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Chapter 6

Strongly distinguished units

1. Introduction

We defined a distinguished unit in a field F ⊇ Qp(ζp) to be a principal unit in
Upe/(p−1) having no p-th root in Ue/(p−1). Such a unit plays an important role in the
exponential representation of principal units. In this section we introduce the notion
of a strongly distinguished unit. Throughout this chapter p is a prime number and n
is a positive integer. We let F be a finite extension of Qp with µpn ⊂ F . We denote
the ramification index of F over Qp by e.

Definition 6.1. A strongly distinguished unit of degree n ∈ Z≥1 is a principal
unit εn ∈ U1 with the property that ordF (εn − 1) = pe

p−1 and such that F (pn
√
εn) is an

unramified extension of F of degree pn.

As we explained in Chapter 1, it may be of advantage to compute a strongly
distinguished unit once and for all if a large number of norm residue symbols in the
same field F has to be computed. If a strongly distinguished unit is used, the formula
of Lemma 5.7 for the norm residue symbol of order pn can be simplified, as we will
see in Lemma 6.3ii below.

We give a few results that are almost immediate consequences of Definition 6.1
and the results of Chapter 5.

Lemma 6.2. Let ε ∈ U1 with ordF (ε − 1) = pe/(p − 1). Then ε is a strongly
distinguished unit of degree n if and only if ε /∈ F ∗p and (u, ε)pn = 1 for every
u ∈ O∗F .

Proof. From Proposition 5.1 of Chapter 5, part vii with β = ε,m = pn and
α′ = u ∈ O∗F , it follows that (u, ε)pn = 1 for every u ∈ O∗F if and only if the extension
F (pn
√
εn) is unramified. Moreover ε /∈ F ∗p is equivalent to [F (pn

√
εn) : F ] = pn. �

Lemma 6.3. Let εn ∈ U1 be a strongly distinguished unit of degree n. Then:

i. Let π, π′ be prime elements of F . Then: (π, εn)pn = (π′, εn)pn .

ii. Let x, y ∈ F ∗. Write x = ω(a)πv(x)w′ with w′ ∈ U1 and a ∈ k∗. Set π′ = w′π.
Then one has

(x, y)pn = (π, εn)
(v(x)−1)χ(y;π,εn)+χ(y;π′,εn)
pn .

Proof. i: Follows from Lemma 6.2.
ii: Follows from i and Lemma 5.7 from Chapter 5. �
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44 Chapter 6. Strongly distinguished units

Lemma 6.4.

i. Every strongly distinguished unit of degree n ∈ Z≥1 is a distinguished unit.
ii. Let δ ∈ F . Then δ is a strongly distinguished unit of degree 1 if and only if

δ is a distinguished unit.

Proof. i: From Lemma 6.2 it follows that a strongly distinguished unit of degree
n is not a p-th power.

ii: Let δ be a distinguished unit, then we have according to Proposition 5.1x, that
(u, δ)p = 1 for every unit u, and then Proposition 5.1vii, with m = p, α′ = u and

β = δ, says that F (p
√
δ) is an unramified extension of F . The degree of this extension

equals p, because δ /∈ (F ∗)p. Moreover we have ordF (δ − 1) = pe
p−1 , so δ is a strongly

distinguished unit of degree 1. The other implication follows from i. �

In this Chapter we will prove Theorem 1.3 and Theorem 1.4 from Chapter 1. We
prove the existence of strongly distinguished units in section 2. In section 3 we exhibit
a uniquely solvable system of linear equations over Z/pnZ with the property that its
unique solution gives rise to a strongly distinguished unit. This result leads, in section
4, to a polynomial-time algorithm that computes strongly distinguished units. Finally
we give an example in section 5.

2. Existence

Lemma 6.5. There exists ε ∈ U1 with ordF (ε− 1) ≥ pn > 0 such that F (p
n√
ε) is

an unramified extension of F of degree pn.

Proof. It is a well-known fact that there is a (unique) unramified extension L of
F of degree pn. By Kummer theory there is an element α ∈ F such that L = F (p

n√
α).

There are an integer i ∈ Z, an element β ∈ OF /mF and a principal unit ε ∈ U1 such
that α = πi · ω(β) · ε. We have pn | i because the extension F (p

n√
α)/F is unramified.

Furthermore ω(β) ∈ (F ∗)p
n

. This proves that there is a principal unit ε such that L =
F (p

n√
ε). Because L is an unramified extension of F we have ordF (1− ε) = ordL(1− ε).

There are elements ai ∈ L such that Xpn−ε =
∏pn

i=1(X−ai), a product of pn factors.
Note that ordL(1 − ai) ≥ 1 since ai is a principal unit. If we substitute X = 1 we
obtain

ordF (1− ε) = ordL(1− ε) =

pn∑
i=1

ordL(1− ai) ≥ pn · 1 = pn.

�

The theorem below proves the existence of strongly distinguished units.

Theorem 6.6. There exists ε ∈ F such that

i. ordF (ε− 1) = eF/Qp(ζpn ) · pn = pe
p−1 ,

ii. F (p
n√
ε) is an unramified field extension of F of degree pn.

There does not exist ε ∈ F satisfying ii and ordF (ε− 1) > pe
p−1 .
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Proof. Let E be the unique maximal subextension of F which is unramified
over Qp(ζpn). Let ε ∈ E with ordE(ε−1) ≥ pn > 0 such that E(p

n√
ε) is an unramified

extension of E of degree pn (Lemma 6.5). As a consequence, F (p
n√
ε) is an unramified

field extension of F of degree pn. Note that eE/Qp
= eQp(ζpn )/Qp

= pn−1(p− 1). Also

ε is a p-th power in E if ordE(ε − 1) > p · pn−1(p − 1)/(p − 1) = pn (Corollary 4.4).
Hence ordE(ε− 1) = pn. It follows that

ordF (ε− 1) = eF/E · ordE(ε− 1) = eF/Qp(ζpn ) · ordE(ε− 1) = eF/Qp(ζpn ) · pn.

This proves the first result.
By Corollary 4.4 from Chapter 4, any ε ∈ U1 with ordF (ε − 1) > pe

p−1 is a p-th

power in F . Hence such an ε cannot satisfy condition ii. �

Now we have also proven Theorem 1.3.

3. Constructing a unique strongly distinguished unit

Let δ be a distinguished unit and let π be a prime element. We refer to section
2.2 of Chapter 4, where the set Tπ′,δ is defined with π′ is a prime element, and to
Definition 4.10 where µ(x,N) is defined. We also refer to Definition 4.11 where the
morphism χ(·;π′, δ) : F ∗ −→ Z/psZ is defined. In the next lemma we take s = n.
Remember that (π, δ)pn is a primitive pn-th root of unity (Lemma 5.6). We shall write

T ∗π,δ = {z ∈ Tπ,δ : µ(z, pe/(p− 1)) ≤ n− 1},

which by section 2.1 of Chapter 4 is equal to {z ∈ Tπ,δ : ordF (z−1) ≥ e/((p−1)pn−2)}.

Lemma 6.7.

i. For z, z′ ∈ Tπ,δ, define bz′,z ∈ Z/pnZ by (z′, z)pn = (π, δ)
bz′,z
pn . Then the

system of linear equations{ ∑
z∈T∗π,δ

bz′,zxz = 0 for all z′ ∈ Tπ,δ, z 6= δ

xδ = 1

has a unique solution with all xz ∈ Z/pnZ.
ii. The unique solution (xz)z∈T∗π,δ from i satisfies xz ∈ pµ(z,pe/(p−1))Z/pnZ for

all z.
iii. If (cz)z∈T∗π,δ ∈ ZT

∗
π,δ satisfies (cz mod pn) = xz for all z, with (xz)z∈T∗π,δ as

in i, then ε =
∏
z∈T∗π,δ

zcz is a strongly distinguished unit of degree n.

Proof. Let ε′n be a strongly distinguished unit of degree n. By Lemma 6.4i and
Lemma 5.6 each of (π, ε′n)pn and (π, δ)pn has order pn. So there is a positive integer
a with p - a such that (π, δ)pn = (π, ε′n)apn = (π, ε′an )pn . Choose εn = ε′an , then εn is
a strongly distinguished unit for which χ(εn;π, δ) = 1. Write εn =

∏
z∈Tπ,δ z

az with

az ∈ Zp (Proposition 4.8ii). Then we have (aδ mod pn) = χ(εn;π, δ) = 1. From

εn ∈ Upe/(p−1) it follows that for every z ∈ Tπ,δ we have pµ(z,pe/(p−1)) | az. In
particular (az mod pn) = 0 if µ(z, pe/(p − 1)) ≥ n or equivalently if z /∈ T ∗π,δ. From
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5.1vii and the fact that F (pn
√
εn) is an unramified extension of F , it follows that for

every z′ ∈ Tπ,δ we have

1 = (z′, εn)pn =
∏

z∈Tπ,δ

(z′, z)azpn =
∏

z∈T∗π,δ

(z′, z)azpn = (π, δ)

∑
z∈T∗

π,δ
bz′,zaz

pn .

So for every z′ ∈ Tπ,δ we have
∑
z∈T∗π,δ

bz′,z(az mod pn) = 0 in Z/pnZ, while we just

proved (aδ mod pn) = 1. Hence xz = (az mod pn) is a solution to the system of linear
equations in i, and this solution also satisfies ii.

To prove uniqueness, let (xz)z∈T∗π,δ be any solution, and let ε =
∏
z∈T∗π,δ

zcz be

as in iii. Then χ(ε;π, δ) = (1 mod pn), and for each z′ ∈ Tπ,δ, we have

(z′, ε)pn =
∏

z∈T∗π,δ

(z′, z)czpn = (π, δ)

∑
z∈T∗

π,δ
bz′,zxz

pn = (π, δ)0
pn = 1.

Let α′ ∈ O∗F . Since α′ can by Proposition 4.8ii be written as α′ = ω(α′ mod m) ·∏
z′∈T∗π,δ

z′dz′ with d′z ∈ Zp and ω(k∗) ⊂ (F ∗)p
n

, we obtain (α′, ε)pn = 1. Hence

Proposition 5.1vii implies that F (p
n√
ε) is an unramified extension of F . By Kummer

theory we have ε = εin ·up
n

with i ∈ Z and u ∈ U1. Then 1 = χ(ε;π, δ) = i·χ(εn;π, δ)+
pn ·χ(u;π, δ) ≡ i mod pn. Using the exponential representation from Proposition 4.8ii
for ε, εn, u we obtain ∏

z∈T∗π,δ

zcz =
∏

z∈Tπ,δ

ziaz ·
∏

z∈Tπ,δ

zp
n·ez

(with ez ∈ Zp). According to Proposition 4.8ii, corresponding exponents are congruent
modulo pn, so for all z ∈ T ∗π,δ we have

xz = (cz mod pn) = (iaz mod pn) = (az mod pn).

This proves that (az mod pn)z∈T∗π,δ is the unique solution to our system.

To prove that ε is a strongly distinguished unit of degree n, we remark that
cz ≡ az ≡ 0 mod pµ(z,pe/(p−1)), for z ∈ T ∗π,δ it follows that ε ∈ Upe/(p−1)). Also, from

χ(ε;π, δ) = 1 mod pn it follows that ε /∈ (F ∗)p so that in particular ε /∈ U1+pe/(p−1).
�

4. Computation

Let us now discuss how to compute a strongly distinguished unit.

Algorithm 6.8 (Strongly distinguished unit).
Input: ON with ζpn ∈ F and with N ≥ e/(p− 1) + ne+ 1.
Output: A strongly distinguished unit εn ∈ ON of degree n.
Steps:

i. Compute δ ∈ ON where δ is a distinguished unit (Algorithm 4.15). If n = 1
return ε1 = δ and terminate.

ii. Compute Tπ,δ = {1− ω(γj)πi ∈ ON , (i, j) ∈ S} ∪ {δ} ⊂ ON where S =
{(i, j) ∈ Z2 : 0 ≤ j < f, 1 ≤ i < pe

p−1 , p - i}.



5. Examples 47

iii. For z, z′ ∈ Tπ,δ compute bz′,z ∈ Z/pnZ with (z′, z)pn = (π, δ)
bz′,z
pn (Algorithm

5.15).
iv. Find cz ∈ Z/pnZ for z ∈ Tπ,δ, such that cδ = 1 and such that for all z′ ∈ Tπ,δ

we have ∑
z∈Tπ,δ

bz′,zcz = 0 ∈ Z/pnZ.

v. For every z ∈ Tπ,δ choose cz ∈ {0, 1, . . . , pn− 1} such that (cz mod pn) = cz.
vi. Return εn ∈ ON with εn =

∏
z̄∈Tπ,δ z̄

cz .

Proposition 6.9. Algorithm 6.8 is correct and its complexity is
O((ef)2 · ((N log q)2[+1] +NfC(log p)1[+1])).

Proof. The correctness of the Algorithm follows from Lemma 6.7. Let us discuss
the complexity of the algorithm. Note that pn = O(e) and e = O(N). Step i costs
O((f+log p)(log q)1[+1] +fC(log p)1[+1] +N log q) by Algorithm 4.15. Step ii costs less
than step iii. Step iii costs (ef)2 ·O((N log q)2[+1] +NfC(log p)1[+1]) (Algorithm 5.15).
Step iv is solving an ef × ef system over Z/pnZ, which costs O((ef)3(log pn)1[+1]).
Step v costs O(log pn · ef · (N log q)1[+1]) (Theorem 3.2). �

Theorem 6.10. There is a polynomial-time algorithm that, given a prime number
p, a positive integer n, and a finite extension F of Qp containing the pn-th roots of
unity, computes an element ε of F satisfying conditions (i) and (ii) from Theorem
1.3.

Proof. In Theorem 6.4 we proved the existence of a strongly distinguished unit
and in Algorithm 6.8, whose correctness is proven in Proposition 6.9, we gave a
polynomial-time algorithm to compute such a unit. This concludes the proof and
we have also proven Theorem 1.4 from Chapter 1. �

5. Examples

Example 6.11. Let, as in previous examples, F ⊃ Q2 be given by (p, g, h) =
(2, X2 +X + 1, Y 2 − (2 + 2X)Y − 2Y ). A distinguished unit, as we have seen Exam-
ple 4.6, is δ = 1 + π4. We want to compute a strongly distinguished unit ε2 for the
4-th norm residue symbol in F by using the following table where we have computed
(α, β)4 ↓(π, δ)4 for every α, β ∈ Tπ,δ = {π, δ, 1− π, 1− γ · π, 1− π3, 1− γ · π3}. In this
table α is in the first column and β is in the first row.

(α, β)4 ↓(π, δ)4 π δ 1− π 1− γπ 1− π3 1− γπ3

π 0 1 0 0 0 0
δ 3 0 0 2 0 0

1− π 0 0 2 1 1 2
1− γπ 0 2 3 0 0 1
1− π3 0 0 3 0 0 2

1− γπ3 0 0 2 3 2 2
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If we put ε2 = δ · (1− π)x2 · (1− γ · π)x3 · (1− π3)x4 · (1− γ · π3)x5 , we derive from the
table a system of linear congruences using the fact that (ε2, z)4 ≡ 0 mod 4 for every
z ∈ Tπ,δ. We have

2x3 ≡ 0 mod 4

2x2 + x3 + x4 + 2x5 ≡ 0 mod 4

3x2 + x5 ≡ 2 mod 4

3x2 + 2x5 ≡ 0 mod 4

2x2 + 3x3 + 2x4 + 2x5 ≡ 0 mod 4.

The solution is x2 = x3 = x4 = 0 mod 4, and x5 = 2 mod 4. So a strongly distin-
guished unit of degree two in this field is ε = δ · (1− γπ3)2.

Example 6.12. Let p be a prime number, let F = Qp(ζp) and let π = 1 − ζp
be a prime element. Then F is a totally ramified extension of Qp of degree p − 1.
We have e = p − 1, f = 1 and a set of generators for the F ∗/(F ∗)p is Tπ,δ =
{π, 1− π, 1− π2, . . . , 1− πp}. The map τ1 : U1/U2 −→ Up/Up+1 is the trivial map, so
the cokernel of τ1 is generated by δ = 1− πp which is a distinguished unit and also a
strongly distinguished unit of degree 1.


