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Chapter 5

Norm residue symbols

1. Introduction

Let F be a finite extension of Qp. In this chapter, we will first discuss properties
of the norm residue symbol. After that, we will use the exponential representation
to compute a symbol which is isomorphic to the norm residue symbol. Then we will
discuss how one can compute the exact value of the norm residue symbol.

2. Properties

In this chapter we follow the notation as introduced in Chapter 2. The integers
e and f denote respectively the ramification index and the residue class degree of a
finite field extension F of Qp where p is a prime number. The element π ∈ F is a
prime element and γ is defined as in Chapter 2. By ω(c) we denote the Teichmüller
representative of c ∈ C. Let F ab denote the maximal abelian extension of F inside
an algebraic closure of F . The map φF denotes the homomorphism φF : F ∗ −→
Gal(F ab/F ) which is called the reciprocity map, coming from class field theory. Let
m be a positive integer and suppose that F contains the m-th roots of unity. For
α, β ∈ F ∗ the m-th norm residue symbol (α, β)m is the m-th root of unity defined by

(α, β)m =
φF (α)(m

√
β)

m
√
β

.

The integer m will be called the order of the norm residue symbol. We state a number
of properties of the m-th norm residue symbol.

Proposition 5.1. Let m be a positive integer and let F be as above. Then for
all α, α1, α2 and β ∈ F ∗ we have:

i. (α1α2, β)m = (α1, β)m · (α2, β)m.
ii. (α, β)m = (β, α)−1

m .
iii. (α, 1− α)m = 1 if α 6= 1.
iv. (α,−α)m = 1.
v. (α, γ)m = 1 for every γ ∈ F ∗ ⇔ α ∈ (F ∗)m.
vi. (α, β)m = 1⇔ α ∈ NE/F (E∗) with E = F (m

√
β).

vii. F (m
√
β)/F is unramified if and only if (α′, β)m = 1 for all α′ ∈ O∗F .

viii. Let m = d1 · d2 with d1, d2 ∈ Z≥1, then (α, β)d1m = (α, β)d2 .
ix. Let m = m1 · m2 with m1 and m2 relatively prime positive integers, x =

m−1
2 mod m1 and y = m−1

1 mod m2 then

(α, β)m = (α, β)xm1
· (α, β)ym2

.
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32 Chapter 5. Norm residue symbols

x. Let m = p and let δ be a distinguished unit, then (u, δ)p = 1 for every
u ∈ O∗F .

Proof. For a proof of the first six items of Proposition 5.1 we refer to [17, Ch.
3, section 5]. We will prove the last four items.

vii: If E/F is a finite, abelian extension, then E/F is unramified if and only if
NE/F (O∗E) = O∗F . See [13, Chapter 11, section 4]. The result follows from part vi.

viii: We have (α, β)d1m = (α, βd1)m = φF (α)(m
√
β)d1 )

(m
√
β)d1

= φF (α)(d2
√
β)

d2
√
β

= (α, β)d2 .

ix: Because m1 and m2 are relatively prime, there are positive rational integers
x and y with xm2 + ym1 = 1. So xm2 ≡ 1 (mod m1) and x = m−1

2 (mod m1) and
in the same way y = m−1

1 (mod m2). By (7) we have (α, β)m = (α, β)xm2+ym1
m =

(α, β)xm2
m · (α, β)ym1

m = (α, β)xm1
· (α, β)ym2

and we are done.

x: The equation δxp + uyp = 1 has a solution (x, y) ∈ (OF \ {0})2. For a proof
of this fact we refer to [15, Appendix, proof of Lemma A.11]. Applying Proposition

5.1i, ii and iii gives (u, δ)p = (x, u)pp · (δ, y)pp · (x, y)p
2

p = 1. �

Remark 5.2. Proposition 5.1vi implies that for α1, α2, β ∈ F ∗, one has (α1, β)m =
(α2, β)m if and only if the “residue classes” of α1 and α2 modulo the norm group
NE/F (E∗), where E = F (m

√
β), coincide. This explains the term “norm residue sym-

bol”.

As an application of Proposition 5.1viii we can write an m-th norm residue sym-
bol, with m = m0 · pn and p - m0, as a product of a norm residue symbol of order m0

and one of order pn. If the prime number p does not divide m, the m-th norm residue
symbol is called tame. In the tame case we have the formula of the next proposition
to compute the norm residue symbol. We remark that m | q − 1 because we assume
that ζm ∈ F and p - m.

Since the left and right kernel of ( , )m are (F ∗)m by Proposition 5.1v, it is
natural to view ( , )m as a symbol

( , )m : F ∗/(F ∗)m × F ∗/(F ∗)m → µm.

The group F ∗/(F ∗)m is finite. Algorithmically, it is hard to work with F ∗/(F ∗)m,
and instead we choose to work with a group surjecting to F ∗/(F ∗)m.

Let m ∈ Z≥1. Write m = ptb with (b, p) = 1. Note that the map

Z/mZ× U/Um → F ∗/(F ∗)m

(a, b) 7→ πab(F ∗)m

is an isomorphism. Let N ∈ Z≥1 with N ≥ e/(p − 1) + te + 1 if t ≥ 1 and N ≥ 1
otherwise. One has UN ⊂ Um ⊂ (F ∗)m by Corollary 4.4. Note that we have an exact
sequence 0→ UN → U → O∗N → 0. Hence we have a surjective map O∗N → U/UN →
U/Um. We obtain a surjective map

(F ∗/(F ∗)m)N := Z/mZ×O∗N → F ∗/(F ∗)m

(a, u) 7→ πau(F ∗)m.

Hence we represent elements of F ∗/(F ∗)m in a non-unique way by finite sets Z/mZ×
O∗N ⊂ Z/mZ×ON where N is large enough.
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3. Computing the tame norm residue symbol

In this section, we will explain how to compute the tame norm residue symbol.
The computation of this symbol turns out to be quite simple.

Proposition 5.3. Let m ∈ Z≥1 and let F be a finite extension of Qp(ζm) such
that p - m. Let further α, β 6= 0 be elements of the field F , and put ordFα = a and
ordFβ = b. Let q denote the number of elements of the residue class field of F . Then
we have q ≡ 1 mod m and

(α, β)m = ω

(
(−1)a·b · β

a

αb

) q−1
m

.

Proof. See [17, Ch. 3, section 5]. �

Algorithm 5.4.
Input: ON , an integer m ∈ Z≥1, and α = (a, u), β = (b, v) ∈ (F ∗/(F ∗)m)N such that
m | (q − 1).

Output: (α, β)m ∈ ON .
Steps:

i. Compute g = ab· q−1
m mod (q−1), h = a· q−1

m mod (q−1), k = b· q−1
m mod (q−

1).

ii. Compute c = (−1)g · v
h

uk
mod m.

iii. Compute x = ω(c) mod mN .
iv. Return x.

Proposition 5.5. Algorithm 5.4 computes correctly the tame norm residue sym-
bol in time O(

(
N + (((N/e) + 1) log q)1[+1]

)
· log q).

Proof. The first and second step each take O(log q · (log q)1[+1]) (Theorem 3.2).
The Teichmüller lift takes time O(

(
N + ((N/e) log q)1[+1]

)
· log q) (Theorem 3.2). �

4. Computing the wild norm residue symbol

Assume m = pn with n ≥ 1 and µpn ⊂ F ∗. We will now compute ( , )m. Let s
be maximal such that µps ⊂ F ∗.

The next lemma shows the relation between the exponential representation and
the norm residue symbol. Recall the definition of χ(x;π′, δ) in Definition 4.11 in
Chapter 4.

Lemma 5.6. Let π′ be a prime element of F and let (π′, δ, b′) be a distinguished
triple. Then (π′, δ)m is a primitive m-th root of unity and for x ∈ F ∗ one has

(π′, x)m = (π′, δ)χ(x;π′,δ)
m .

Proof. Note that for c ∈ k∗, z ∈ F ∗ we have

(ω(c), z)ps = 1

since ω(c) ∈ (F ∗)m (Proposition 5.1). This gives for i ∈ Z (Proposition 5.1)

1 = (ω(c)π′i, 1− ω(c)π′i)m = (π′, 1− ω(c)π′i)im.
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Hence if (i, p) = 1, we find

1 = (π′, 1− ω(c)π′i)m,

so (π′, t)m = 1 for all t ∈ Tπ′ . Write

x = ω(c)(−π′)v(x)δd
∏

t∈Tπ′,δ, t 6=δ

tat

with c ∈ k∗, at ∈ Zp, d ∈ Zp, so that d ≡ χ(x;π′, δ) (mod m). One finds using
Proposition 5.1

(π′, x)m = (π′, ω(c))m(π′,−π′)v(x)
m (π′, δ)dm

∏
t∈Tπ′,δ, t 6=δ

(π′, t)atm = (π′, δ)dm.

We conclude that (π′, F ∗)ps = (π′, δ)Zps . Since π′ is not a p-th power, it follows that
(π′, F ∗)ps = µps by Proposition 5.1. Hence (π′, δ)ps is a primitive ps-th root of unity
and by Proposition 5.1viii it follows that (π′, δ)m has order m = pn. �

Lemma 5.7. Let x, y ∈ F ∗. Write x = ω(a)πv(x)w′ with w′ ∈ U1 and a ∈ k∗. Set
π′ = w′π. Let δ ∈ F ∗ be a distinguished unit. Then one has

(x, y)m = (π, δ)(v(x)−1)χ(y;π,δ)
m · (π′, δ)χ(y;π′,δ)

m .

Proof. One has by Lemma 5.6

(x, y)m = (ω(a)πv(x)w′, y)m = (ω(a), y)m(π, y)v(x)−1
m (π′, y)m

= (π, δ)(v(x)−1)χ(y;π,δ)
m · (π′, δ)χ(y;π′,δ)

m .

�

If m = p, then the formula in Lemma 5.7 simplifies considerably, because from
5.1x it follows immediately that (π′, δ)p = (π, δ)p. For the general case m = pn,
we like to write (π′, δ)m as a power of (π, δ)m. We shall see that this is easy to do
if (π′, π)p 6= 1. In the case (π′, π)p = 1, we shall pass from π to π′ by using the
intermediate prime element π′′ = −δπ′, which turns out to satisfy (π′, π′′)p 6= 1 and
(π′′, π)p 6= 1, unless m = p = 2.

Let us now introduce some notation which makes our computations nicer.

Definition 5.8. Let M be a free R-module of rank 1 over a commutative ring R
with basis {b}. We assume that the group operation on M is written multiplicatively.
Furthermore, write the action of R on M exponentially, that is, the action of r ∈ R
on m ∈M is denoted as rm. For a ∈M we define a ↓ b ∈ R by

a = a ↓ bb.

One may think of a ↓ b as the logarithm of a to the base b.

Remark 5.9.

aa′ ↓ b = a ↓ b+ a′ ↓ b
(ra) ↓ b = r(a ↓ b).
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Hence one has 1 ↓ b = 0 and a−1 ↓ b = −a ↓ b. One obviously has b ↓ b = 1. Finally, if
{b′} is also a basis for M , then one has

a ↓ b = a ↓ b′ · b′ ↓ b.

We will apply the definition above to R = Z/mZ and M = µm, which is a free
Z/mZ-module of rank one. For the basis element b we shall always take an element
of the form (π′, δ)m, with π′ a prime element and δ a distinguished unit, which can
be done by Lemma 5.6. By the same lemma, we can express the function χ in arrow
notation as

χ(x;π′, δ) = (π′, x)m ↓(π′, δ)m.

with x, π′, δ as in Lemma 5.6.

Proposition 5.10. Let π′ be a prime element and set π′′ = −δπ′. Then one has

(π′, δ)m ↓(π, δ)m =



1 if m = 2

−χ(π′;π, δ)

χ(π;π′, δ)
if χ(π;π′, δ) ∈ (Z/mZ)∗

χ(π′′;π, δ) · χ(π′;π′′, δ)

χ(π;π′′, δ)
all other cases.

Proof. The condition χ(π;π′, δ) ∈ (Z/mZ)∗ in the second case is equivalent
to (π′, π)m being a primitive m-th root of unity, which by proposition 5.1 viii (with
d2 = p) is in turn equivalent to (π′, π)p 6= 1. Hence, in our arrow notation, the
statement to be proved is

(π′, δ)m ↓(π, δ)m =



1 if m = 2

− (π, π′)m ↓(π, δ)m
(π′, π)m ↓(π′, δ)m

if (π′, π)p 6= 1

(π, π′′)m ↓(π, δ)m · (π′′, π′)m ↓(π′′, δ)m
(π′′, π)m ↓(π′′, δ)m

all other cases.

In the first case we have m = 2. Since (π, δ)m and (π′, δ)m are of order m, we
then have (π, δ)m = (π′, δ)m = −1 and the result follows.

For the second case, using Proposition 5.1ii, one finds

−(π, π′)m ↓(π, δ)m = (π′, π)m ↓(π, δ)m = (π′, π)m ↓(π′, δ)m · (π′, δ)m ↓(π, δ)m
and the result follows.

In the third case we have m > 2 and (π′, π)p = 1. As announced above, we shall
use π′′ = −δπ′ as an intermediate prime element, and apply the second case with π′′

first in the role of π′, and next in the role of π. We have

(π′′, π)p = (−1, π)p · (π′, π)p · (δ, π)p.

Here we have (−1, π)p = 1 because m > 2 implies that −1 is a p-th power; (π′, π)p = 1
because we are in the third case; and (δ, π)p = (π, δ)−1

p 6= 1 by Proposition 5.1ii and
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Lemma 5.6. Altogether, we have (π′′, π)p 6= 1, so the second case implies

(π′′, δ)m ↓(π, δ)m = − (π, π′′)m ↓(π, δ)m
(π′′, π)m ↓(π′′, δ)m

.

Next we have (π′, π′′)m = (π′,−δπ′)m = (π′, δ)m, so we have

χ(π′′, π′, δ) = (π′, π′′)m ↓(π′, δ) = 1.

Therefore the second case implies

(π′, δ)m ↓(π′′, δ)m = −(π′′, π′)m ↓(π′′, δ)m.
Combining the last two results, we obtain

(π′, δ)m ↓(π, δ)m = (π′, δ)m ↓(π′′, δ)m · (π′′, δ)m ↓(π, δ)m =

=
(π′′, π′)m ↓(π′′, δ)m · (π, π′′)m ↓(π, δ)m

(π′′, π)m ↓(π′′, δ)m
,

as required. �

We can finally give a formula for the norm residue symbol.

Theorem 5.11. Let x, y ∈ F ∗. Write x = ω(a)πv(x)w′ with w′ ∈ U1 and a ∈ k.
Set π′ = w′π. Let δ ∈ F ∗ be a distinguished unit and set π′′ = −δπ′. One has

(x, y)m = (π, δ)jm

where j ∈ Z/mZ is defined by

j = (v(x)− 1)χ(y;π, δ) + χ(y;π′, δ) · j′ with

j′ =


1 if m = 2

−χ(π′;π,δ)
χ(π;π′,δ) if m 6= 2, χ(π;π′, δ) ∈ (Z/mZ)∗

χ(π′′;π,δ)χ(π′;π′′,δ)
χ(π;π′′,δ) all other cases.

Proof. This follows directly from Lemma 5.7 and Proposition 5.10. �

For the next algorithms, recall how we represent elements in (F ∗/(F ∗)m)N (see
the end of section 2 of this chapter) .

Algorithm 5.12 (χ).
Input: x = (a, u′) ∈ (F ∗/(F ∗)m)N where m = pn > 1 such that µm ⊂ F ∗ and such
that N ≥ e/(p− 1) +ne+ 1, and δ ∈ ON where δ is a distinguished unit and v ∈ O∗N .
Output: χ(x; vπ, δ) (mod m).
Steps:

i. Compute b′ ∈ B such that (vπ, δ, b′) is a distinguished triple (Algorithm
4.17).

ii. Compute u′′ = 1
(−v)au

′ ∈ ON .

iii. Compute u′′′ = u′′/ω(u′′) ∈ ON .
iv. Compute the exponential representation (at)t of u′′′ ∈ ON with respect to

(vπ, δ, b′) (Algorithm 4.21).
v. Return aδ (mod m).
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Proposition 5.13. Algorithm 5.12 is correct and its complexity is
O((N log q)2[+1] + (NfC) · (log p)1[+1])

Proof. The correctness follows from the definitions of χ and the exponential rep-

resentation. In more detail, in the first steps we just write πau′ = (−vπ)aω(u′′)u′′′ ∈
ON . We then work with high enough precision to compute the exponent of the expo-
nential representation of u′′′ modulo m at δ.

Let us compute the complexity. Step i, with Algorithm 4.17 (see Remark 4.19),
has complexityO(N log q+(f+log p)(log q)1[+1]+fC(log p)1[+1]). Step ii costsO(logm·
(N log q)1[+1]) (Theorem 3.2) and step iii costs O(

(
N + (N/e log q)1[+1]

)
· log q +

(N log q)1[+1]). Step iv has complexity O((N log q)2[+1] +NfC(log p)1[+1]) (Algorithm
4.21). �

Example 5.14. Let F ⊃ Q2 be given by (p, g, h) = (2, X2 + X + 1, Y 2 − (2 +
2X)Y − 2Y ). As we have computed in Example 4.27 we have m = 4, µ4 ⊂ F ∗ and
further b′ = γ and δ = 1 + π4.We choose x̄ = (a, u′) = (0, 1− γπ3 + γ2π6) and v = 1
and compute χ(1− γπ3 + γ2π6, π, δ). We follow the steps of Algorithm 5.12 and find
u′′′ = u′′ = u′ = x̄. With Algorithm 4.21 we compute the exponential representation
of x̄ with respect to (π̄, 1 + π4, γ) and find that 1−γπ3 +γ2π6 ≡ δ2(1−γπ3) mod π7.
So aδ ≡ 2 mod m and we have χ(1− γπ3 + γ2π6;π, δ) = 2 mod 4.

Algorithm 5.15 (Symbol isomorphic to wild symbol).
Input: x = (a, u′), y = (b, v′) ∈ (F ∗/(F ∗)m)N where m = pn > 1 such that µm ⊂ F ∗

and such that N ≥ e/(p− 1) + ne+ 1, and δ ∈ ON where δ is a distinguished unit.
Output: j ∈ Z/mZ such that (x, y)m = (π, δ)jm.
Steps:

i. Compute w′ = u′/ω(u′) ∈ O∗N and for notation set π′ = w′π.
ii. Compute χ(y;π, δ), χ(y;π′, δ), χ(π;π′, δ) ∈ Z/mZ (Algorithm 5.12).

If m 6= 2 and χ(π;π′, δ) ∈ (Z/mZ)∗, compute χ(π′;π, δ) ∈ Z/mZ.
If m 6= 2 and χ(π;π′, δ) 6∈ (Z/mZ)∗, compute w′′ = −δw′ ∈ O∗N and for
notation set π′′ = w′′π and compute χ(π′′;π, δ), χ(π′;π′′, δ), χ(π;π′′, δ) ∈
Z/mZ (Algorithm 5.12).

iii. Return

j = (a− 1)χ(y;π, δ) + χ(y;π′, δ) · j′ with

j′ =


1 if m = 2

−χ(π′;π,δ)
χ(π;π′,δ) if m 6= 2, χ(π;π′, δ) ∈ (Z/mZ)∗

χ(π′′;π,δ)χ(π′;π′′,δ)
χ(π;π′′,δ) all other cases.

Proposition 5.16. Algorithm 5.15 is correct and has complexity
O((N log q)2[+1] +NfC(log p)1[+1]).

Proof. The correctness follows from Theorem 5.11.
Step i costs O(

(
N + ((N/e) log q)1[+1]

)
· log q+(N log q)1[+1]) (Theorem 3.2). For

step ii, use Algorithm 5.12 in time O((N log q)2[+1] + NfC(log p)1[+1]). Step iii has
low complexity. �
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5. Computing the exact value of the wild norm residue symbol

In the previous section, we have described an algorithm for computing a sym-
bol which is isomorphic to the norm residue symbol. In this section we explain how
to compute the true value of the residue symbol. These true values are often of im-
portance if one computes local norm residue symbols in the context of global class
field theory. In this section we use the same notation as in section two of the present
chapter. Moreover we put m = pn with n ∈ Z>0.

For x ∈ F ∗, define x∗ ∈ Z∗p by NF/Qp
(x) = x∗pc with x∗ ∈ Z∗p and c ∈ Z.

Proposition 5.17. Let s ∈ Z>0 be maximal such that µps ⊂ F ∗. Let ζps be a
primitive ps-th root of unity. Let x ∈ F ∗. Then m divides ps and one has x∗ ∈ 1+psZp
and

(x, ζps)m = ζ
1−x∗
m

ps .

Finally, there exists y ∈ F ∗ with y∗ ∈ 1 + psZp \ 1 + ps+1Zp.

Proof. By definition we have (x, ζps)m =
φF (x)(m

√
ζps )

m
√
ζps

. As follows from the com-

mutative diagram below [see 17, Chapter 2, Proposition (5.4)], we have φQp
◦NF/Qp

=

Res ◦φF where Res : Gal(F (m
√
ζps)/F ) −→ Gal(Qp(m

√
ζps)/Qp) is the restriction map.

F ∗

NF/Qp

��

φF // Gal(F (m
√
ζps)/F )

Res

��

Q∗p
φQp

// Gal(Qp(m
√
ζps)/Qp)

According to the easy description of φQp
as in [17, Chapter 3, Theorem (4.4)], we

have

(x, ζps)m =
φQp

(NF/Qp
(x))(m

√
ζps)

m
√
ζps

=
(
m
√
ζps
)(x∗)−1−1

= ζ
(x∗)−1−1

m
ps .

Since (x, ζps)m ∈ µm, it follows that x∗ ∈ 1 + psZp. Since ζps is not a p-th power, it
follows that there exists y ∈ F ∗ with y∗ ∈ 1 + psZp \ 1 + ps+1Zp (see Proposition 5.1
(v) with m = p). Furthermore we have (x∗ − 1)2 ≡ 0 mod p2s and so (x∗)2 − x∗ ≡
x∗ − 1 mod p2s. Division by x∗ gives x∗ − 1 ≡ 1 − (x∗)−1 mod p2s and we have
1−x∗
m ≡ (x∗)−1−1

m mod ps. �

By the above proposition we can use y as in the proposition to gauge our iso-
morphic norm residue symbol (Algorithm 5.15). To find a suitable y, it is enough to
compute y∗ for a generating set of F ∗/(F ∗)p as Fp-vector space.

We can finally describe the norm algorithm we need to compute the exact norm
residue symbol. Note that the norm map NO/Zp : O → Zp induces for M ∈ Z≥1 maps

NM : OMe = O/pMO = O ⊗Zp (Zp/p
MZp)→ Z/pMZ.

Algorithm 5.18 (Norm).
Input: x ∈ OMe with M ∈ Z≥1.
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Output: NM (x) ∈ Z/pMZ.
Steps:

i. Compute D = {γiπj : 0 ≤ i < f, 0 ≤ j < e} ⊂ OMe.
ii. Compute A = [·x]D ∈ Matef (Z/pMZ).
iii. Return det(A) ∈ Z/pMZ.

Proposition 5.19. Algorithm 5.18 is correct and has complexity
O((ef)3(log pM )1[+1]).

Proof. The algorithm is obviously correct. Step i and ii costO(ef ·Me(log q)1[+1])
by Theorem 3.2. Step iii costs O((ef)3(log pM )1[+1]). �

Example 5.20. Let F ⊃ Q2 be given by (p, g, h) = (2, X2 + X + 1, Y 2 − (2 +
2X)Y −2X). We have D = {1, γ, π, γπ}. We choose M = 5 and compute N10(1−γπ3).
Using the identities γ2 = −γ − 1 and π2 = (2 + 2γ)π + 2γ we find that

• 1− γπ3 = 1 + 4γ + 6π + 6γπ
• γ(1− γπ3) = −4− 3γ − 6π
• π(1− γπ3) = −12 + π + 16γπ
• γπ(1− γπ3) = −12γ − 16π − 15γπ

This gives the matrix A =


1 4 6 6
−4 −3 −6 0
−12 0 1 16

0 −12 −16 −15

 with det (A) = 613 ≡ 5 mod

32. We have N10(1 − γπ3) ∈ 1 + 4Z2 \ 1 + 8Z2 and so 1 − γπ3 is a suitable element
of F ∗/(F ∗)2 to gauge the isomorphic norm residue symbol of fourth order.

Let us discuss how we can use the above proposition to compute the exact value
of the norm residue symbol.

Algorithm 5.21 (Computing an exact norm residue symbol value).
Input: ON with s ≥ 1 such that µps ⊂ F but µps+1 6⊂ F and N = 2se+ 1, ζps ∈ ON ,

δ ∈ ON where δ is a distinguished unit.
Output: c ∈ Z/psZ such that (π, δ)ps = ζcps .
Steps:

i. Compute Z = {π, δ} ∪ {1− γjπi : (i, j) ∈ T} ⊂ ON where T = {(i, j) ∈ Z2 :
0 ≤ j < f, 1 ≤ i < pe

p−1 , p - i}.
ii. Compute (z, ζps)p for z ∈ Z and let z′ ∈ Z such that (z′, ζps)p 6= 1 (Algo-

rithm 5.15).
iii. Compute z′∗ = (1−N2s(z′))/p

s ∈ (Z/psZ)∗ (Algorithm 5.18).

iv. Compute j ∈ (Z/psZ)∗ such that (z′, ζps)ps = (π, δ)jps (Algorithm 5.15).
v. Return c = z′∗/j.

Proposition 5.22. Algorithm 5.21 is correct and has complexity
O((ef)3[+1](log e)2[+1]).

Proof. The map x 7→ x∗ induces a group homomorphism F ∗/(F ∗)p −→ (1 +
psZp)/(1 + ps+1Zp) that by Proposition 5.17 is non-trivial, and since Z generates
F ∗/(F ∗)p it contains an element z′∗ ∈ (1 + psZp)/(1 + ps+1Zp). From this it follows
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that 1−z′∗
ps /∈ pZp so ζ

1−z∗
p

ps 6= 1 which is, according to Proposition 5.17, equivalent to

(z′∗, ζps)p 6= 1. This explains the second step. Further we remark that in the third
step of the Algorithm working in OM with M = 2s is necessary, because of the
division by ps. With Algorithm 5.15 the integer j ∈ (Z/psZ)∗ is computed for which

(z′∗, ζps)ps = (π, δ)jps . If we combine the results of step iii and step iv it follows that
c = z′∗/j. This proves the correctness

Step i costs O(ef · (N log q)1[+1]) by Theorem 3.2. For step ii we apply Algorithm
5.15 and the cost is O((ef) · ((N log q)2[+1] + NfC(log p)1[+1])). For step iii we use
Algorithm 5.18 and the cost is O((ef)3(log p2s)1[+1]). For Step iv, we use Algorithm
5.15 again. The last step has low complexity. FurthermoreO(N log q) = O(fN log p) =
O(sef log p) = O(fe · log e). The dominating term in the complexity is therefore
O(ef · (N log q)2[+1]) = O((ef)3[+1] · (log e)2[+1]). Note that we have N = 2se + 1 ≥
e/(p− 1) + se+ 1, so we can apply the algorithm. �

Example 5.23. Let F ⊃ Q2 again be given by (p, g, h) = (2, X2 +X + 1, Y 2 −
(2 + 2X)Y − 2X) and let δ = 1 + π4 be our distinguished unit. We compute the true
value of (π, δ)4. In Example 5.20 we computed NF/Qp

(1 − γπ3) = 5 ∈ Z/25Z. From

this it follows that
NF/Qp (1−γπ3)∗−1

4 = 1 and (ζ4, 1− γπ3)4 = ζ4.

The norm residue symbol (ζ4, 1−γπ3)4 can also be computed by Algorithm 5.15
of Chapter 5. We have ζ4 = (1− γπ)−1 · (1− π)2 mod π7 and further with Algorithm
5.15 we obtain (1−γπ, 1−γπ3)4 ↓(π, δ)4 = 1 and (1−π, 1−γπ3)4 ↓(π, δ)4 = 2 (see the
table in Example 6.11). Taking everything together we have (ζ4, 1− γπ3)4 ↓(π, δ)4 =
−1 · 1 + 2 · 2 ≡ 3 mod 4. This gives (π, δ)3

4 = ζ4 and (π, δ)4 = ζ3
4 .

With the above algorithm one can now finally compute the true norm residue
symbol.

Algorithm 5.24 (Wild norm residue symbol).
Input: ON with N ≥ 3(r + 1)e+ 1 and x, y ∈ (F ∗/(F ∗)m)N where m = pn > 0 with
n ≤ r + 1 and r as in Chapter 2.
Output: s ∈ Z≥0 maximal such that µps ⊂ F ; ζps ∈ ON−es where ζps is some

primitive ps-th root of unity; (x, y)m ∈ ON−es if n ≤ s.
Steps:

i. Compute s ∈ Z≥0 and ζps ∈ ON−es (Algorithm 4.23).
ii. If n ≤ s:

• Compute δ ∈ ON where δ is a weakly distinguished unit (Algorithm
4.15).

• Compute j such that (x, y)m = (π, δ)jm (Algorithm 5.15).
• Compute c ∈ Z/psZ such that (π, δ)ps = ζcps (Algorithm 5.21).

• Compute (x, y)m = ζps
jcps−n ∈ ON−es.

iii. Return s, ζps and if n ≤ s the value (x, y)m.

Proposition 5.25. Algorithm 5.24 is correct and has complexity

O((ef)3[+1] · (log e)2[+1] + (r + 1) log p · (N log q)1[+1]).
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Proof. The correctness follows easily. Step i: Algorithm 4.23 costsO((N log q)2[+1]+
NfC(log p)1[+1]). Step ii: Part 1: Note that N ≥ pe/(p − 1) + 1 + er. Algorithm
4.15 costs O((f + log p)(log q)1[+1] + fC(log p)1[+1] + N log q). Part 2: Note that
N − es ≥ 2se + 1. Algorithm 5.15 costs O((N log q)2[+1] + NfC(log p)1[+1]) (we can
replace N by N − es here). Part 3: Note that N ≥ pe/(p − 1) + 1. Algorithm 5.21
costs O((ef)3[+1] · (log e)2[+1]). Part 4: This costs O((r + 1) log p · (N log q)1[+1]) by
Theorem 3.2. �

In the introduction of this thesis we stated the next theorem.

Theorem 5.26. There is a polynomial-time algorithm that, given a prime number
p, a positive integer m and a finite extension F of Qp containing a primitive m-th root
of unity and also given two elements α, β ∈ F ∗/(F ∗)m, computes the norm residue
symbol (α, β)m.

Proof. There are two different cases to distinguish. In the tame case, where
p - m, we have Proposition 5.3, the proof of which is found in [17, Ch.3, section 5],
and Algorithm 5.4. In the wild case, where p | m, we have Theorem 5.11 and the
Algorithms 5.12 and 5.15. The true value of the norm residue symbol in the wild
case is computed with Algorithm 5.24 where we use Proposition 5.17 and Algorithm
5.21. �


