Analysis of electron donors in photosystems in oxygenic photosynthesis by photo-CIDNP MAS NMR
Najdanova, M.; Janssen, G.J.; Groot, H.J.M. de; Matysik, J.; Alia, A.

Citation

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3175729

Note: To cite this publication please use the final published version (if applicable).
Short Review

Analysis of electron donors in photosystems in oxygenic photosynthesis by photo-CIDNP MAS NMR

M. Najdanova a, G.J. Janssen b, H.J.M. de Groot b, J. Matysik a, A. Alia b,c,*

a University of Leipzig, Institute of Analytical Chemistry, Johannisallee 29, D-04103 Leipzig, Germany
b University of Leiden, Leiden Institute of Chemistry, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden, The Netherlands
c University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany

A R T I C L E I N F O

Article history:
Received 8 June 2015
Received in revised form 4 August 2015
Accepted 5 August 2015
Available online 7 August 2015

Keywords:
Electron donor
Photo-CIDNP
Photosynthesis
Photosystem I
Photosystem II
Redox potential
Solid-state NMR

A B S T R A C T

Both photosystem I and photosystem II are considerably similar in molecular architecture but they operate at very different electrochemical potentials. The origin of the different redox properties of these RCs is not yet clear. In recent years, insight was gained into the electronic structure of photosynthetic cofactors through the application of photochemically induced dynamic nuclear polarization (photo-CIDNP) with magic-angle spinning NMR (MAS NMR). Non-Boltzmann populated nuclear spin states of the radical pair lead to strongly enhanced signal intensities that allow one to observe the solid-state photo-CIDNP effect from both photosystem I and II from isolated reaction center of spinach (Spinacia oleracea) and duckweed (Spirodela oligorrhiza) and from the intact cells of the cyanobacterium Synechocystis by 13C and 15N MAS NMR. This review provides an overview on the photo-CIDNP MAS NMR studies performed on PSI and PSII that provide important ingredients toward reconstruction of the electronic structures of the donors in PSI and PSII.

© 2015 Elsevier B.V. All rights reserved.

Contents

1. Introduction ... 262
2. Photo-CIDNP MAS NMR as a spectroscopic method 262
3. Photo-CIDNP MAS NMR studies on the photosynthetic reaction center .. 263
4. Photo-CIDNP MAS NMR studies on the photosystem I (PSI) 264
5. Photo-CIDNP MAS NMR studies on the photosystem II (PSII) reaction center ... 267
6. Magnetic field effect of the photo-CIDNP observed in photosystem I and II reaction centers 268
7. Summary and outlook ... 269
8. Acknowledgements ... 269
9. References .. 269

* Corresponding author at: University of Leipzig, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
E-mail address: alia.aliamatysik@medizin.uni-leipzig.de (A. Alia).

http://dx.doi.org/10.1016/j.jphotobiol.2015.08.001
1011-1344/© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Plants and algae are an integral part of our ecosystem. Plants and other photosynthetic organisms are a source of food and fibers and reduce atmospheric carbon dioxide while supplying oxygen to the atmosphere. They can be considered as the heart of life on earth to which animals and humans owe their existence. By increasing our understanding about photosynthesis, we ultimately aim to find sustainable and safe solutions for man’s increasing demand for energy. Solutions based on solar energy avoid both the excessive use of fossil fuels and subsequent environmental problems and the danger involved with nuclear power plants.

Natural photosynthesis is the process of capturing sunlight and its conversion into chemical energy bound in organic molecules. In plants and cyanobacteria, photosynthesis is driven by two efficient electron pumps embedded in the thylakoid membrane, Photosystem I (PSI) and Photosystem II (PSII) [1,2]. These photosystems represent large membrane pigment–protein complexes, mutually connected through an electron transport chain. The general molecular architecture of both photosystems appears to be considerably similar. In both photosystems, the light-dependent reaction is initiated upon absorption of sunlight, which results in photo-oxidation of the chlorophyll a (Chl a) molecules of the primary electron donors (P). The photochemically transferred electron moves along a series of cofactors forming an electron transfer chain, thus generating a charge gradient across the membrane.

1.1. Photosystem I

The photosystem I core complex in higher plants is made up of approximately 12 different subunits, which are bound to 4 light-harvesting proteins (LHCI antenna complex) [3,4]. The reaction center of PSI comprises of two nearly symmetric branches of cofactors, which contain six chlorophyll molecules and two phylloquinones, arranged in two chains along a pseudo twofold (pseudo-C_2) symmetry axis. Furthermore, PSI contains three iron sulfur clusters (F_x, F_y, F_z) as terminal intrinsic electron acceptors [5,6] (Fig. 1A). The two branches of cofactors, branches A and B, have been named according to their association with the respective protein subunits PsA and PsB, which accommodate the electron transport chain cofactors. The primary electron donor P700 is a heterodimer consisting of one chlorophyll a (Chl a, P$_a$) and one chlorophyll a' (Chl a', P$_A$) which is the 132-epimer of Chl a. While P$_A$ forms hydrogen bonds to its protein environment, no hydrogen bonds are found on the P$_a$ side [7–9]. EPR studies showed most of the positive charge to be localized on the Chl a (the P$_a$ donor) molecule [9–12], however a consensus about the extent of asymmetry has not yet been reached [13,14]. The photochemical charge separation, occurring from the lowest excited singlet state of P700, leads to the radical-pair formation. The electron transfer is linked to both charge and spin transfer. Recent optical spectroscopic studies imply the possibility for an asymmetric primary charge separation [10,15–17], pointing out the accessory chlorophyll A$_1$ as the primary electron donor which in turn forms a radical pair A$_1^+$, A$_0^-$ with a lifetime of a few radical pair P700$^+$ A$_0^-$. These findings repeal the proposal of the P700 heterodimer structural asymmetry as a conclusive argument against a bidirectional electron transfer observed in PSI. In PSI both electron pathways can be active, a phenomenon generally referred to as bidirectional electron transfer (for a review, see [14]). The electron transfer through accessory chlorophylls develops a comparable reduction potential in both A$_0$ upstream chlorophylls of the two branches. Consequently the phylloquinones (A$_{1A}$, A$_{1B}$) are reduced, which function independently from each other and transport electrons to the Fx iron cluster within 200 ns [18]. The fact that both phylloquinones operate independently and act as electron transfer intermediates, is a possible hint to bidirectional or symmetrical electron transfer in PSI. The overall lifetime of the P700$^+$ radical cation has reported to be in the order of tens of milliseconds [19,20]. Mutagenesis studies [21–23], as well as optical and transient EPR studies suggest distinct electron transfer efficiency between both branches which are organism dependent. For example, the electron transfer is reported to be biased toward the A-branch in both cyanobacteria and green algae. However, the bias is stronger in the case of cyanobacteria [10,24–27]. Although the knowledge of the structural organization of the cofactors is continuously expanding, the question of the directionality of the electron transfer among different species and the precise molecular mechanism of charge separation are not fully understood.

1.2. Photosystem II

PSII is a multisubunit membrane protein complex. Recently a high resolution X-ray structure of PSII (Fig. 1B) from the cyanobacterium *Thermosyphon vulcanus* was resolved down to 1.9 Å resolution [28]. The PSII core complex consists of more than 20 distinct subunits and various functionally significant cofactors [29]. At the heart of this multiprotein complex is the PSII reaction center (RC), comprising the D1 and D2 polypeptides that bind the cofactors involved in the primary electron transfer process. These cofactors include six chlorophyll a molecules, from which four are believed to be active in the initial charge separation. In addition two pheophytins, two β-carotenes, two plastoquinones and an iron atom are part of the PSII RC. The central electron donor cofactor pair, P680, is structurally analogous to the ‘special pair’ in bacterial RC of *Rhodobacter sphaeroides* (R. sphaeroides) and P700 in PSI. It comprises of two Chl a molecules, denoted as P$_{D1}$ and P$_{D2}$ [30,31]. The cofactors in PSI RCs are arranged in two branches perpendicular to the plane of the membrane, having almost a C_2 symmetry. Despite the high symmetry, only one branch is active in the electron transfer from the electron donor to the plastoquinones [35]. On illumination P680 is initially brought into its first electronically excited singlet state and donates the energized electron within a few picoseconds to a pheophytin (Phe) molecule to form the radical pair state P680$^+$/C$_0^-$. There are a number of studies suggesting that the primary charge separation in PS II could be between the accessory chlorophyll and the pheophytin [15–17,32–34]. From Phe$^-$ the electron is transported to a bound plastoquinone molecule (Q$_A$) within 300 ps. P$_{680}$ is reduced within nano- to microseconds by a redox active tyrosine (Y$_2$) at position

![Fig. 1](http://example.com/image1.png)
161 of the D1 protein. Y2 is then reduced by a tetra-manganese cluster, which stores the oxidation equivalents needed for oxidizing water to molecular oxygen. PSII can generate a potential up to 1.2 V [36,37] which is much higher than the potential of 0.5 V observed for the special pair electron donor P840 in the bacterial RC [38]. This makes the oxidized electron donor of PSII, P680+, the strongest oxidizing agent known in living nature.

Despite the similarity in molecular architecture, the electric midpoint potential of PSII and PSI is extremely different. The antagonistic electrochemical properties of these reaction centers enable an exceptional cooperation. The oxidized state of PSII forms a uniquely strong oxidizing redox potential that is sufficient for splitting water. The photochemical excited state of PSI, with its strong reductive power, supplies the electrons for the reduction of atmospheric carbon dioxide. The origin of the very different redox properties of both RCs is not yet fully understood. In bacterial reaction centers invaluable insight into the orbital architecture of the electron donor has been provided by photo-CIDNP MAS NMR [39,40]. In this review, we will summarize recent photo-CIDNP MAS NMR studies on PSI and PSII that allow the reconstruction of the electronic structures of the donors in PSI and PSII.

2. Photo-CIDNP MAS NMR as a spectroscopic method

Photochemically induced dynamic nuclear polarization (photo-CIDNP) magic-angle spinning (MAS) NMR is an analytical method for the study of spin-correlated radical pairs. It is particularly attractive because it combines the high sensitivity and selectivity of the solid-state photo-CIDNP effect with the versatility of MAS NMR techniques. Conveniently, this hyperpolarization effect can be obtained simply by irradiating with light.

Enhancement of NMR signal intensities by CIDNP has been first observed by liquid state NMR in 1967. The discovery was made independently by two research teams, namely Bargon and Fischer [41], and Ward and Lawler [42]. Soon after this discovery, the classical “radical pair mechanism” (RPM) was proposed [43,44].

The classical RPM acts as a spin-sorting mechanism at high field during the inter-system crossing (ISC) process, thus separating the nuclear spin polarization into two groups of signals having the same integral but opposite sign [41,43]. If both products have the same chemical fate, their signals will cancel each other, and no enhancement will be observed. In liquid state, singlet radical pairs can recombine but triplet radical pairs diffuse apart. In photosynthetic RCs, the RPM can be observed in time-resolved laser-flash experiments as an early phase, remaining until also the triplet branch population decays to the ground state [39]. The RPM is, however, not visible in the solid state under continuous illumination since it relies on the molecular diffusion, hence it cannot be considered as a plausible explanation of the solid-state photo-CIDNP effect observed in frozen RCs under steady-state illumination [45].

The solid-state photo-CIDNP effect has been first observed in 1994 by Zysmilich and McDermott [46,47], on a frozen quinone-blocked bacterial RC by 13N MAS NMR under continuous illumination with white light. Due to the transient non-Boltzmann distribution of the population of nuclear spin states in rigid samples upon photo-reaction, a strong signal enhancement has been observed in several different RC species by 13C and 15N MAS NMR [13,48–56]. The representative solid-state photo-CIDNP spectra in RCs of R. sphaeroides WT and R26 are shown in Fig. 2A.

The mechanism by which the photo-CIDNP polarization is born in quinone-blocked bacterial RCs of R. sphaeroides at high magnetic fields and under continuous illumination is explained by up to three mechanisms running in parallel and requiring anisotropic hyperfine couplings [45,47] (Fig. 2B). Common features of all three mechanisms is a net total nuclear spin population after summing over both decay branches. This results in a strong steady-state nuclear polarization readily detectable by NMR after decay of the radical pair.

Upon formation of the photosynthetic spin-correlated radical pair under illumination, a pure singlet state (S) is established having a high mutual electron spin order and allowing for a zero-quantum coherence between the eigenstates of the radical pair [57]. This high electron correlation can lead to high polarization of neighboring nuclei via two coherent solid-state mechanisms:

1. **Electron–electron–nuclear** three-spin mixing (TSM). The coherent spin evolution within the spin correlated radical pair state during inter-system crossing (ISC), results in a break of balance of the two radical pair decay channels, which is controlled by the sign of the anisotropic electron–electron and the electron–nuclear pseudosecular hyperfine (hf) interactions [58,59]. Limiting factor for the maximal state mixing is the attainment of the double matching condition $2|\Delta I_0 = 2|\alpha_0| = |A|$. This implies that the difference between the electron Zeeman frequencies ($\Delta \Omega$) needs to match the nuclear Zeeman frequency (α_0) and they both need to match the diagonal (secular) part of the hyperfine interaction (A). Through the three energy level matching, the electron ZQC is passed over to the nuclei as polarization. Since the pseudosecular part of the hyperfine interaction is the main driving force of this mechanism, it cancels out when the hf anisotropy is averaged. Therefore, TSM polarization is not observable in the liquid state [40,45,60].

In RCs of R. sphaeroides WT, according to the theory [45], the TSM leads to emissive (negative) intensities, while the DD causes enhanced absorptive (positive) signals. Since the entire envelope is emissive, the TSM overrules the DD [48]. The magnetic field interacts with both electron and nuclear spin magnetic moments causing the dependence of $\Delta \Omega$ and α_0 on the magnetic field strength. On the other hand, hyperfine couplings are not field dependent. Therefore, both TSM and DD have their field dependence and maxima according to their specific matching conditions. Some RCs, such as the carotenoid-depleted R26 mutant of R. sphaeroides, have a long-lived triplet state of the donor cofactor ($^3I^P$), which allows for the occurrence of a third mechanism found in the solid-state photo-CIDNP:

3. **Differential relaxation** (DR). This mechanism, occurring in solid and liquid state, follows the sign rules of the RPM [61]. It is also known as ‘cyclic reactions’. Although the polarization generated in cyclic reactions is expected to be completely canceled out due to the different longitudinal relaxation rates of the nuclear spins in both branches, the polarization is partially preserved.
Fig. 2. 13C MAS NMR photo-CIDNP spectrum of isolated RC from \textit{R. sphaeroides} R26 (a, b) and wildtype (WT) (c, d). The spectra a and c are obtained under dark conditions, whereas spectra b and d are recorded under continuous illumination with white light. All spectra were obtained at a temperature of 230 K, a magnetic field of 4.7 T and a cycle delay of 4 s (Reprinted, with permission, from Prakash et al. [48]). © The American Chemical Society. (B) Mechanism of the photo-CIDNP buildup in natural RCs of \textit{R. sphaeroides} WT and R26, established for high magnetic field conditions. Upon illumination, the photochemically excited donor special pair (P') transfers an electron to the primary acceptor \(\Phi \), bacteriopheophytin. A radical pair (P' + \(\Phi ^- \)) initially in a singlet is being carried by high electron spin order. The radical pair oscillates between its singlet and triplet state \(T_x \). During the intersystem crossing process (ISC), polarization buildup from the correlated electron pair to the surrounding nuclei occurs via the three-spin-mixing (TSM). Back electron transfer from the radical pair singlet state results in an electronic ground state, while a back electron transfer from the radical pair triplet state, leads to a donor triplet state (3P). The differential decay (DD) mechanism underlines the buildup of a net photo-CIDNP due to the different contributions of the two spin states of the spin-correlated radical pair on the spin evolution. In RCs having a long-lived donor triplet state, 3P, as in the case of R26, differential relaxation (DR) becomes significant, due to pronounced nuclear spin relaxation on the triplet branch, resulting in partial cancellation of nuclear polarization in the triplet branch.

3. Photo-CIDNP MAS NMR studies on the photosynthetic reaction center

In the meanwhile, following the observation of the solid-state photo-CIDNP in purple bacterial reaction centers, the same effect is observed in other natural photosynthetic systems, such as frozen samples of heliobacteria \([40,52,69]\), green sulfur bacteria \textit{Chlorobium tepidum} \([51]\) as well as in isolated RC of spinach \textit{(Spinacia oleracea)} \([13,51,53,54,70]\) and duckweed \textit{(Spirodela oligorrhiza)} and in whole cells of cyanobacterium \textit{(Synechocystis sp. PCC 6803 strain)} \([55,56]\). In the following section we will focus on photo-CIDNP MAS NMR studies on PSI and PSII which lead to an insight into the electronic structure of the primary donor P700* and P680*.

4. Photo-CIDNP MAS NMR studies on the photosystem I (PSI)

4.1. Photo-CIDNP on unlabeled PSI reaction centers

The first observation of the photo-CIDNP in PSI has been reported in isolated PSI from spinach \([13]\). Two types of PSI preparations have been used: (i) an isolated PSI complex containing \(~110 \text{ Chl/P700} \) (the so-called PSI-110 preparation), having reduced terminal ferredoxin acceptors, and (ii) a CPI RC complex, having PSI particles with \(~40 \text{ Chl/P700} \) and lacking the terminal ferredoxin acceptors. Remarkable enhancement of NMR signals from the active site of PSI has been observed in both preparations without any isotope enrichment. Interestingly, light induced photo-CIDNP signals originating from the light-induced radical pair cofactors were all emissive and appeared exclusively in the aromatic region \([13,70]\) (Fig. 3A).

Most of the light induced signals from PSI appeared in the region between 100 and 200 ppm. A total of 12 isotropic chemical shifts, i.e., centerbands independent of the MAS rotational frequency \([13]\), have been resolved from the spectrum. These signals have been assigned to 17 carbon atoms belonging to a single Chl \(\alpha \) molecule, probably the P_{\text{B}} cofactor of the P700 electron donor (Table 1). The strongest signal enhancement was detected in the aromatic region between 120 and 170 ppm. Signals coming from aliphatic carbons or the methine carbons C-5 and C-20 were not present in the spectrum (Fig. 3A). In general, the linewidth of the NMR signals is related to the internal order and dynamics. The linewidth observed for light-induced signals in PSI was significantly narrow (60–65 Hz), which is a convincing indicator for a high overall rigidity and order of the donor site, experiencing low electron transfer reorganization energies.

The origin of the photo-CIDNP enhancement was proposed to be due to the formation of the more stable radical pair
P700$^{+}$A$_{0}$, born in a pure electronic singlet state which is converted into a net nuclear polarization via the TSM and DD mechanism \[45,58,59\]. As discussed by Alia et al., due to the strong electronic coupling in the radical pair formed upon illumination, the birth of triplet states was not expected and therefore no DR contribution was suggested. The DFT calculations also suggested a predominance of the TSM over the DD mechanism in PSI.

The photo-CIDNP spectra of both PSI samples reveal a single Chl a set of resonances (Table 1). Since in PSI both the donor and the primary acceptor are Chl a cofactors, the possibility that the spectrum contains signals from both the donor and acceptor cofactors could not be excluded on the basis of only chemical shifts. However, the DFT calculations suggested that the majority of the light-induced signals are arising from the donor rather than the acceptor \[13\], thus implying that the photo-CIDNP signals mainly originate from a single Chl a, assumable P$_{B}$.

4.2. 15N photo-CIDNP reveals large flexibility of PSI in terms of electronic architecture

To obtain deeper inside into the electronic structure of PSI and to accurately map the electron spin density in active cofactors of PSI, solid-state photo-CIDNP was combined with 15N isotope labeling of PSI. In order to study the rigidity and flexibility of the electronic architecture of PSI in different organism, the data was obtained from two different PSI proteins, one from 15N labeled spinach \[54\] and other from the 15N labeled aquatic plant duckweed (S. oligorrhiza) \[56\]. If the electron transfer chain in PSI is bidirectional, a maximum of sixteen nitrogen atoms can occur in the 15N photo-CIDNP MAS NMR spectrum, originating from up to three Chl a cofactors and the single Chl a' cofactor. The photo-CIDNP spectra from duckweed showed a maximum of 11 light-induced signals \[56\], whereas in spinach only 8 signals were observed \[70\] (Fig. 3B) (Table 2). The chemical shift region characteristic for the N-II nitrogen of Chl a reveals three signals suggesting that

![Fig. 3.](image-url)
Summary of 13C chemical shifts assignment of the photo-CIDNP signals from PSI and PSII from Spinach and Synechocystis sp. PCC8803 obtained at 4.7 T.

Table 1

<table>
<thead>
<tr>
<th>Cofactor</th>
<th>Atom</th>
<th>Solution data</th>
<th>PSI</th>
<th>PSI</th>
<th>PSI + PSII (Synechocystis)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>σ<sub>ss</sub></td>
<td>σ<sub>liq</sub></td>
<td>σ<sub>ss</sub></td>
<td>σ<sub>liq</sub></td>
</tr>
<tr>
<td>Chl α</td>
<td>N-I</td>
<td>186.0</td>
<td></td>
<td>186.2 (e)</td>
<td>186.3 (a)</td>
</tr>
<tr>
<td></td>
<td>N-II</td>
<td>206.5</td>
<td></td>
<td>206.1 (a)</td>
<td>211.5 (e)</td>
</tr>
<tr>
<td></td>
<td>N-IV</td>
<td>207.1</td>
<td></td>
<td>211.5 (e)</td>
<td>212.4 (e)</td>
</tr>
<tr>
<td></td>
<td>N-III</td>
<td>189.4</td>
<td></td>
<td>193.2 (a)</td>
<td>195.3 (e)</td>
</tr>
<tr>
<td></td>
<td>N-IV</td>
<td>247.0</td>
<td></td>
<td>233.3 (a)</td>
<td>247.6 (e)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250.3 (e)</td>
<td>253.9 (e)</td>
</tr>
<tr>
<td>Phe α</td>
<td>N-I</td>
<td>125.5</td>
<td></td>
<td>126.0 (e)</td>
<td>127.1 (a)</td>
</tr>
<tr>
<td></td>
<td>N-II</td>
<td>241.5</td>
<td></td>
<td>242.0 (a)</td>
<td>245.5 (e)</td>
</tr>
<tr>
<td></td>
<td>N-III</td>
<td>133.9</td>
<td></td>
<td>138.3 (e)</td>
<td>141.9 (a)</td>
</tr>
<tr>
<td></td>
<td>N-IV</td>
<td>295.8</td>
<td></td>
<td>295.0 (e)</td>
<td>297.5 (e)</td>
</tr>
</tbody>
</table>

Abbreviations: σ = chemical shift, A = absorptive signal, E = emissive signal, ss = solid state NMR, liq = liquid state NMR, ? = unknown peak.

Table 2

<table>
<thead>
<tr>
<th>Cofactor</th>
<th>Atom</th>
<th>Solution data</th>
<th>PSI</th>
<th>PSI</th>
<th>PSI</th>
<th>PSI + PSII (Synechocystis)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>σ<sub>ss</sub></td>
<td>σ<sub>liq</sub></td>
<td>σ<sub>ss</sub></td>
<td>σ<sub>liq</sub></td>
<td></td>
</tr>
<tr>
<td>Chl α</td>
<td>N-I</td>
<td>186.0</td>
<td></td>
<td>186.2 (e)</td>
<td>186.3 (a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-II</td>
<td>206.5</td>
<td></td>
<td>206.1 (a)</td>
<td>211.5 (e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-IV</td>
<td>207.1</td>
<td></td>
<td>211.5 (e)</td>
<td>212.4 (e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-III</td>
<td>189.4</td>
<td></td>
<td>193.2 (a)</td>
<td>195.3 (e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-IV</td>
<td>247.0</td>
<td></td>
<td>233.3 (a)</td>
<td>247.6 (e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>250.3 (e)</td>
<td>253.9 (e)</td>
<td></td>
</tr>
<tr>
<td>Phe α</td>
<td>N-I</td>
<td>125.5</td>
<td></td>
<td>126.0 (e)</td>
<td>127.1 (a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-II</td>
<td>241.5</td>
<td></td>
<td>242.0 (a)</td>
<td>245.5 (e)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-III</td>
<td>133.9</td>
<td></td>
<td>138.3 (e)</td>
<td>141.9 (a)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N-IV</td>
<td>295.8</td>
<td></td>
<td>295.0 (e)</td>
<td>297.5 (e)</td>
<td></td>
</tr>
</tbody>
</table>

All shifts are referenced to liquid ammonia with use of an external standard of solid [15N]₄NO₃ (δ = 23.5). Bold printed shifts are assigned to the primary Chl α donor of the B-branch (P_B). A Absorptive (positive), E emissive (negative).
chemical shifts of both systems. In addition to the emissive photo-CIDNP signals, weak absorptive signals were also observed that presumably originate from PSII (Fig. 3C). This can be understood since Synechocystis cells contain both photosystems, PSI and PS II. Rögner et al. [73] reported the PSI as the ascendant photosystem in Synechocystis, having a PSI/PSII ratio of 9:1, thus the dominance of the emissive PSI signals over the absorptive PSII is reasonable. Table 1 summarizes the experimentally observed chemical shifts correlated to literature values of light-induced signals from isolated PSI and Chl a aggregates [13,70]. As discussed by Matysik et al. and Janssen et al. [55,60], the electronic properties of the photosynthetic micro-factory seem to be relatively stable upon isolation from the natural thylakoid environment.

5. Photo-CIDNP MAS NMR studies on the photosystem II (PSII) reaction center

The solid-state photo-CIDNP effect has also been detected in the PSII systems of spinach (S. oleracea) [13,51–54,70], duckweed (S. oligorrhiza) and in a cyanobacterium Synechocystis (sp. PCC 6803 strain) [55,56]. In this section, we will review the 13C- as well as 15N- photo-CIDNP MAS NMR studies on PSII reaction centers from two different plant sources. In addition, the peculiarities of the photo-CIDNP effect in terms of magnetic field dependence will be compared between PSI and PSII reaction centers.

5.1. 13C- photo-CIDNP MAS NMR studies on PSII reaction centers

Matysik et al. [51] reported the first observation of the photo-CIDNP signals from the PSII RC (D1D2cytb559) of spinach investigated by 13C photo-CIDNP MAS NMR without isotope enrichment. The majority of the light induced signals were positive, except for the emissive signal that appeared at a chemical shift of 104.6 ppm (Fig. 4A). These light-enhanced NMR signals provided information on the electronic structure of the electron donor and on the p_z spin density pattern in its oxidized form. Most centerband signals were credited to a single Chl a cofactor that has less interaction with other pigments. Interestingly, a pronounced asymmetry of the electronic spin density distribution on that Chl a cofactor was observed. The spin density appears remarkably shifted toward ring III as compared to monomeric Chl a radical cations in solution.
whereas the region of highest spin density is around ring II [12]. The radical cation electronic structure in PSII was found to be different from that in the bacterial RC, where a symmetric spin density distribution over the entire bacteriochlorophyll macrorcycle was observed. Matsyik et al. [53] proposed that a local electrostatic field close to ring III can polarize the electronic charge and associated spin density and may be responsible for the increase in the redox potential. The generation of such electrostatic field close to ring III could be produced, e.g., by protonation of the keto group of pyridine.

In a later study, Diller et al. [70] improved the \(^{13}\)C photo-CIDNP NMR signals from the PSI RC (D\(_{1}\)D\(_{2}\)Cytb559) of spinach significantly, resulting in 23 well resolved light-induced centerband signals. The majority of the signals have been unequivocally assigned to a single Chl \(a\) molecule (Table 1). Diller et al. also reported the detection of four distinct methine carbon signals between 92 and 107 ppm. Two additional resonances at 157.4 and 160.7 ppm having a positive sign were tentatively assigned to the Phe \(a\) acceptor. The chemical shifts and photo-CIDNP intensities allowed the reconstruction of local electron spin densities on the oxidized monomeric donor. It was confirmed that the electron spin density distribution on the donor chlorophyll is highly asymmetric with a maximal electron spin density shift toward ring III/V in the donor. Diller et al. [70] also compared \(^{13}\)C photo-CIDNP MAS NMR data of PSII to data of PSI. The comparison reveals that the electronic structure of the radical cation of P700 appears to be a Chl \(a\) cofactor that is essentially undisturbed, while the donor in PSI is a Chl \(a\) cofactor with strong matrix interaction. An electrostatic field pulling the charge toward the C-13\(^{1}\) carbonyl of the Chl \(a\) macrocycle, stabilizing the frontier orbitals and increasing the redox force for P680 was proposed. Such an electrostatic field might be caused by hydrogen bonding, chemical modifications or transient mesoscopic changes. In the \(^{13}\)C photo-CIDNP MAS NMR spectrum from PSI RC, two broad emissive signals at 129.2 ppm and 140–142.5 ppm that were difficult to reconcile with a Chl \(a\) molecule, match rather well with the carbon resonances of amino acids from the matrix. It was proposed that electron spin density is also located on aromatic amino acid of the surrounding matrix that may be involved in tuning the redox properties of the donor.

5.2. \(^{15}\)N- photo-CIDNP MAS NMR studies on PSI reaction centers

Further insight into matrix involvement and its role in tuning the redox properties of P680 were obtained from \(^{15}\)N photo-CIDNP studies of Diller et al. [54]. As compared to \(^{13}\)C photo-CIDNP spectra from natural abundance PSI RC, the \(^{15}\)N photo-CIDNP MAS NMR data from isotope labeled PSI RCs were less complicated. The spectra could be interpreted straightforwardly, as each \(^{15}\)N signal corresponds to one of the four pyrrole nitrogens of the cofactors forming the radical pair. \(^{15}\)N photo-CIDNP MAS NMR data of uniformly \(^{15}\)N labeled plant PSI RCs of spinach show several emissive signals and their pattern indicated that the radical pair is formed by a Chl \(a\) cofactor and a Phe \(a\) acceptor having well separated signals (Fig. 4B) (Table 2). The donor signals were remarkably narrow (full width at half-height, FWHH, of \(-40 \text{ Hz}\)) whereas the acceptor signals were slightly broader (\(-70 \text{ Hz}\)) implying a general feature of photosynthetic RCs having a rigid donor site without structural heterogeneities [13,71] and slightly more structural flexibility at the acceptor site. The intensity ratio of light induced signals from the Chl donor cofactor shows a strong asymmetry of electron spin density, which appears to be shifted toward the pyrrole ring IV (Fig. 4C). These observations were in line with the strong asymmetry of electron spin density detected previously by \(^{13}\)C photo-CIDNP MAS NMR demonstrating maximum electron spin density at the neighboring C-15 methine carbon [53]. Thus, the electron spin density pattern is inverted in the donor of PSI as compared with the donor and acceptor cofactors in PSI, as well as to isolated Chl \(a\) cofactors. On the other hand, there was no indication for a significant disturbance of the electronic ground state (chemical shifts) and the change in the electronic structure was found to be restricted to the photo-oxidized state (signal intensities).

Interestingly, \(^{15}\)N photo-CIDNP spectra of PSII RC also showed a comparably broad signal at 243.8 ppm which was proposed to be arising from the structurally more a flexible unit close to the donor Chl (Fig. 4B) [54]. This signal was assigned to the N-\(\pi\) of a type-1 histidine (i.e., carrying a lone pair at the \(\pi\)-position [13]). \(^{13}\)C photo-CIDNP MAS NMR of PSII RC also show signals arising from a histidine residue in the close proximity to the Chl donor. The \(^{13}\)C signals assigned to a histidine show another orientation dependence than the Chl cofactor [54]. It was therefore proposed that the electron spin density is distributed over both the donor Chl and its axial histidine. These results were in line with EPR studies which show only 82% spin density on one Chl cofactor. The photo-CIDNP studies imply that the remaining spin density is localized on the axial histidine. Hence, the donor must be an inner Chl, either P\(_{1}\) or P\(_{2}\), because the two accessory Chls, Chl\(_{p1}\) and Chl\(_{p2}\), are not coordinated to histidines.

5.3. The hinge model of the electron donor in PSII

Based on both \(^{13}\)C and \(^{15}\)N photo-CIDNP MAS NMR results, Diller et al. [54] proposed the “hinge model” for the donor complex of PSI (Fig. 4D). Here, the electron spin density is proposed to be shared between the donor Chl and its axial histidine being tilted toward the pyrrole ring IV and the C-15 methine bridge. Since the accessory chlorophylls Chl\(_p\) are not coordinated to a histidine residue [30], the donor candidate was proposed to be an inner chlorophyll. This is in line with EPR studies proposing P\(_0\) as the donor on the time-scale of magnetic resonance experiments [74,75]. A model of \(\pi\)-deprotonated type-1 histidine [76] would generate a donor complex [Chl-His] which, upon photo-oxidation, is transformed from a negatively charged ground state donor to a neutral radical. The proposed explanation was in agreement with preliminary density functional computations suggesting that a minor tilt could result in both a spin density shift toward pyrrole ring-IV as well as on the histidine amino acid [54]. Thus, the hinge model of the electron donor in PSI in principle explains the observed inversion of the pattern of electron spin density distribution on the donor Chl.

6. Magnetic field effect of the photo-CIDNP observed in photosystem I and II reaction centers

Photo-CIDNP effects in liquid and solid state show strong magnetic field dependence which is indicative for the mechanisms and the parameters causing the effect [60,64,77–79]. Interestingly, the solid-state photo-CIDNP effects observed in PSI and PSII exhibit very different magnetic field dependencies (Fig. 5). For PSI, the maximum photo-CIDNP enhancement is observed at 9.4 T [51], while the strongest signal enhancement for PSII has been observed at 4.7 T. It is still not clear whether a lower magnetic field would improve the signal enhancement for PSI further. In RCs of \(R. \text{sphaeroides}\) R26, the strongest effect, in particular for the DR, was observed at 1.4 T [40,48]. The field dependence of PSI CIDNP shows similarities to the field dependence observed for RC from heliobacteria [69]. Both PSI and heliobacterial RC are Type I RCs. On the other hand, the field dependence of PSI shows similarities to that observed in RCs of \(R. \text{sphaeroides}\) [40]. Both \(R. \text{sphaeroides}\) RC and
PSII are Type II RCs. It is possible that the magnetic field dependence of the photo-CIDNP effect is due to the difference between Type I and Type II RCs. The difference might reflect differences in coupling between the free electrons on the donor and acceptor site during the radical pair state.

7. Summary and outlook

Photo-CIDNP MAS NMR became complementary to the existing spectroscopic tool box. It provides information on electronic structures as the EPR family of methods does, however with atomic resolution. Compared to EPR, it also provides access to the diamagnetic ground state. While the \(^1\)H electron nuclear double resonance (ENDOR) methods probe the \(s\) spin densities mainly for nuclei outside the ring, \(^13\)C photo-CIDNP MAS NMR is correlated to the \(p_z\) electron spin density in the radical pair state. Therefore, photo-CIDNP MAS NMR is a unique tool to provide a coherent molecular picture of the unpaired electron density distribution in the radical pair with atomic selectivity in a single experiment. Photo-CIDNP MAS NMR has a lower temporal resolution than optical spectroscopy [80]. It provides kinetic information on the microsecond timescale, however it provides access to local electronic effects. Furthermore, the method can be used to explore structural details such as distance information and hydrogen bonding interactions and therefore it can be complementary to X-ray crystallography. Hence, photo-CIDNP MAS NMR has emerged as a fully-fledged analytical method for studying systems that carry spin-correlated radical pairs. In natural photosynthesis and other light-induced electron transfer chains, spin-correlated radical pair species frequently occur, making this field the ideal ground to evolve this method.

A major limitation toward the progress in investigating PSI and PSII in plants, algae and cyanobacteria by MAS NMR has so far been the lack of methods to introduce sufficient isotope labeling for obtaining higher selectivity and sensitivity and to get sufficient amounts of labeled material to prepare pure RC. However, recent advances suggest that these limitations can be overcome and the primary charge separation and electron transfer events can be investigated in PSI and PSII in whole cells using photo-CIDNP MAS NMR [54–56,70]. Subsequently, the search for new organisms showing the solid-state photo-CIDNP effect is no longer constrained by the isolation procedure. Several important issues have been partially resolved using photo-CIDNP MAS NMR methods. For example, the matrix involvement in tuning the donor of PSII, the asymmetry of monomeric donor and the remarkable differences in the electronic structures of the donors of PSI and PSII.

Acknowledgements

The authors thank Prof. Gunnar Jeschke for exciting discussions. The financial support from NWO grant (713.012.001), FOM grant (10T08BC23) and DFG grant (MA 4972/2-1) is gratefully acknowledged. M. Najdanova thanks German Academic Exchange Service (DAAD) for a research fellowship.

References

