops in the system ensures that
all superhexagons are compatible, the material has a single global FM, and can deform
harmoniously. Conversely, odd local loops generate geometric frustration and incompat-
ibility, resulting in the absence of a global FM. As discussed in section 2.3.2, there is an
extensive number of metamaterial designs made of these supertriangular building blocks.
Moreover, we can design a wide array of geometries with varying isotropy, auxeticity,
and periodicity. Here, we explore the evolving mechanical response under architectural
changes in this class of spatially complex metamaterials, and our findings thus hold for
metamaterials with a wide range of mechanical properties.

4.4. States of self stress in superhexagons and larger metamaterials

We now show how to identify the dimension and shape of the SS-space in our complex
metamaterials, which governs the differential response of architecturally related networks.
Our compatible metamaterials have one global FM by construction, while frustrated ones
have none. Hence, to obtain the number of independent SS-states from Eq. (4.1), it suf-
fices to calculate the index v. We show below that v follows directly from the number H
of superhexagons contained inside our metamaterial, and that each compatible (incom-
patible) superhexagon contains two (one) localized SS-states that can be explicitly and
straightforwardly constructed.

To count the number of superhexagons in a metamaterial, we first focus on the struc-
ture’s scaffold that consists of corner nodes connected by a triangular lattice (Fig. 4.3a).
If such a scaffold contains T triangles and a perimeter of P bonds, it contains

T-P

H =
2

+1 (4.2)

full hexagons of six triangles, each surrounding a distinct bulk corner node (orange
hexagon and bold black dots in Fig. 4.3a). This expression is derived as follows: a single
triangle has T' = 1, a perimeter of P = 3 and H = 0 hexagons. Adding a triangle to an
existing system increases the number of triangles by one (1" — T+1), and either increases
the perimeter by two bonds and produces no new hexagon (P — P+ 2, H — H), or in-
creases the perimeter by one bond and produces a new hexagon (P — P+1,H — H+1).
By induction, Eq. (4.2) then holds for all lattices.
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4. Response evolution of mechanical metamaterials under architectural transformations
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Fig. 4.4.: States of self stress (SS-states) are localized in superhexagons. a, The eight possible even
local loop shapes in a compatible superhexagon are shown (black lines). The number of bonds in
each loop is indicated. Some internal bonds outside the local loop may be chosen freely (not shown
here for clarity), while the triangular scaffold (grey solid lines) is always present. b, The compatible
superhexagons contain two non-orthonormal SS-states (colours): a radial SS5-state localized on the
triangular scaffold (top), and a loop SS-state fully localized on internal bonds in the local loop and the
triangular scaffold. ¢, Incompatible superhexagons contain odd local loops that come in five distinct
shapes (red lines). These structures each support only the radial SS-state.

We now use this information to determine a general expression for v in our meta-
materials. Adding two internal bonds and three edge nodes to every triangle in the
scaffold—thus creating a stack of T supertriangles—generates a metamaterial (Fig. 4.3b).
Since the triangular scaffold contains a total of N, = % bonds, the metamaterial will
contain 37 + P edge bonds and an additional two internal bonds per triangle, yielding
a total of N, = 5T + P edge and internal bonds. In addition, the scaffold contains
N, = % + 1 corner nodes; the metamaterial has an additional three edge nodes that
are shared between two triangles, unless they lie on the structure’s perimeter. This yields
a total of N, = 27"+ P + 1 corner and edge nodes in the metamaterial (Fig. 4.3c). The

metamaterial’s index v is thus equal to

v=1-2H. (4.3)

From Eq. (4.1), and using the fact that the number of FM in a metamaterial is either
one or zero, we obtain an exact expression for the dimension of SS-space in our metama-
terials: Nggs = 2H in compatible systems, and Nsgs = 2H — 1 in incompatible ones.
This expression is consistent with our finding in Sec. 4.3 that a compatible superhexagon
contains two SS-states, while an incompatible superhexagon has one SS-state. Thus, in
a compatible metamaterial with H hexagons, we can identify 2H independent SS-states
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4.4. States of self stress in superhexagons and larger metamaterials

localized within each of the metamaterial’s superhexagons; these SS-states exactly span
the 2H-dimensional SS-space. Therefore, all independent SS-states of a compatible meta-
material can be constructed as localized states within each of the larger metamaterial’s
superhezxagons.

We illustrate the compact, superhexagon-
localized representation of all independent
SS-states in Fig. 4.4. Consider a meta-
material consisting of a single, compatible
superhexagon. Its local loop contains an
even number of internal bonds; the struc- :
ture has a single FM, and two SS-states. A WAVAVAVYA
Figure 4.4a enumerates the eight possible ' '
even local loop shapes (up to rotations
and reflections); internal bonds outside of
the local loop do not carry stress in any of

the SS-states, and are not shown for clar- —> vV
ity. Due to the network’s highly regular ” y .
geometry, the SS-states are found by in- b P> 2Ny +2T
spection to have a simple structure: one N, & N,+N;

radial SS-state is independent of the su-

perhexagon’s internal bonds and is purely
supported on edge bonds, while the other
loop SS-state involves the internal bonds
of the local loop (Fig. 4.4b). The loca-
tion of internal bonds that are not part of
the local loop are irrelevant for both the
radial and loop SS-states. Bond stresses
of both radial and loop SS-states are inte-

Fig. 4.3.: The number of nodes and bonds in a
metamaterial can be counted exactly. a, Start-
ing from a network of T adjacent triangular cells
(yellow triangle) with a perimeter of P bonds and
P nodes (orange lines and circles), the number of
nodes and bonds N,, and N, can be counted ex-
actly. Each internal lattice point (black circles) is
surrounded by a hexagon of six triangular blocks
(orange hexagon). b, Each block is decorated with

two internal bonds and three edge nodes, produc-
ing a supertriangle. ¢, This decoration produces
a metamaterial. The number of nodes and bonds
increases to N, + N and 2Ny, + 2T.

ger multiples due to the underlying build-
ing blocks’ six-fold rotational symmetry.
By contrast, a single, incompatible super-
hexagon containing an odd local loop has
no FM and only one SS-state; the local
loop has five possible shapes (Fig. 4.4c), and the superhexagon supports only the single
radial SS-state (Fig. 4.4b, left).

In compatible metamaterials consisting of H compatible superhexagons, the 2H -
dimensional SS-space is therefore spanned by H radial and H loop SS-states, each of
which is localized to a single superhexagon. Similarly, in a metamaterial with a single
incompatible superhexagon, the (2H — 1)-dimensional SS-space consists of the H radial
SS-states, and the H — 1 loop SS-states in the remaining compatible superhexagons. For
larger numbers H, > 1 of incompatible superhexagons, H radial and H — H, loop SS-
states are present in the network, with the remaining H, — 1 SS-states not localized to a
single superhexagon.
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4. Response evolution of mechanical metamaterials under architectural transformations

4.5. Architectural defects

While we can make a large variety of compatible metamaterials (a number that grows
exponentially with the number of supertriangles in the structure, see section 2.3.2), an
even larger amount of frustrated designs exist that cannot deform harmoniously due to
the presence of one or more odd local loops. The mechanical frustration induced by such
defects generally produces undesired effects when their presence is not controlled, such as
decay of a desired FM?%*?  or structural failure when frustration-induced bond stresses
exceed the bond buckling threshold?®. However, when frustration is introduced in a con-
trolled and well-understood manner, it may be harnessed to design desirable or unusual
physical properties, such as localized buckling zones'®'®22 or geometric frustration in
spin—ices41743 .

We now show how to redirect frustration in our mechanical metamaterials by rotating
select supertriangles in an initially compatible network. Figure 4.5a shows a compatible
structure with no defects (A), where all superhexagons have even local loops (black lines).
Selecting and rotating a particular supertriangle in the material’s bulk (Fig. 4.5a, inset)
effectively removes one of the supertriangle’s internal bonds—bond r—from the network
and replaces it with a newly added internal bond p. The bond r is part of exactly two
local loops. In general, exchanging bond r for bond p changes the parity of these two
local loops. Here, since we start from a compatible structure, rotating a supertriangle
creates two adjacent odd local loops (Fig. 4.5b). We will refer to such a pair of adjacent
odd local loops as a structural defect (network B), since the odd loops may be removed
by locally rotating a single supertriangle!?.

Metamaterials containing a single incompatible superhexagon can also be constructed,
and have been shown in previous work to have a topological signature*®. Such topo-
logical defects (network C') can be generated from an initially compatible system via a
sequence of supertriangle rotations running in a chain between the defect locus and the
system’s boundary. Specifically, we rotate a supertriangle at the edge of a structural
defect, ensuring that this supertriangle contributes an internal bond to one odd and one
even local loop (Fig. 4.5b). As before, the rotation changes the parity of the two local
loops it contributes to. Consequently, the two odd local loops are no longer adjacent
after the transformation: they are now separated by a single even local loop. This defect
configuration, consisting of two incompatible superhexagons separated by one or more
compatible ones, is a complex of two topological defects (network C'): the odd local loops
can no longer be removed by a single, local supertriangle rotation. To finally obtain
a single topological defect, we repeat the above procedure to displace one of the odd
local loops closer and closer to the system’s boundary. Finally, we select a boundary
supertriangle that contributes to exactly one odd local loop, so that its rotation causes
the odd loop’s parity to become even (Fig. 4.5¢). This transformation leaves us with
an isolated incompatible superhexagon in the system’s bulk, that can only be removed
by an extensive number of supertriangle rotations, and that we therefore refer to as a
topological defect (Fig. 4.5d).

Supertriangle rotations thus form the minimal architectural transformations that allow
us to convert one metamaterial design to any other. By a series of sequential supertri-
angle rotations, we can thus obtain metamaterial architectures with any desired number
of frustrated odd local loops, starting from a compatible structure containing only even
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Fig. 4.5.: a, A compatible metamaterial (no defect, A) contains only even local loops (internal bonds
highlighted in black). Three superhexagons (1,2, 3; orange) that change parity under consecutive
transformations are highlighted. Rotating a single bulk supertriangle shared by superhexagons 1
and 2 (yellow triangle, inset) removes a bond 7 and adds a bond p. b, The supertriangle rotation
generates two adjacent odd local loops (red lines). These form a structural defect (B) that frustrates
the compatible motion of the material. The adjacent odd local loops are moved apart by selecting
and rotating a second supertriangle in superhexagons 2 and 3 (inset). ¢, Two topological defects
(C), or isolated odd local loops, are created: an even local loop now separates the odd local loops.
A final rotation in superhexagon 3 (inset) removes one of the odd local loops from the material. d,
A single topological defect (D) remains. e, The three numbered superhexagons in the compatible
metamaterial are shown, along with their central corner nodes (black circles) and their corresponding
loop SS-states {1, 74* and 751 (colours). (f-h) Transforming the network to produce a structural
defect, two topological defects, and a single topological defect (central corner nodes of incompatible
superhexagons indicated in red) results in a sequential evolution where new SS-states are formed from
linear combinations of old SS-states (arrows; see text for detailed expressions). In panels f and g, two
odd local loops are present in the network, and the SS-space can no longer be represented by purely
superhexagon-localized SS-states. However, a (maximally) localized representation does exist, where
an SS-state runs over the superhexagons along the shortest path between the two odd local loops.
In panel h, there is only one incompatible superhexagon; all SS-states are localized within distinct
superhexagons.
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4. Response evolution of mechanical metamaterials under architectural transformations

local loops.

4.6. Response evolution under architectural transformations

Starting from an initially compatible metamaterial, supertriangle rotations form mini-
mal architectural transformations that generate predictable defect configurations. Here,
we investigate how the concomitant frustration manifests in the mechanical response.
Clearly, a frustrated metamaterial cannot deform harmoniously, so external forcing will
generate stresses and elastic deformations. We want to understand where these stresses
are localized, and how they relate to the sequence of architectural transformations that
generate a given network design.

In Sec. 4.2, we discussed how the mechanical response of a network is determined by
its Np-dimensional stress space, which can be decomposed into two mutually orthogo-
nal sub-spaces: the Ngs-dimensional SS-space, and the Npp-dimensional LB-space. To
understand how architectural changes affect the stress response, we therefore need to
establish how the SS-space and the complementary LB-space change under architectural
modifications. Our metamaterials, with their readily constructed SS-states, are especially
suitable to address such general questions.

To capture the changes of the SS- and LB-spaces due to architectural modifications,
we repeatedly use a number of basic principles that we outline here. We only consider
architectural changes that consist of sequences of supertriangle rotations, and break up
each supertriangle rotation into a step-by-step process where we first remove a bond and
then add a bond at a different location, which simplifies our calculations and generalizes
easily to other network architectures.

Supertriangle rotations can mutate the compatibility of our metamaterials: there ex-
ist three different mutation processes. First of all, in process I, a compatible system
A transforms into an incompatible system B (see e.g. Fig. 4.5a,b). Secondly, process
IT converts an incompatible system B into a distinct incompatible system C' (see e.g.
Fig. 4.5b,c), and lastly, process III converts a compatible system A into a compatible
system A’. Process III can only occur for specific supertriangle rotations at the edge of
a metamaterial, and is trivial from the perspective of the mechanical response; we do
not consider it further here (see Appendix A.3 for details). In process I, we start from a
compatible system A, then remove a bond labelled r to obtain the intermediate system
AB, and then add bond labelled p to obtain the incompatible system B. In process
II, we start from an incompatible system B, then remove a bond labelled r to obtain
the intermediate system BC, and then add bond labelled p to obtain the incompatible
system C.

Now that we have broken down possible structural changes into a precise sequence of
removing and adding bonds, we can determine how the dimension of the SS- and LB-
space changes in each transformation step, using constraint counting (see Sec. 4.4). First
of all, in process I, step A — AB removes one SS-state, while the number of LB-states
remains constant. Step AB — B leaves the SS-states unaffected, while the number of
LB-states increases by one. Secondly, in process 11, step B — BC removes one SS-state,
while the number of LB-states remains constant. Step BC — C adds one SS-state, while
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the number of LB-states remains constant.

Crucially, changes to the dimensionality of the SS- and LB-spaces do not capture their
full reconfiguration. As an example, consider step A — AB, where bond r is removed
from network A: while the number of LB-states remains constant, the removal of bond
r induces changes to the structure of these states. After all, LB-states may have a finite
stress on bond r in network A, but LB-states of network AB must have zero stress on
the nonexistent bond r.

In order to fully capture changes in the SS- and LB-spaces, we must construct appro-
priate bases for them, to make their evolution tractable. As the SS-states are easier to
identify than the LB-states in our particular metamaterials, we construct an orthonormal
basis for the SS-space of our metamaterials, such that removing a bond b will affect at
most one basis vector. This basis consists of (i) at most one SS-state vector that has
a finite stress on bond b, which is modified under removal of bond b, and (ii) all other
basis vectors that have zero stress on bond b%°.

The two subspaces (i)-(ii) are mutually orthogonal; moreover, the LB-space is orthog-
onal and complementary to the SS-space. Hence, changes in the subspace (i) directly
affect the LB-space. The LB-space ultimately determines the metamaterial’s response
under external loading. However, as we discussed at the end of Sec. 4.2, the stress
response difference between two networks related by a single supertriangle rotation is
determined by their mutually exclusive SS-states. Thus, the evolution of the SS-space
suffices to capture the evolution of the metamaterial’s response, as a detailed derivation
in Appendices A.3—A.5 confirms.

In the following, we therefore first describe how to construct all SS-states in compatible
and incompatible metamaterials as linear combinations of radial and loop SS-states in
Sec. 4.6.1. We consider process I in Sec. 4.6.2, identifying the changes to the SS-space,
and process II in Sec. 4.6.3, again determining changes to the SS-space. Ultimately,
we establish that the evolution of SS-space under supertriangle rotations is limited to a
small and predictable span of stress vectors. We close this section with a discussion in
Sec. 4.6.4 of the mechanical consequences of these SS-space changes due to supertriangle
rotations.

4.6.1. Constructing the states of self stress

As shown in Sec. 4.4, the SS-space of any compatible metamaterial is spanned by
superhexagon-localized radial and loop SS-states (see Fig. 4.4b). Together, the superhexagon-
localized states form a complete, non-orthogonal basis of the material’s SS-space. How-
ever, a different approach is needed to identify a complete basis of the SS-space for in-
compatible metamaterials: as we will show below, in frustrated systems, some SS-states
cannot be represented as superhexagon-localized states, but must be delocalized. Here,

we present an iterative approach to construct a basis of SS-space for any metamaterial—
compatible or not—and show that all delocalized SS-states can be constructed as linear
combinations of radial and loop SS-states.

We illustrate our approach by constructing a basis of the SS-space in the four architec-
turally related networks presented in Fig. 4.5a-d, with network A containing no defect,
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Fig. 4.6.: We identify the unique state of self stress (SS-state) %;4 that is modified under a supertri-
angle rotation in an initially compatible network A. a, We transform the network by rotating a certain
building block (yellow triangle), such that bond r (zoom-in) is removed from the network. Bottom:
the Np-dimensional space of bond stress states is schematically represented as a space consisting
of LB-states (blue, represented as a one-dimensional line) and SS-states (pink). b, Only the two
loop SS-states T{* and 75! with a nonzero stress on bond r need to be considered. Bottom: the
non-orthogonal SS-states TIA and T2A lie in the SS-space plane (pink vectors), while the stress vector
7 (purple vector), with nonzero stress on bond r, overlaps with both SS-space and LB-space (dashed
lines). Both SS-states overlap with #. ¢, The two SS-states are recombined to yield the vectors TlA
and 7{3, so that T{* is the only SS-state with nonzero stress on bond r“. Bottom: the SS-states

are recombined so that 7-1‘42 is orthogonal to #, and only TlA overlaps with 7. d, The two SS-states

are orthogonalized with respect to all other (superhexagon-localized) SS-states via a Gram-Schmidt
process. Two SS-states ‘f"f and %frl are obtained, such that only the former has nonzero stress on
bond r. Thus, %f is lost after the supertriangle rotation that removes bond r. Bottom: orthogo-

nalization produces the SS-state %f, orthogonal to all LB-states and the remaining SS-states, and
uniquely overlapping with .
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B a structural defect, C' two topological defects, and D a single topological defect, as a
specific demonstration of our general strategy. Figure 4.5e shows the three highlighted
compatible superhexagons, numbered 1, 2 and 3 in the compatible network A, that are
modified during the network transformations. The three superhexagons support three
radial SS-states (see Fig. 4.4b above), not shown here for brevity. As the network trans-
formations considered here leave the scaffold of edge bonds intact, the H radial SS-states
remain, irrespective of the number of supertriangle rotations. We focus on the loop SS-
states that are localized in these three superhexagons, which we will denote i*, 75', and
75', and which are shown in Figure 4.5e. Rotating a supertriangle in network A that is
part of both superhexagons 1 and 2 removes one bond, r (Fig. 4.5a,b). This rotation
also lowers the number of SS-states by one. First, we note that 75 does not induce a
stress on bond r, so that this SS-state is retained in network B. However, 7{* and 75 do
include a stress on bond r: hence, they cannot be SS-states of network B. We construct
a new SS-state for network B as a linear combination of 7{* and 75 that leaves bond r
unstressed: T3 = T{' + 75" (see Fig. 4.5f)). Here we use the subscript 12 to indicate that
this SS-state is delocalized: it is contained within the two incompatible superhexagons
1 and 2. All other SS-states in network A, similar to 7 = 73, are retained in network B.

A second supertriangle rotation in network B produces two separated topological de-
fects in network C (Fig. 4.5¢), but does not change the number of SS-states. Since a
distinct bond 7 is now removed during the supertriangle rotation, and both i3 and 7
produce a finite stress on bond 7, these two SS-states cannot persist in the network. By
a similar superposition as above, we obtain a new SS-state 733 = Ti5 + 7£. This SS-
state spans the connecting path between the two odd loops, since 7593 = 71 + 75 + T2.
However, to maintain the overall number of SS-states, a new SS-state is also formed: the
supertriangle rotation makes superhexagon 2 compatible, resulting in the appearance of
the localized loop SS-state 75 (see Fig. 4.5f). In general, in a network denoted X, the
two SS-states 7;* and ’TjX —with nonzero stress on the bond r that is removed due to a
supertriangle rotation—are recombined to form a new SS-state ‘TiX *1. This SS-state is
found via the equation

X A
X+1 x T T _Xx
Ti'+ =T, — ﬁTj y (44)

J

where 7 is a bond stress vector with unity value on bond r, and zero value on all other
network bonds.

Finally, rotating a last supertriangle in network C' produces network D that contains a
single topological defect; the number of SS-states remains the same. The delocalized state
754, with its nonzero stress on the removed bond r, is no longer an SS-state; however,
the loop SS-state 5 is retained, and a new loop SS-state T arises in the newly formed
compatible superhexagon (see Fig. 4.5h). Note that the SS-states of network D, with its
single incompatible superhexagon, can be identified directly. Since this network is incom-
patible, it has 2H — 1 SS-states; H of these are radial SS-states that are localized in all
superhexagons, and H — 1 SS-states are localized on the H —1 compatible superhexagons.

In general, a complete basis of SS-space can be obtained for any H-superhexagon in-
compatible metamaterial with H, > 1 odd loops (see Appendix A.2) by constructing
the H, — 1 delocalized SS-states (Sec. 4.4) via the steps shown in Fig. 4.5e-g. Thus, an
independent, yet non-unique and non-orthogonal basis of SS-space can be constructed in
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Fig. 4.7.: Evolution of the SS-space under a supertriangle rotation according to process I. a, A
compatible network A is transformed to an incompatible network B via an intermediate network AB,
by first removing bond r and then adding bond p (insets). b, For network A, we construct orthogonal

bases for the SS-space that contain the states {7%;4,,} that have zero stress on bond r and that remain
in the SS-spaces of network AB as well as B. The full basis of network A additionally contains an

SS-state ‘;1;4 that is removed during the architectural transformation (see text). Black square signifies
orthogonality, and arrows with numbers indicate changes in the dimensions of the SS-space.

each of our mechanical metamaterials.

This procedure illustrates that in all cases, whether the metamaterial contains no, one,
or more local odd loops, the SS-space is spanned by a complete basis consisting of radial
SS-states; loop SS-states localized in compatible superhexagons; and delocalized linear
combinations of loop SS-states running between incompatible superhexagons. Such ex-
tended SS-states are reminiscent of flux lines that connect pairs of defects in artificial
spin-ice models®.

4.6.2. Process |: supertriangle rotation from a compatible to an incompatible
geometry

Now that we are able to construct bases of the SS-spaces of our metamaterials, we are in
a position to understand how the SS-spaces change under architectural transformations,
beginning with process I that converts a compatible to an incompatible metamaterial.

(i) We first construct a suitable orthogonal basis for the SS-space for a compatible
network A. Our goal is to identify the unique SS-state in network A, 77, that has a
finite stress on bond r and that therefore is not present in network AB; and to construct
the set of 2H — 1 orthonormal basis vectors {77} that have zero stress on bond r, are
perpendicular to 77, and remain present in network AB. Here, the symbol 7 indicates
an SS-state; the superscript A indicates the network; and the subscripts r or zr indicate
whether the vector has nonzero or zero stress on bond r, respectively.
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4.6. Response evolution under architectural transformations

We construct 77 and {#:+} as follows, as shown in Fig. 4.6. First, as bond 7 is shared
between exactly two even local loops in A (Fig. 4.6a), there are two unique loop SS-states
7{* and 75' with nonzero stress on r (Fig. 4.6b), and 2H — 2 loop SS-states {r;* ?53_2
with zero stress on r. We construct an additional SS-state with zero stress on r by taking

a linear combination of 7{* and 75' (Fig. 4.6¢):

T T
=T - S — T3, (4.5)

where 7 is the unit bond stress vector with unity value on bond r, and zero stress
elsewhere. The SS-state 7i' is, by construction, the only state in our SS-space basis
{TlA, i, {TiA ?5[3} with nonzero stress on r. We now perform a sequential Gram-Schmidt

process (GS) on the ordered set (left to right) of SS-states to orthonormalize the basis:
2 A 2 A
{{Tz'r’}7 Tr } = GS[{{TZA 125377-11427 TIA}] ’ (46)

where the bar and hat in 7 indicate orthogonality and normality respectively. The first
two SS-states of the basis are illustrated in Fig. 4.6d. Going from network A to AB by

removing bond r removes one SS-state, which must be %f (Fig. 4.6d), while the remain-

ing {%fr} span the SS-space of network AB. Going from network AB to B by adding
bond p leaves the SS-space unaffected.

For completeness, the evolution of the complementary L.B-space is presented in Ap-
pendix A.3 via a similar strategy.

In summary, when a compatible metamaterial A is converted to an incompatible ar-
chitecture B according to process I, the evolution of the SS-space is simple once an
appropriate basis is constructed. The SS-spaces of architecturally related networks A
and B are identical up to the SS-state %,ﬁ present in network A, but not in B, as illus-
trated schematically in Fig. 4.7.

4.6.3. Process Il: supertriangle rotation from an incompatible to another
incompatible geometry

We now discuss the stress space changes of process 11, converting an incompatible net-
work B to an intermediate network BC' and finally to a distinct incompatible network C',
as shown in Fig. 4.8a. There are two calculations necessary to understand process II, and
they are shown schematically in Fig. 4.8b. With minor modifications, these calculations
follow the strategy developed for process I above. We again denote the removed and
added bonds by r and p, although we note that these refer to different bonds than in
process 1.

(i) We construct an orthogonal basis for the SS-space of the incompatible network B
by identifying its unique SS-state, ‘;_'f , that has a finite stress on bond r (and is thus not
present in network BC'), and constructing the remaining set of orthogonal basis vectors
{%fr} that have zero stress on bond r (and thus remain present in network BC). To do
this, we use the same method as for process I, step (i) above: we first construct 15, create

a basis {11, 783, {T£}72;}, and perform a sequential Gram-Schmidt process (Eq. (4.6))
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Fig. 4.8.: Evolution of the SS-space under a supertriangle rotation according to process Il. a, An
incompatible network B is transformed to an incompatible network C' via an intermediate network
BC, by first removing bond r and then adding bond p (insets). b, For network B, we construct

orthogonal bases for the SS-space that contain the states {‘?"fr} that remain in the SS-space of
network BC' as well as in that of C. The full bases of networks B and C' additionally contain the

respective SS-states ‘f"f and f’f that are removed and added during the architectural transformation
(see text). Black squares signify orthogonality, and arrows with numbers indicate changes in the
dimensions of the SS-space.

to obtain the orthogonal basis {{%fr}, 77 }. Going from network B to BC' by removing
bond r, the SS-state 5_',{3 is removed from the SS-space (see Fig. 4.8b, left).

(#3) To go from network BC' to network C, we add bond p, which increases the dimen-
sion of the SS-space by one. To construct a basis for the new SS-space, we use an inverse
procedure and start from network C, constructing a basis suitable for removing bond p
to obtain network BC. We use the same procedure as in step (i) above, and we readily

obtain a basis {{?Sp}, %g}. Noting that removing bond p from network C' and removing
bond r from network B produces the same network BC), it trivially follows that {‘f"ch}

= {?f,,}. Hence, the step from network BC' to C' simply adds the basis vector ‘f"g to the
SS-space (see Fig. 4.8b, right).

For completeness, the evolution of the complementary LB-space is presented in Ap-
pendix A.3 following a similar set of calculations.

Together, steps (i) and (ii) describe the evolution of the SS-space for process 11, con-
verting an incompatible network B to a second, distinct incompatible network C. The
SS-spaces of architecturally related networks B and C' are identical up to the SS-state

T, , present in network B, but not in C'; and the SS-state %g, present in network C', but
not in B.
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Fig. 4.9.: Examples of the reconfiguration of a metamaterial’s SS-states under a sequence of supertri-
angle rotations, shown for network pairs A-B, B—C, and C-D. a, A compatible network A (left) is
transformed to exhibit a structural defect in network B (right) by rotating a supertriangle, effectively
removing bond r and adding bond p (inset). Local loops whose parity is modified are indicated cf.

Fig. 4.4. The unique SS-state %‘14 with nonzero stress on bond r that is not an SS-state of network
B is shown. b, Network B is transformed into network C, which contains two topological defects.

The evolution of the SS-space is set by the two mutually exclusive SS-states ?f and %g. c, Network
C' is converted to network D containing a single topological defect. The SS-space is modified such

that only the two SS-states %f and 72 are not shared by the two networks. d, The stress response
difference Ao between networks A and D under identical loading is a linear combination of the five
mutually exclusive SS-states. Ao is calculated for all independent normal mode loads f;?'i of network
A (see text), as well as the load illustrated in Fig. 4.1b. The overlap of the normalized stress difference
with the five SS-states is shown; it has no component outside of their span.
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4.6.4. Mechanical interpretation and consequences

The above results show how the SS-space changes under a supertriangle rotation. Specif-
ically, we constructed the mutually exclusive SS-states of two architecturally related
networks. There is one such SS-state for a network pair where the dimension of the
LB-space changes (process 1), two such SS-states for networks where the dimension of
the LB-space does not change (process II), and no such SS-states for process III.

Due to the linear-algebraic structure of our model, we have argued that the SS-space
evolution between two architecturally related metamaterials governs their difference in
stress response. After all, the stress response of both metamaterials must be perpendicu-
lar to their respective SS-spaces. This enables us to answer the following question: when
two metamaterials with distinct architectures are subjected to the same external nodal
load f, what is the difference Ao in their stress response?

We show an explicit example for the three network pairs A— B and B —C in Fig. 4.9a—
b, corresponding to processes I and II respectively. The figure illustrates the SS-states
that mutate under architectural transformations. When network A is transformed into
network B, the only difference between the two respective SS-spaces is the SS-state ?f
(Fig. 4.9a, bottom). Thus, the stress difference between networks A and B under iden-

tical supported loading is parallel to %TA. To show this precisely, some linear algebra is
necessary; details are shown in Appendix A.4. With this result, we can understand the
localization of the stress response difference between networks A and B, introduced in
Fig. 4.1a: the localization of the stress response difference is due to the localization of

the SS-state %f around the removed bond r.

Similarly, the stress response difference between the networks B and C, related via

process I, is spanned by the changed SS-states ?f and %S (Fig. 4.9b, bottom; see Ap-
pendix A.4 for details).

As a consequence, we can make an inductive statement about the stress response dif-
ference between a pair of networks related by multiple, consecutive block rotations, such
as the network pair A — D shown in Fig. 4.1b. The stress response difference between
the two networks must be limited to the span of SS-states that have changed during
the sequential transformations. The network with a topological defect (D) is related to
the compatible network (A) by a minimal number of three architectural transformations,
shown in Fig. 4.9a—c, that correspond to processes I, I, and II respectively. As a conse-
quence, the stress response difference between networks A and D should be contained in
a five-dimensional stress subspace of changed SS-states (Fig. 4.9a—c, bottom). To con-
firm this, we calculate the stress response difference between networks A and D under
all Ny, — Ngs independent supported loads of network A. We choose the independent
supported loads to be the supported normal loads fii (i.e. left singular vectors with
nonzero singular values of the kinematic matrix of network A). The overlap of the re-
sulting normalized stress response differences Ae with the five normalized SS-states is
shown in Fig. 4.9d. The data demonstrate that the stress response difference is a linear
combination of only the five mutually exclusive SS-states for any applied load, with zero
projection on any other stress states. Results are also shown for the particular stress
response difference under the loading illustrated in Fig. 4.1b (right). Thus, the stress
response difference shown in Fig. 4.9d is confirmed to be a linear combination of the
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Fig. 4.10.: a, An initially compatible metamaterial under loading at the network’s leftmost corners
(arrows, length multiplied by a factor 100 for clarity) concentrates stresses o (colours) along the
shortest path between the two probing points. Nine sequential supertriangle rotations (yellow trian-
gles) introduce a topological defect from the left boundary and guide it to the right. b, Once the
topological defect has been moved to the right boundary, the stress field o/ is diverted to run between
the two probing points and along the right side of the topological defect (odd local loop highlighted
with red infill). c, The differential stress response Ao of the two networks is such that stresses on the
left of the system are decreased, while stresses on the right increase. Ao is a linear combination of
the 17 SS-states that have changed during the nine sequential architectural transformations. d, The
stress response and stepwise stress response difference for the first three intermediate steps is shown.
Intermediate stress response difference are linear combinations of SS-states that are quasilocalized
near the rotated supertriangles. The SS-states produce a typical stress re-steering that affects stress
magnitudes near the moving topological defect: stresses to the left are decreased, while stresses on
the right increase.

five SS-states, each of which is concentrated in a different part of the network. Since
the stress response difference is a linear combination of mutated SS-states with different
localizations, the total stress response difference is diffuse.

4.7. Re-steering a stress response with architectural transformations

In this section, we show that our understanding of SS-space modifications during archi-
tectural transformations allows us to explain how the inclusion of a topological defects
affects the stress response field of a metamaterial.

In previous work, we have shown that metamaterials containing a single topological
defect show unusual stress-localizing behaviour when compared to a compatible metama-
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terial'®. Specifically, consider a compatible network; an example of a large compatible
network containing 95 superhexagons is shown in Fig. 4.10. We pick two supertriangles
at the left top and bottom corners for actuation. To make sure that we have a supported
load, and for simplicity, we force both supertriangles with load dipoles that actuate their
local FM, but that is not compatible with the network’s global FM and is therefore a
supported load. Under this driving, stresses are concentrated along the leftmost sample
edge, running along the shortest path between the two actuation points (Fig. 4.10a).
When the metamaterial undergoes a particular sequence of supertriangle rotations to
generate a topological defect that progressively moves from left to right through the sys-
tem, the same loading conditions produce a stress field that runs along the rightmost edge
of the network instead (Fig. 4.10b). The differential stress response is concentrated on
the right side of the system (Fig. 4.10c). Based on the evolution of SS-space during each
supertriangle rotation, we can understand why this unusual stress-localizing behaviour
takes place.

Starting from the compatible structure, we rotate a supertriangle at the leftmost edge
to locally create a topological defect. This removes a SS-state at the leftmost edge of
the system (Fig. 4.10d, left). The particular removed SS-state is structured so that the
stress response of the new network is reduced at the left and increased to the right of
the newly created topological defect. In the next transformation step, we shift the topo-
logical defect to the right by rotating a supertriangle on the right side of the topological
defect. This transformation locally modifies the SS-states, which are again configured
such that the stress response is decreased to the left and increased to the right, so that
stresses are steered along the right edge of the topological defect. Repeating this pro-
cess leads to the path of highest stress concentration to be pushed farther and farther
towards the right side of the system, ahead of the direction of ‘motion’ of the topological
defect (Fig. 4.10d, middle). Finally, after the transformation sequence is complete, the
topological defect is located at the rightmost side of the network; the stress field runs
between the two actuation points around the defect along the right edge, leaving the
left edge with a lowered stress response (Fig. 4.10d, right). SS-states that are modified
during such transformations fully determine the difference in stress response under an
equal applied load.

4.8. Conclusions and outlook

In previous work, SS-states have been used to design localized mechanical responses in
materials with a topologically nontrivial band structure®!74459:91. t5 investigate the me-
chanical response of mechanical networks*®®%:92 and jammed particle packings™® 82:87:93797,
and to study the mechanical evolution of networks under bond removal”®8%. In contrast,
here we have worked out in detail how architectural bond-preserving transformations
govern the evolution of the SS-states, LB-states, and mechanical response of a complex

mechanical metamaterial®®.

In particular, we started from a linear-algebraic description of network mechanics,
which dictates that the stress difference of architecturally related networks under iden-
tical loading is governed by the networks’ differing SS-spaces. It should be noted here
that this result holds not only for the metamaterial architectures presented in this work,
but for any network material whose architecture is transformed by removing a bond, and
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then adding a bond at another position: under identical supported loads, the response
difference between the two architecturally related networks is governed by their mutually
exclusive SS-states.

For the specific family of metamaterials considered here, closed-form SS-states span-
ning the full SS-space were constructed straightforwardly, due to the regular geometry
of the metamaterial building block. We then considered rotations of a single triangu-
lar building block as the fundamental architectural transformations that can introduce
(topological) defects into formerly compatible designs'®. These rotations were shown to
lead to distortions of the SS-space that we calculated explicitly. In turn, since changes in
the SS-space govern the evolution of the metamaterial’s stress response under externally
applied loads, we were able to explicitly calculate how the response of a metamaterial
evolves under architectural transformations. Finally, we demonstrated how these insights
clarify how topological defects steer stress fields.

While our approach helps understand the steering of stresses in the particular case of
a moving topological defect, designing a target stress response with an inverse procedure
is more complex. Suppose, for example, that we aim to construct a sequence of architec-
tural transformations to generate a given target stress response, starting from a particular
metamaterial design and loading conditions. In general, this requires an in-depth anal-
ysis of the evolution of the SS-states to ensure their cumulative contribution leads to
the desired stress response. Nevertheless, our approach suggests a systematic pathway
to do so. Moreover, metamaterial designs may be constructed where the SS-states are a
priori known or more easy to construct, simplifying the practical implementation of our
approach to design the (differential) stress response of complex metamaterials.

Acknowledgements

We thank Aparna Baskaran, Roni Ilan, Edan Lerner, and Ben Pisanty for fruitful dis-
cussions. This research was supported in part by the Israel Science Foundation Grant
No. 968/16, and by the Israeli Ministry of Science and Technology.

85






