On the computation of norm residue symbols

Bouw, J.

Citation

Bouw, J. (2021, May 19). On the computation of norm residue symbols. Retrieved from https://hdl.handle.net/1887/3176464

Version: Publisher's Version
License:
Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/3176464

Note: To cite this publication please use the final published version (if applicable).

Universiteit Leiden

The handle https://hdl.handle.net/1887/3176464 holds various files of this Leiden University dissertation.

Author: Bouw, J.
Title: On the computation of norm residue symbols Issue Date: 2021-05-19

Chapter 6

Strongly distinguished units

1. Introduction

We defined a distinguished unit in a field $F \supseteq \mathbf{Q}_{p}\left(\zeta_{p}\right)$ to be a principal unit in $U_{p e /(p-1)}$ having no p-th root in $U_{e /(p-1)}$. Such a unit plays an important role in the exponential representation of principal units. In this section we introduce the notion of a strongly distinguished unit. Throughout this chapter p is a prime number and n is a positive integer. We let F be a finite extension of \mathbf{Q}_{p} with $\mu_{p^{n}} \subset F$. We denote the ramification index of F over \mathbf{Q}_{p} by e.

Definition 6.1. A strongly distinguished unit of degree $n \in \mathbf{Z}_{>1}$ is a principal unit $\epsilon_{n} \in U_{1}$ with the property that $\operatorname{ord}_{F}\left(\epsilon_{n}-1\right)=\frac{p e}{p-1}$ and such that $F\left(\sqrt[p^{n}]{\epsilon_{n}}\right)$ is an unramified extension of F of degree p^{n}.

As we explained in Chapter 1, it may be of advantage to compute a strongly distinguished unit once and for all if a large number of norm residue symbols in the same field F has to be computed. If a strongly distinguished unit is used, the formula of Lemma 5.7 for the norm residue symbol of order p^{n} can be simplified, as we will see in Lemma 6.3ii below.

We give a few results that are almost immediate consequences of Definition 6.1 and the results of Chapter 5 .

Lemma 6.2. Let $\epsilon \in U_{1}$ with $\operatorname{ord}_{F}(\epsilon-1)=p e /(p-1)$. Then ϵ is a strongly distinguished unit of degree n if and only if $\epsilon \notin F^{* p}$ and $(u, \epsilon)_{p^{n}}=1$ for every $u \in \mathcal{O}_{F}^{*}$.

Proof. From Proposition 5.1 of Chapter 5, part vii with $\beta=\epsilon, m=p^{n}$ and $\alpha^{\prime}=u \in \mathcal{O}_{F}^{*}$, it follows that $(u, \epsilon)_{p^{n}}=1$ for every $u \in \mathcal{O}_{F}^{*}$ if and only if the extension $F\left(\sqrt[p^{n}]{\epsilon_{n}}\right)$ is unramified. Moreover $\epsilon \notin F^{* p}$ is equivalent to $\left[F\left(\sqrt[p^{n}]{\epsilon_{n}}\right): F\right]=p^{n}$.

Lemma 6.3. Let $\epsilon_{n} \in U_{1}$ be a strongly distinguished unit of degree n. Then:
i. Let π, π^{\prime} be prime elements of F. Then: $\left(\pi, \epsilon_{n}\right)_{p^{n}}=\left(\pi^{\prime}, \epsilon_{n}\right)_{p^{n}}$.
ii. Let $x, y \in F^{*}$. Write $x=\omega(a) \pi^{v(x)} w^{\prime}$ with $w^{\prime} \in U_{1}$ and $a \in k^{*}$. Set $\pi^{\prime}=w^{\prime} \pi$. Then one has

$$
(x, y)_{p^{n}}=\left(\pi, \epsilon_{n}\right)_{p^{n}}^{(v(x)-1) \chi\left(y ; \pi, \epsilon_{n}\right)+\chi\left(y ; \pi^{\prime}, \epsilon_{n}\right)}
$$

Proof. i: Follows from Lemma 6.2,
ii: Follows from i and Lemma 5.7 from Chapter 5.

Lemma 6.4.

i. Every strongly distinguished unit of degree $n \in \mathbf{Z}_{>1}$ is a distinguished unit.
ii. Let $\delta \in F$. Then δ is a strongly distinguished unit of degree 1 if and only if δ is a distinguished unit.

Proof. i: From Lemma 6.2 it follows that a strongly distinguished unit of degree n is not a p-th power.
ii: Let δ be a distinguished unit, then we have according to Proposition 5.1x, that $(u, \delta)_{p}=1$ for every unit u, and then Proposition 5.1vii, with $m=p, \alpha^{\prime}=u$ and $\beta=\delta$, says that $F(\sqrt[p]{\delta})$ is an unramified extension of F. The degree of this extension equals p, because $\delta \notin\left(F^{*}\right)^{p}$. Moreover we have $\operatorname{ord}_{F}(\delta-1)=\frac{p e}{p-1}$, so δ is a strongly distinguished unit of degree 1 . The other implication follows from i.

In this Chapter we will prove Theorem 1.3 and Theorem 1.4 from Chapter 1. We prove the existence of strongly distinguished units in section 2 . In section 3 we exhibit a uniquely solvable system of linear equations over $\mathbf{Z} / p^{n} \mathbf{Z}$ with the property that its unique solution gives rise to a strongly distinguished unit. This result leads, in section 4 , to a polynomial-time algorithm that computes strongly distinguished units. Finally we give an example in section 5 .

2. Existence

Lemma 6.5. There exists $\epsilon \in U_{1}$ with $\operatorname{ord}_{F}(\epsilon-1) \geq p^{n}>0$ such that $F(\sqrt[p^{n}]{\epsilon})$ is an unramified extension of F of degree p^{n}.

Proof. It is a well-known fact that there is a (unique) unramified extension L of F of degree p^{n}. By Kummer theory there is an element $\alpha \in F$ such that $L=F(\sqrt[p^{n}]{\alpha})$. There are an integer $i \in \mathbf{Z}$, an element $\beta \in \mathcal{O}_{F} / \mathfrak{m}_{F}$ and a principal unit $\epsilon \in U_{1}$ such that $\alpha=\pi^{i} \cdot \omega(\beta) \cdot \epsilon$. We have $p^{n} \mid i$ because the extension $F(\sqrt[p^{n}]{\alpha}) / F$ is unramified. Furthermore $\omega(\beta) \in\left(F^{*}\right)^{p^{n}}$. This proves that there is a principal unit ϵ such that $L=$ $F(\sqrt[p^{n}]{\epsilon})$. Because L is an unramified extension of F we have $\operatorname{ord}_{F}(1-\epsilon)=\operatorname{ord}_{L}(1-\epsilon)$. There are elements $a_{i} \in L$ such that $X^{p^{n}}-\epsilon=\prod_{i=1}^{p^{n}}\left(X-a_{i}\right)$, a product of p^{n} factors. Note that $\operatorname{ord}_{L}\left(1-a_{i}\right) \geq 1$ since a_{i} is a principal unit. If we substitute $X=1$ we obtain

$$
\operatorname{ord}_{F}(1-\epsilon)=\operatorname{ord}_{L}(1-\epsilon)=\sum_{i=1}^{p^{n}} \operatorname{ord}_{L}\left(1-a_{i}\right) \geq p^{n} \cdot 1=p^{n}
$$

The theorem below proves the existence of strongly distinguished units.
Theorem 6.6. There exists $\epsilon \in F$ such that

ii. $F(\sqrt[p^{n}]{\epsilon})$ is an unramified field extension of F of degree p^{n}.

There does not exist $\epsilon \in F$ satisfying ii and $\operatorname{ord}_{F}(\epsilon-1)>\frac{p e}{p-1}$.

Proof. Let E be the unique maximal subextension of F which is unramified over $\mathbf{Q}_{p}\left(\zeta_{p^{n}}\right)$. Let $\epsilon \in E$ with $\operatorname{ord}_{E}(\epsilon-1) \geq p^{n}>0$ such that $E(\sqrt[p^{n}]{\epsilon})$ is an unramified extension of E of degree p^{n} (Lemma 6.5). As a consequence, $F(\sqrt[p^{n}]{\epsilon})$ is an unramified field extension of F of degree p^{n}. Note that $e_{E / \mathbf{Q}_{p}}=e_{\mathbf{Q}_{p}\left(\zeta_{\left.p^{n}\right)} / \mathbf{Q}_{p}\right.}=p^{n-1}(p-1)$. Also ϵ is a p-th power in E if $\operatorname{ord}_{E}(\epsilon-1)>p \cdot p^{n-1}(p-1) /(p-1)=p^{n}$ (Corollary 4.4). Hence $\operatorname{ord}_{E}(\epsilon-1)=p^{n}$. It follows that

$$
\operatorname{ord}_{F}(\epsilon-1)=e_{F / E} \cdot \operatorname{ord}_{E}(\epsilon-1)=e_{F / \mathbf{Q}_{p}\left(\zeta_{p^{n}}\right)} \cdot \operatorname{ord}_{E}(\epsilon-1)=e_{F / \mathbf{Q}_{p}\left(\zeta_{p^{n}}\right)} \cdot p^{n}
$$

This proves the first result.
By Corollary 4.4 from Chapter 4 , any $\epsilon \in U_{1}$ with $\operatorname{ord}_{F}(\epsilon-1)>\frac{p e}{p-1}$ is a p-th power in F. Hence such an ϵ cannot satisfy condition ii.

Now we have also proven Theorem 1.3.

3. Constructing a unique strongly distinguished unit

Let δ be a distinguished unit and let π be a prime element. We refer to section 2.2 of Chapter 4, where the set $T_{\pi^{\prime}, \delta}$ is defined with π^{\prime} is a prime element, and to Definition 4.10 where $\mu(x, N)$ is defined. We also refer to Definition 4.11 where the morphism $\chi\left(\cdot ; \pi^{\prime}, \delta\right): F^{*} \longrightarrow \mathbf{Z} / p^{s} \mathbf{Z}$ is defined. In the next lemma we take $s=n$. Remember that $(\pi, \delta)_{p^{n}}$ is a primitive p^{n}-th root of unity (Lemma 5.6). We shall write

$$
T_{\pi, \delta}^{*}=\left\{z \in T_{\pi, \delta}: \mu(z, p e /(p-1)) \leq n-1\right\},
$$

which by section 2.1 of Chapter 4 is equal to $\left\{z \in T_{\pi, \delta}: \operatorname{ord}_{F}(z-1) \geq e /\left((p-1) p^{n-2}\right)\right\}$.

Lemma 6.7.

i. For $z, z^{\prime} \in T_{\pi, \delta}$, define $b_{z^{\prime}, z} \in \mathbf{Z} / p^{n} \mathbf{Z}$ by $\left(z^{\prime}, z\right)_{p^{n}}=(\pi, \delta)_{p^{n}}^{b_{z^{\prime}, z}}$. Then the system of linear equations

$$
\left\{\begin{array}{c}
\sum_{z \in T_{\pi, \delta}^{*}} b_{z^{\prime}, z} x_{z}=0 \quad \text { for all } z^{\prime} \in T_{\pi, \delta}, z \neq \delta \\
x_{\delta}=1
\end{array}\right.
$$

has a unique solution with all $x_{z} \in \mathbf{Z} / p^{n} \mathbf{Z}$.
ii. The unique solution $\left(x_{z}\right)_{z \in T_{\pi, \delta}^{*}}$ from i satisfies $x_{z} \in p^{\mu(z, p e /(p-1))} \mathbf{Z} / p^{n} \mathbf{Z}$ for all z.
iii. If $\left(c_{z}\right)_{z \in T_{\pi, \delta}^{*}} \in \mathbf{Z}^{T_{\pi, \delta}^{*}}$ satisfies $\left(c_{z} \bmod p^{n}\right)=x_{z}$ for all z, with $\left(x_{z}\right)_{z \in T_{\pi, \delta}^{*}}$ as in i , then $\epsilon=\prod_{z \in T_{\pi, \delta}^{*}} z^{c_{z}}$ is a strongly distinguished unit of degree n.

Proof. Let ϵ_{n}^{\prime} be a strongly distinguished unit of degree n. By Lemma 6.4i and Lemma 5.6 each of $\left(\pi, \epsilon_{n}^{\prime}\right)_{p^{n}}$ and $(\pi, \delta)_{p^{n}}$ has order p^{n}. So there is a positive integer a with $p \nmid a$ such that $(\pi, \delta)_{p^{n}}=\left(\pi, \epsilon_{n}^{\prime}\right)_{p^{n}}^{a}=\left(\pi, \epsilon_{n}^{\prime a}\right)_{p^{n}}$. Choose $\epsilon_{n}=\epsilon_{n}^{\prime a}$, then ϵ_{n} is a strongly distinguished unit for which $\chi\left(\epsilon_{n} ; \pi, \delta\right)=1$. Write $\epsilon_{n}=\prod_{z \in T_{\pi, \delta}} z^{a_{z}}$ with $a_{z} \in \mathbf{Z}_{p}$ (Proposition 4.8ii). Then we have $\left(a_{\delta} \bmod p^{n}\right)=\chi\left(\epsilon_{n} ; \pi, \delta\right)=1$. From $\epsilon_{n} \in U_{p e /(p-1)}$ it follows that for every $z \in T_{\pi, \delta}$ we have $p^{\mu(z, p e /(p-1))} \mid a_{z}$. In particular $\left(a_{z} \bmod p^{n}\right)=0$ if $\mu(z, p e /(p-1)) \geq n$ or equivalently if $z \notin T_{\pi, \delta}^{*}$. From
5.1vii and the fact that $F\left(\sqrt[p]{\epsilon_{n}}\right)$ is an unramified extension of F, it follows that for every $z^{\prime} \in T_{\pi, \delta}$ we have

$$
1=\left(z^{\prime}, \epsilon_{n}\right)_{p^{n}}=\prod_{z \in T_{\pi, \delta}}\left(z^{\prime}, z\right)_{p^{n}}^{a_{z}}=\prod_{z \in T_{\pi, \delta}^{*}}\left(z^{\prime}, z\right)_{p^{n}}^{a_{z}}=(\pi, \delta)_{p^{n}}^{\sum_{z \in T_{\pi, \delta}^{*}} b_{z^{\prime}, z} a_{z}}
$$

So for every $z^{\prime} \in T_{\pi, \delta}$ we have $\sum_{z \in T_{\pi, \delta}^{*}} b_{z^{\prime}, z}\left(a_{z} \bmod p^{n}\right)=0$ in $\mathbf{Z} / p^{n} \mathbf{Z}$, while we just proved $\left(a_{\delta} \bmod p^{n}\right)=1$. Hence $x_{z}=\left(a_{z} \bmod p^{n}\right)$ is a solution to the system of linear equations in i, and this solution also satisfies ii.

To prove uniqueness, let $\left(x_{z}\right)_{z \in T_{\pi, \delta}^{*}}$ be any solution, and let $\epsilon=\prod_{z \in T_{\pi, \delta}^{*}} z^{c_{z}}$ be as in iii. Then $\chi(\epsilon ; \pi, \delta)=\left(1 \bmod p^{n}\right)$, and for each $z^{\prime} \in T_{\pi, \delta}$, we have

$$
\left(z^{\prime}, \epsilon\right)_{p^{n}}=\prod_{z \in T_{\pi, \delta}^{*}}\left(z^{\prime}, z\right)_{p^{n}}^{c_{z}}=(\pi, \delta)_{p^{n}}^{\sum_{z \in T_{\pi, \delta}^{*}} b_{z^{\prime}, z} x_{z}}=(\pi, \delta)_{p^{n}}^{0}=1
$$

Let $\alpha^{\prime} \in \mathcal{O}_{F}^{*}$. Since α^{\prime} can by Proposition 4.8 ii be written as $\alpha^{\prime}=\omega\left(\alpha^{\prime} \bmod \mathfrak{m}\right)$. $\prod_{z^{\prime} \in T_{\pi, \delta}^{*}} z^{\prime d_{z^{\prime}}}$ with $d_{z}^{\prime} \in \mathbf{Z}_{p}$ and $\omega\left(k^{*}\right) \subset\left(F^{*}\right)^{p^{n}}$, we obtain $\left(\alpha^{\prime}, \epsilon\right)_{p^{n}}=1$. Hence Proposition 5.1vii implies that $F(\sqrt[p^{n}]{\epsilon})$ is an unramified extension of F. By Kummer theory we have $\epsilon=\epsilon_{n}^{i} \cdot u^{p^{n}}$ with $i \in \mathbf{Z}$ and $u \in U_{1}$. Then $1=\chi(\epsilon ; \pi, \delta)=i \cdot \chi\left(\epsilon_{n} ; \pi, \delta\right)+$ $p^{n} \cdot \chi(u ; \pi, \delta) \equiv i \bmod p^{n}$. Using the exponential representation from Proposition 4.8ii for $\epsilon, \epsilon_{n}, u$ we obtain

$$
\prod_{z \in T_{\pi, \delta}^{*}} z^{c_{z}}=\prod_{z \in T_{\pi, \delta}} z^{i a_{z}} \cdot \prod_{z \in T_{\pi, \delta}} z^{p^{n} \cdot e_{z}}
$$

(with $e_{z} \in \mathbf{Z}_{p}$). According to Proposition 4.8ii, corresponding exponents are congruent modulo p^{n}, so for all $z \in T_{\pi, \delta}^{*}$ we have

$$
x_{z}=\left(c_{z} \bmod p^{n}\right)=\left(i a_{z} \bmod p^{n}\right)=\left(a_{z} \bmod p^{n}\right)
$$

This proves that $\left(a_{z} \bmod p^{n}\right)_{z \in T_{\pi, \delta}^{*}}$ is the unique solution to our system.
To prove that ϵ is a strongly distinguished unit of degree n, we remark that $c_{z} \equiv a_{z} \equiv 0 \bmod p^{\mu(z, p e /(p-1))}$, for $z \in T_{\pi, \delta}^{*}$ it follows that $\epsilon \in U_{p e /(p-1))}$. Also, from $\chi(\epsilon ; \pi, \delta)=1 \bmod p^{n}$ it follows that $\epsilon \notin\left(F^{*}\right)^{p}$ so that in particular $\epsilon \notin U_{1+p e /(p-1)}$.

4. Computation

Let us now discuss how to compute a strongly distinguished unit.
Algorithm 6.8 (Strongly distinguished unit).
Input: \mathcal{O}_{N} with $\zeta_{p^{n}} \in F$ and with $N \geq e /(p-1)+n e+1$.
Output: A strongly distinguished unit $\epsilon_{n} \in \mathcal{O}_{N}$ of degree n.
Steps:
i. Compute $\bar{\delta} \in \mathcal{O}_{N}$ where $\bar{\delta}$ is a distinguished unit (Algorithm4.15). If $n=1$ return $\bar{\epsilon}_{1}=\bar{\delta}$ and terminate.
ii. Compute $\overline{T_{\pi, \delta}}=\left\{\overline{1-\omega\left(\gamma^{j}\right) \pi^{i}} \in \mathcal{O}_{N},(i, j) \in S\right\} \cup\{\bar{\delta}\} \subset \mathcal{O}_{N}$ where $S=$ $\left\{(i, j) \in \mathbf{Z}^{2}: 0 \leq j<f, 1 \leq i<\frac{p e}{p-1}, p \nmid i\right\}$.
iii. For $\bar{z}, \overline{z^{\prime}} \in \overline{T_{\pi, \delta}}$ compute $b_{z^{\prime}, z} \in \mathbf{Z} / p^{n} \mathbf{Z}$ with $\left(z^{\prime}, z\right)_{p^{n}}=(\pi, \delta)_{p^{n}}^{b_{z^{\prime}, z}}$ (Algorithm 5.15.
iv. Find $\overline{c_{z}} \in \mathbf{Z} / p^{n} \mathbf{Z}$ for $z \in T_{\pi, \delta}$, such that $\overline{c_{\delta}}=1$ and such that for all $z^{\prime} \in T_{\pi, \delta}$ we have

$$
\sum_{z \in T_{\pi}, \delta} b_{z^{\prime}, z} \overline{c_{z}}=0 \in \mathbf{Z} / p^{n} \mathbf{Z}
$$

v. For every $z \in T_{\pi, \delta}$ choose $c_{z} \in\left\{0,1, \ldots, p^{n}-1\right\}$ such that $\left(c_{z} \bmod p^{n}\right)=\overline{c_{z}}$.
vi. Return $\overline{\epsilon_{n}} \in \mathcal{O}_{N}$ with $\bar{\epsilon}_{n}=\prod_{\bar{z} \in \overline{T_{\pi, \delta}}} \bar{z}^{\overline{c_{z}}}$.

Proposition 6.9. Algorithm 6.8 is correct and its complexity is $O\left((e f)^{2} \cdot\left((N \log q)^{2[+1]}+N f^{C}(\log p)^{[+1]}\right)\right)$.

Proof. The correctness of the Algorithm follows from Lemma 6.7. Let us discuss the complexity of the algorithm. Note that $p^{n}=O(e)$ and $e=O(N)$. Step i costs $O\left((f+\log p)(\log q)^{1[+1]}+f^{C}(\log p)^{1[+1]}+N \log q\right)$ by Algorithm 4.15. Step ii costs less than step iii. Step iii costs $(e f)^{2} \cdot O\left((N \log q)^{2[+1]}+N f^{C}(\log p)^{1[+1]}\right)$ (Algorithm5.15). Step iv is solving an ef $\times e f$ system over $\mathbf{Z} / p^{n} \mathbf{Z}$, which costs $O\left((e f)^{3}\left(\log p^{n}\right)^{1+1]}\right)$. Step v costs $O\left(\log p^{n} \cdot e f \cdot(N \log q)^{1[+1]}\right)$ (Theorem 3.2).

THEOREM 6.10. There is a polynomial-time algorithm that, given a prime number p, a positive integer n, and a finite extension F of \mathbf{Q}_{p} containing the p^{n}-th roots of unity, computes an element ϵ of F satisfying conditions (i) and (ii) from Theorem 1.3.

Proof. In Theorem 6.4 we proved the existence of a strongly distinguished unit and in Algorithm 6.8, whose correctness is proven in Proposition 6.9, we gave a polynomial-time algorithm to compute such a unit. This concludes the proof and we have also proven Theorem 1.4 from Chapter 1.

5. Examples

Example 6.11. Let, as in previous examples, $F \supset \mathbf{Q}_{2}$ be given by $(p, g, h)=$ $\left(2, X^{2}+X+1, Y^{2}-(2+2 X) Y-2 Y\right)$. A distinguished unit, as we have seen Example 4.6 , is $\delta=1+\pi^{4}$. We want to compute a strongly distinguished unit ϵ_{2} for the 4 -th norm residue symbol in F by using the following table where we have computed $(\alpha, \beta)_{4} \downarrow(\pi, \delta)_{4}$ for every $\alpha, \beta \in T_{\pi, \delta}=\left\{\pi, \delta, 1-\pi, 1-\gamma \cdot \pi, 1-\pi^{3}, 1-\gamma \cdot \pi^{3}\right\}$. In this table α is in the first column and β is in the first row.

$(\alpha, \beta)_{4} \downarrow(\pi, \delta)_{4}$	π	δ	$1-\pi$	$1-\gamma \pi$	$1-\pi^{3}$	$1-\gamma \pi^{3}$
π	0	1	0	0	0	0
δ	3	0	0	2	0	0
$1-\pi$	0	0	2	1	1	2
$1-\gamma \pi$	0	2	3	0	0	1
$1-\pi^{3}$	0	0	3	0	0	2
$1-\gamma \pi^{3}$	0	0	2	3	2	2

If we put $\epsilon_{2}=\delta \cdot(1-\pi)^{x_{2}} \cdot(1-\gamma \cdot \pi)^{x_{3}} \cdot\left(1-\pi^{3}\right)^{x_{4}} \cdot\left(1-\gamma \cdot \pi^{3}\right)^{x_{5}}$, we derive from the table a system of linear congruences using the fact that $\left(\epsilon_{2}, z\right)_{4} \equiv 0 \bmod 4$ for every $z \in T_{\pi, \delta}$. We have

$$
\begin{aligned}
2 x_{3} & \equiv 0 \bmod 4 \\
2 x_{2}+x_{3}+x_{4}+2 x_{5} & \equiv 0 \bmod 4 \\
3 x_{2}+x_{5} & \equiv 2 \bmod 4 \\
3 x_{2}+2 x_{5} & \equiv 0 \bmod 4 \\
2 x_{2}+3 x_{3}+2 x_{4}+2 x_{5} & \equiv 0 \bmod 4 .
\end{aligned}
$$

The solution is $x_{2}=x_{3}=x_{4}=0 \bmod 4$, and $x_{5}=2 \bmod 4$. So a strongly distinguished unit of degree two in this field is $\epsilon=\delta \cdot\left(1-\gamma \pi^{3}\right)^{2}$.

Example 6.12. Let p be a prime number, let $F=\mathbf{Q}_{p}\left(\zeta_{p}\right)$ and let $\pi=1-\zeta_{p}$ be a prime element. Then F is a totally ramified extension of \mathbf{Q}_{p} of degree $p-1$. We have $e=p-1, f=1$ and a set of generators for the $F^{*} /\left(F^{*}\right)^{p}$ is $T_{\pi, \delta}=$ $\left\{\pi, 1-\pi, 1-\pi^{2}, \ldots, 1-\pi^{p}\right\}$. The map $\tau_{1}: U_{1} / U_{2} \longrightarrow U_{p} / U_{p+1}$ is the trivial map, so the cokernel of τ_{1} is generated by $\delta=1-\pi^{p}$ which is a distinguished unit and also a strongly distinguished unit of degree 1 .

