
On the computation of norm residue symbols
Bouw, J.

Citation
Bouw, J. (2021, May 19). On the computation of norm residue symbols. Retrieved from
https://hdl.handle.net/1887/3176464

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3176464

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3176464

Cover Page

The handle https://hdl.handle.net/1887/3176464 holds various files of this Leiden
University dissertation.

Author: Bouw, J.
Title: On the computation of norm residue symbols
Issue Date: 2021-05-19

https://openaccess.leidenuniv.nl/handle/1887/1
https://hdl.handle.net/1887/3176464
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 1

Introduction

Let p be a prime number, denote by Qp the field of p-adic numbers, and by Q̄p

an algebraic closure of Qp. Let F be a finite extension of Qp inside Q̄p and let F ab

be the maximal abelian extension of F inside Q̄p. Local class field theory gives us a
group homomorphism φF : F ∗ −→ Gal(F ab/F), the reciprocity map. For an extensive
treatment of the reciprocity map and the broader context of local class field theory,
we refer to [2], part 2 or [18], Teil 2.

Let m be a positive integer and let F contain the m-th roots of unity, which are
the elements of µm = {x ∈ Q̄p : xm = 1}. The m-th norm residue symbol is the map
(·, ·)m : F ∗ × F ∗ −→ µm defined on every pair of elements α, β ∈ F ∗ by

(α, β)m =
φF (α)(m

√
β)

m
√
β

.

The main purpose of this thesis is to prove the following theorems.

Theorem 1.1. There is a polynomial-time algorithm that, given a prime number
p, a positive integer m and a finite extension F of Qp containing a primitive m-th root
of unity and also given two elements α, β ∈ F ∗, computes the norm residue symbol
(α, β)m.

At the end of the present introduction we shall describe how the field F and its
elements α and β are supposed to be “given” to the algorithm, and how the output
is represented. All this will necessarily be done in finite precision, and, as discussed
below, this precision should be large enough to guarantee that the output of the
algorithm is well-defined. The same comments apply to Theorems 1.2 and 1.4 below.
The proof of Theorem 1.1 is found in Section 5 of Chapter 5.

Algorithms for computing norm residue symbols are useful in several contexts.
In local class field theory, the norm residue symbol detects which elements are norms
from certain extensions (see Remark 5.2). In algebraic number theory, they can be used
in the computation of higher power residue symbols in algebraic number fields, see
[4]. Norm residue symbols are also encountered in arithmetic geometry. For example,
the quadratic norm residue symbol (α, β)2, which is known as the Hilbert symbol, is
equal to 1 if and only if the conic αx2 +βy2 = z2 has an F -rational point. For general
m, the norm residue symbol can be used to compute elements in Brauer groups, as
explained in [15, Section 15]. This can be helpful in detecting the presence of so-called
Brauer-Manin obstructions in arithmetic geometry (see [20, Chapter 8, Section 2]).

It is hard to find a computer algebra system that allows the possibility of com-
puting norm residue symbols, especially in the case that m > 2. In some systems one

1

2 Chapter 1. Introduction

can approach the problem in an indirect manner, which does not in all cases work
out efficiently. We expect that the algorithm that underlies Theorem 1.1 is perfectly
suitable for actual implementation.

Theorem 1.2. There is a polynomial-time algorithm that, given a prime number
p, a positive integer n, and a finite extension F of Qp, decides whether F contains a
primitive pn-th root of unity and if so, computes such a root of unity.

The proof of Theorem 1.2 can be found in the last section of Chapter 4. We
remark that if n = 1, the decision whether F contains a primitive p-th root of unity
is a simple verification (see Algorithm 4.13), but if n > 1 we perform extensive
computations (see Algorithms 4.23 and 4.24) in order to decide whether the required
root of unity exists and if so compute it. It is an interesting question whether there
exists a faster algorithm than ours in the case that n > 1.

The computation of an m-th norm residue symbol can be reduced to two special
cases, the tame one in which the prime number p does not divide m and the wild case
in which m is a power of p. In the tame case (see Section 3 of Chapter 5), there is a
formula usable in practice to compute the norm residue symbol and also good enough
to prove Theorem 1.1. In this thesis we will mainly consider the wild case (see Section
4 of Chapter 5). In that case there are also formulas that can be used to compute
the norm residue symbol (see [7]), but it remains a challenge to decide whether these
formulas can be evaluated in polynomial time and to compare the efficiency of such
a computation with the efficiency of our algorithm.

Let p be a prime number, let n be a positive integer and let the field F be a
finite extension of Qp containing µpn . We denote by ordF : F −→ Z ∪ {∞} the
surjective valuation function on F . A prime element π of F is defined by the property
ordF (π) = 1. In the appendix of Milnor’s “Introduction to Algebraic K-theory”, see
[15], a distinguished unit δ in F is defined by the following properties:

i. ordF (δ − 1) = p·ordF (p)
p−1 ,

ii. δ /∈ (F ∗)p.

Such a distinguished unit δ has the property that for every unit u of the ring of
integers OF of F , the norm residue symbol (u, δ)pn is a p-th power in the group of

pn-th roots of unity, so (u, δ)p
n−1

pn = 1, without δ itself being a p-th power.
The algorithm underlying Theorem 1.1 in the wild case is motivated by a theorem

of Moore (see [15], Appendix, Theorem A.14). This theorem implies that for any
prime element π of F and any distinguished unit δ the symbol (π, δ)pn generates the
cyclic group µpn . It also implies that for every pair of elements α, β ∈ F ∗ the integer
i ∈ Z/pnZ for which (α, β)pn = (π, δ)ipn can be computed if F, p, n, α, β, π and δ are
given. Only a few arithmetic rules, which hold for all elements in F ∗, are used in the
computation. These rules are the following:

i. (α, β)pn = 1 if α+ β = 1,

ii. (α, β)p
n

pn = 1 ,
iii. (α1 · α2, β)pn = (α1, β)pn · (α2, β)pn ,
iv. (α, β1 · β2)pn = (α, β1)pn · (α, β2)pn .

3

In his article “On Computations in Kummer Extensions” (see [6]) Daberkow was the
first to use these ideas. The proof of Moore’s theorem, as given in [15], offered him
an algorithm to compute the integer i. With this result there are two problems left
in the computation of the norm residue symbol.

The first problem is the polynomiality of the algorithm, which is not a part of
the discussion in Daberkow’s article. Our own algorithm for computing i, while still
inspired by [15], is very different from Daberkow’s, and it does run in polynomial time.
It makes use of a presentation for the group U1 = {u ∈ F : ordF (u− 1) > 0} = 1 +m
of principal units of F , where m = πOF is the maximal ideal of OF . The algorithm
that proves Theorem 1.2 depends on the same presentation.

The second problem is that knowing the value of i is not the same as knowing
the norm residue symbol (α, β)pn = (π, δ)ipn as long as we do not know the value
of (π, δ)pn . Daberkow does not address this issue. In Chapter 5 of this thesis we
compute the true value of the norm residue symbol by using a functorial property of
the reciprocity map.

In Chapter 6 we prove the existence of a distinguished unit ε with the additional
property that (u, ε)pn = 1 if u a unit, which for n > 1 is not necessarily the case
with a distinguished unit as defined above. Such a distinguished unit will be called a
strongly distinguished unit.

One can show that a distinguished unit ε is strongly distinguished if and only if
the field extension F (p

n√
ε) of F , which has degree pn, is unramified (see Lemma 6.2).

In addition, among all elements α ∈ F for which F (p
n√
α) is unramified of degree pn

over F , the strongly distinguished units are exactly those that are as close as possible
to 1. This is a consequence of the following theorem, which also implies that strongly
distinguished units exist. It is proved in Chapter 6.

Theorem 1.3. Let p be a prime number and n a positive integer. Let F be a
finite extension of the field Qp containing ζpn , a primitive pn-th root of unity. Then
there exists ε ∈ F such that

i. ordF (ε− 1) = p
p−1 · ordF (p),

ii. F (p
n√
ε) is an unramified field extension of F of degree pn.

There does not exist ε ∈ F satisfying (ii) and ordF (ε− 1) > p
p−1 · ordF (p).

A second result, which is also proved in Chapter 6, tells us that a strongly dis-
tinguished unit can be computed in polynomial time.

Theorem 1.4. There is a polynomial-time algorithm that, given a prime number
p, a positive integer n, and a finite extension F of Qp containing the pn-th roots of
unity, computes an element ε of F satisfying conditions (i) and (ii) from Theorem
1.3.

Once a strongly distinguished unit ε is available, one may simplify the algorithm
underlying Theorem 1.1 by using a formula (see Chapter 6, Lemma 6.3ii) that depends
on the property that (u, ε)pn = 1 for every unit u. Thus, if one needs to compute a
large number of norm residue symbols in the same field F , it may be of advantage to
start by computing a strongly distinguished unit once and for all, using Theorem 1.4.

4 Chapter 1. Introduction

Moreover, the norm residue symbol (π, ε)pn can also be computed once and for all,
and its value is independent of the choice of the prime element π (see Lemma 6.3i).

As announced earlier we will now explain how our field F is given to the algo-
rithms of Theorem 1.1, 1.2 and 1.4, and how we are able to specify the input α, β
to the algorithm of Theorem 1.1 using only a finite number of bits. Likewise we will
specify in which manner and to which precision the roots of unity and the strongly
distinguished units computed by our algorithms are represented.

Let F be any finite extension of Qp, with no assumptions on roots of unity. We
summarize some facts from the standard theory of local fields (see [24], Chapter 3).
Let f be the degree of the residue class field OF /m over the prime field Fp and let Zp
denote the ring of p-adic integers. There is a monic polynomial g ∈ Zp[X] of degree
f that is irreducible modulo p,with the following property: adjoining a root γ of g to
Qp gives the maximal unramified subfield E = Qp(γ) of F and OE = Zp[γ] is its ring
of integers. There is also a polynomial h ∈ Zp[X,Y] such that h(γ, Y) ∈ E[Y] is a
monic and irreducible polynomial of degree e = ordF (p) with the following properties:
first, it satisfies specific conditions on its coefficients (see Chapter 3, Section 3) that
make it into an Eisenstein polynomial; and second, it has a zero π in F . Then it is
automatic that F = E(π), that F is totally ramified over E with prime element π,
and that OF = Zp[γ, π] ∼= Zp[X,Y]/(g, h).

Because F is the field of fractions of OF , it suffices to “give” OF instead of F .
However, in algorithms we cannot work with elements of OF in infinite precision, so
we use an approximation of OF , good enough for our purposes. This approximation
is the finite ring ON = OF /mN , where N ∈ Z>0 is the precision, to be chosen large

enough as discussed below. If the polynomials gN and hN satisfy gN ≡ g (mod pd
N
e e)

and hN ≡ h (mod pd
N
e e) then we have ON ∼= (Z/pd

N
e eZ)[X,Y]/(gN , hN , Y

N), with γ
and π corresponding to X and Y respectively (see Chapter 3, Section 4.1). Then our
field is “given” in precision N by p, gN and hN .

Any element x ∈ ON is represented by a sum of the form
∑N−1
i=0 ciπi, where πi

is a certain element with ordF (πi) = i (see Definition 2.3), and where each ci belongs

to the set C = {
∑f−1
j=0 djγ

j : dj ∈ {0, 1, . . . , p − 1} for each j} of digits (see Definition

2.2). Observe that each coset of OF /m contains exactly one digit. The elements of
(ON)∗ are characterised by the property that c0 6= 0. This representation of elements
of (ON)∗ will be used below, and it also applies to the roots of unity and strongly
distinguished units that are computed by our algorithms. Note that O(N log q) bits
suffice to represent any element of ON , where q = pf = #C is the number of elements
of the residue field OF /m. Every arithmetical operation performed in our algorithms
takes place in ON for some N or in the ring Z.

We will specify α and β in Theorem 1.1 using the analogue for F ∗ of scientific
notation. This will do justice to the multiplicative nature of the norm residue symbol
and also accommodate elements that do not belong to O∗F . Just as every positive real
number can be uniquely written as u · 10a with u ∈ [1, 10) and a ∈ Z, so can each
element of F ∗ be uniquely written as u · πa with u ∈ (OF)∗ and a ∈ Z. We need to
turn this notation into one that uses only a finite number of bits.

As in Theorem 1.1, let m ∈ Z>0 be such that µm ⊂ F . Since the value of (α, β)m
depends only on the cosets α(F ∗)m, β(F ∗)m ∈ F ∗/(F ∗)m (see Chapter 5, Proposition

5

5.1), it will for our purposes suffice to represent elements of F ∗/(F ∗)m, and this is
what can be done with a finite number of bits, as follows. If u · πa ∈ F ∗ is as above,
then knowing the coset u · πa · (F ∗)m is clearly equivalent to knowing a modulo mZ
and u modulo (O∗F)m. Now assume that our precision satisfies N ≥ 1 in the tame case
(see Algorithm 5.4) and N ≥ e

p−1 + ordF (m) + 1 otherwise. Then the group 1 + mN

is contained in (O∗F)m (see Chapter 4, Corollary 4.9), so we have a surjective group
homomorphism

(ON)∗ = O∗F /(1 + mN)→ O∗F /(O∗F)m.

Hence we can represent elements of F ∗/(F ∗)m by pairs (ā, ū) ∈ Z/mZ× (ON)∗ with
(ā, ū) representing the coset u · πa(F ∗)m, and that is what we shall do (see Chapter
5, section 2). The total number of bits used is O(N log q + logm).

In Theorem 1.2 we choose the precision N in which our field F is given such that
the inequality N ≥ e

p−1 + e ·n+ 1 is satisfied. The precision of the output is N − e ·n
(see Algorithm 4.24, Proposition 4.25 and Theorem 4.26). We remark that due to the
fact that in our algorithm p-th roots of principal units are computed, the precision of
the output will be smaller than the precision of the input. In fact, the precision of the
output is just large enough to distinguish between different pn-th roots of unity and
therefore the root of unity computed by the algorithm is well-defined. In Theorem
1.4 the precision of the input is also required to satisfy N ≥ e

p−1 + e · n + 1, and

the precision of the output is N itself (see Algorithm 6.8 and Proposition 6.9). In
Theorem 1.1 we have to distinguish two cases. In the tame case, we require N ≥ 1 for
the precision of the input, and the precision of the output equals N (see Algorithm
5.4 and Proposition 5.5). In the other case, we choose the precision N of the input
such that N ≥ 3(r+ 1)e+ 1, where r is the integer for which pr || e and the precision
of the output is N−(r+1)e (see Algorithm 5.24, Proposition 5.25 and Theorem 5.26).

