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2. A spin-ice-inspired class of complex metamaterials!

Abstract

The basic tenet of metamaterials is that architecture controls the physics™ %1522 §o
far, mainly defect-free architectures have been considered. However, defects, and partic-
ularly topological defects, play a crucial role in natural materials®*27. Here we provide
a systematic strategy to introduce such defects in mechanical metamaterials. We first
present metamaterials that are a mechanical analogue of spin systems with tunable fer-
romagnetic and antiferromagnetic interactions; then design an exponential number of
frustration-free metamaterials; show how we can introduce local defects by rotating spe-
cific building blocks; and finally introduce topological defects by rotating a string of
building blocks in these metamaterials. Our work presents a new avenue to systemati-
cally include spatial complexity, frustration, and topology in mechanical metamaterials.

2.1. Introduction

Mechanical metamaterials are structured forms of matter with unprecedented proper-
ties, including negative response parameters'®, shape-morphing”™®, topological mechan-
ics'®19 and self-folding®. While the focus has been on frustration-free compatible ar-
chitectures, where all unit cells deform in harmony, frustration causes more complex,
higher-energy deformations, leading to advanced functionalities, such as multistability
and programmability'??°22 and may open up opportunities to probe controlled frustra-
tion in man-made systems®®* 2°. We note that deformations of unit cells in compatible
metamaterials often alternate, leading to horizontal and vertical ellipses'®, rigid elements
that rotate left or right'®?%2% or edges of unit cells that move in or out™??: we refer
to this as antiferromagnetic order. Hence, a promising route to introduce targeted frus-
tration is to use fundamental building blocks that favour either antiferromagnetic order
or ferromagnetic, non-alternating order, and use the freedom supplied by additive man-
ufacturing to stack these at will. Paths connecting pairs of such building blocks carry
a parity, given by the parity of the number of antiferromagnetic interactions along the
path. In compatible architectures, all paths connecting any pair of building blocks must
have the same parity, and we anticipate that we can solve the combinatorial constraints
that govern such designs”3°. In contrast, generic configurations tend to violate such
constraints, leading to frustration and defects.

We start our investigation in section 2.2 by describing simple, 2D triangular building
blocks that can be stacked together to interact either ferro- or antiferromagnetically, and
that form the basis of our mechanical networks. In section 2.3, we discuss a technique°
to stack these building blocks into compatible, frustration-free architectures with control-
lable isotropy and periodicity. A simple design rule to ensure compatibility is formulated,

! The work presented in this chapter is based on Refs.[13] and [14].
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2. A spin-ice-inspired class of complex metamaterials

based on a mapping between the mechanical network and an antiferromagnetic Ising spin-
ice. As we show in section 2.4, this simple design rule naturally suggests a protocol to
violate compatibility by creating controlled local and topological defects in the network.
Finally, we present an outlook and suggestions for further research in section 2.5.

2.2. Triangular building blocks

To implement our design strategy, we now
introduce anisotropic, triangular building
blocks that set the ferromagnetic or an-
tiferromagnetic nature of their interac-
tions depending on their mutual orienta-
tions.

We work with a specific type of me-
chanical elements consisting of freely hing-
ing nodes connected by bonds mod-
elled as rigid bars. Compatibility in
such networks means that there is a
single, global mode of motion, called
a floppy motion, such that the net-
work deforms at zero energy cost- that
is, none of the rigid bars change
their length during this deformation.
In a compatible network consisting of
smaller building blocks, it is nec-
essary that each of the individual
building blocks is compatible as well,
and has what we call a local floppy
mode.

We use the triangular building block
shown in Fig. 2.1a. Each block consists
of six nodes in a triangle configuration in
the (x,y)-plane. The six nodes are po-
sitioned at integer multiples of two tri-
angular basis vectors a1 = [(1,0) and
as = 1(1/2,1/3/2), where the lattice pa-
rameter [ may be chosen freely. We distin-
guish three corner nodes at the triangle’s

a b
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Fig. 2.1.: Stackable building block. a, Anisotropic
building blocks consisting of edge bonds (grey), in-
ternal bonds (black), corner nodes (black), major-
ity edge-nodes (light green), and a minority edge-
node (dark green). b, Deformed building block in
fat (+) and skinny (-) states. c, Adjacent build-
ing blocks may be stacked together in four distinct
configurations (columns). Each configuration can
be deformed in two ways (top and bottom rows).
Adjacent building blocks interact antiferromagnet-
ically (ferromagnetically) when their shared edge
features an even (odd) number of minority nodes,
so that their minority nodes are connected by an
even (odd) number of internal bonds.

corners, and three edge nodes (of which two are majority edge-nodes and one a minority
edge-node) halfway the triangle’s edges. The nodes are connected by eight bonds: six
edge bonds around the triangle’s perimeter, and two internal bonds connecting the ma-
jority nodes to the minority node, so that all bonds have length [. This leaves the two
minority nodes unconnected to each other, and results in an anisotropic building block.

The triangular building block features a floppy “hinging” motion, illustrated in Fig. 2.1b
(see Appendix A.1 for details), which allows the block to deform at zero energy cost as
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2.3. Compatible metamaterials
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Fig. 2.2.: Randomly stacking building blocks produces floppy or frustrated networks. a, Stack-
ing building blocks with various orientations on a triangular lattice (left) produces a metamaterial
consisting of rigid bars connected by freely hinging joints (middle). The particular example shown
exhibits a floppy mode: the blocks undergo a collective deformation and fit together like puzzle pieces
(right). b, A slightly different random stacking is frustrated, as indicated by the red block spins and
edge bonds: there is no collective deformation of the building blocks so that all deformed blocks fit
together.

all bond lengths remain constant. Accordingly deformed building blocks can take on two
shapes—fat and skinny—which we assign a positive or negative block spin variable.

When two building blocks are stacked together, they exhibit a collective floppy defor-
mation: the two blocks deform together, each becoming either fat (positive block spin) or
skinny (negative block spin). There are four unique ways to stack a block pair (Fig. 2.1c),
and the relative floppy deformation of the two blocks depends on how they are stacked
together. When their shared edge contains one minority node, the building blocks in-
teract ferromagnetically: the zero-energy deformation then features two building blocks
with the same block spin. In contrast, when their shared edge possesses either zero or
two minority nodes, the interaction is said to be antiferromagnetic, and the deformations
have opposite block spins.

2.3. Compatible metamaterials

To create metamaterials consisting of many building blocks, we stack blocks on a tri-
angular lattice with varying orientations (Fig. 2.2). This stacking method allows us to
design structures with a wide range of structurally complex geometries. Such stacked
metamaterials can be either compatible, so that the stack can deform at zero energy cost
(Fig. 2.2a), or frustrated (Fig. 2.2b). Stacks with randomly oriented building blocks are
usually frustrated. To obtain targeted frustration, we start in this section by first design-
ing compatible, frustration-free configurations, before introducing controlled frustration.
That is, we formulate design rules for metamaterials where all building blocks deform
simultaneously according to their local floppy mode, so that the deformed building blocks
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2. A spin-ice-inspired class of complex metamaterials

fit as in a jigsaw puzzle.

In section 2.3.1, we first show that frustration-free configurations require that in each
hexagon of six adjacent building blocks, the number of connected antiferromagnetic in-
teractions, corresponding to the smallest possible closed local loop of internal bonds, is
even. This finding implies that compatibility is equivalent to requiring that all local loops
are of even length (Fig. 1d,e; see methods) while odd local loops generate frustration®!.

A vast number of structurally com-
plex configurations satisfy the above com- 4 b
patibility condition. Counting and de-
signing these geometries requires solv-
ing combinatorial problems. In sec- ’
tion section 2.3.2), we explore their so- 3 J
lutions.  Since all compatible architec-
tures feature a floppy mode where all
building blocks have two edge nodes _
moving “in” and one minority edge- +
node moving “out” (or vice versa),
we can map these deformations to +
ground states of an antiferromagnetic * - 2 3
Ising model on the kagome lattice
(AFIK model). Each ground state
of this AFIK model generates a dis-
tinct compatible metamaterial, up to
a global spin flip. The extensive

Ny Ny 10
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ground-state entropy of that model®%33
yields an asymptotically exact result
for the exponential number of com-
patible architectures as a function of
the system size®®.  We show in sec-
tion 2.3.3 that this rich design space
allows us to create structures with
a wide range of secondary proper-
ties, such as (an)isotropy and periodic-

1ty.

Finally, in section 2.3.4, we discuss an

Fig. 2.3.: Path parity. a, Four stacks where pairs
i,7 of building blocks are interconnected. When
blocks i, j undergo a floppy deformation, they ei-
ther extend (+4) or contract (-). b, The relative
sign of the blocks' deformations depends on the
length N of the connecting path of internal bonds
(green lines), which runs from the minority node of
block ¢ to that of block j (green circles), and the
number of connecting blocks Np. A path parity
II = (—1)Ne=N1—1 may be defined so that the
block deformations of i and j are identical (dif-
ferent) if II = 1 (IT = —1), corresponding to a
ferromagnetic, 'F’ (antiferromagnetic, ‘AF’) inter-
action between ¢ and j.

important example of a frustration-free

geometry: an ordered metamaterial where all interactions between block spins are anti-
ferromagnetic. Its zero-energy deformation mode has all up-facing (down-facing) building
blocks in their fat (skinny) state, or vice-versa, which corresponds to alternating positive
and negative block spins. We note that this geometry is equivalent to the rotating square
mechanism that underlies the design of a wide range of metamaterials®!5-20:28:29:34 ©\[ore
generally, geometries with fully antiferromagnetic block spins can be mapped to diamond
tilings, where each diamond represents two building blocks with two minority nodes on
their shared edge. We show that the number of possible fully antiferromagnetic designs
grows exponentially with system size.
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2.3. Compatible metamaterials

even

Fig. 2.4.: Compatible structures satisfy a parity rule for closed paths. a, A building block (minority
node highlighted in dark green) is connected to itself on a triangular lattice via an even number
of neighbours. Top: a loop of an even number of internal bonds (bold blue lines) runs around
the cluster, ensuring that the building block interacts ferromagnetically with itself. The cluster has a
floppy mode. Bottom: an odd loop (bold red lines) produces an antiferromagnetic self-interaction and
leads to frustration (red edge bonds). There is no floppy mode. b, Local loops within a superhexagon
of six blocks form the smallest possible closed paths of internal bonds. An even (odd) local loop
produces a compatible (incompatible) hexagonal structure. c, If all local loops in a metamaterial are
even, all larger loops are, too. Thus, evenness of each local loop ensures compatibility.

2.3.1. Parity of paths of internal bonds

As discussed above, in a compatible metamaterial, all building blocks can simultaneously
deform according to their local floppy mode. We conceive of the joint floppy deformation
of any pair 4, 7 of blocks, connected by a larger cluster of building blocks, as an interac-
tion. Examples are shown in Fig. 2.3a. For a ferromagnetic interaction, the blocks have
the same block spin and simultaneously expand or simultaneously contract, whereas for
an antiferromagnetic interaction the blocks’ spins are opposite: one block contracts while
the other expands. We show here that the internal bonds connecting blocks i, j determine
their interaction type, and we formulate a design rule for the internal bonds to ensure
that all blocks in a metamaterial can deform simultaneously.

We define a path of Nj internal bonds running from the minority node of block ¢ to the
minority node of block j through their connecting cluster of building blocks, and define
Nr as the number of triangular building blocks traversed by the path (including blocks
i and 7). The path parity

= (_1)Nb—NT—1 (21)

is then positive (negative) when the interaction between ¢ and j is ferromagnetic (anti-
ferromagnetic), as illustrated in Fig. 2.3b.

This path parity rule leads to a self-consistency requirement for closed paths, or loops
of internal bonds, running from any block ¢ to itself. After all, the block must interact
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2. A spin-ice-inspired class of complex metamaterials

a b

Fig. 2.5.: Compatible structures can be designed with a spin mapping. a, Top: a unit cell (light
grey outline) of an Ising model on a kagome lattice (green triangle). Edge spin sites (open circles) are
connected by antiferromagnetic interactions (black bars). Bottom: the spin cell maps to a mechanical
building block with three corner nodes (black circles), six edge bonds (dark grey bars), and three
possible internal bonds (dashed black lines) that connect the three edge nodes (green circles). b,
Ground states of the spin cell (top) map to a mechanical building block with a prescribed floppy mode
(bottom). Satisfied antiferromagnetic interactions correspond to internal bonds; the unsatisfied spin
interaction (red dashed line) signifies an absence of bonds. Positive (negative) edge spins map to
outward (inward) edge node deflections of the upward- (downward-)pointing mechanical blocks. c,
Top: a spin ground state of a hexagonal section of the kagome lattice. Bottom: corresponding
hexagonal mechanical metamaterial, which possesses a floppy mode obtained directly from the spin
ground state.

ferromagnetically with itself in order to deform compatibly. Equivalently, the path parity
of a loop containing the block must be positive. We can re-formulate this path parity
condition, using the fact that any closed path on a triangular lattice traverses an even
number of triangles. Hence, to ensure that a building block interacts ferromagnetically
with itself, we must ensure that the parity of the number of internal bonds in the loop
must be even; equivalently, that the number of minority nodes on shared edges is even;
and that the number of (anti)ferromagnetic interactions between adjacent blocks in the
path is even.

In a compatible network, all closed paths must therefore contain an even number of
internal bonds. Conversely, loops with an odd number of internal bonds imply incom-
patibility. Fig. 2.4a shows an example of a compatible closed path with even length, and
a frustrated closed path with odd length. Due to the structure of our building blocks,
each lattice point—where the blocks’ corner nodes meet—is circumscribed by a local loop
within a hexagon of six adjacent blocks, which we will refer to as a superhexagon; two
examples are shown in Fig. 2.4b. Such local loops are the smallest closed paths of internal
bonds in our networks, and must all satisfy the self-consistency requirement to ensure
compatibility. Conveniently, when all local loops in a metamaterial satisfy the compat-
ibility requirement, larger loops are guaranteed to contain an even number of internal
bonds as well ( Fig. 2.4c). In summary, if and only if a network is compatible, then
all loops of internal bonds—-from the smallest local loops around each lattice point to
the largest loops around the network boundary—have an even number of bonds in their
perimeter.
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2.3. Compatible metamaterials

2.3.2. Mapping compatible metamaterials to an antiferromagnetic Ising

model on the kagome lattice

The above parity rule helps us identify which structures are compatible. However, this
parity rule does not help us design compatible structures from scratch. We address this

issue here.

To obtain a design strategy for compat-
ible metamaterials, we map the local FM
of a building block to the ground state
of an Ising spin model with antiferromag-
netic interactions on the kagome lattice
(AFIK model)'? as illustrated in Fig. 2.5a.
We associate a positive (negative) binary
edge spin variable to an extensile (contrac-
tile) edge node deflection for a downward-
pointing building block, and vice versa for
upward-pointing blocks (Fig. 2.5b). In the
AFIK model, the three spin sites inside a
building block are connected by three an-

1075
1050

10%
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Fig. 2.6.: Counting compatible designs. The nu-
merically obtained number of compatible designs

Q) is shown as a function of the number of edge
nodes N and compared to asymptotic predictions
based on an Ising-spin mapping. An exact count
of the number of compatible parallellogram-shaped
designs®(circles), created by combining building
blocks (top right, orange triangle) in various orien-
tations, closely matches the ground-state degen-

eracy of the corresponding Ising model (orange
line)32.

tiferromagnetic interactions. These three
interactions cannot be simultaneously sat-
isfied: the lowest-energy spin configura-
tion satisfies only two of the antiferro-
magnetic interactions, and violates one.
The building block’s mechanical FM cor-
responds to such a minimal-energy spin
configuration that satisfies two out of
the three antiferromagnetic interactions.
Specifically, the building block’s two internal bonds connect edge spin sites in oppo-
site states, while the edge nodes not connected by an internal bond both move inward
(or both outward), representing a frustrated antiferromagnetic interaction. Hence, the
lowest-energy AFIK configuration corresponds to the local floppy mode of a single build-
ing block.

Adjacent blocks deform compatibly when their shared edge spins match. Thus, in
compatible architectures, the edge spins form a kagome lattice where each triangular
plaquette features one positive and two negative edge spins, or vice versa (Fig. 2.5¢c).
Such collective edge spin states are precisely the degenerate ground states of the AFIK
model, so that each ground-state configuration generates a distinct compatible metama-
terial (up to a global spin flip).

We note here that this mapping to an Ising model with binary states is complete
only for compatible metamaterials which possess a FM in which displacements alternate
in direction and all have the same magnitude. As we show in the following chapter, in
incompatible structures, the magnitude of the displacements varies continuously with po-
sition. In that case, the mapping to the Ising model serves only to demonstrate whether
there exists a global compatible deformation.
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2. A spin-ice-inspired class of complex metamaterials

From the AFIK mapping, we obtain an asymptotic expression for 2o, the number of
compatible architectures, via the residual entropy Sp ~ 0.502/N of the degenerate ground
state of the AFIK mode]®%33

Qo ~ Q0-502N _ 0.753T o 4T _ gT _ Qo (2.2)

where N denotes the number of edge spins, 7' the number of blocks, N = 37/2 the
number of edge spins in the thermodynamic limit, and €;,; the total number of archi-
tectures. The asymptotic expression agrees well with the exact number of compatible,
parallelogram-shaped architectures as determined by computer algorithms®®, even for
small systems (Fig. 2.6).

2.3.3. Diversity of compatible metamaterial architectures

With the AFIK mapping described above, we find that an exponential number of com-
patible designs can be constructed as a function of the design’s size. While this implies
that we can find compatible architectures with a wide range of secondary properties that
arise from symmetries (such as isotropy and periodicity), the structures do share a special
feature: their total area decreases under actuation of their floppy mode. Here, we discuss
these two design aspects—symmetry and shrinking—briefly.

First, stacking building blocks with varying degrees of disorder produces metamaterials
with more or less symmetry. Two order parameters that help describe symmetries are
isotropy and periodicity. Isotropic materials are rotationally symmetric, and have the
same properties in all radial directions. Conversely, periodic structures have translational
symmetries, and are invariant under some discrete translations. While a prescriptive ap-
proach to constructing metamaterials with specific symmetries is outside the scope of
this work, the framework used here, where we treat metamaterials as stacks of simple
building blocks, invites intuitive design. That is, structures with more or less order can
be found by stacking and rotating the building blocks heuristically. Some products of
this approach are shown in Fig. 2.7, where four structures of varying (an)isotropy and
(a)periodicity are shown.

Secondly, during floppy deformation of any compatible stack, about half of the build-
ing blocks will expand, while the other half contracts. Contraction of a building block
produces a larger area change than extension, as we show below, and as a result, the
total area of the metamaterial tends to decrease.

We can understand this shrinking behaviour using our knowledge of the net ground
state magnetization of the AFIK model®®, and the geometry of the building blocks during
deformation. We use the fact that a compatible stack of building blocks can also be seen as
a stack of even local loops on a triangular mesh background, as discussed in section 2.3.1.
We illustrate this concept in Fig. 2.8: Fig. 2.8a shows the eight possible shapes that
even local loops inside a superhexagon of six adjacent building blocks can take, barring
rotations and reflections. The local loop determines whether some of the building blocks
it traverses expand or contract, as illustrated in Fig. 2.8b. Specifically, when a building
block’s deforming quadrangle lies inside the local loop, its deformation with respect to
its loop-mates is fixed. In this way, the shape of the local loop sets the deformation of 0,
2, 4, or 6 building blocks. Inspection shows that each even local loop enforces an equal
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Fig. 2.7.: Compatible designs come in a wide array of (dis)order. a, An isotropic and periodic
design (left) is highly ordered. lIsotropic unit cells (right), which feature an equal number of building
blocks in each of the six possible orientations (colours), create this architecture. b, An anisotropic yet
periodic design (left) is created by stacking anisotropic unit cells (right), which contain an unequal
number of building blocks in the six block orientations. ¢, An isotropic and aperiodic design (left) is
made by stacking together isotropic unit cells (right). Periodicity is avoided here by stacking mirrored
copies of the unit cells in a random arrangement. d, A disordered design (left) which is anisotropic
and aperiodic. It is constructed by randomly stacking building blocks in different orientations, while
respecting compatibility (right).

number of expanding and contracting building blocks. Thus, the number of expanding
and contracting building blocks in a stack of even loops is equal. In a corresponding stack
of triangular building blocks, this equality can only be violated at the system’s boundary:
there is a local design freedom to introduce more expanding or more contracting building
blocks at the material’s edges. An example is shown in Fig. 2.8¢c. In the limit of large
system sizes however, the boundary contributes an eventually vanishing fraction to the
total number of building blocks. As a result, half of the blocks contract and half expand
during an infinitely large compatible stack’s floppy deformation.

As a corollary, the area of a compatible stack decreases on average during deformation
away from its initial shape. This follows from some trigonometry. Consider a building
block with an opening angle 6y + A8 between its two internal bonds, where 6y is the rest
opening angle and A6 the deviation from the resting value during its floppy deformation
(Fig. 2.9a). The area A spanned by the building block’s quadrangle—the only portion
that changes shape—is then given by

A =1"sin(fo + AF) , (2.3)

where [ is the bond length (Fig. 2.9b). During deformation of a compatible stack, |Af)| is
the deformation’s control parameter: it is equal for all building blocks due to geometric
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Fig. 2.8.: Compatible designs feature an approximately equal number of contracting and extending
building blocks. a, The bulk of a compatible architecture can be created by stacking together even
local loops (black bars), each contained in a hexagonal backing structure (grey bars). The eight
unique even local loops are pictured and the number of internal bonds indicated. b, The shape of
the local loop governs its deformation as shown. Each local loop sets the extension (yellow) and
contraction (orange) of an equal number of triangular building blocks: 0, 1, 2, or 3. ¢, Compatible
stacks can be given an unequal number of contracting and extending building blocks by exploiting the
boundary. Left: an example is shown of a compatible bulk structure consisting of stacked even loops,
with an open boundary (green). Middle: the structure’s bulk deformation is fully determined. Right:
the edge is freely decorated with arbitrary numbers of extending and contracting building blocks.
Here, all boundary blocks contract.

constraints (Fig. 2.9¢). Therefore, half of the building blocks increase in area, and half
decrease. The area per building block, averaged over the entire stack, is then found to
be

(A) = I” sin(6o) cos(AB). (2.4)

Evidently, the average area is maximal in the initial state, when all building blocks have
the same shape (Fig. 2.9d). Deforming the material always decreases its area.

As a consequence, to create structures whose floppy deformation produces a net area
increase, a different building block is needed. Such a building block should allow for the
construction of stacks in which large clusters of neighbours can interact ferromagneti-
cally. The construction of these specialized building blocks is outside the scope of this
work. However, with our existing triangular blocks, it is possible to design compatible
stacks with locally ordered patterns of expanding and contracting blocks. We discuss an
important example in the following section.
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Fig. 2.9.: The area of a compatible architectures decreases under deformation. a A single building
block with bond length [ has a deforming quadrangle of area A (yellow). The deformed shape is set
by the rest angle 6y between the internal bonds (black bars) and its deviation Af. b Area of the
deforming quadrangle as a function of 6y + A@. Insets show the deformed block shape at indicated
angles. ¢ In an infinitely large stack, an equal number of building blocks contract and extend. Two
antiferromagnetically interacting blocks are shown as an example. d The complete stack’s average
area per block during deformation is shown as a function of angular deviation. The average area per
block always decreases away from the rest state at A9 = 0.

2.3.4. Compatible metamaterials with fully antiferromagnetic block spin
interactions

Our metamaterial design strategy generates many different network architectures, includ-
ing the widely-studied rotating square mechanism?'3:2%:28:29:34 jjlystrated in Fig. 2.10a-b.
This is an example of an antiferromagnetic architecture, where all neighbouring building
block spins interact antiferromagnetically. Here, we map the design of general antifer-
romagnetic architectures to the tiling of diamonds and count the resulting number of
compatible antiferromagnetic stacks.

Since only building blocks that share zero or two minority nodes interact antiferro-
magnetically, each building block needs to be oriented so that its minority node is paired
with the minority node of one of its neighbours. Identifying such pairs of building blocks
as a diamond-shaped tile (Fig. 2.10c), each antiferromagnetic architecture maps to a
unique tiling of diamonds. Counting the number of antiferromagnetic architectures thus
corresponds to counting diamond tilings, a partition problem of considerable interest in
statistical and condensed matter physics®°.

Solutions to this problem yield the number of antiferromagnetic architectures, Qar, as
a function of the number of edge nodes N. The number of hezagonal diamond tilings Qar
with n diamonds along each hexagon side (e.g. Fig. 2.10c for n = 2) can be calculated
exactly®” to be

QAF=2HHH% (2.5)

which approaches an exponential function in the thermodynamic limit®*® (Fig. 2.10d):

1/2 /52/3
Qup ~ plos(31/2 /22N 0.087TN _ 0.131T 4 T 7 (2.6)
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Fig. 2.10.: Counting antiferromagnetic compatible architectures. a The rotating square mecha-
nism of rigid squares connected by freely pivoting hinges at rest (left) and deformed (right). The
unit cell is highlighted (blue). a, Left: the rotating square mechanism is emulated by an ordered
compatible stack. Rigid squares are marked in grey. Right: the deformed structure (internal bonds
not highlighted). Each building block interacts antiferromagnetically with its neighbours: they have
opposite block spin (yellow markers). ¢, All antiferromagnetic designs can be regarded as tilings of
diamond-shaped elements (right, red outline) containing two building blocks. The block’s minority
nodes (green) sit on their shared edge. The blocks deform antiferromagnetically and have opposite
block spin. Tiling these diamonds produces hexagonal antiferromagnetic compatible stacks (left).
d, The number of antiferromagnetic designs 2 (open squares, red dashed line) corresponds to the
number of ways diamonds tile a hexagon. It can be counted exactly in the limit of large systems with
many edge nodes N (Eq. 2.6). For comparison, the total number of compatible designs (open circles,
orange line) is shown.

where N = 3n(3n + 1) is the number of edge nodes, and 7T is the number of building
blocks such that N = 37'/2 in the thermodynamic limit.

We now compare the number of antiferromagnetic compatible designs Q2 4 to the total
number of compatible designs, 29. While 247 counts hexagonal systems and (2o paral-
lelogram systems, we expect boundary effects due to the material’s shape to be negligible
in the limit of large system sizes. We may therefore compare the two cardinalities directly
at large N. From Eqs. 2.2 and 2.6, we find that o < Q4 F, so that in the thermodynamic
limit a vanishing fraction of all compatible architectures has a purely antiferromagnetic
interaction pattern (Fig. 2.10d).

2.4. Incompatible metamaterials
As compatible networks require that all local loops of internal bonds are of even length

(Fig. 2.4b, top), frustration can be induced by violating this condition. Simply put,
we may introduce local loops with an odd number of internal bonds, or odd local loops
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2.4. Incompatible metamaterials

to design targeted frustration (Fig. 2.4b, bottom). Thus, while we can make a large
variety of compatible metamaterials, an even larger amount of frustrated designs exist
that cannot deform harmoniously due to the presence of one or more odd local loops.
The mechanical frustration induced by such defects generally produces undesired effects
when their presence is not controlled, such as decay of a desired FM?%3°  or structural
failure when frustration-induced bond stresses exceed the bond buckling threshold®’.
However, when frustration is introduced in a controlled and well-understood manner, it
may be harnessed to design desirable or unusual physical properties, such as localized
buckling zones'®*®?? or geometric frustration in spin-ices*' 3. In this section, we show
how to introduce frustration in a targeted manner by discrete rotations of the building
blocks, which changes the parity of local loops (section 2.4.1). We demonstrate that we
can introduce two particular types of frustration, in the form of local, structural defects
(section 2.4.2) and as global, topological defects (section 2.4.3).

2.4.1. Triangle rotations as fundamental architectural transformations

Different architectures are made by stacking together building blocks with different ori-
entations. Therefore, a particular metamaterial design can be transformed into any other
architecture by rotating a suitable sequence of building blocks. Supertriangle rotations,
illustrated in Fig. 2.11, thus form the minimal architectural transformations that we em-
ploy to convert one metamaterial design to another.

Selecting and rotating a particular building block in the material’s bulk affects lo-
cal path parities. Effectively, the rotation removes one of the building block’s internal
bonds—bond r—from the network and replaces it with a newly added internal bond p
(Fig. 2.11a). The bond r is part of up to two local loops: two in the bulk, and one or
zero at the material’s boundary, as shown in Fig. 2.11b-c. Therefore, exchanging bond
r for bond p changes the parity of at most two local loops. This transformation method
thus changes local bond connectivity, but preserves other network characteristics, such
as the number of nodes and bonds, the node positions, and the bond constraint type.

Starting from a compatible structure containing only even local loops, we can thus
obtain metamaterial architectures with isolated, frustrated odd local loops via a suitable
sequence of building block rotations. We show below how to implement this strategy to
obtain local, structural defects, as well as global topological defects.

2.4.2. A structural defect

We now show how to locally control frustration in our mechanical metamaterials by ro-
tating a single building block in an initially compatible network.

Fig. 2.12a shows a compatible structure with no defects, where all superhexagons have
even local loops (black lines). As discussed in section 2.3.1, all larger paths in a compat-
ible structure enclosing multiple local loops are also even (Fig. 2.4c).

As discussed above, rotating a single building block effectively switches the position
of one internal bond, changing the parity of two adjacent even local loops to create two
adjacent odd local loops (Fig. 2b), as illustrated in Fig. 2.12a-b. All larger loops circum-
scribing the two odd local loops are unchanged and are thus still of even length. While
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the odd local loops frustrate the metamaterial’s floppy mode, larger loops around the
network perimeter are still even, indicating only a local breakdown of compatibility.

We therefore call two adjacent odd
local loops a structural defect: while
the odd local loops frustrate the mate-
rial’s floppy mode, the defect can be re-
moved by a single local transformation of
the network- that is, rotating the block
back.

2.4.3. A topological defect

Evidently, we can induce local frustra-
tion in an initially compatible stack by
rotating a single building block, gen-
erating a structural defect that con-
sists of two adjacent odd local loops.
However, we show now that con-
trolled global frustration may also be
obtained, by constructing metamate-
rials containing a single odd local
loop.

We generate these globally frustrated
metamaterials from an initially compat-
ible system via a sequence of building
block rotations running in a chain between
the desired odd local loop locus and the
system’s boundary. Specifically, we ro-
tate a building block at the edge of a
structural defect, ensuring that the in-
ternal bond that is removed during the
building block rotation contributes to one
odd and one even local loop (Fig. 2.12b-
c). As before, the rotation changes the
parity of the two local loops. Conse-
quently, the two odd local loops of the
original structural defect are no longer
adjacent after the transformation: they
are now separated by a single even local
loop (Fig. 2.12c¢). This defect configura-
tion, consisting of two incompatible super-
hexagons separated by one or more com-
patible ones, can no longer be removed by
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Fig. 2.11.: Supertriangle rotations transform one
design to any other. a, Selecting and rotating a
single building block in an architecture modifies its
structure. Effectively, the rotation replaces internal
bond r by internal bond p at a previously unoccu-
pied location. b, Rotating a bulk building block
changes local loop parities. The building block’s
internal bond r is part of exactly two local loops.
Replacing bond r by p changes both loops’ length
by one, changing their parity from even to odd and
vice versa. ¢, Rotating a boundary building block
changes the parity of at most one local loop. In-
ternal bonds of building blocks at the boundary of
a stack contribute to either one or no local loops
(top and bottom). Removing the internal bond by

rotating a boundary block then changes the parity
of one or no loops, respectively.

a single, local building block rotation. To finally obtain a single odd local loop, we re-
peat the above procedure to displace one of the two odd local loops closer and closer to
the system’s boundary. Finally, we select a boundary building block that contributes to
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exactly one odd local loop, so that its rotation causes that odd loop’s parity to become
even (Fig. 2.12d). One of the two odd local loops is thus ‘annealed’ out of the network
via the boundary via a series of building block rotations—as an aside, it is therefore not
possible to create single odd local loops in networks under periodic boundary conditions.

The procedure shown in Fig. 2.12a-d leaves us with an isolated odd local loop in the
system’s bulk, that can only be removed by an extensive number of building block ro-
tations that involve the network boundary. In addition, all loops of internal bonds that
circumscribe the isolated odd local loop are now of odd length. Thus, the parity of loops
around the system’s perimeter fundamentally differs in the presence of a single odd local
loop. We therefore refer to the odd local loop as a topological defect®®*” which affects
the metamaterial at the global scale.

We note that, in contrast to defects occurring in metamaterials where the nontrivial
topology results from a nonzero winding number in momentum space'”'®4* here the
topological character of defects is governed by the parity of real-space local loops.

a b c d
no defect structural defect topological defect

e

A0k A0k A4

Fig. 2.12.: Generating frustration with a local or a global character. a, A compatible network design
where all loops of internal bonds, such as the highlighted blue circuit, are of even length. b, Rotating
a single building block (yellow triangle, inset) generates two adjacent odd local loops (red lines).
These form a structural defect that frustrates the compatible motion of the material. Larger loops
around the system boundary remain of even length. ¢, The adjacent odd local loops are moved apart
by selecting and rotating another building block (yellow triangle, inset). The transformation generates
two isolated odd local loops, separated by an even local loop. System boundary loops remain even.
d, A final rotation removes one of the odd local loops from the material. A single topological defect
remains. lts global character is felt at the system boundary: loops of internal bonds around the
network edge now have odd length, signifying global frustration.

2.4.4. More odd local loops

Complex sequences of block rotations can produce more than only one or two odd lo-
cal loops. Higher numbers of odd local loops can be classified to have a local or global
character: in a network with an even number of odd local loops, internal bond loops
around the system perimeter are of even length, showing a breakdown of compatibility
that is locally confined to the material’s bulk. Conversely, an odd number of odd local
loops produces odd loops around the system perimeter, signifying global frustration that
involves the system’s edge. The parity of the number of odd local loops is therefore an
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order parameter that signifies the local or global character of frustration in the network,
as measured around the system’s boundary.

2.5. Conclusions and outlook

Our work shows how sufficiently complex building blocks can be combined into an ex-
tensive number of compatible metamaterial designs. Such compatible metamaterials
contain only closed loops of internal bonds with even length, which ensures the presence
of a floppy, zero-energy deformation mode.

We include targeted, discretely controlled frustration and nontrivial topology in our
metamaterials by introducing odd loops of internal bonds. Such odd loops signify frustra-
tion of the material’s floppy mode: two adjacent odd local loops constitute a structural
defect with a local character, while an isolated odd local loop constitutes a topological
defect with a global character.

More generally, our strategy opens up a new avenue for studying topological, spatially
complex states in artificial materials that are experimentally accessible*®. In the following
chapters, we accordingly study the mechanics of our complex mechanical metamaterials,
focusing on the distinct mechanical signatures of structural and topological defects.
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