
On the computation of norm residue symbols
Bouw, J.

Citation
Bouw, J. (2021, May 19). On the computation of norm residue symbols. Retrieved from
https://hdl.handle.net/1887/3176464
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3176464
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3176464


 
Cover Page 

 
 

 
 
 

 
 
 

The handle https://hdl.handle.net/1887/3176464  holds various files of this Leiden 
University dissertation. 
 
Author: Bouw, J. 
Title: On the computation of norm residue symbols 
Issue Date: 2021-05-19 
 
 

https://openaccess.leidenuniv.nl/handle/1887/1
https://hdl.handle.net/1887/3176464
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 3

A computational model for local fields

1. Introduction

Let F be a finite extension of Qp. This is an uncountable field and hence it is
not obvious how to do arithmetic in such a field. Just as in the field R, we need to
work with a ‘precision’ to make all our computations take place in finite sets. In this
chapter, we answer the following questions:

• How can one represent F with a finite amount of data?
• How can one represent elements of F in a finite precision?
• How can one do basic arithmetic in F?

We answer the above questions, and compute bit complexities for many of the basic
algorithms. In the next section, we discuss the main results. One can use these results
as a black box for local fields. In the final section we answer the above questions.

In this chapter, we follow the notation of Chapter 2.

2. Main results

We will now discuss the conventions regarding the complexity of certain algo-
rithms. The complexity of the algorithms below is given in bit complexity (not in
terms of field operations in say Fp). We usually use the big O notation, in the pa-

rameters e, f , p and N . We also use the Õ notation as follows: here h′ ∈ Õ(h) means
that there is an integer s such that h′ ∈ O(h · (log h)s). In this thesis we use the fol-
lowing convention for complexity. If we write that the complexity is O((N log q)1[+1])
(or briefly just (N log q)1[+1] in the tables below), it means that the complexity is

O((N log q)2) and also Õ(N log q). The faster complexity is usually obtained by using
fast arithmetic.

Let F be a field, and D a basis of a finite dimensional vector space V over F. If
T : V → V is a linear map, we denote by [T ]D the matrix of T with respect to the
basis D. Furthermore, if x ∈ V we denote by [x]D the coordinates of x with respect
to the basis D. Finally, if c ∈ O1 we denote by [·c]B the matrix of the linear map
·c : O1 → O1 with x → c · x with respect to the basis B. The ring of n × n matrices
over a ring R is denoted by Matn(R).

Definition 3.1. Let F be a local field and let N ∈ Z≥1. A model of F in precision
N is a finite sequence of bits that specifies the ring ON , together with a representation
of its elements; such a representation is defined to be a bijection from a set of finite
sequences of bits to ON .

9



10 Chapter 3. A computational model for local fields

We remark that all O-constants are absolute, in particular independent of F and
N .

Theorem 3.2. For every local field F and N ∈ Z≥1 there is a model of F in
precision N such that the length of the sequence of bits that specifies ONand the lengths
of the sequences of bits that represent its elements are O(N log q), and such that one
has the following algorithms for basic arithmetic:

Algorithm Input Output Complexity
Addition ON , x, y ∈ ON x+ y ∈ ON N log q

Subtraction ON , x, y ∈ ON x− y ∈ ON N log q

Multiplication ON , x, y ∈ ON x · y ∈ ON (N log q)1[+1]

Powering ON , x ∈ ON , xr ∈ ON log(r + 2)·
r ∈ Z≥0 (N log q)1[+1]

Inversion ON , x ∈ O∗N 1/x ∈ ON (N log q)1[+1]

Division ON , x ∈ ON , x/y ∈ ON (N log q)1[+1]

y ∈ O∗N
Equality ON , x, y ∈ ON

{
True if x = y
False if x 6= y

N log q

Unit? ON , x ∈ ON
{

True if x ∈ O∗N
False if x 6∈ O∗N

N log q

One can obtain constants as follows:

Algorithm Input Output Complexity
0, 1, π, γ ON 0, 1, π, γ ∈ ON N log q
p, f,N ON p, f,N N log q

N > e? ON
{

True if N > e
False if N ≤ e N log q

e ON with N > e e N log q
OM ON , M ≤ N OM N log q

Additionally, one has the following algorithms:

Algorithm Input Output Complexity
Reducing ON , x ∈ ON , M ≤ N OM , x ∈ OM N log q
Lifting M ≥ N , OM , ON x′ ∈ OM M log q

x ∈ ON with x′ = x

σ−1
N−1 ON with N ≥ 2, O1, σ−1

N−1(x) ∈ O1 N log q

x ∈ ON ∩ UN−1

σN−1 ON with N ≥ 2, c ∈ O1 σN−1(c) ∈ ON N log q
u0 ON with N > e ON−e, u0 ∈ ON−e N log q+

((N − e) log q)1[+1]

Teichmüller ON , c ∈ O1 ω(c) ∈ ON
(
N + ((N/e) log q)1[+1]

)
·

log q

Furthermore, one has the following algorithms regarding k = O1:



3. Representing local fields 11

Algorithm Input Output Complexity
[x]B O1, x ∈ O1 (ab)b∈B ∈ Ffp log q

s.t. x =
∑
b∈B abb

[·c]B O1, c ∈ O1 [·c]B ∈ Matf (Fp) f(log q)1[+1]

[x 7→ xp]B O1 [x 7→ xp]B ∈ Matf (Fp) (f + log p)(log q)1[+1]

The proof of the above theorem can be found in Section 4.

Remark 3.3. Given a model ON , it is not the case that we can reconstruct F
up to isomorphism. For example, if N ≤ e the ring ON can come from different fields
with different e. If N is big enough, then at least the isomorphism class of the field
F is uniquely determined (Lemma 3.6). Hence properties of F can be read off from
ON for large enough N .

Let us explain how we handle the non-uniqueness of F in certain algorithms. One
of the algorithms outputs u0 ∈ ON−e, when given ON with N > e as input. Note
that in this specific algorithm, we lose some precision. This means that our algorithm
computes u0, and that the answer does not depend on the possible choice of F giving
rise to ON .

Remark 3.4. Once we can work with the ringsON , we can also work with F ∗/UN
for any N ∈ Z≥1 as follows. By Corollary 2.6 one has F ∗/UN ∼= Z×O∗N ∼= Z× k∗ ×
U1/UN . Furthermore, we have an inclusion U1/UN → ON . If x = πMω(c)v (mod UN )
corresponds to the (M, c, v), and y corresponds to (M ′, c′, v′), then xy corresponds
to (M + M ′, cc′, vv′). The complexity of various operations, such as multiplication,
now directly follows from the complexity of the operations in Theorem 3.2. With
operations like addition, one has to be careful, since precision might be lost. Later in
this thesis we usually work in quotients F ∗/(F ∗)m, which are actually finite groups
and hence we will not spend too much time on working out complexities for F ∗/UN .

3. Representing local fields

In this section we explain which data are used to represent a local field, and
this will later motivate our construction for representing ON . We make use of two
propositions, the first of which reads as follows.

Proposition 3.5. Let p be a prime number, e and f positive integers and let
g ∈ Zp[X] and h ∈ Zp[X,Y ] be polynomials with the following properties.

i. g is monic in X of degree f and irreducible modulo p.

ii. h has the form

h = Y e +

f−1∑
j=0

e−1∑
i=0

hijX
jY i

with hij ∈ pZp for all i, j and h0j /∈ p2Zp for at least one j.

Then F = Qp[X,Y ]/(g, h) is a field, and F/Qp has ramification index e and residue
class degree f and E = Qp[X]/(g) is the largest unramified subfield of F . One has

OE = Zp[X]/(g) and OF = Zp[X,Y ]/(g, h). Finally, set γ = X and π = Y . Then π



12 Chapter 3. A computational model for local fields

is a prime element of F and B = {1, γ, . . . , γf−1} forms a basis of the residue field of
F over Fp.

Proof. The ideal (g) is a prime ideal in Qp[X] because g is irreducible modulo
p. It follows that E = Qp[X]/(g) is a field. This field E is an unramified extension of
Qp of degree f (see [24, section 3.2, Theorem 3–2–6]. The field E has OE = Zp[γ] ∼=
Zp[X]/(g) as its ring of integers (see [24, Ch. 3, section 3–2, Theorem 3–2–6(ii)]). The
polynomial h(γ, Y ) ∈ E[Y ] is an Eisenstein polynomial, so F = E[Y ]/(h) is a field.
The field extension F/E is totally ramified of degree e (see [24, Theorem 3–3–1]).
The field F has OF = OE [π] = Zp[γ, π] as ring of integers (see [24, Ch. 3, Corollary
3–3–2]). So we have OF = Zp[X,Y ]/(g, h). Finally, π is a prime element of F (see
[24, Ch. 3, section 3-3, Theorem 3–3–1(ii)]). The last statement follows easily (see
[24, Ch. 3, Theorem 3-2-6]). �

We will now show that any local field F can be represented as in Proposition
3.5, and that we can make the defining coefficients small. Before we state and prove
the second proposition we treat a lemma. We will alter apply the lemma below to
E = Qp[X]/(g) from Proposition 3.5.

Lemma 3.6. Suppose the field E is an unramified extension of Qp and h1 and
h2 are monic Eisenstein polynomials of degree e in OE [Y ] where OE is the ring of
integers of E. Suppose further that l is the largest positive integer such that pl | (p·e)2.
Then, if pl | h1 − h2, we have E[Y ]/(h1) ∼= E[Y ]/(h2).

Proof. Suppose π ∈ E, an algebraic closure of E, is a zero of the polynomial
h1. Since h1 is Eisenstein, π is a prime element of E(π).

First we will prove that ordE(π)h2(π) > 2 · ordE(π)h
′
2(π) where h′2 denotes the

derivative of h2. Since pl | h1 − h2, we have

ordE(π)h2(π) = ordE(π)(h2 − h1)(π) ≥ e · l.

Further we have

ordE(π)h
′
2(π) ≤ ordE(π)(e · πe−1),

because all terms of h′2(π) that are unequal to zero have different valuations. Hence
we have

2 · ordE(π)h
′
2(π) ≤ 2e · ordp(e) + 2(e− 1)

< 2e · (ordp(e) + 1) = 2e · ordp(pe)

= e · l ≤ ordE(π)h2(π).

With Newton’s method and π as initial value we can now compute a zero π∗ of
h2 in E(π) (see [24, section 3-1]). We have E(π∗) ⊂ E(π). Because the polynomials
h1 and h2 are irreducible of the same degree, we conclude that the field extensions
E(π)/E and E(π∗)/E have the same degree too. So E(π) = E(π∗). This proves the
assertion. �

The second proposition gives not only the converse of Proposition 3.5 but also
includes the statement that we may choose the coefficients of g and h from a bounded
interval in Z instead of from Zp.



3. Representing local fields 13

Proposition 3.7. Let p be a prime number and F a finite extension of Qp with
ramification index e and residue class degree f . Suppose l is the largest positive integer
for which pl divides (pe)2. Then there exist polynomials g ∈ Z[X] and h ∈ Z[X,Y ]
such that

i. g is monic in X of degree f and irreducible modulo p, and the coefficients gi
of g satisfy 0 ≤ gi ≤ p− 1,

ii. h has the form

h = Y e +

f−1∑
j=0

e−1∑
i=0

hijX
jY i

with hij ∈ pZ and 0 ≤ hij ≤ pl − 1 for all i, j, and h0j /∈ p2Z for at least
one j,

iii. F ∼= Qp[X,Y ]/(g, h).

Proof. Let g =
∑f
i=0 giX

i ∈ Zp[X] of degree f which is irreducible modulo p
and satisfies condition (i) (such g exists by the theory of finite fields). It is well known
that the maximal unramified subextension E of F is isomorphic to Qp[X]/(g). Fix
such an isomorphism. Then pick a prime element π of F and note that E(π) = F .
Consider the minimum polynomial of π over E, viewed over Qp[X]/(g). This minimum
polynomial h is an Eisenstein polynomial of the form as in (ii), except that the hij are
in pZp. Apply Lemma 3.6 to replace h with a polynomial of the required form. �

Examples 3.8. The following example of a field F illustrates how we present a
field. Let F ⊃ Q2 be the field given by the triple (p, g, h) = (2, X2 +X + 1, Y 2− (2 +
2X)Y − 2X). We denote the unramified part of F by E = Q2(γ), where γ is a zero
of g(X) = X2 + X + 1. If we adjoin a zero of the Eisenstein polynomial h(γ, Y ) to
E we obtain our field F , which is a totally ramified extension of E. Throughout this
thesis we give examples where F is the field from this example.

If we choose a prime number p and polynomials g = X and h = Y −p, we obtain
the field F1 = Qp.

The next example shows that one may naturally encounter polynomials that do
not satisfy the conditions on their coefficients. Let F2 be the cyclotomic field Qp(ζpk),

with k a positive integer. This extension is totally ramified of degree e = pk−1(p− 1)
and ζpk − 1 is a prime element. The integer l from Proposition 3.7 satisfies l = 2k.
One has F ∼= Qp[X]/(g, h) where g(X) = X and

h(Y ) =
(Y + 1)p

k − 1

(Y + 1)pk−1 − 1
=

p−1∑
i=0

(Y + 1)ip
k−1

= Y e + . . .+ (

p−1∑
j=0

jpk−1)Y + p.

For almost all pairs (p, k), the coefficient of the term of the polynomial h with Y
e
2 (if

p 6= 2 or k > 1) fails to satisfy the inequality from Proposition 3.7ii. This is illustrated
by choosing for example p = 2 and k = 5 because then the coefficients of the terms
Y t of h(Y ) with 4 ≤ t ≤ 12 are bigger than 210 − 1.

Remark 3.9. Let p, g, h and F be as in Proposition 3.7. Furthermore let d be
the extension degree of the field F over Qp and let L be the bit length of p, g, and h.
Then we have



14 Chapter 3. A computational model for local fields

i. L ≥ d.
ii. L = O(d log(pd)).
iii. L = O(d log(2d)) if F contains a primitive p-th root of unity.

Assertion (i) follows from the fact that we have to write down h and for each of its
d+ 1 coefficients at least one bit is needed.

The f coefficients of the polynomial g can be written down in at most f · log2 p ≤
d · log2 p bits. The coefficients of the polynomial h are integers in the interval [0, pl−1]
with l as in Proposition 3.7. Hence h can be written down using at most O(e · f ·
log(pl)) ≤ O(d · log((pe)2)) ≤ O(d · log((pd)2)) = O(d · log(pd)) bits. Because the
prime number p can be written down by O(log p) bits, we obtain the inequality L =
O(d log(pd)) bits. This proves assertion (ii).

If F contains a primitive p-th root of unity we have d = [F : Qp] ≥ p− 1 and so
p ≤ d+ 1 ≤ 2d. If we take this into account, we obtain L = O(d log(2d)). This proves
assertion (iii).

4. Proof of main theorem

4.1. Representing ON and its elements. Let F be a local field and let N ∈
Z≥1. Let us now discuss the data which define ON = O/mN . We call N the precision
of the ring ON . Note that F can be given as in Proposition 3.5 by a triple (p, g, h),
and we will define ON with only a part of this information. Recall that g ∈ Z[X] and

h = Y e +
∑f−1
j=0

∑e−1
i=0 hijX

jY i ∈ Z[X,Y ].
The data for ON for N ≥ 1 are the following. The first part of the data is p and

N . The second part of the information is a bit telling whether N ≤ e or N > e.The
third part of the data is

gN ≡ g (mod pd
N
e e) ∈

(
Z/pd

N
e eZ

)
[X]

(if N ≤ e, this is a polynomial in (Z/pZ)[X]). Additionally, if N > e, we are given:

hN ≡ h (mod pd
N
e e) = Y e +

f−1∑
j=0

e−1∑
i=0

hijX
jY i mod pd

N
e e ∈

(
Z/pd

N
e eZ

)
[X,Y ].

Proposition 3.10. One has:

ON ∼= Zp[X,Y ]/(g, h, Y N ) ∼=

{ (
Z/pd

N
e eZ

)
[X,Y ]/(gN , hN , Y

N ) if N > e

(Z/pZ)[X,Y ]/(gN , Y
N ) if N ≤ e

Proof. The first isomorphism follows since Y is a prime element. The second

isomorphism follows since we know that pd
N
e e ∈ mN . Note that in the second case hN

is already in the ideal generated by gN and Y N . �

The data representing ON in all cases have O(N log q) bits.
We will now discuss how elements of ON are represented. Let π be the class of

Y and γ be the class of X in ON . Note that any x ∈ ON can be written uniquely as∑N−1
i=0 ciπi (recall Definition 2.3) with ci ∈ C, that is, we write ci =

∑f−1
j=0 dijγ

j with

0 ≤ dij < p. This is how we represent elements of ON in O(N log q) bits.



4. Proof of main theorem 15

4.2. Algorithms for a local field. In this section, we will explain the algo-
rithms in Theorem 3.2. We assume that ON is given as in the previous subsection,

in O(N log q) bits. Hence elements in ON are written as
∑N−1
h=0 chπh with ch ∈ C and

take up O(N log q) bits.

Remark 3.11. In the rest of this thesis, we use that we can compute determinants
and reduced row echelon forms, basis of kernel, cokernel, inverse, image of an n × n
matrix over Fp in complexity nC(log p)1[+1], with 2 ≤ C < 3, where C is a “feasible
matrix multiplication exponent”(see [8, Chapter 12], section 1).

Furthermore, we will use that we can do addition and subtraction in Z/pmZ in

O(log(pm)) bit operations and multiplication and inversion in time O((log(pm))
1[+1]

)
bit operations (see [8, Chapter 5]).

Finally, we can compute determinants of n × n matrices over Z/pmZ in time

n3 (log(pm))
1[+1]

(by using row reductions). The latter can be improved, but we leave
this to the reader.

The next lemma treats the complexity of some of the easy algorithms in Theorem
3.2.

Lemma 3.12. There algorithms for the following entries Theorem 3.2 run in the
time as in Theorem 3.2:

• Equality;
• Unit?;
• 0, 1, π, γ;
• p, f,N ;
• N > e?;
• e;
• OM .

Proof. Only two algorithms require an explanation. For ‘Unit?’, an element

x =
∑N−1
h=0 chπh ∈ ON is a unit if and only if c0 6= 0. For ‘OM ’, reduce the equations

of ON modulo the right power of p to obtain the model of OM . �

We have some other easy algorithms.

Lemma 3.13. There algorithms for the following entries Theorem 3.2 run in the
time as in Theorem 3.2:

• Reducing;
• Lifting;
• σ−1

N−1;
• σN−1.

Proof. Lifting and reducing are easy. The map σ−1
N−1 just sends 1 + cN−1πN−1

to cN−1. The map σN−1 sends c to 1 + cπN−1. �

The next Lemma summarizes the discussion in [8, Chapter 2], on arithmetic
operations in polynomial rings.



16 Chapter 3. A computational model for local fields

Lemma 3.14. Let R be a finite ring whose elements can be represented as finite
sequences of bits and for which there are algorithms for the operations addition, sub-
traction and multiplication. Let z ∈ R[T ] be a monic polynomial of degree l. If an
upper bound for the number of bit operations of an addition/subtraction and a multi-
plication in R is respectively denoted by t and u, then an addition/subtraction and a
multiplication in R[T ]/(z), can be performed in respectively O(lt) and O(l1[+1](t+u))
bit operations.

Proof. It is an easy verification that adding two elements of R[T ]/(z) comes
down to l additions in R or O(lt) bit operations. A multiplication of two elements of
R[T ]/(z) requires O(l2) multiplications and additions of elements of R or O(l2(t+u))
bit operations. Moreover the result of such a multiplication is a polynomial of degree
at most 2l − 2 which is reduced by polynomial division by z. This division requires
l(l− 1)(t+ u) bit operations. Therefore the total cost of a multiplication in R[T ]/(z)
is O(l2(t + u)) bit operations. Using fast arithmetic one can reduce the factor l2 in
the runtime to l1[+1]. �

The above lemma and its proof give a (standard) algorithm for computing in
quotient rings and we apply this algorithm in our situation. We get the following
result.

Proposition 3.15. There is an algorithm which on input x, y ∈ ON computes x+
y ∈ ON and x−y ∈ ON in time O(N log q), and x ·y ∈ ON in time O((N log q)1[+1]).

Proof. Recall that

ON =

{ (
Z/pd

N
e eZ

)
[X,Y ]/(gN , hN , Y

N ) if N > e

Z/pZ[X,Y ]/(gN , Y
N ) if N ≤ e.

In the second case, we can apply Lemma 3.14 twice to obtain the result.
In the first case, the situation is a bit trickier. We consider the ring

OedNe e =
(
Z/pd

N
e eZ

)
[X,Y ]/(gN , hN , Y

edNe e) =
(
Z/pd

N
e eZ

)
[X,Y ]/(gN , hN ).

Lemma 3.14 allows us to do addition in time O(N log q) and multiplication in time
O((N log q)1[+1]). Truncating the computations (reducing modulo Y N , i.e. throwing
away terms of the form ciπi when i ≥ N) allows us to do computations in ON in the
required time. �

Using repeated squaring, one can now compute the powers (‘powering’) of ele-
ments in ON in the stated time.

We will now discuss an algorithm for computing inverses, with the help of a
Newton iteration.

Algorithm 3.16 (Inverses).
Input: u ∈ O∗N .
Output: u−1 ∈ ON .
Steps:

i. Set u ∈ O1.
ii. Compute v0 = u−1 ∈ O1 with the extended Euclidean algorithm.



4. Proof of main theorem 17

iii. Compute vi ∈ Omin(2i,N) for 1 ≤ i ≤ dlog2Ne = j by vi = v′i−1·(2−u·v′i−1) ∈
Omin(2i,N) where v′i−1 is a lift of vi−1 to Omin(2i,N).

iv. Return v = vj ∈ ON .

Proposition 3.17. Algorithm 3.16 is correct and has bit complexity
O((N log q)1[+1]).

Proof. Computing u costs O(N log q) by Lemma 3.13. Applying the extended
Euclidean Algorithm costs O((log q)1[+1]) bit operations. We refer to [8, Corollary
4.6] for this. In [8, Theorem 9.2] we find the proof that we can compute the inverse
of a unit u by applying Newton iteration to the expression f(x) = 1

ux − 1. The

iteration gives the formula as in step iii and vi is the inverse of u modulo mmin(N,2i).

The complexity of step iii is O(
∑dlog2Ne
i=1 (min(2i, N) · log q)1[+1]) = O((N log q)1[+1])

(Proposition 3.15, Lemma 3.13). This gives the required complexity. �

Note that for x ∈ ON , y ∈ O∗N one has x/y = x · 1/y. Hence we can now do
division in the claimed time as well.

Recall that u0 is defined by p = −u0π
e.

Algorithm 3.18 (u0).
Input: ON with N > e.
Output: u0 ∈ ON−e.
Steps:

i. Compute w =
∑e−1
i=0

∑f−1
j=0

hij
p γ

jπi ∈ ON−e.
ii. Return u0 = w−1.

Proposition 3.19. Algorithm 3.18 is correct and its complexity is O(N log q +
((N − e) log q)1[+1]).

Proof. If h = Y e +
∑f−1
j=0

∑e−1
i=0 hijX

jY i, then one has

1/u0 = −πe/p =

e−1∑
i=0

f−1∑
j=0

hij
p
γjπi.

This formula allows us to compute 1/u0 ∈ ON−e in time O(N log q) (we lose preci-
sion because of the division by p). We then invert 1/u0 to get u0 in time O(((N −
e) log q)1[+1]) (Algorithm 3.16).

�

Let us now discuss the complexity of the algorithms regarding the field k.

Lemma 3.20. There are algorithms for [x]B, [·c]B and [x 7→ xp]B as in Theorem
3.2 which run in the times as stated in Theorem 3.2.

Proof. Since we work with digits, [x]B is easy to compute.
To compute [·c]B, we compute cγi for i = 0, . . . , f − 1 using f multiplications in

O1 = k, in time f(log q)1[+1]. After that we compute [cγi]B for i = 0, . . . , f − 1 in
time f log q.



18 Chapter 3. A computational model for local fields

To compute [x 7→ xp]B, one raises γ to the p-th power and then compute (γp)i

for i = 0, 1, . . . , f − 1. This requires f + log p multiplications in k and this costs
O((f + log p)(log q)1[+1]). �

Let us finally discuss how to do Teichmüller lifts. To compute ω(c) ∈ ON , it
suffices to do computations in the unramified part E of F , that is, in the ring

OE,dNe e =
(
Z/pd

N
e eZ

)
[X]/(gN ) =

(
Z/pd

N
e eZ

)
[X,Y ]/(gN , Y − p) ⊆ ON .

Algorithm 3.21 (Teichmüller).
Input: c ∈ O1.
Output: ω(c) ∈ ON .
Steps:

i. If c = 0 or N ≤ e return
∑N−1
h=0 chπh with c0 = c and ch = 0 for 1 ≤ h ≤ N−1

and terminate.

ii. Compute (1− q)−1 =
∑d Nef e−1

i=0 pif ∈ OE,dNe e.

iii. Put x0 = c ∈ k and for 1 ≤ i ≤ dlog2(N/e)e = l compute xi =
x′qi−1−qx

′
i−1

1−q ∈
OE,min(2i,N/e) where x′i−1 is a lift of xi−1 to OE,min(2i,N/e).

iv. Return xl ∈ OE,dNe e ⊂ ON .

Proposition 3.22. Algorithm 3.21 is correct and its bit complexity is
O
((
N + ((N/e) log q)1[+1]

)
· log q

)
.

Proof. If N ≤ e or c = 0, then ω(c) is a lift of c to ON , which can be computed
in time O(N log q). If N > e step ii costs O((N/e) log q), step iv costs O(N log q)
and the complexity of this algorithm is dominated by the third step. For the Newton

iteration procedure with xi+1 = xi − f(xi)
f ′(xi)

we choose f(x) = 1 − x1−q and obtain

the formula of the third step of the algorithm. In every step the precision doubles so

xi+1 is computed modulo p2i+1

. The complexity of the last iteration xl of the third
step of Algorithm 3.21 dominates the cost of all the other iterations together and
for this iteration we compute a q-th power requiring O(((N/e) log q)1[+1] · log q) bit
operations. The rest of this step has smaller complexity.

We conclude that Algorithm 3.21 has a complexity of O(
(
N + ((N/e) log q)1[+1]

)
·

log q) bit operations. �


