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3. Topological defects produce exotic mechanics in
complex metamaterials!

Abstract

We uncover the distinct mechanical signature of topological defects, introduced in chap-
ter 2 via experiments and simulations, and leverage this to design complex metamaterials
in which we can steer deformations and stresses towards different locations.

3.1. Introduction

Metamaterials’ unusual mechanical properties arise from the geometry of their unit
cells” 1015722 Many strategies exist to create metamaterials, on a spectrum of formality:
from traditional and intuitive design®® to computerized machine-learning strategies*’,
topology optimization®® and genetic algorithms*®. While such automated techniques are
valuable, a skilled operator is still needed to ensure that a suitable design can and will
be found within a reasonable time. This is a classic bottleneck: reinventing the wheel
(or a skyscraper) with modern techniques takes time and effort, and there are plenty
of good design templates ready to go. In other words, innovative design is hard, and
metamaterials are no exception.

There is therefore a need for conceptual work that helps formalize metamaterial de-
sign using simple, understandable design rules. Ideally, such design rules function as a
guidebook, for example by prescribing how architectural elements should be combined to
obtain desired stiffness or reconfigurability; or more indirectly, which mathematical rules
the modelled system should obey?!'*°. Most seminal and ground-breaking work in this
community has managed to do this by considering analogies between classical mechanics,
and optical, acoustic or electronic systems?*4*°!,

In this chapter, we design metamaterials that harness mechanical frustration, analo-
gously to geometric frustration in spin-ices. In the previous chapter, we discussed how
to create stacked, compatible networks, and how to make these incompatible via local or
topological defects. Evidently, defects frustrate the mechanical deformation of our meta-
materials. We now explore the effect of these defects on the mechanical response of our
metamaterials. We first present simple constitutive models and experimental realizations
of in section 3.2. We then discuss the physical manifestations of (in)compatibility due to
the presence of defects in section 3.3 and use this understanding to formulate a protocol
to mechanically distinguish structural and topological defects. Finally, we harness the
distinct mechanical response of topological defects to design localized deformation fields
in larger networks in section 3.4. We discuss the impact of our work in section 3.5.

! The work presented in this chapter is based on Refs.[13] and [14].
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3. Topological defects produce exotic mechanics in complex metamaterials

3.2. Probing frustration: models and experiments

Studying the mechanics of our networks requires experiments and models. In this section,
we discuss the construction of both.

Experimental realizations of our complex metamaterials are produced via selective
laser sintering (section 3.2.1). In these experimental samples, stiff bars connected via
soft living hinges (that is, thin and flexible filaments made of the same material as the
bars) correspond to the bonds and nodes of the initial design. This design method
produces macroscopic, malleable structures that can be actuated by hand. In order to
gain a deeper understanding of our experimental results, we describe two minimal models
that relate forces and displacements, which work on the network’s connecting nodes, to
elongations and tensions of its bonds. We first treat a mechanical model consisting of
Hookean springs connected by freely hinging nodes (model FH, section 3.2.2), and then
decorate this model with a torsional hinge stiffness (models TR and LTR, section 3.2.3),
as illustrated schematically in Fig. 3.3a. We expect this latter model to correspond more
closely to the actual behaviour of our experimental samples, whose living hinges have
a finite stiffness. We compare the experimental and modelled sample’s behaviours in
section 3.2.4.

3.2.1. Experimental realizations

3D-printed versions of our complex mechanical metamaterials realize the network’s bonds
by thick elastic beams and its hinges by thin joints. We discuss their fabrication and
probing strategy, as well as error estimates during deformation measurements, below.

Printing process

As illustrated in Fig. 3.1, experimental realizations of our complex metamaterials are pro-
duced using a Sinterit Lisa 3D printer with thermoplastic polyurethane powder Sinterit
Flexa Black, processed at a sintering layer height of 0.1 mm at the “softer” setting®?°3.
The reported Young’s modulus of the base material printed at these specifications is
44+ 0.5 MPa, and the final printed networks have a height of 5 &+ 0.2 mm. The individual
bars of the network are realized as thick beams, connected by thin beams—functioning
as living hinges—at each joining node, which is marked in contrasting white (Fig. 3.1a,b).

The final printed networks have a height of 5+ 0.2 mm, a length of 107 +2 mm. Each
bar has a length of 10 & 0.2 mm, and the narrowest part of the connecting hinges has
a length 0.5 & 0.2 mm and width 0.7 £ 0.2 mm. An impression of the printed samples,
including overall dimensions and sizes of the constituent parts, is shown in Fig. 3.1c-d.

Sample deformation measurements

To quantify the deformation of our experimental samples, we track the positions of their
nodes. High-resolution images of the sample under various external probing conditions
are obtained using a Canon EOS 750D camera, by placing the network on a horizontal
surface at a constant position of approximately 30 mm from the camera body. The 6000-
by-4000-pixel images are analysed using a custom program created using the Python 3
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3.2. Probing frustration: models and experiments
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Fig. 3.1.: Fabrication of experimental samples. a, A section of the original network design is shown
(grey lines). The network design is converted to an outline (black lines) suitable for fabrication with
a Sinterit LISA 3D printer. The final printed sample has smaller dimensions (approximated by orange
lines) due to resolution limitations. b, A section of the printed specimen, created by laser-sintering
powdered thermoplastic polyurethane FlexaBlack, is shown. The network's bonds are realized as thick
bars tapering to thin hinges that meet at a node. Nodes are manually marked with white dots after
printing. Scale bar: 5mm. ¢, Dimensions of the sample’s constituent parts are indicated in millimetres
unless noted otherwise. An error of 0.2mm and 5° is estimated for lengths and angles respectively.
d, A rectangular sample of 6 rows and 11 columns of building blocks and its overall dimensions in
mm. Scale bar: 5mm.
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3. Topological defects produce exotic mechanics in complex metamaterials

® dm—it v P00
| N(p,0?)
- L — = 332.8
Py 8 [ data
Z 010}
E
o
e
£ 005
0.00 : .
300 320 340 360
1§ tpx]

Fig. 3.2.: Deformation measurement error estimates. a) A section of a metamaterial design and
its corresponded printed sample. The network’s building blocks (one highlighted in orange) are
characterized by a block rest length l?, corresponding to the separation distance of the blocks’
majority edge-nodes (top, light green circles). b The initial block rest lengths l? in the sample,
measured in pixels by imaging and tracking the network’s nodes, are normally distributed (grey area)
with a mean p and standard deviation o (black line). Assuming the distribution’'s mean corresponds
to the designed bar length of 10 mm, an imaging resolution of 33.3 px/mm and a standard deviation
0.15 mm on length measurements are obtained.

scripting language. Since the material’s nodes are marked in a contrasting colour, the
node positions of the network at rest and under various deformation conditions may be
obtained from the images, and subsequently used to calculate node displacements and
changes in node separation distance.

Error estimates

Length measurements in images of the samples are sensitive to errors, which we estimate
as follows. Fig. 3.2a illustrates how initial block lengths 1Y, or separation distance of
each network block’s majority edge-nodes, may be measured. Fig. 3.2b shows a typical
distribution of initial block lengths 1Y in units of image pixels. The data shown were
obtained for a representative sample of the size shown in Fig. 3.1d. The probability den-
sity estimate of initial block lengths is normal to good approximation, A (i, o?), with a
mean p = 332.8 px and standard deviation o = 4.7 px. We take the distribution’s mean
value to be equal to the designed node spacing of 10 mm to obtain an image resolution
of 33 px/mm and a corresponding standard deviation Al = 0.15mm, or approximately 5
image pixels. For simplicity, we assume that all errors are uncorrelated, which may lead
to an underestimation of the measurement uncertainty.

3.2.2. Model FH: freely hinging spring network

To model the mechanical response of a complex network of stiff bonds and soft hinges,
we may to treat its bonds as Hookean springs connected by freely hinging nodes. As
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3.2. Probing frustration: models and experiments

discussed by Pellegrino®®, the network’s response to manipulation in the linear regime of
small displacements can then be calculated straightforwardly. We describe the calcula-
tion method below, obtaining two sets of matrix equations that relate a network’s nodal
displacements and forces to its bond elongations and tensions.

In model FH, we capture the lin-
ear response of our systems based
on networks of Hookean springs con-
nected by freely hinging nodes®®, such
that each bond contributes a poten-
tial stretching energy e; = %62,
where k; is the bond’s stiffness and
e the elongation from its equilibrium
length.

As shown in Fig. 3.3b, each node ¢
supplies two degrees of freedom via spa-
tial displacements wu,; and wu,,;, while
a bond of length I° between two nodes
at locations r; and r; constrains these
motions by resisting linearized bond
elongation e % - (wp — uy).
For a large network, the vector of
bond elongations e = (...e;...) is re-
lated to the vector of nodal displace-
ments U = (c.Ugi, Uyjelhp,j, Uy je.)
via a compatibility matrix R so that
e = Ru Each row of R re-
lates the displacements of two nodes
to the elongation of their connecting
bond. Bond elongations result in bond
tensions 7;;, which we will also refer
to as stresses, via a constitutive equa-
tion: 7 = Ke, where K is a di-
agonal matrix of bond stiffnesses that
we set equal to the identity. Ten-

sions are in turn converted to nodal
loads f = (.f5 ff7 f]..) via
f = RTr. The collective displace-

ments, elongations, tensions and forces
fully characterize the network’s mechan-
ics.

To actuate the network, we generally
displace selected nodes by small amounts,

model FH model (L)TR

@ @

Fig. 3.3.: Modelling triangular building blocks. a,
The building block design (left) corresponds to a
network of freely hinging Hookean springs in model
FH (middle) and is augmented with harmonic tor-
sional hinges in models TR and LTR (right). b,
Hookean spring mechanics. Left: two freely hing-
ing nodes i, j, at initial positions r;,7;, and their
connecting Hookean spring with rest length 19 are
shown in the x, y-plane. Right: the nodes undergo
displacements u;, u; as their degrees of freedom,
elongating the spring by a dimensionless strain e;;
and producing a tension in the bond. The nodes
undergo external loads f;, f;. ¢, Torsional hinge
mechanics. Left: three nodes 7, j, k and their con-
necting torsional hinge at node j with rest angle
¢ijr are shown. Right: displacing the nodes pro-
duces an angular strain A¢;;; and results in a
torque on the hinge. The nodes undergo external
loads f;, fj, fi in response.

while the remaining nodes are free to move. To calculate the resulting mechanical re-
sponse, we use the following three-step approach. First, we calculate node forces f re-

sulting from imposing an initial displacement u = )~ u;, where u; = (0...u7, u?, ..

.0) are

desired individual node displacements. Second, we determine how the network relaxes
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3. Topological defects produce exotic mechanics in complex metamaterials

to mechanical equilibrium so that node forces vanish except along the forcing directions:
an appropriate compensating force is obtained via f, = f — NpNZ;f , where N, is the
matrix with forcing directions fi; = (0...n7,n?,...0) as its columns. The corresponding
relaxation displacement u, is then calculated from the compensating force f, and the
reduced compatibility matrix R, = R — RNpr;. Lastly, the final displacement state
of the network is given by ur1 = u + up, and the matching bond elongations, tensions
and node forces can be obtained from this displacement state. The resulting network
response, valid in the regime of small deformations, is compatible with both the imposed
node displacement and the conditions of mechanical equilibrium.

Note that the compatibility matrix is not generally invertible. Therefore, calculating
the network’s response to imposed forces as above needs to be done via a well-defined
procedure® using the singular value decomposition and pseudoinverse of R” = UDWT,
Here, U and W are orthonormal matrices with the respective left and right singular
vectors of R” as their columns,while D contains the singular values of R” on the diagonal.
Partitioning U = [U, Uzwm] into the vectors spanning the column space and ZM of R”,
and W = [W, Wgg] into the vectors spanning the row space and SSS, and partitioning
D= [Dr O] so that D, is a square diagonal matrix of ordered (from big to small) nonzero

00
singular values, we can write:

r=W,D, 'U.'f
e=K'r , (3.1)
u="U,D,"'"W,." + Uznmy

where the last term indicates that zero-energy node displacements—or floppy modes—
that may be added freely to the displacement, proportional to the indeterminate vector y.
There are two additional constraints that need to be satisfied: first, we must ensure that
the imposed load leads to a determinate response and so does not overlap with any ZM
via the requirement Uzn” f = 0. In addition, the bond elongations must be compatible
with the network’s geometry, requiring Wss” e = 0. Together, once the compatibility
and stiffness matrices R and K are known, the equations in Eq. 3.1 allow us to calculate
the network’s linear response under imposed forces.

3.2.3. Model TR and LTR: torsionally rigid hinges

In our experimental metamaterials, constituent beams act as Hookean springs with fair
accuracy, but hinges do cost energy to deform. We capture this hinging cost in model
TR, in which bonds are modelled by Hookean springs as in model FH, but an energy
contribution €, = %AqﬁQ is added. Here, kj;, is a torsional hinge rigidity and A¢ is
the deviation of the angle between two neighbouring bonds from its equilibrium value.
Hence, the total potential energy of a modelled network is € = >, €.+ > €n, where the
first sum runs over all bonds, and the second sum over all angles between neighbouring
pairs of bonds. In this model, the dimensionless stiffness ratio k = k(1°)2/ks, thus sets
the relative resistance of bond stretching versus hinge opening.

To obtain a network’s configuration under actuation, we use a standard simulated an-

nealing algorithm, to minimize its total potential energy by probabilistically updating the
spatial coordinates of a randomly chosen node at each step, with Metropolis dynamics
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3.2. Probing frustration: models and experiments

and a dimensionless pseudotemperature decreasing gradually to zero over 50 - 10° steps.
Model TR and simulations were devised and executed by Erdal C. Oguz.

Model TR allows us to simulate nonlinear displacements of the metamaterial’s nodes,
but is computationally costly. As a less intensive alternative, the linear response of a
mechanical network of Hookean springs connected by harmonic torsional hinges, which
we shall call model LTR, can be modelled analogously to model FH.

The additional torsional constraints are included as shown in Fig. 3.3c. In the meta-
material, we consider each clockwise-ordered triplet of nodes ¢, j, k at locations r;, r;, ry.
Two bonds connect nodes ¢ and k to central node j; a harmonic torsional spring at the
central node resists changes in the initial rest angle. Each node ¢ supplies two degrees
of freedom via spatial displacements u,,; and u,,;, while a torsional spring between the
three nodes constrains these motions by resisting linearized rest angle deviation, or an-
gular strain, A¢;jr = (ﬁ x (u; —w;) + =2 x (uj — ug)) - £ with a torsional
hinge rigidity k. Angular changes thus result in torsional tensions 7;;; via a constitutive
equation 7;; = knAdijk.

v —r;|?

The compatibility matrix R of the network is then constructed as for model FH,
described in section 3.2.2, but the matrix is augmented with an additional row for each
torsional spring. Each extra row relates the displacements of a node triplet to the angular
change between their two connecting bonds. Similarly, a suitable stiffness matrix K for
the entire network is found as for model FH. We create a diagonal matrix K = [% kh‘?ks B
where the first block of diagonal entries correspond to axial stiffnesses which we set to
unity as before, and the second block of diagonal entries correspond to relative torsional
stiffnesses ki, /ks. The stiffness matrix thus encodes the relative importance of the bonds’
axial stiffness and the hinges’ torsional stiffness.

The compatibility and stiffness matrices govern the mechanical behaviour of the net-
work. Analogously to the strategies outlined in section 3.2.2, we can then calculate the
collective displacements, elongations and angular changes, (angular) tensions, and forces
in the network.

3.2.4. Comparing experiments and models

The 3D-printing process described in section 3.2.1 produces soft networks that are eas-
ily manipulated. How well these samples mimic the idealized mechanics of our simple
geometric networks depends, among other things, on how well the floppy mode of the
initial design (see chapter 2) is mimicked. A simple assessment shows that our samples
reproduce the designed floppy modes qualitatively well, as we discuss here.

Our initial compatible network design and its floppy mode are shown in Fig. 3.4a-c.
We investigate how well the printed network (Fig. 3.4d) reproduces the floppy mode
by compressing it uniaxially (Fig. 3.4d). In this compression experiment, the network
is placed between two parallel rigid blocks on its left and right sides and subsequently
compressed by 3 mm, starting from a lateral dimension of 121 + 2mm. By inspection,
Fig. 3.4e-f show that the designed floppy mode is mimicked with reasonable accuracy.
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Fig. 3.4.: How printed samples deform compared to the designed floppy mode. a, An initial
compatible network design is shown (edge and internal bonds shown as grey and black lines). A
central hexagon (orange) and its even local loop (blue) are highlighted. b, The floppy mode of the
network is visualized: this deformation mode does not change the length of any bonds. ¢, Zoom-in
on the deformed central hexagon and its local loop. Positive and negative block spins corresponding
to extension and contraction of the building blocks are indicated (yellow markers). d, Experimental
realization of the design, 3D-printed as shown in Fig. 3.1. Scale bar: 10mm. e, The network is
uniformly compressed by 3mm at its left and right edges (arrows). The network’s designed floppy
mode is superimposed (yellow lines). f, Zoom-in on the printed structure’s central hexagon and local
loop. Visual inspection shows a close match between the sample’s deformation and the designed
floppy mode.

The finite stiffness of the printed sample’s hinges contributes to deviations from the
designed floppy mode. This hinge stiffness, ks, is included in models TR and LTR (see
section 3.2.3), which crucially depend on the dimensionless stiffness ratio

k =k (1°)?/k . (3.2)

To accurately model our experimental findings, we estimate the order of magnitude of k
in our 3D printed networks by assuming all torsional and stretching deformations take
place in the hinges, which have thickness ¢, length [, and width w and are made of a
material with Poisson’s ratio v and Young’s modulus E. To linear order, the bending
and stretching stiffnesses of such a hinge are given by®® k;, = Ft*w/[12(1 — v?)I] and
ks = Etw/l, resulting in a stiffness ratio k& = 12(1 — 1/2)l02 /t*. Using the experimental
values 1° = 10+ 0.2 mm, t = 0.7 £ 0.2 mm, and an experimentally estimated Poisson’s
ratio of ¥ = 0.43 + 0.03 (see section 3.2.4 below), we estimate k &~ 2000 as our starting
point. We refine this estimate later, in section 3.3.3, by matching the samples’ experi-
mentally measured and modelled properties directly.

38



3.2. Probing frustration: models and experiments

Poisson ratio of flexible material

Experimental measurements of the Flex-
aBlack 3D-printed material’s Poisson ra-
tio were performed. The data were mea-
sured using an Instron 3336 series univer-
sal testing machine (UTM) managed with
a Bluehill 2 software suite, outfitted with
an Instron 2530-427 static load cell rated
at 100N.

Three samples were printed according
to the I1SO-37 standard®” for dumb-bell
samples of type 1A. The gauge region of
the samples was marked with contrast-
ing white bars and measured to have a
thickness 2.3 & 0.05 mm, width w =
5.3 £ 0.05 mm, and length | = 20 £
0.3 mm. Each sample was mounted in In-
stron 2710-series clamps and ensured to be
at neutral load prior to testing. The sam-
ple was cycled four times from the neu-
tral load position between —0.5 mm and
2.5 mm extension at a speed of 0.2 mm/s,
while images of the sample at 3840 by
2748 pixels were recorded using a Basler
acA3800 camera and lens of 75mm fo-
cal length. The camera was linked to
the trigger output of the Instron UTM
at a frequency of 1.33 Hz with custom-
built recording software, to ensure that
the recorded load data, extension data,
and images were synchronized.

0.01
..:
0.00 |
O —0.01 I \
v=043
002k ° sample 1
T sample 2
sample 3
—0.03 , .
—0.05 0.00 0.05
€yy

Fig. 3.5.: Poisson ratio of FlexaBlack 3D-printed
material. Measurements of lateral and axial strain
€zz and €yqy of small samples of FlexaBlack mate-
rial under a controlled extension applied by an In-
stron UTM. Three dumb-bell shaped samples com-
pliant with 1SO-37 type 1A (legend) were tested
by extending and contracting them at least three
times at a fixed speed; see text for details. The
sample-averaged Poisson ratio v = 0.43 + 0.03 is
indicated (black line). Additional measurements
of sample 1 at lower and higher speeds were per-
formed (grey circles). The minimal and maximal
fitted Poisson ratios are indicated (grey area).

A custom Python program was used to extract the gauge section’s length and width

from the digital photographs using image thresholding. Data were averaged over the last
three cycles. From these quantities, the engineering strain in lateral and axial directions
were calculated via ey, (u) = I(u)/1(0), €zz(u) = w(u)/w(0) as a function of extension w.
The measurement results are shown in Fig. 3.5.

An average Poisson ratio was obtained by fitting the relation between positive axial
strain and lateral strain with a linear function for all three samples and averaging over
the three measurements, as indicated in Fig. 3.5. The average Poisson ratio was found to
be v = 0.43+0.03. Strain data for sample 1 were obtained additionally at testing speeds
of 0.03,0.02,0.05,0.1,0.2 and 0.5 mm/s and are indicated in grey in Fig. 3.5. The range
of fitted Poisson ratios across all measurements are indicated by a light grey area.
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3. Topological defects produce exotic mechanics in complex metamaterials

a b (o
no defect structural defect topological defect

Fig. 3.6.: Networks with no defect, a structural defect, and a topological defect are structurally
distinct. a, Compatible network design with no defect. Edge and internal bonds (grey and black
lines) are shown. The network deforms according to its floppy mode as visualized. Internal bond
loops around the system’s boundary are of even length (blue lines). b, Frustrated network design
with a structural defect, which blocks the floppy mode. Two local loops are of odd length (red
lines). Loops around the system boundary remain of even length. ¢, Frustrated network design with
a topological defect. One odd local loop is present. Loops around the system boundary are odd in
length.

3.3. Mechanical signature of defects

We now turn our attention to the distinct mechanical response of metamaterials with
structural, topological, or no defects. Our aim is to devise a mechanical measurement
protocol that successfully distinguishes the presence of a defect as well as its character
(structural or topological).

In chapter 2, we showed that the three network types have distinct architectures. There
are two particular properties in which they differ. First of all, a compatible network has a
system-spanning zero mode (Fig. 3.6a) that is absent in the presence of defects (Fig. 3.6b).
Secondly, a topological defect is hallmarked by the fact that all loops around it contain
an odd number of internal bonds, while loops around structural defects and compatible
structures have an even perimeter (Fig. 3.6¢). A testing protocol to distinguish the three
network types should therefore measure the presence of a zero-energy deformation, as
well as the parity of the loop of internal bonds running through blocks at the system’s
boundary.

We note that a mechanical implementation with infinitely rigid bars and perfectly flex-
ible hinges has only zero and infinite energy deformations. This leads to a true floppy
mode in the absence of defects, and a blocked system otherwise. In that case, structural
and topological defects cannot be distinguished. However, once elastic deformations are
allowed, such as in the experimental samples and models described in section 3.2, the
mechanics becomes much richer and requires solving for mechanical equilibrium or per-
forming direct measurements. It is precisely this mechanical richness that allows us to
distinguish structural and topological defects.

In section 3.3.1, we introduce a testing protocol that uniquely distinguishes networks
with a topological defect from those with no defect or a structural one, by merely probing
the system’s boundary. The results of this detection method are discussed in sections 3.3.2
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3.3. Mechanical signature of defects

Fig. 3.7.: Probing the perimeter of a metamaterial. a, Left: a building block is extended experi-
mentally by inserting a wedge, displacing its majority edge-nodes to a spacing ;. The deformation
of neighbouring block j is measured by the majority edge-node spacing [;. Scale bar: 1 cm. Right:
modelled extension is achieved by displacing the block’s majority edge-nodes (arrows). b, For each
pair of adjacent building blocks around the network’s perimeter (dashed arrow), the extension of
block j in response to the extension of block i is recorded consecutively. This results in pairwise
measurements of block deformations I;, I; for all P block pairs (1,2), ..., (n,n + 1), ..., (P, 1).

and 3.3.4, where we demonstrate that the unique bulk character of a network is iden-
tifiable in experimental samples as well as computational models via simple mechanical
experiments. Our results show that there is a binary order parameter, or topological
probe, measured at the system’s edge, which is negative if and only if a topological defect
is present. The two bulk material phases—with and without a topological defect—thus
exhibit a unique bulk-boundary correspondence and are topologically distinct.

3.3.1. Detection protocol: measuring the boundary

Metamaterials with structural, topological, or no defects have distinct architectures and
concomitant mechanical signatures. We detect (topological) defects in elastic metama-
terials by considering pairs of building blocks at the system’s boundary, deforming one
building block and tracking the deformation of the other.

The basic idea is illustrated in 3.7a. Specifically, we extend a block ¢ by forcing its
majority nodes from a rest separation 1° to a distance 1°(1 + §;), measure the resulting
deformation J; of neighbouring block j, and define a deformation transfer factor

In a compatible metamaterial of freely hinging springs, ¢;; = 1, while incompatibilities
or bending interactions cause |g;;| < 1 due to elastic decay. Crucially, the sign of g;;
reflects the nature of the interactions between neighbouring blocks 7 and j, being anti-
ferromagnetic (ferromagnetic) if g;; < 0 (gi;; > 0). We separately measure the transfer
factors between all neighbouring pairs of the P blocks around the network’s perimeter;
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3. Topological defects produce exotic mechanics in complex metamaterials

define a cumulative transfer product

qn 1= HQi,H—l (3.4)
=1

that relates block 1 to block n + 1; and introduce a normalized topological probe

Q := sign(qp) - lqp|"" (3.5)

that characterizes the full perimeter.

By definition, the magnitude and sign of the topological probe ) distinguish metama-
terials with structural, topological, or no defects. In particular, the sign of ) precisely
measures the parity of the closed loop of internal bonds around the boundary, being
positive for a structural defect and negative for a topological defect. Note here that
networks with an odd (even) number of odd local loops yield a negative (positive) Q.
For a compatible system, deformations follow the global floppy mode, all building blocks
deform with nearly equal magnitude and, since any loop around the system boundary
is even, @ < 1. An incompatible network has no global floppy mode, hence deforma-
tions decay more strongly away from the actuation point so that |¢;;| < 1 and |Q| < 1;
crucially, the sign of () should not be sensitive to this decay. A single structural and a
single topological defect may thus be distinguished by the sign of @}, which gives the net
topological charge enclosed by the system boundary.

3.3.2. Probing the entire boundary

We demonstrate the efficacy of our topological detection protocol in this section. We
perform the detection protocol outlined above on three network designs, one compatible,
one with a local defect, and one with a topological defect, using the design shown in
Fig. 3.6a-c. The protocol is executed on experimental samples, as well as in models FH
and (L)TR. An overview of the detection results is shown in Fig. 3.8, which figure we
discuss below.

Fig. 3.8a indicates all edge blocks that are probed (orange triangles) from 1 to P. In
the experimental samples, we actuate each edge block ¢ by inserting a stiff wedge be-
tween its majority edge-nodes (recall Fig. 3.7a), separating them from an initial distance
of 10 + 0.2mm to 13.4 + 0.2mm to obtain a block strain §; = 0.34 + 0.03. In model
TR, edge blocks are actuated by forcing their majority edge-nodes to separate to a block
strain §; = 0.23. A stiffness ratio k = 3200 is used to match experimental and modelled
results (see section 3.3.3). For the topological detection scheme in the linear models
FH and LTR, the results are independent of the imposed block strain to leading order.
The node positions of the deformed sample in experiments as well as models are used to
calculate the displacement of each node, after subtracting rigid-body translations and ro-
tations. From this data we extract the initial and final lengths I; o and I; of the distances
between the majority edge-nodes of each building block to determine the block strains
d; = l;/li,o — 1. The resulting output block strains d;, transfer factors ¢;;, cumulative
transfer product ¢,, and topological probe Q(P) are calculated following Eqs. 3.3- 3.5.

Fig. 3.8b shows the cumulative transfer product, ¢, as a function of the number of
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3.3. Mechanical signature of defects

probed edge blocks n. Data are shown for networks with no defect (ND, top); a struc-
tural defect (SD, middle); and a topological defect (TD, bottom). Markers distinguish
experimental and modelled results (legend). The numerical hinge model (L)TR and the
experimental results show an overall excellent agreement, indicating that the behaviour
of our networks is successfully captured by a simple network model of interconnected
Hookean and torsional springs.
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Fig. 3.8.: Defects are successfully distinguished by probing in a loop around the boundary. a,
All boundary blocks (orange triangles) of a metamaterial are actuated consecutively (dashed arrow).
With the protocol shown in Fig. 3.7, we track the response of each building block to actuation of
its neighbour. b, The cumulative response of building block pairs around the system boundary is
captured in the cumulative transfer factor g, (Eq. 3.4). gn is shown for structures with no defect
(ND, top), a structural defect (SD, middle), and a topological defect (TD, bottom). Experimental
and numerical data for identical network designs of each type are shown (legend). While the sign of gn
fluctuates rapidly in experiments, these trends are reproduced correctly in all models. The magnitude
of g is successfully captured by models TR and LTR. The experimental data appear linear on a
log-linear scale, implying an exponential decay of the deformation field across the material’s building
blocks under local actuation. ¢, The overall response of the network is summarized by the topological
probe @ (Eg. 3.5), which is shown for the three network types (ND, SD, TD) in both experiments
and models (legend). While the magnitude of @) depends on the details of each model, the sign of
Q@ is negative if and only if a topological defect is present.

For all three network types, ¢, shows an exponential decay with the exception of the
compatible structure simulated with model FH. Recall that model FH corresponds to an
idealized metamaterial in the small-displacement regime, consisting of Hookean springs
connected by freely hinging nodes. For a system with no defect, deformations in model
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3. Topological defects produce exotic mechanics in complex metamaterials

FH thus follow the structure’s global floppy mode, all building blocks deform with equal
magnitude and, since any loop around the system boundary is even, |g,| = 1. y contrast,
since the experimental samples and model (L)TR have a nonzero hinge stiffness, they do
not have a zero-energy floppy mode: even for a compatible network design, the sample’s
deformations decay away from the point of actuation. Thus, |g,| < 1 due to elastic decay
that stems from finite torsional resistance of the hinges®?. Note that an incompatible
network, which has either a structural or topological defect, has no global floppy mode.
Hence, deformations decay away from the actuation point so that |g,| < 1 for all incom-
patible structures, regardless of their experimental or modelled details.

Crucially, the sign of g, is not sensitive to such details. The data show that the sign
of g, can vary wildly with n < P, reflecting the mixed antiferromagnetic and ferromag-
netic interactions in our designs (see section 2.3.1). However, the sign of ¢, at n = P
precisely measures the parity of the closed loop of internal bonds around the boundary,
being positive for a structural defect and negative for a topological defect (Fig. 3.8b, red
markers). A single structural and a single topological defect can thus be distinguished
by the sign of gp, which gives the net topological charge enclosed by the system boundary.

Finally, Fig. 3.8c shows the collected experimental and numerical results for the topo-
logical probe ). The topological probes calculated for experimental samples and models
(L)TR are similar in magnitude and smaller than unity, which results from their inclusion
of a finite hinge stiffness. By comparison, the values of @) for model FH are consistently
larger in magnitude. These results indicate that elastic decay—whether from a finite
hinging stiffness or the presence of defects—blurs the distinction between defect-free
metamaterials and those with a single structural defect, as both have 0 < ) < 1. Never-
theless, our method allows us to unambiguously detect topological defects, for which the
topological probe is exclusively negative: @ < 0.

3.3.3. Hinge stiffness: the right value

Here, we refine our estimate of section 3.2.4 for the stiffness ratio k& ~ 2000, which de-
scribes the stiffness ratio between hinge bending and bond stretching. We compute the
topological probe Q for model TR at various values of k for networks corresponding to the
experimental sample designs and compare the resulting values of ) to their experimental
counterparts. Fig. 3.9 shows that the best match is found at k &~ 3200, of the same order
of magnitude as the initial estimate, and the updated stiffness ratio is therefore used for
model TR in all results presented in this chapter.

3.3.4. Probing a few boundary blocks

The detection scheme of section 3.3.2, while robust, requires a multitude of measure-
ments proportional to the length of the material’s perimeter. This becomes prohibitive
for large systems. We now show that the topological character of a metamaterial can
also be detected by considering a much smaller number of edge block pairs.

Specifically, we choose a subset of B roughly equally-spaced boundary blocks, actuating
each block by extending it to a block deformation of J;, and calculate the transfer factor
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3.3. Mechanical signature of defects

qi; = 9;/6; for each block pair. In analogy to the full cumulative transfer product g, and
topological probe (), we define a diluted cumulative transfer product

& =TT 59)
©,J
and a diluted topological probe
Q(B) = sign(qp) - lgn|"'" . (3.7)

We calculate these diluted measures for networks of all three bulk types, using experi-
ments and models. The resulting data are shown in Fig. 3.10.

First, Fig. 3.10a shows an example
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the data are more sparsely spaced k

when fewer building blocks are probed,
the general trends of the cumula-
tive product- fluctuations in sign as
well as decay- reproduce well across
all measurements. These findings

Fig. 3.9.: Comparing experiments and model TR,
we select the right value for the modelled stiffness

ratio k. The network response predicted by model
TR yields a topological probe @Q (see Eq. 3.5)

that varies with the stiffness ratio k between the

again suggest an exponential decay of
the deformation field across the mate-
rial’s building blocks under local actua-
tion.

Finally, in Fig. 3.10c, we show the di-
luted topological probe Q(B) as a function
of the fraction of boundary blocks that are
probed, B/P. We find that the diluted

bonds’ axial stiffness and the nodes’ hinging stiff-
ness. Comparison of results from model TR (cir-
cles) and experiments (solid line) indicate that stiff-
ness ratio k =~ 3200 (dashed line) yields the best
match between experiment and model for networks
with no defect (ND), and a good match for net-
works with a structural (SD) or topological (TD)
defect.

topological probe Q(B) has a sign that is independent, and a magnitude that is nearly
independent, of the number of probed edge blocks, demonstrating the effectiveness of
the diluted detection scheme for both experimental and model data. Hence, topologi-
cal defects can practically and effectively be detected by probing a small fraction of the
metamaterial’s edge.
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Fig. 3.10.: Defects are successfully distinguished, even with only a few measurements. a, B out of
all P boundary blocks (blue triangles) of a metamaterial are actuated consecutively (dashed arrow). b,
The cumulative response of building block pairs around the system boundary is captured by the diluted
cumulative transfer factor ¢ (Eq. 3.6). Structures with no defect (ND, top), a structural defect (SD,
middle), and a topological defect (TD, bottom) were measured. Experimental and numerical data
for identical network designs of each type are shown for various numbers of edge blocks B (legends).
Experimental and modelled data show good agreement. The overlapping data for different values of
B imply an exponential decay of the materials’ deformation fields away from the probing point. ¢,
The overall response of the network is summarized by the topological probe Q(B) (Eq. 3.7), shown
for the three network types (colours) in both experiments and models (legend). While the magnitude
of @ depends weakly on the details of each model as well as the fraction of probed edge blocks B/ P,
the sign of Q is negative if and only if a topological defect is present.
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3.3. Mechanical signature of defects

3.3.5. Decay limits detection

The results in sections 3.3.2 and 3.3.4 show that the bulk character of a metamaterial
can be detected robustly by probing the material’s boundary. However, the detection
results are affected by elastic decay.

Here, we explore how such decay influences the detection of defects. We show that the
detection protocol is robust, as long as the elastic decay length for material deformations
is larger than the spacing between the probed boundary blocks. The decay length is
influenced by the stiffness ratio between hinge bending and bar stretching, as well as
system size; however, the decay length stays above the unit cell spacing at all system
sizes and at most stiffness ratios. These findings indicate that our detection protocol is
robust across a broad range of metamaterial designs.

First, we note that the deformation field inside our metamaterials under local actuation
appears to decay exponentially along the boundary. This finding is supported by the
(diluted) cumulative transfer factors shown in Figs. 3.8b and 3.10b. There, ¢, shows
the ratio of block deformations away from the actuation point as a function of n, which
corresponds roughly to the decay of material deformations as a function of distance.
Using block strain as a measure of deformation, this means that a building block j at a
distance d;; from an actuated block i undergoes a block strain §; ~ d;e~%/9Q where
d; is the strain on the actuated block and dg is the elastic decay length in units of the
metamaterial’s bond lengths, I°. With this assumption for exponential decay, we find
the following expression that relates the topological probe @) to the decay length:

do~—In|Q|™" (3.8)

To check this expression, we note that the diluted topological probe Q(B)P ~ e (dig)/de
should decay exponentially with increasing average spacing between the probing points,
(d;;). Fig. 3.11a shows Q(B)" calculated for various values of the average block spac-
ing (d;;), the average distance between the geometric centres of consecutively actuated
building blocks. Data shown were obtained for the three network types of Fig. 3.6 from
experiments, model FH, and models (L)TR. The exponential relation +e~(dii)/dq g
overlaid on top of the measured data. The data suggest that dg is constant to fair ap-
proximation, supporting our assumption for exponential decay.

The exponential decay length dg is affected by two parameters: the stiffness ratio k
and the system size, which we explore now.

Fig. 3.11b shows the decay length dg as a function of the stiffness ratio k, where in-
creasing k corresponds to softer hinges and stiffer bars. The data shown were modelled
using models TR and LTR for the three network types of Fig. 3.6. The data show three
notable features. First, as k increases and the hinges become softer, the decay length
dqg diverges in the absence of defects and saturates to a constant value when a defect
(structural or topological) is present. The divergence of dg is due to the non-decaying
floppy mode of compatible metamaterials with freely-hinging nodes, while the saturation
of dg reflects a base level of geometric frustration in the presence of a defect. Secondly,
there is a crossover stiffness ratio around k& =~ 1000 at which the decay lengths for all
three material types reach the same value. At this point, compatible and incompatible
materials can no longer be distinguished by probing the boundary. This yields a practical
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Fig. 3.11.: Elastic decay due to hinge stiffness and system size affects the topological probe Q. a,
Q(B)T as a function of average block spacing (d;;) for experiments, model FH, and model (L)TR

(legend). The exponential trend e (%i5)/9@ confirms that dg (Eq. 3.8) is a fair measure of the
elastic decay length of deformations around an actuated block. Data for one networks of each bulk
type (ND, no defect; SD, structural defect; and TD, topological defect) are shown. b, Decay length
dg varies with k, the stiffness ratio between spring and hinging stiffness. A low hinge stiffness, when
kis large, dg diverges for in the absence of defects: compatible and incompatible networks are easier
to distinguish there. k'/2 shown for reference®®. ¢, dg increases with system size L. Results are

shown for model FH, where k — oo.

rule of thumb for metamaterial design where defects should play a significant mechanical
role: the stiffness ratio must then be larger than 1000. In our experimental samples,
this corresponds to a maximal hinge thickness of approximately 1 mm (see section 3.2.4).
Lastly, the decay length becomes smaller than the typical building block size, dg < 1,
at a stiffness ratio of k &~ 100. At this point, the deformation field may decay so quickly
that it is no longer possible to measure the deformation response of a building block
when its neighbour is actuated. As a ballpark estimate, this crossover takes place in our
experimental samples when the living hinges are made thicker than the connecting bars
themselves. In that case, the three bulk architectures ( with no defect, with a structural
defect, and with a topological defect) cannot be distinguished from one another. In con-
clusion, for our defect detection protocol to be effective, the material’s hinges must be
sufficiently soft.

While the size of a metamaterials affects its decay length, the detection protocol works
for both small and large networks. Fig. 3.11c shows d¢g as a function of network size L
in units of bond length {°, measured along the material’s width. The data shown were
modelled using model FH, with freely hinging nodes. The decay length shows a weak
dependence on system size, increasing in magnitude for larger systems. The decay length
does not dip below unity: dg > 1 for all system sizes. This suggests that our boundary
detection protocol can distinguish metamaterial types regardless of size.

3.3.6. Error estimates

Using standard uncertainty propagation methods, we estimate the variance on quantities
derived from the experimentally measured lengths I; (see section 3.2.1 for an estimate of
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the standard error Al). These quantities are the transfer factor ¢;;, cumulative transfer
product ¢,, and topological probe @, defined as follows:

o Li/1)—1

= T L0 1

n = HQij (3.9)
ij

Q=aq7".

The following variance estimates are calculated for these quantities:

/1) +1 (L)1) +1
(I; = 19)? (L —19)? )

Alog(qn)? = AI* Y " Ay (3.10)
ij

Aq?j =~ Al2qi2jA¢j y where Al‘j = (

APZ
2 2
AQ ~ Q — Aij .
n —
ij
The above estimates are used to calculate standard errors for the experimental data pre-
sented in this chapter.

3.4. Exotic mechanics with topological defects

The identification of distinct topological mechanical phases in our network designs opens
up new vistas for practical design rules for structures with desirable mechanical proper-
ties. We discuss such design rules here.

In the previous sections, we showed that metamaterials with and without topological
defects have fundamentally distinct architectures. This difference manifests mechanically
via geometric frustration: defects generate strain when the material is actuated. We now
show that geometric frustration is, at its heart, governed by path parity. We argue that
controlling path parity allows us to design where stresses and deformations localize inside
our metamaterials.

In section 3.4.1, we explain our design strategy from the bottom up. We study a
pair of building blocks connected by one or more paths of internal bonds, corresponding
to smaller and larger metamaterials. Under actuation of the two building blocks, the
structure may deform freely or store energy. We show that the connecting paths’ parity
controls how deformations and stress distribute throughout the material. Section 3.4.1
demonstrates how to use path parity to design metamaterials with a directed, localized
stress and deformation response under simultaneous actuation of two building blocks. We
show that the presence of a topological defect produces a characteristic antisymmetric
mechanical response, while the response of topologically trivial networks is symmetric.
Finally, in section 3.4.3, we present the mode splitting phenomenon that underlies the
asymmetric response in the presence of topological defects.
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3. Topological defects produce exotic mechanics in complex metamaterials

3.4.1. Mechanics and path parity

Here, we investigate the mechanical re-
sponse of our metamaterials by exploring
the behaviour of a single building block;
a strip of stacked building blocks; and fi-
nally, a full 2D stacked metamaterial de-
sign.

Recall that a single building block has a
local floppy mode, which can be activated
by displacing the block’s majority edge-
nodes (Fig. 3.12a). The block responds
by contracting or expanding, depending
on the sign of the imposed displacements.
This motion does not elongate any of the
bonds, and does not produce geometric
frustration.

Multiple building blocks can be chained
into a single, one-dimensional strip. Con-
sider the strip shown in Fig. 3.12b, top: its
two end blocks (yellow triangles) are con-
nected together by a single path of inter-
nal bonds (blue line). Recalling Eq. 2.1 in
section 2.3.1, the parity of the path is posi-
tive, which corresponds to a ferromagnetic
interaction between the two end blocks.
When both end blocks are forced to ex-
tend (Fig. 3.12b, bottom, yellow markers),
they are forced into a ferromagnetic state:
their block spins are identical. This forc-
ing matches the positive path parity, and
as a consequence, the strip’s floppy mode
is actuated. Conversely, the strip shown
in Fig. 3.12c consists of two end blocks
connected by a negative-parity path (red
line). Extending one end block and con-
tracting the other imposes antiferromag-
netic block spins, matching the path’s par-
ity and activating the strip’s floppy mode.
All blocks deform harmoniously.
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Fig. 3.12.: Understanding network mechanics
with path parity. a, A single building block's floppy
mode is actuated by displacing its majority edge-
nodes (light green circles) to a positive or nega-
tive block spin (yellow markers), quantified by the
block strain §. b, How connected building blocks
deform depends on the parity of their connect-
ing path (section 2.3.1) Top: two blocks (yellow
triangles) are connected by a ferromagnetic path
(blue line). Bottom: the blocks' spins have the
same sign (yellow markers) under actuation of the
strip's floppy mode. ¢, Alternatively, two blocks
are connected by an antiferromagnetic path (red
line). The blocks’ spins are opposite when the
floppy mode is activated.

In other words: blocks are connected by paths. These paths have a positive or negative
parity. If we impose block spins that match the paths’ parity, the structure deforms easily.
Equal block spins match positive paths, while opposite block spins match negative paths.

By contrast, imposing block spins that do not match the path parity produces ge-
ometric frustration, which we illustrate and quantify in Fig. 3.13. To ensure that we
study geometric rather than elastic frustration due to finite hinge bending stiffness, we
use model FH (see section 3.2.2) to simulate the network mechanics. In Fig. 3.13a, we
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3.4. Exotic mechanics with topological defects

present a metamaterial strip of Nt building blocks, stacked along the z-direction in the
plane. A path of positive parity connects the strip’s end blocks. Enforcing opposite block
spins by imposing a local block strain 44; (yellow markers) thus generates frustration,
which manifests mechanically: first, building block deformations decay away from the
actuated blocks, and second, bond lengths change. We measure changes in bond length
using the bond strain d, (colours), and we measure block deformations using the block
strain 9;.

In Fig. 3.13b, we explore how bond and block strain are affected by the strip’s length.
We probe metamaterial strips of varying numbers of triangles Ny under incompatible
forcing of magnitude |d;|, and record the resulting bond and block strains &, and |§;| at
a distance z along the strip’s length. Note that all lengths have units of bond length 1°.
In order to compare the results for various values of Nr, we divide the x-positions by
the distance between the probed end blocks, (N7 — 1).

At the top of Fig. 3.13b, we show the relative magnitude of output to input block
strain, |0;|/|0;|, for each building block, sorted by normalized position. Block strains in
the strip of Fig. 3.13a are indicated (black line), as well as results for various values of
Nr (colours). The data collapses for all values of Ny. The block strains decay linearly
to (near) zero in the middle of the strip: deformation of the building blocks is prohibited
there. At the bottom of Fig. 3.13b, we show the bond strain §, (Nt — 1)/|0;|, normalized
by the input block strain and the strip’s total length. Here, too, the data collapses across
strip lengths. Two features stand out: first, the bond strain is constant throughout the
strip and shows no decay. Second, the bond strains take on discrete values, which we
suggest to be a consequence of the six-fold symmetry of the bond’s orientations.

The fact that block strains decay linearly while bond strains remain constant along the
strip’s length is reminiscent of Hookean elastic behaviour. Consider a piece of material
with Young’s modulus F, length L, and area A. The energy stored in this material when
its length increases by AL is given by & = AEAL?/L. Evidently, the stored energy
scales inversely with the material’s length. For comparison, Fig. 3.13c shows the elastic
energy & stored in a metamaterial strip with an effective length N1 — 1 between its two
actuated ends. The data are shown on a double logarithmic scale. Comparison between
the data and a reciprocal scaling (black line, inset) shows that in our metamaterials, the
stored energy scales inversely with length. Effectively, our metamaterial thus behaves like
a regular, Hookean solid: work must be performed and energy is stored in the network
when the strip is geometrically frustrated.

Parity helps us understand frustration in larger networks as well. Fig. 3.14 shows
three different network architectures: with no defect, with a structural defect, and with
a topological defect. We show that the localization of frustration in these networks, un-
der actuation of a pair of building blocks, correlates with the parity of the block pair’s
connecting paths.

Fig. 3.14a shows a compatible, defect-free network. A pair of building blocks (yellow
triangles) is connected by a large number of paths that run throughout the material.
Since all closed paths in the system are of positive parity—a requirement for compati-
bility, recall section 2.3—all paths between the block pair have the same parity. In this
example, all paths are positive (e.g. blue lines). Actuating the blocks by extending

51



3. Topological defects produce exotic mechanics in complex metamaterials

a
Ny 0.02
/ = B
4 - 0.00 O
L.T R
| . ¥ —di —0.02
b C
— 1r 102
< _
~
<>
— U w 10-2 k
e A | -
e
—
L__'
‘ 10~
5 10° 102
t--“— _1 1 I 1 ] _
b 0.0 0.5 1.0 Np—1

z/(Np— 1)

Fig. 3.13.: Geometric frustration manifests mechanically. a, Two building blocks connected by a
ferromagnetic path of Np building blocks (Fig. 3.12b) are given opposite block spins +§; (yellow
markers) by displacing their majority edge-nodes (black arrows). Geometric frustration leads to energy
being stored in deformed bars, producing a bond strain §; (colours). b, Blocks deform and bonds
are strained under incompatible forcing. Normalized block strain (top) and bond strain (bottom) are
shown as a function of normalized position /(N1 — 1) along the strip. Colours correspond to strips
of varying size Np; black lines correspond to the structure shown in a. Top: relative block strain
magnitude [§;|/|0;| of the j-th building block. Frustration leads to a linear decay of block strain
magnitudes. Bottom: local bond strain d, normalized by the structure's length N7 — 1 and input
block strain §;, does not decay along the strip. Discrete bond strain values arise from the triangular
architecture. ¢, Total elastic energy £ stored in a strip as a function of its length N7 — 1 under equal
values of §;. & is inversely proportional to length (black line), consistent with normal elasticity (see
text).
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Fig. 3.14.: Path parity predicts frustration. a, Defect-free network (top) under compatible (middle)
and incompatible forcing (bottom). Top: ferromagnetic paths (blue lines, e.g.) connect the minority
nodes (green circles) of two building blocks (yellow triangles). Middle: enforcing compatible, ferro-
magnetic block spins (yellow markers, black arrows) activates the floppy mode. Bottom: enforcing
antiferromagnetic block spins produces bond elongation along all ferromagnetic paths (colours). b,
Top: a network with a structural defect (pink local loops) contains a single antiferromagnetic path
(red line). Middle, bottom: ferromagnetic (antiferromagnetic) block spins produce bond elongation
along the antiferromagnetic (ferromagnetic) path. ¢, Top: a network with a topological defect (pink
local loop) contains both ferro- and antiferromagnetic paths that run along either side of the defect
(blue and red lines, e.g.). Middle, bottom: ferromagnetic block spins produce geometric frustration
along paths of antiferromagnetic parity, and vice versa.
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them to the same block spin (3.14a, middle, yellow markers) thus matches the parity of
all their connecting paths: there is no geometric frustration, and the structure deforms
easily. Conversely, forcing the blocks to have opposite block spin (3.14a, bottom) is in-
consistent with the parities of all their connecting paths. As a consequence, all paths
are geometrically frustrated, and bonds throughout the system are elongated (colours).
Since the density of frustrated paths is highest near the actuated blocks, bond elonga-
tions are larger there. In short: the mechanical response of a compatible network can be
understood by considering the path parity between actuated blocks.

The mechanical response of a network with a structural defect may be understood in
the same terms. When a structural defect is present in the network (Fig. 3.14b), most
paths between our pair of building blocks (yellow triangles) have identical, positive par-
ity (blue line, e.g.). However, any paths that run in between the two odd local loops
that constitute the structural defect must have opposite, negative parity (Fig. 3.14b, red
line, e.g.). As a result, when the building block pair is actuated to equal block spins,
their deformation is consistent with the positive-parity paths and inconsistent with the
negative-parity paths. The latter paths generate geometric frustration, and bonds along
them will elongate. Since the density of negative-parity paths is highest at the struc-
tural defect, bonds in those areas experience the largest elongation (Fig. 3.14b, middle).
Conversely, when the blocks are given opposite block spins, all positive-parity paths that
go around the structural defect are frustrated and experience stress. Since no frustrated
paths run between the defect’s two odd local loops, bonds do not elongate much there
(Fig. 3.14b, bottom). Evidently, frustration can be concentrated either inside or outside
the area surrounding the structural defect, depending on the actuation parity.

Finally, the frustration situation changes once more for topological defects. Consider
the network shown in Fig. 3.14c. Connecting paths running between our block pair
(yvellow triangles) have negative parity on the left side of the defect (e.g., red line), and
positive on the right (blue line). This is a consequence of the fact that all closed paths in
the system now have negative parity (see section 2.4). When the blocks are both dilated
to a positive block spin (Fig. 3.14c, middle), all negative-parity paths are frustrated.
Thus, the density of frustrated paths is largest on the left side of the system. Bond elon-
gations are concentrated, correspondingly, on the left side of the topological defect. This
situation is reversed when the blocks are forced to have unequal block spin (Fig. 3.14c,
bottom): frustration is concentrated on the right side of the defect. In summary, in
a network containing a topological defect, frustration may be concentrated on opposite
sides of the defect under actuation of a pair of building blocks.

3.4.2. Stress and deformation steering

The previous section explores how the mechanical response of a network can be under-
stood in terms of its connecting paths’ parities. In particular, the mechanical responses
of networks that have no defects, a structural defect, or a topological one have a very dis-
tinct spatial signature: frustration and deformation concentrate in different ways inside
the networks’ bulk. Here, we design metamaterials in which we exploit parity to steer
deformations and stresses by actuating a small number of building blocks.

Consider a strip of metamaterial connecting two building blocks; depending on the con-
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necting path’s parity— positive or negative— extending both blocks respectively leads
to a low energy deformation, or a highly frustrated response. Now define two pairs of
blocks, i,j and 4,j’. In the topologically trivial case, all paths connecting i and j have
the same parity — and similarly for ¢ and j'. Now consider a metamaterial with a centre
hole, where the blocks are thus connected by two different strips (Fig. 3.15a). Designing
i,7 (i,4") to interact ferromagnetically (antiferromagnetically), expanding the former pair
leads predominantly to deformations, while expanding the latter leads to a stressed, frus-
trated state. Fig. 3.15b shows the deformation and bond elongation fields for model FH,
experiments, and model TR. In the experiments, two building blocks are simultaneously
actuated by inserting wedges of 12.5 & 0.2 mm width, inducing an majority edge-node
separation from 10 £ 0.2 mm to 13.5 & 0.4 mm. The modelled results were obtained by
extending virtual building blocks to a strain of § = 4+0.35. With these parameters, model
TR matches experimental results with good accuracy: comparing the experimental and
modelled deformation fields ue and wtr via their cosine similarity ey - TR, We find a
match of 70 to 98 per cent. Fig. 3.15b shows that deformations and stresses (quantified
by bond elongations) are distributed in the structures as expected.

In contrast, consider a non-trivial configuration with a topological defect in its excised
centre, implying that the parities of the two strips are opposite (Fig. 3.15¢). Expand-
ing blocks ¢ and j produces deformations in the positive-parity strip and stresses in the
other, thus steering deformations and stresses to distinct parts of the sample; expanding
blocks i and j’ reverses the character of the upper and lower paths and the concomitant
deformations and stresses (Fig. 3.15d). We note that actuating a single pair of blocks
with the same or opposite parity (i.e., extending one and contracting the other) steers
stresses and deformations similarly [13]. Crucially, actuating a single block simply leads
to a smeared-out stress field, similar to what happens when an ordinary structural defect
is present; only the combination of a topological defect and multi-site actuation leads to
the stress steering shown in Fig. 3.15d.

With the above strategy, we actuate two distinct building block pairs inside a meta-
material to harness the antisymmetric signature of topological defects. A conceptually
simpler method, which is experimentally slightly more complex but produces similar re-
sults, is achieved as follows. Consider a single block pair 7,j. The two blocks may be
actuated antiferromagnetically by expanding one and contracting the other, or ferromag-
netically by expanding both. In the topologically trivial architecture shown in Fig. 3.15, a
particular block pair ¢, j is connected by two positive-parity strips. Under ferromagnetic
actuation, the entire structure deforms; under antiferromagnetic actuation, the structure
is frustrated. Conversely, two blocks in the nontrivial metamaterial are connected by one
ferromagnetic, positive-parity and one antiferromagnetic, negative-parity strip. Thus,
(anti)ferromagnetic block actuation produces deformations in the (anti)ferromagnetic
strip, and stresses in the other. We therefore observe a similar capacity for steering
stress and deformation by actuating a single pair of building blocks in the metamaterial.

Hence, (excised) topological defects combined with targeted actuation at multiple sites
allows for precisely designed, spatially steered mechanical responses.
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3.4.3. Mode splitting in the presence of topological defects

Topological defects produce unusual mechanics due to their architecture. Here, we ex-
plore the connection between architecture and mechanics from a different point of view:
that of the structure’s normal modes.

We first show that low-energy normal modes of a mechanical metamaterial, which are
similar in nature to acoustic plane waves, dominate the structure’s response to external
probing. Secondly, we demonstrate that topologically trivial materials possess a single,
symmetric, lowest-energy mode, which splits into two antisymmetric low-energy modes
in the presence of topological defects. These antisymmetric modes underlie the exotic
mechanics of topological defects.

Normal modes in metamaterials

We first consider the normal modes of a mechanical structure. Physically, normal modes
are similar to stationary acoustic plane waves, where nodes are periodically displaced
from their resting position across the metamaterial. Waves at higher spatial frequencies
correspond to normal modes with proportionally larger energies.

In order to tease apart the effects of geometry and elasticity, we consider our metama-
terials as freely hinging nodes connected by linear springs, as in model FH. In the linear
regime of small displacements, normal modes of such a metamaterial are then configura-
tions of node forces f,, that map to proportional node displacements %, = cm fim-

To find a structure’s normal modes, we use the following strategy. In section 3.2.2,
node displacements and forces were shown to be related via a compatibility matrix R,
such that f = RTKRu. Here, K is a matrix of bond stiffnesses that we have set equal
to unity. Mathematically, the normal modes are thus the right eigenvectors of the ma-
trix RTR. Since the transpose of the compatibility matrix can be written in terms of
a unique singular value decomposition R? = UDW?'| we may write R'R = UDDU7,
where U and W are orthonormal matrices with the respective left and right singular
vectors of R as their columns, while D contains the singular values of R” on the di-
agonal. Thus, for each left singular vectors w.,,, there is a corresponding proportional
force fr, = d%lum. Therefore, the deformation vectors wu,, are the normal modes of the
system, with a corresponding eigenvalue d2,. The energy of such a mode, obtained by
dotting w,, with its resulting force, is &, = %dfn

Note that each displacement field in the metamaterial can be written as a combina-
tion of normal modes: w = > (% Um)Um = ), CmUm. The corresponding force is
F =23, docmBm, resulting in an elastic energy %>, (dmcm)®. The magnitude of the
force and energy scale quadratically with the singular values d,,.

We now consider the metamaterial’s response under actuation of a single building block,
and show that the resulting displacement field is a very particular linear combination of
normal modes. The localized force needed to expand our building block can be written
as a linear combination of load normal modes. This is reminiscent of a two-dimensional
Dirac delta function around a point 7o (that is, a localized force), which can be expressed
as a superposition of plane waves (or normal modes). We might expect the localized force
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Fig. 3.16.: Displacement of a metamaterial under local probing in terms of normal modes. a, A
metamaterial is actuated at a single boundary building block i (yellow triangle) at polar angle «;
with respect to the structure's centre. The input displacement field @; (red arrows) results in an
output displacement field ; oyt as shown. b, The relative contribution to w; .+ of each of the
structure’s normal modes 4, is plotted against the normal mode energy &,,. Relative contributions
are averaged over all building blocks ¢ along the structure’s boundary. Results for metamaterials with
a structural (SD) and a topological defect (TD) are shown (colours). Metamaterials without a defect
(ND) are dominated by a normal mode at £, = 0 (not shown). Displacement field contributions
scale inversely proportional to the energy (black line).

to be a superposition of normal modes, in which the mode coefficients scale similarly to
the coefficients of a Dirac delta function’s discrete Fourier transform:

1 - - —in(x— T —1 — s
S —r0) = gyg DL D e T/t (3.11)

n=—oco m=—oo

Evidently, the Dirac delta function’s Fourier coefficients are equal to unity. Thus, we
may expect the different load normal modes that make up our localized force to be rep-
resented at similar magnitudes: f o > f'm Mapping the load normal modes back
to the displacement normal modes, we then hypothesize that the metamaterial’s dis-
placement field can be written as uw o ) . 1/d? . Thus, under localized forcing,
the displacement normal modes should be represented in the output deformation field
with a magnitude that is inversely proportional to their corresponding energy &,, = %dfn

We confirm this hypothesis in our metamaterials as follows. Inside a metamaterial
(Fig. 3.16a) we actuate each boundary building block i (yellow triangle, e.g.) at a polar
angle «; from the structure’s centre. A displacement u; (red arrows) is imposed, and
the resulting modelled deformation field ; oy¢ is recorded. The relative contribution
of each normal mode to the deformation field, ; out - Um, is identified. The relative
contributions are then averaged over the material’s boundary to reduce the impact of
local architecture. Fig. 3.16b shows the resulting average contribution of each normal
mode as a function of mode energy &,,. The response of metamaterials with no de-
fect (ND), a structural defect (SD), and a topological defect (TD) were investigated.
Note that defect-free structures have a dominant floppy mode at &, = 0, which lies
outside the domain of Fig. 3.16b. The data support that, to good approximation, each
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normal mode is represented with a magnitude that is inversely proportional to its energy.

To summarize: under local actuation of a metamaterial, low-energy modes are strongly
represented, while high-energy modes are not. Low-energy modes dominate the mechan-
ical response.

Mode splitting

We now argue that the low-energy normal modes in metamaterials with and without a
topological defect are fundamentally different.

Fig. 3.17a shows normal mode energy spectra for three metamaterials with distinct
bulk characters: defect-free, with a structural defect, and with a topological defect. The
first two structures are topologically trivial. They share a common feature: an energetic
gap separates one low-energy mode from the rest. By contrast, the topologically non-
trivial metamaterial exhibits two normal modes at low energy, separated by an energy
gap from the remainder.

Fig. 3.17b illustrates the first two normal modes for each structure. The lowest-energy
mode of the defect-free network (that is, the floppy mode) extends evenly throughout
the network. In the presence of a structural defect, the lowest-energy mode is somewhat
attenuated around the defect, but remains diffuse throughout the material. Conversely,
networks with a topological defect have two low-energy normal modes (Fig. 3.17b, right),
spatially localized to opposite sides of the system. These modes are antisymmetric: they
cannot be combined to produce an evenly distributed deformation field. Any linear com-
bination of the two modes results in a deformation field that is concentrated in one half
of the system, in a phenomenon we call mode splitting.

Finally, we confirm that modes below the energetic gap dominate the mechanical re-
sponse in our metamaterials. We calculate the deformation field ;0. in each structure,
due to actuation of a single boundary building block at polar angle «; (see Fig. 3.16a).
Fig. 3.17c shows the overlap of each mode u,, with the deformation field as a function of
a;. The data show that the lowest-energy modes (one for topologically trivial structures,
and two for the nontrivial material) are represented at a much larger magnitude than
higher-energy modes. In addition, the two antisymmetric normal modes in the presence
of a topological defect dominate at opposite sides of the system (Fig. 3.17c, right).

As an aside, mode splitting gives rise to an interesting effect: when a topological meta-
material is periodically driven by squeezing and expanding two building blocks out-of-
phase, the structure can support a polar wave that travels around the system. Conversely,
topologically trivial structures can only exhibit planar waves that travel back and forth
between the actuation points.

In short: the behaviour of a topological metamaterial is governed by two antisymmetric
low-energy modes. Their antisymmetry gives rise to the stress-steering behaviour shown
in section 3.4.2: deformations cannot be distributed evenly, but must be concentrated
in one half of the metamaterial. Choosing the right actuation points gives control over
which half.
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Fig. 3.17.: Topological defects produce antisymmetric normal modes. a, Energy spectrum &,
of the m-th normal mode of three representative metamaterials (no defect; structural defect; and
topological defect) in model FH. Energy gaps are observed above the first or second mode (light grey
areas). b, Displacement fields @, of to the two lowest-energy normal modes. Only structures with
a topological defect exhibit two antisymmetric normal modes at similar energies. ¢, (A)symmetry of
the materials’ normal modes. Polar plots show the overlap of the normal modes (legend) with the
structure’s deformation field ; o+, under extension of a single boundary block at polar angle a;
from the structure’s centre (Fig. 3.16a). For structures without defects or with a structural defect
(left, middle) the symmetric lowest-energy mode m = 0 (blue line) dominates the response. In the
presence of a topological defect, the two antisymmetric modes m = 0, 1 contribute equally at opposite
orientations (blue, orange lines).
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3.5. Conclusions and outlook

In this chapter, we studied the mechanical response of the metamaterials introduced in
chapter 2. We explored the mechanics of defects and determined that topological defects
have a distinct signature that can be detected at the boundary of our metamaterials.
We showed that this topological signature can be understood in terms of path parities
between the metamaterials’ building blocks, and harnessed this understanding to design
metamaterials with characteristic symmetric and antisymmetric responses under two-
point probing, showing how to use topological defects to steer stress and deformation
fields inside our metamaterials. Finally, we argued that antisymmetric, low-energy mode
splitting in the presence of topological defects underlies their stress-steering behaviour.

Previous work on mechanical metamaterials has been focused on studying compatible
materials with one or several pre-programmed floppy modes™ %859 However, designing
the energy landscape of metamaterials at higher energies may help us create multifunc-
tional materials that can perform more complex mechanical actions. Here, we have shown
how topological defects may be used to engineer a directed finite-energy response. Our
approach is based on an analogy to geometric frustration in spin-ices, which allows us
to understand the mechanical response of metamaterials by considering interactions be-
tween different parts of the system via path parities. Our work thus presents an avenue
into the design of metamaterial energy landscapes by harnessing controlled mechanical
frustration.

This strategy to generate controlled and directed frustration may be extended to the
design of novel classes of frustrated metamaterials, including origami, kirigami and 3D
metamaterials”?1%°, provided the deformations of the building blocks can be character-
ized by discrete, spin-like variables. The resulting complex metamaterials may impact
future technologies concerning sensing, actuation, and soft robotics®! 3,
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