
On the computation of norm residue symbols
Bouw, J.

Citation
Bouw, J. (2021, May 19). On the computation of norm residue symbols. Retrieved from
https://hdl.handle.net/1887/3176464

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3176464

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3176464

Cover Page

The handle https://hdl.handle.net/1887/3176464 holds various files of this Leiden
University dissertation.

Author: Bouw, J.
Title: On the computation of norm residue symbols
Issue Date: 2021-05-19

https://openaccess.leidenuniv.nl/handle/1887/1
https://hdl.handle.net/1887/3176464
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 4

On the structure of the unit group

1. Introduction

Let F be a finite extension of Qp. In this chapter we solve the following problems:

• When is ζp ∈ F ∗?
• What is the maximal s such that µps ⊂ F ∗, and how can we find ζps ∈ F ∗?

We will read off the answer to the first question from u0. To solve the second
problem, we develop the theory of exponential representations. Moreover we will prove
Theorem 1.2 and we introduce the group morphism χ, which plays an important role
in our algorithms to compute the norm residue symbol.

2. Theory

Let F be a finite extension of Qp. We follow the notation of Chapter 2. The
main problem of this section is to determine the structure of U = O∗. The map
k∗ × U1 → U , (c, u) 7→ ω(c)u is an isomorphism (Proposition 2.5i). The finite group
k∗ is cyclic of order q − 1. Furthermore, one easily sees that U1 is a Zp-module

(Proposition 2.5iii). We denote by F an algebraic closure of F and for an integer
n ∈ Z≥1 we set µn = {x ∈ F : xn = 1}. We first detect if there is torsion in U1, or
equivalently, if µp is contained in F .

2.1. Detecting ζp. Recall that u0 ∈ O∗ is defined by p = −u0π
e. Let us look

at the p-th power map

U1 → U1

x 7→ xp.

Take 1 + a ∈ Ui \ Ui+1 with a ∈ mi \mi+1. Then one has:

(1 + a)p − 1 = ap + pap−1 + . . .+ pa.

The terms have valuation pi, e+ (p− 1)i, e+ (p− 2)i, . . . , e+ i and the smallest value
is among pi and e+ i. Note that pi ≤ e+ i iff i ≤ e/(p− 1). Set

ρ(i) = min{pi, e+ i}.

Then for each i ∈ Z≥1 the p-th powering map gives a map Ui −→ Uρ(i), which we
denote by κi. Note that any j ∈ Z≥1 can uniquely be written as j = ρm(i) for some
m ∈ Z≥0 and 1 ≤ i < pe/(p− 1), p - i. For j ∈ Z≥1 we set z(j) = (m, i) if j = ρm(i).

19

20 Chapter 4. On the structure of the unit group

For i ≥ 1 we have the Fp-linear map

τi : Ui/Ui+1 →Uρ(i)/Uρ(i)+1

v 7→vp.

Recall for i ∈ Z≥1 we have Fp-linear isomorphisms σ′i : k → Ui/Ui+1 defined by

c 7→ 1 + ω(c)πi. The above computations give us the following lemma.

Lemma 4.1. For x ∈ k one has

k 3 σ′−1
ρ(i) ◦ τi ◦ σ

′
i(x) =

 xp if i < e/(p− 1)
−u0x if i > e/(p− 1)

xp − u0x if i = e/(p− 1).

From the above lemma we see that τi is an isomorphism of Fp-vector spaces if
i 6= e/(p− 1).

Remark 4.2. Let i > e/(p− 1). One can show that the map

O → Ui

x 7→ exp(πix) =
∑
j≥0

(πix)j/j!

is an isomorphism of Zp-modules, with the inverse given by a logarithm map. It turns
out to be slightly more subtle to understand the group U1, since it might contain
torsion.

Proposition 4.3. Let F ⊃ Qp be a local field. Then the following holds:

i. µp ⊂ F if and only if p− 1 | e and Nk/Fp(u0) = 1.
ii. For all i > e/(p − 1) the p-th powering map κi : Ui −→ Ui+e is an isomor-

phism, and if µp 6⊂ F , then κi is an isomorphism for all i ≥ e/(p− 1)
iii. µp ⊂ F if and only if p− 1 | e and τe/(p−1) has a kernel and a cokernel that

are one-dimensional vector spaces over Fp.
iv. All the maps τi are isomorphisms if and only if µp 6⊂ F .

Proof. (i) If we identify the domain and codomain of τe/(p−1) with k, the cor-
responding map sends x to xp − u0x (Lemma 4.1). The equation Xp − u0X = 0 has
a nonzero solution in k if and only if u0 ∈ (k∗)p−1 if and only if Nk/Fp(u0) = 1. Note
that if ord(ζp − 1) = i, the p-th powering map τi : Ui/Ui+1 −→ Uρ(i)/Uρ(i)+1 gives

τi(ζp) = 1, so τi is not an isomorphism. Hence we have i = e
p−1 and p− 1 | e.

(ii) Let i > e/(p − 1). Then the p-th power map Ui/Ui+1 → Ui+e/Ui+e+1 is an
isomorphism. With induction, one shows that for j > i the map Ui/Uj → Ui+e/Uj+e
is an isomorphism. By taking a projective limit, this shows that κi : Ui → Ui+e is an
isomorphism. If µp 6⊂ F and p− 1 | e, the map κe/(p−1) is an isomorphism so in that
case κi is an isomorphism for all i ≥ e/(p− 1).

2. Theory 21

(iii) One has the following commutative diagram with exact rows, where all ver-
tical maps are p-th powering maps:

1→ Ue/(p−1)+1
//

ψ1

��

Ue/(p−1)
//

ψ2

��

Ue/(p−1)/Ue/(p−1)+1
//

τe/(p−1)

��

1

1→ Upe/(p−1)+1
// Upe/(p−1)

// Upe/(p−1)/Upe/(p−1)+1
// 1.

Note that ψ1 is a bijection by what we have seen before, and that ψ2 has kernel
precisely equal to µp ∩ F . By the snake lemma, we get an isomorphism µp ∩ F →
ker(τe/(p−1)). The result follows.

(iv) From (iii) it follows that τi is not an isomorphism if and only if µp ⊂ F and
i = e

p−1 with p− 1 | e. �

Corollary 4.4. Let m ∈ Z≥1. Write m = pb0c with b0 ∈ Z≥0 and c ∈ Z>0 such
that (c, p) = 1. One has:

i. U1 ⊆ (F ∗)m if b0 = 0.
ii. Assume µp ⊂ F and b0 > 0. Then: UN ⊆ (F ∗)m if N ≥ e

p−1 + b0 · e+ 1.

iii. Assume µp 6⊂ F and b0 > 0. Then: UN ⊆ (F ∗)m if N ≥ e
p−1 + b0 · e.

Proof. (i) Since U1 is a Zp-module and c ∈ Z∗p, one has U1 = U c1 .
(ii) If N ≥ e

p−1 + b0 · e + 1, then N − l · e > e
p−1 if l ≤ b0 and so the p-th

powerings UN−b0·e −→ UN−(b0−1)·e −→ . . . −→ UN are isomorphisms. Therefore we

have UN = Up
b0

N−b0·e ⊂ (F ∗)p
b0

.

(iii) The proof is analogous to the proof of (ii), where we use the p-th powering
map U e

p−1
/U e

p−1 +1 −→ U pe
p−1

/U pe
p−1 +1 which is an isomorphism. The rest follows easily

from Proposition 4.3 and its proof. �

Definition 4.5. Assume µp ⊂ F . An element δ ∈ Upe/(p−1) such that {δ} is
a basis for the cokernel of τe/(p−1) is called a distinguished unit. Equivalently, δ is a

distinguished unit if δ ∈ Upe/(p−1)/Upe/(p−1)+1 satisfies

δ 6∈ im
(
τe/(p−1)

)
(Proposition 4.3), which is equivalent to the definition given in the introduction.

Example 4.6. Let the field F ⊃ Q2 be given by the triple (p, g, h) = (2, X2 +
X + 1, Y 2 − (2 + 2X)Y − 2X). Let us first compute u0. One has

π2

(1 + γ)π + γ
= 2.

Hence u0 = −1/γ = 1 + γ. The map τe/(p−1) is essentially given by F4 → F4,

x 7→ x2− (1 + γ)x. The image under this map is {0, γ}. Hence, δ = 1− π4 (or 1 + π4)
is a distinguished unit.

22 Chapter 4. On the structure of the unit group

2.2. Exponential representation and roots of unity. We will now discuss
how to compute primitive p-th power roots of unity. We will introduce the so-called
exponential representation for this purpose. With our application to the norm residue
symbol in mind, we restrict ourselves to a special case (in the formulas below, we
restrict to ω(b) for b ∈ B, with B = {1, γ, . . . , γf−1}, but other choices also work).

Let π′ be a prime element of F . For i with 1 ≤ i < pe/(p− 1), p - i set

Tπ′,i = {1− ω(b)π′i : b ∈ B} ⊆ Ui.

One easily sees that Tπ′,i is a basis of Ui/Ui+1 over Fp. Set

Tπ′ =
⋃

i: 1≤i<pe/(p−1), p-i

Tπ′,i.

Assume, until the next lemma, that µp ⊂ F and let δ be a distinguished unit.
Set

Tπ′,δ = {δ} t Tπ′ .

Recall that r ∈ Z≥0 is defined by pr || e/(p − 1). Note that T p
r+1

π′,e/(pr(p−1)) in the

quotient group Upe/(p−1)/Upe/(p−1)+1 is dependent over Fp and spans a subspace of
codimension 1, by Proposition 4.3 and the discussion before this proposition. Fur-

thermore, T p
r+1

π′,e/(pr(p−1)) ∪ {δ} spans Upe/(p−1)/Upe/(p−1)+1 over Fp. For b ∈ B set

wb = 1− ω(b)π′e/(p
r(p−1)). Let b′ ∈ B such that

Sπ′,δ,b′ =
(
Tπ′,e/(pr(p−1)) \ {wb′}

)pr+1

t {δ}

is a basis of Upe/(p−1)/Upe/(p−1)+1 over Fp. We call (π′, δ, b′) a distinguished triple.

Lemma 4.7. Let t ∈ Z≥1 and consider the Zp-module M = Ztp/bZp for some

b ∈ Ztp, b 6= 0. Let s be maximal such that b ∈ ps ·Ztp. Then one has M ∼= Zt−1
p ⊕Mtor

as Zp-modules with Mtor = (b/ps)Zp/bZp ∼= Z/psZ.

Proof. Left as an exercise. �

Proposition 4.8.

i. Assume µp 6⊂ F . Let π′ be a prime element. Then the map

ϕπ′ : ZTπ′p → U1

(at)t∈Tπ′ 7→
∏
t∈Tπ′

tat

is an isomorphism of Zp-modules.
ii. Assume that µp ⊂ F . Let π′ be a prime element and let δ be a distinguished

unit. Then the map

ϕπ′,δ : Z
Tπ′,δ
p → U1

(at)t∈Tπ′,δ 7→
∏

t∈Tπ′,δ

tat

2. Theory 23

is surjective Zp-linear and the kernel is of the form bZp for some b ∈ pZTπ′,δp .
The largest integer s such that µps ⊂ F is equal to the largest integer s with

b ∈ psZTπ′,δp , and ϕπ′,δ(b/p
s) is a primitive ps-th root of unity.

More specifically, let (π′, δ, b) be a distinguished triple. Set

Ab′ = {(at)t∈Tπ′,δ ∈ Z
Tπ′,δ
p , awb′ ∈ Z, 0 ≤ awb′ < pr+1}.

Then ϕπ′,δ|Ab′ is a bijection Ab′ 7→ U1, say with inverse ψ, and one can take

b = ψ(wp
r+1

b′)− pr+1ψ(wb′).

Proof. One easily sees that both maps are well-defined, because U1 is a Zp-
module. Recall for j ∈ Z≥1 we set z(j) = (m, i) if j = ρm(i).

i: For any j ∈ Z≥1 with z(j) = (m, i) we define

Tπ′,j = T p
m

π′,i.

Note that Tπ′,j is a basis of Uj/Uj+1, because the p-th powering maps are all iso-
morphisms. Hence one easily sees that any x ∈ U1 can be written uniquely as
x =

∏∞
i=1

∏
t∈Tπ′,i

tat with at ∈ {0, 1, . . . , p − 1}. If one reorders this description,

one gets a unique way of writing x =
∏
t∈Tπ′

ta
′
t with a′t ∈ Zp.

ii: Fix a distinguished triple (π′, δ, b′). We define for j ∈ Z≥1

Tπ′,δ,b′,j =

{
Sp

m

π′,δ,b′ if j = pe/(p− 1) +me (m ∈ Z≥0),

T p
m

π′,i else, where z(j) = (m, i).

By construction, for j ∈ Z≥1, the set Tπ′,δ,b′,j is a basis of Uj/Uj+1 over Fp. One can
follow the same proof as for i, and after grouping one gets a unique way of writing
x ∈ U1 as x =

∏
t∈Tπ′,δ

ta
′
t with a′t ∈ Zp and 0 ≤ a′wb′ < pr+1. Furthermore, one can

write wp
r+1

b′ = w
c′w
b′

b′
∏
t∈Tπ′,δ, t 6=wb′

tb
′
t such that c′wb′ ∈ Z and 0 ≤ c′wb′ < pr+1. Since

our previous way of writing was unique, this gives the generating relation b = (b′t)Tπ′,δ
with b′wb′ = c′wb′ − p

r+1. The result follows from Lemma 4.7. �

Definition 4.9. Let x ∈ U1.
Assume first that µp 6⊂ F . Let π′ be a prime element. The sequence a =

(at)t∈Tπ′ ∈ Z
Tπ′
p such that

x =
∏
t∈Tπ′

tat = ϕπ′(a)

is called the exponential representation of x with respect to π′.
Assume µp ⊂ F and let (π′, δ, b′) be a distinguished triple. The sequence a =

(at)t∈T(π′,δ) ∈ Z
T(π′,δ)
p with awb′ ∈ {0, 1, . . . , p

r+1 − 1} and

x =
∏

t∈Tπ′,δ

tat = ϕπ′,δ(a)

is called the exponential respresentation of x with respect to (π′, δ, b′).

24 Chapter 4. On the structure of the unit group

Definition 4.10. For x ∈ U1 and N ∈ Z≥1 we set

µ(x,N) = min{i ∈ Z≥0 : xp
i

∈ UN}.

Assume that µp 6⊂ F . Let (at)t∈Tπ′ be the exponential representation of x with

respect to π′. We define the exponential representation of x ∈ ON ∩ U1 with respect
to π′ to be

(at mod pµ(t,N))t∈Tπ′ .

Assume that µp ⊂ F . Let (at)t∈Tπ′,δ be the exponential representation with

respect to (π′, δ, b′). We define the exponential representation of x ∈ U1 where U1 is
the image of U1 in ON = O/mN , with respect to (π′, δ, b′), to be

(at mod pµ(t,N))t∈Tπ′,δ .

One has x =
∏
t t
at mod pµ(t,N)

∈ ON , and this is the unique representation of x
with the given restrictions (together with the restriction on awb′ in the second case).
Furthermore, in the second case, if N ≤ pe/(p−1), the representation does not depend
on δ and b′.

Definition 4.11. Let s be maximal such that µps ⊂ F ∗. Assume s ≥ 1. Let π′

be a prime element of F and let δ be a distinguished unit. Let T = Tπ′,δ. Let x ∈ F ∗.
By Corollary 2.6 and Proposition 4.8ii one can write

x = (−π′)v(x)ω(c)
∏
t∈T

tat ,

with c ∈ k∗, at ∈ Zp, and (at)t∈T ∈ ZTp is unique modulo bZp (as in Proposition 4.8),

and in particular modulo ps · ZTp . We set

χ(x;π′, δ) = (aδ mod ps) ∈ Z/psZ,

which is uniquely determined (Proposition 4.8). This gives us a group morphism

χ(·;π′, δ) : F ∗ → Z/psZ.

In Lemma 5.6 of the next Chapter it will become clear that the morphism χ(·;π′, δ)
plays an important part in the computation of the norm residue symbol.

Remark 4.12. In the next section, we give algorithms to efficiently compute
ζps ∈ U1. Computing ζq−1 is much harder. For this one needs to work in the residue
field k and compute a primitive root. No deterministic polynomial time algorithm is
known for this.

3. Algorithms

In this section we discuss the complexity of the algorithms accompanying the
theory discussed in the previous sections. The constant C, occurring in the runtime
of our algorithms, is the linear algebra constant from Remark 3.11.

3. Algorithms 25

Algorithm 4.13 (µp detection).
Input: ON with N = e+ 1.
Output: True if µp ⊂ F and False otherwise.
Steps:

i. If p− 1 - e return False and terminate.
ii. Compute u0 ∈ k∗.
iii. Compute the matrix of A = [·u0]B ∈ Matf (Fp).
iv. Compute det(A) ∈ Fp.
v. If det(A) = 1 output True, and output False otherwise.

Proposition 4.14. Algorithm 4.13 is correct and its complexity is O(e log q +
f(log q)1[+1] + fC(log p)1[+1]) with C as in Remark 3.11.

Proof. The correctness follows from Proposition 4.3. Step i takes time O(log e ·
log p). Step ii takes time O(e log q+(log q)1[+1]) and step iii takes time O(f(log q)1[+1])
(Theorem 3.2). Step iv takesO(fC(log p)1[+1]). This gives the required complexity. �

Algorithm 4.15 (Distinguished unit).
Input: ON for N ≥ pe/(p− 1) + 1 such that µp ⊂ F .

Output: δ ∈ ON , where δ is a distinguished unit.
Steps:

i. Compute u0 ∈ k∗.
ii. Compute A = [x 7→ xp − u0x]B ∈ Matf (Fp).
iii. Compute c ∈ k which generates the cokernel of A over Fp.

iv. Compute r0 = 1 + (c/−u0
j
)πpe/(p−1) ∈ Ope/(p−1)+1 where j = 1 if p 6= 2

and j = 2 when p = 2.
v. Return a lift δ̄ of r0 to ON .

Proposition 4.16. Algorithm 4.15 is correct and its complexity is
O((f + log p)(log q)1[+1] + fC(log p)1[+1] +N log q).

Proof. The correctness follows from Proposition 4.8 and the discussion before
this proposition. For step iv, note that if p > 2, one has

πpe/(p−1) = πeπe/(p−1) = (−p/u0)πe/(p−1) = (−1/u0)πpe/(p−1).

Similarly, if p = 2, one finds πpe/(p−1) = p2/(u0)2 = πpe/(p−1)/u
2
0. This gives us

δ = 1 + c · πpe/(p−1) = 1 + (c/−u0
j
)πpe/(p−1) ∈ Ope/(p−1)+1

where j = 1 if p 6= 2 and j = 2 when p = 2. Moreover δ is a distinguished unit and is
computed by the algorithm mod πpe/(p−1)+1.

Step i costs O(N log q + (log q)1[+1]) (Theorem 3.2 by computing u0 for N −
e = 1). Step ii costs O((f + log p)(log q)1[+1]) (Theorem 3.2). The third step costs
O(fC(log p)1[+1]) by Remark 3.11. Step iv costs O(N log q+ (log q)1[+1]) by Theorem
3.2. Step v costs O(N log q) by Theorem 3.2. �

Algorithm 4.17 (Distinguished triple).
Input: ON for N ≥ pe/(p− 1) + 1 such that µp ⊂ F and π′ ∈ ON where π′ is a prime

26 Chapter 4. On the structure of the unit group

element.
Output: b′ ∈ B and δ ∈ ON such that (π′, δ, b′) is a distinguished triple as defined in
section 2.2 of the present chapter.
Steps:

i. Compute δ ∈ ON (Algorithm 4.15).
ii. Compute u0 ∈ k∗.
iii. Compute A = [x 7→ xp − u0x]B ∈ Matf (Fp).
iv. Compute B = [x 7→ xp]B ∈ Matf (Fp)
v. Compute D = ABr mod f .

vi. Compute the kernel of D, and b′ ∈ B occurring with a non-zero coefficient
in a generator of the kernel of D and return b′ and δ.

Proposition 4.18. Algorithm 4.17 is correct and its complexity is O(N log q +
(f + log p)(log q)1[+1] + fC(log p)1[+1]).

Proof. The correctness follows from the discussion before Proposition 4.8 and
the fact that B has order f .

Step i costs O((f + log p)(log q)1[+1] + fC(log p)1[+1] + N log q). Step ii costs
O(N log q + log q1[+1]) (Theorem 3.2). The total cost of the steps iii and iv is O((f +
log p)(log q)1[+1]) according to Theorem 3.2. Step v requires the computation of the
integer r and of r mod f and this can be done in time O(e·(log p+log f)) < O(N log q).
The computation of D costs O(fC · (log p)1[+1]). Step vi costs O(fC(log p)1[+1]) by
3.11. �

Remark 4.19. Optionally, one can as input have δ ∈ ON and skip the first step
of Algorithm 4.17. The complexity remains the same.

We will now discuss algorithms to compute the exponential representation. One
can come up with algorithms with various complexities, and we have chosen ones
which work well if q is large. Furthermore, to simplify the descriptions, we assume
that N > pe/(p− 1). The algorithms below can easily be adjusted to work for all N .

Algorithm 4.20 (Exponential representation 1).
Input: ON with N > pe/(p− 1) such that µp 6⊂ F and x ∈ ON ∩ U1, π′ ∈ ON where
π′ is a prime element.
Output: the exponential representation of x with respect to π′.
Steps:

i. Compute π′i ∈ ON for i = 1, 2, . . . , N − 1.
ii. Compute ti,b = 1− ω(b)π′i ∈ ON for 1 ≤ i < pe/(p− 1), p - i and b ∈ B and

set ai,b = 0 ∈ Z.

iii. For 1 ≤ j < N and b ∈ B compute tj,b = tp
m

i,b ∈ ON where z(j) = (m, i) .
iv. Set x1 = x.
v. For j = 1, . . . , N − 1 do:

• Write z(j) = (m, i).

• Compute c ∈ k such that xj = 1 + ω(c)π′j ∈ Oj+1.

• Compute cb ∈ k for b ∈ B such that tj,b = 1 + ω(cb)π′j ∈ Oj+1.
• Write c =

∑
b∈B dbcb with 0 ≤ db < p.

3. Algorithms 27

• Replace ai,b by ai,b + pmdb for b ∈ B.

• Set x′j =
∏
b∈B t

db
j,b.

• Set xj+1 = xj/x
′
j ∈ ON ∩ Uj+1.

vi. Return all ai,b (the weight corresponding to ti,b).

Algorithm 4.21 (Exponential representation 2).
Input: ON with N > pe/(p− 1) such that µp ⊂ F and x ∈ ON ∩ U1, π′, δ ∈ ON and
b′ ∈ B such that (π, δ, b′) is a distinguished triple.
Output: the exponential representation of x with respect to (π′, δ, b′).
Steps:

i. Compute π′i ∈ ON for i = 1, 2, . . . , N − 1.
ii. Compute ti,b = 1− ω(b)π′i ∈ ON for 1 ≤ i < pe/(p− 1), p - i and b ∈ B and

set ai,b = 0 ∈ Z.

iii. For 1 ≤ j < N and b ∈ B with z(j) = (m, i) compute tj,b = tp
m

i,b ∈ ON .

iv. Compute δ
pi ∈ ON for i = 1, . . . , bN/ec and set aδ = 0.

v. Set x1 = x.
vi. For j = 1, . . . , N − 1 do:

• Write z(j) = (m, i).

• Compute c ∈ k such that xj = 1 + ω(c)π′j ∈ Oj+1.

• Compute cb ∈ k for b ∈ B such that tj,b = 1 + ω(cb)π′j ∈ Oj+1.
• If j = pe/(p− 1) + el for some l ≥ 0:

– Compute c′ ∈ k such that δ
pl

= 1 + ω(c′)π′j ∈ Oj+1.
– Write c = d′c′ +

∑
b∈B,b 6=b′ dbcb with 0 ≤ db, d′ < p.

– Replace ai,b by ai,b + pmdb for b ∈ B, b 6= b′ and replace aδ by
aδ + pld′.

– Set x′j =

(
δ
pl
)d′
·
∏
b∈B,b6=b′ t

db
j,b

Else:
– Write c =

∑
b∈B dbcb with 0 ≤ db < p.

– Replace ai,b by ai,b + pmdb for b ∈ B.

– Set x′j =
∏
b∈B t

db
j,b.

• Set xj+1 = xj/x
′
j ∈ ON ∩ Uj+1.

vii. Return all ai,b (the weight corresponding to ti,b) and aδ (the weight corre-

sponding to δ).

Proposition 4.22. Algorithm 4.20 and Algorithm 4.21 are correct and both their
complexities are O((N log q)2[+1] +NfC(log p)1[+1]).

Proof. Let us discuss the complexity of Algorithm 4.20. The analysis of Algo-
rithm 4.21 is similar. The correctness follows from Proposition 4.8.

Step i: Requires O(N · (N log q)1[+1]) (Theorem 3.2).
Step ii: Requires at most O(ef) multiplications and additions in ON in time

O(ef · (N log q)1[+1]) by Theorem 3.2. Furthermore, it requires us to compute ω(γ) ∈
ON in time O((N + (N/e log q)1[+1]) log q) by Theorem 3.2.

28 Chapter 4. On the structure of the unit group

Step iii: Requires at most fN log p multiplications in ON in time O(fN log p ·
(N log q)1[+1]) by Theorem 3.2.

Step iv: No added complexity.
Step v: This step requires analysis, and is done N times. Part 1 is easy. Part 2

costs O(N log q+ (log q)1[+1]) (Theorem 3.2). Part 3 costs O(fN log q+ f(log q)1[+1])
(Theorem 3.2). Part 4 is linear algebra over Fp and takes time O(fC(log p)1[+1]). Part
5 has a small complexity. Part 6 requires O(f log p) multplications in time O(f log p ·
(N log q)1[+1] (Theorem 3.2). Step 7 requires O((N log q)1[+1]) (Theorem 3.2).

Step vi: No added complexity.
�

Algorithm 4.23 (ps-th primitive root of unity).
Input: ON with N > e, and N ≥ pe/(p− 1) + 1 + er if p− 1 | e.
Output: largest s ∈ Z≥0 such that µps ⊂ F , and ζps ∈ ON−es where ζps is a primitive
ps-th root of unity.
Steps:

i. Check if µp ⊂ F (Algorithm 4.13). If no, output s = 0 and ζ1 = 1 ∈ ON and
terminate.

ii. Compute π, δ ∈ ON and b′ ∈ B such that (π, δ, b′) is a distinguished triple
(Algorithm 4.17).

iii. Compute the exponential representation (at)t∈Tπ′,δ,b′ of wb′
pr+1

with respect

to (π′, δ, b′) (Algorithm 4.21).
iv. Let s be maximal such that ps|at for all t.

v. Compute ζps =

∏
t∈T

π′,δ,b′
t
at/p

s

wb′
pr+1/ps

∈ ON−es.
vi. Return s and ζps ∈ ON−es.

A slight variation gives us smaller order roots of unity.

Algorithm 4.24 (pn-th primitive root of unity).
Input: m = pn > 1, ON with N ≥ e/(p− 1) + ne+ 1.
Output: If µpn ⊂ F output YES and ζpn ∈ ON−en. Otherwise, output NO.
Steps:

i. If n > r + 1, output NO and terminate.
ii. Check if µp ⊂ F (Algorithm 4.13). If no, output NO and terminate.

iii. Compute π, δ ∈ ON and b′ ∈ B such that (π, δ, b′) is a distinguished triple
(Algorithm 4.17).

iv. Compute the exponential representation (at)t∈Tπ′,δ,w of wb′
pr+1

with respect

to (π′, δ, b′) (Algorithm 4.21).
v. If not at ≡ 0 (mod pn) for all t, output NO and terminate.

vi. Compute ζpn =

∏
∈T
π′,δ,b′

t
at/p

n

wb′
pr+1/pn

∈ ON−en.

vii. Return YES and ζpn ∈ ON−en.

Proposition 4.25. Algorithm 4.23 and Algorithm 4.24 are correct and their
complexity is O((N log q)2[+1] +NfC(log p)1[+1]).

3. Algorithms 29

Proof. We will only discuss Algorithm 4.23, the other algorithm is similar.
Note that we know s ≤ r + 1, by looking at the ramification. The correctness

follows from Proposition 4.8. Let us briefly discuss why the input needs to be in
such high precision, and why we lose precision in the output. We need to compute

the exponential representation of wp
r+1

b′ , all coefficients modulo pr+1. The ‘hardest’
coefficient is the one for δ, which requires us to work in Upe/(p−1)+re, i.e., to work
in ON with N ≥ pe/(p − 1) + 1 + er. Note also that after dividing by ps, we get
the exponential representation of ζ in ON−es (note that ON also does not have more
information about the precise value of ζps).

Let us discuss the complexity of the various steps.
Step i: Algorithm 4.13 takes O(e log q + fC(log p)1[+1] + f(log q)1[+1] +N log q),

where the last term relates to getting Oe+1 from ON .
Step ii: Algorithm 4.17 has complexity

O(N log q + (f + log p)(log q)1[+1] + fC(log p)1[+1]).
Step iii: Algorithm 4.21 has complexity O((N log q)2[+1] +NfC(log p)1[+1]).
Step iv: Smaller complexity than step iii.
Step v: Has a small complexity dominated by O((N log q)2[+1]).
Hence step ii and iii dominates the complexity and the result follows.

�

Theorem 4.26. There is a polynomial-time algorithm that, given a prime number
p, a positive integer N given in unary, a finite extension F of Qp in precision N and
a positive integer n, with N ≥ e

p−1 + ne+ 1, decides whether F contains a primitive

pn-th root of unity and if so, computes such a root of unity in precision N−e·n ∈ Z>0.

Proof. We have Algorithm 4.24 and Proposition 4.25 with its proof and we are
done.

�

Example 4.27. We give an example of the computation of primitive roots of
unity. Let F ⊃ Q2 be given by the triple (p, g, h) = (2, X2 +X + 1, Y 2− (2 + 2X)Y −
2X). We have e = 2, f = 2 and q = 4. The element γ is a zero of g and the prime
element π is a zero of h(γ, Y). The group U1 is generated as a Z2-module by the
elements of {δ, 1−π, 1−γπ, 1−π3, 1−γπ3} with δ = 1 +π4 a distinguished unit (see
Example 4.6). We have F ∗ = πZ · µ3 · U1 with µ3 = {1, γ, γ2}, the group of roots of
unity of order pf − 1 = 3 and ω(γj) = γj for all j ∈ {0, 1, 2}. Let 2k with k ∈ Z>0 be
the maximum 2-power order of roots of unity contained in F , then k ≤ 1 + ordpe = 2.
We choose the precision N = e/(p− 1) + 2e+ 1 = 7 and apply Algorithm 4.23. With
Algorithm 4.17 we compute b′ = γ, so wb′ = 1− γ · π, and (π, δ, γ) is a distinguished
triple. Next we compute the exponential representation of wb′

4 with respect to (π, δ, γ)
and find (1−γ ·π)4 ≡ (1−π)8 mod π7. It follows that (1−γ ·π)−4 ·(1−π)8 ≡ 1 mod π7.
We have a1,1 = 8 and a1,γ = aδ = 0. So F contains a primitive fourth root of unity
and ζ4 ≡ (1− γ · π)−1 · (1− π)2 mod π3 or ζ4 ≡ 1 + γ · π + γ · π2 mod π3. Note that
the result is given in precision N = 7− 2 · 2 = 3.

