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Introduction 

Ribosomally synthesized and post-translationally modified peptides (RiPPs), like 

many other natural products, comprise a dazzling array of chemical diversity [42, 

48]. The simple biosynthetic logic – a precursor gene is translated, and the 

product is modified and cleaved – results in many different possible structures, 

depending on the precursor peptide and modifications applied to it. They are 

divided in more than 40 different subclasses, and the list of subclasses keeps 

steadily growing. Their functions are equally diverse, and include quorum 

sensing, acting as enzyme co-factors, roles in cellular development, mediating 

host-microbe interactions, but also the much sought-after antibacterial and 

antifungal properties that would make them interesting for clinical applications 

[261].  

Next-generation sequencing efforts surprisingly revealed that the 

capacity of bacteria to produce natural products had been grossly 

underestimated. This has led to a revolution in drug discovery based on the 

efficient mining of the rapidly growing genome sequence data [26, 262]. 

Numerous tools and databases have been developed to explore, compare and 

catalogue biosynthetic gene clusters (BGCs) and their chemical products [29, 

185, 228, 263, 264]. For most of the biosynthetic gene clusters (BGCs) 

discovered, the chemical compounds they produce are not yet known. These so-

called cryptic BGCs represent a vast potential for new natural products with 

potentially interesting bioactivities. Even so, the BGCs that are currently easily 

detected are in some ways similar to characterized ones, since their detection is 

based on the identification of conserved protein domains [26, 39, 40, 228]. 

RiPPs present an interesting case when it comes to genome mining, as 

there is no single genetic marker that identifies them all, other than the 

prerequisite of an ORF that encodes a small peptide. Although some RiPP 

subclasses overlap on a genetic level, most require bioinformatic rules aimed at 

subclass-specific genetic markers. There is still plenty of room for innovative 

genome mining strategies aimed at identifying novel RiPP subclasses, each of 

which further charts undiscovered genetic space [52, 85, 88, 89, 114, 265, 266]. 

In this thesis, we have explored such strategies which prioritize novelty at the 
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cost of fidelity, with the primary aim being the identification of novel RiPP 

families. The main pipeline that was developed, decRiPPter, can function as a 

platform for explorative RiPP genome mining. In contrast to most tools 

developed for high-confidence RiPP genome mining, decRiPPter relies more 

heavily on user settings, and present several options for trade-offs between 

confidence and novelty. Using this tool, the pristinin BGC was discovered, which 

encodes a novel class V lanthipeptide. 

Machine learning paves the way for class-independent 
precursor identification 

Machine-learning-based and neural-network-based classifiers have risen in 

popularity over the last decades as tools to process and classify massive datasets 

with large numbers of features. The large databases of genome sequences now 

available provide many opportunities for these classifiers to exploit their high 

precision for the benefit of genome mining. Specifically for RiPPs, the 

identification of the precursor gene presents an interesting challenge for 

machine-learning classifiers. Precursor genes are not easily recognized by 

similarity-based methods, and are frequently missed by automatic gene 

annotation algorithms due to their small size. Several classifiers have been 

developed for RODEO that supplement classical RiPP genome mining by 

identifying precursors of known classes [45, 55, 72-74, 86], and several more 

tools have been reported for standalone precursor identification [88, 89, 114].  

Detection of precursor peptides forms the core of decRiPPter (Chapter 

3), and determines which genomic regions will be further investigated. As such, 

decRiPPter is the first reported genome mining tool that uses the detection of 

precursors, rather than of enzymatic domains as the basis for the identification 

of novel RiPP subclasses. Analysis of 1,295 Streptomyces genomes resulted in 

the discovery of 42 candidate RiPP families after manual curation. All of these 

families are specified by BGCs that are characterized by a promising combination 

of precursor, transporter, biosynthetic, regulator and peptidase genes, typically 

organized in a single operon-like genomic structure. While some of the BGCs 

contain genes previously reported in known RiPP BGCs, most of the biosynthetic 

genes encode enzymes not previously associated with RiPP biosynthesis, 
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suggesting that many more RiPP modifying enzymes exist than currently known. 

Characterization of these enzymes could then be translated to new RiPP genome 

mining rules for tools like BAGEL [62] and antiSMASH [39], standardizing their 

detection. Experimental investigations into one of the families showed that it 

did indeed encode a novel RiPP, namely a lanthipeptide, pristinin A3, that is 

modified by a newly discovered set of modifying enzymes. How many more of 

the 42 families actually specify RiPPs needs to be validated experimentally. 

However, if even half of these candidates encode actual RiPPs, it would 

represent a sizable contribution to expanding the RiPP chemical space.  

Remarkably, the wide variety of precursor sequences of many different 

classes can be adequately covered by the SVM-based classifier of decRiPPter. 

Apparently, there are certain combinations of features that are typical of RiPP 

precursors regardless of class. These include the enrichment of certain amino 

acids, like cysteine, serine and threonine, which are often modified in known 

RiPPs, but also frequently found in the candidate RiPP BGCs. In addition, arginine 

residues are particularly rare across RiPP precursors. An evolutionary link 

between different RiPP classes could explain these conserved features, but is 

made unlikely by the large disparity in precursors and modifying enzymes. 

Cysteine, serine and threonine residues do have oxygen- and thiol-groups, 

respectively, making them easier to modify. This chemical property could drive 

the evolutionary process towards precursor peptides containing certain 

residues, even if they have evolved independently. If the latter is the case, it 

would explain why feature-dependent classifiers that focus on amino acid 

frequencies are so effective at detecting precursor peptides of many different 

classes, and it would suggest that many more RiPP classes can be detected by 

them.  

A difficult challenge when applying these classifiers to a large genomic 

space is the number of false positives. The sheer number of candidates (71 

million) as opposed to the number of expected precursor genes (~6500 if each 

genome encodes five RiPP precursors) makes it so that even a false discovery 

rate of 1% would result in many more false positives than true positives. 

Comparisons with other machine-learning-based classifiers revealed similar 

numbers of hits for those, meaning that this would be a general issue. As the 
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number of characterized precursors increases, and therefore the training set 

improves, the accuracy of newer classifiers may improve as well. Alternatively, 

restricting the set of precursors to those for which at least two different 

classifiers reach a consensus would reduce the number of hits substantially, as 

the overlap between the three studied methods is relatively low. However, it is 

questionable whether precursor identification itself can become reliable enough 

for precursor-based RiPP genome mining without considering their genetic 

context. The false discovery rate would have to drop substantially while still 

covering the wide variety of precursor sequences. Until then, using the genetic 

context as shown in Chapter 3 is a viable alternative to filter the identified 

precursors down to a more manageable set.  

Another way to filter the predicted precursors without considering 

genetic context is to prioritize precursors with multiple core regions. Having 

multiple copies of the same core region allows for the efficient production of 

several RiPP variants, while only needing a single leader peptide. A similar 

pattern was also identified in the RiPP candidate discussed in Chapter 5. These 

repeats are found often in eukaryotic RiPPs [51, 239, 267], and could provide a 

handhold for their identification without prior knowledge of their primary 

sequence.  If these patterns occur as exact copies, their identification would be 

algorithmically straightforward, by taking subsets of the sequence and finding 

exact matches of that sequence elsewhere in the peptide. If more variation of 

the pattern occurs, such as in thiovarsolins, identification of these patterns 

would have to be based on a local alignment algorithm, such as BLAST, or a motif 

discovery tool such as MEME [116, 268]. Alternatively, the presence of a 

repeated pattern can be used as a feature in a future iteration of the classifier, 

so that it is taken into account during precursor prediction itself. Flagging 

precursors in which these patterns can be found can be used to remove many 

false positives, albeit at the cost of removing RiPP families which do not contain 

these patterns. Their presence could therefore be used as an imperfect 

bioinformatic handle to fine-tune precursor-based RiPP genome mining. 
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Prioritizing novel RiPP BGCs from the genetic context 

decRiPPter uses the genetic context of predicted precursor genes to prioritize 

candidate BGCs. The filtering process exemplifies the trade-off between 

confidence and novelty, and can be set up according to user preferences. At 

loose conditions (e.g., mild filtering), most known RiPP BGCs are left unfiltered, 

but the number of false positives is estimated upwards of 84.4%, making the 

dataset too large to manually process. It is likely that there are still many RiPP 

BGCs among this dataset, which is also highlighted by the promising candidate 

discussed in Chapter 5, but without additional filters, selecting a suitable 

candidate can become difficult. In order to simplify this, the HTML-based output 

allows a user to browse the results. In addition, the entire set can be filtered 

with additional criteria of interest, such as specific biosynthetic domains, or a 

specific number of transporters, proteases or regulators in or nearby the 

precursor gene. The resulting set can then be manually investigated and a BGC 

of interest can be selected. Expanding the output filtering options with 

additional parameters, such as specific motifs within precursors, would help 

users browsing this large dataset and find the exact sort of BGC they are looking 

for.  

The strict filter applied is a middle ground between confidence and 

novelty. On the one hand, it is permissive in the sense that many different 

domains are considered as possible RiPP associated enzymes and proteins. On 

the other hand, it is restrictive in the sense that genes for a peptidase, regulator 

and transporter are all required. In theory, these encode peptidases for 

precursor cleavage, a dedicated transporter module, and a cluster-specific 

regulator. Many known RiPP BGCs do not contain all of these genes, and instead 

their encoded pathway and products are regulated, transported and cleaved by 

proteins encoded elsewhere in the genome. As a result, the remaining candidate 

BGCs are promising, and the false positive rate was lower than with the mild 

filter (estimated between 46.7 and 73.0%), although many known RiPP BGCs are 

filtered.  

Several other methods for prioritizing gene clusters of interest can be 

envisioned, which would each represent a different trade-off in confidence and 
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novelty. Integrating these into decRiPPter would further expand the possibilities 

for more fine-tuned search strategies in which several criteria can be combined. 

The tool for one of these, RRE-Finder, was discussed in Chapter 2. RiPP 

Recognition Elements (RREs) are involved in the precursor recognition of many 

different RiPP classes, and could function as a class-independent bioinformatics 

handle for RiPP discovery. With RRE-Finder, RREs can be detected at a faster rate 

than with HHPred, allowing for the analysis of large amounts of queries. 

Exploratory mode of RRE-Finder, which is based on HHPred, detected several 

novel RRE-enzyme fusions in the UniProt database, which could lead to the 

discovery of novel RiPP modifying enzymes. Unfortunately, the false discovery 

rate of exploratory mode is higher than for precision mode, which makes it 

questionable which of the newly discovered RRE-enzyme fusions would be 

worth investigating. This disadvantage can be mitigated by imposing other mild 

criteria of decRiPPter, i.e. a predicted precursor gene nearby, one or two 

biosynthetic domains in an operon-like gene organization, and not being part of 

the core genome. Integration of RRE-Finder therefore would be a valuable 

addition to the decRiPPter pipeline, and help increase the confidence for both 

tools.  

RRE-Finder itself could be further improved by using a machine-learning 

classifier for the detection of RREs. Like RiPP precursor peptides, RREs are 

generally no longer than 120 amino acids long. A candidate sequence of this 

length can be used completely as an input vector in a neural network, as is done 

in NeuRiPP, without having to select specific features. This approach would 

allow for detection of discrete RREs by using part of the sequence, e.g. the N- or 

C-terminal regions, as raw input for the network. These classifiers might be able 

to better distinguish between regulators and RREs, as they can recognize more 

complicated patterns than only secondary structure. A possible discriminatory 

feature are the sequence residues that are known to interact with the precursor 

peptide. Several of these residues have been shown to co-evolve with the 

precursor peptide, and likely stand out from a sequence-based point of view 

when compared to similar domains found in regulators. Further research is 

required to determine if machine-learning classifiers are indeed suitable for the 

detection of RREs.  
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Insights into RiPP evolution guide discovery of novel RiPPs 

Understanding how different RiPPs have evolved can provide useful insights for 

the prioritization of RiPP BGCs, especially if these principles are class-

independent. For secondary metabolism in general, it has been hypothesized 

that their enzymes have evolved from primary metabolism enzymes. An 

example of this can be seen for polyketide synthetases (PKSs), which descend 

from fatty acid synthetases, but have diverged to take in different substrates, 

and apply extra tailoring [269]. This property has been used earlier to mine for 

BGCs in EvoMining [160, 161]. By searching for enzymes that have evolved from 

primary metabolism enzymes, many BGCs of known classes like NRPS and PKS, 

but also of novel classes, can be identified. 

Interestingly, the RiPP candidates prioritized by decRiPPter included 

several BGCs that encode proteins previously identified in a different context. 

HypD, HypE, MauD and MauE are thought to be involved in protein maturation, 

by creating crosslinks or modifying specific amino acids [182, 183]. These 

proteins could have easily evolved towards modifying small peptides rather than 

proteins, and could thus have become RiPP-modifying enzymes. A similar 

example was recognized earlier: QhpD, an enzyme that catalyzes the synthesis 

of a thioether bond in a protein, and radical SAM enzymes involved in thioether 

crosslink formation in sactipeptides and ranthipeptides, show moderate 

similarity [55, 270]. Protein modification is a widely occurring phenomenon in 

all branches of life, and it is possible that more RiPP modifying enzymes evolved 

from them. An approach similar to EvoMining, using protein-modifying enzymes 

as a query, could aid in the identification of more of these RiPP subclasses.  

Another sizable contributor to RiPP BGC biodiversity is the occurrence 

of gene swaps. The genes for YcaOs [95], rSAMs [96], lanDs [194], for example, 

are encoded by BGCs of several RiPP subclasses. The newly reported 

lanthipeptide class V further contributes to this list, as its BGC contains elements 

from both linaridins [271] and thioamitides [52, 94, 272], further suggesting that 

gene swaps contribute significantly for RiPP diversity. An automated procedure 

might be able to prioritize genes present in many RiPP-like clusters, even if they 

were not previously functionally associated with RiPPs before. If, from a 
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candidate RiPP BGC, a gene or set of genes can be detected in BGCs of other 

candidate RiPP families as detected by decRiPPter, this would make it more 

likely that the gene product is involved in RiPP maturation. This can be seen to 

some extent with the mauE and mauD genes, which are present in three 

different RiPP families, and also with the core enzymes of the novel 

lanthipeptide subclass, described in Chapter 4.  In a simple form, this procedure 

can be automated by searching for biosynthetic domains that are seen among 

several different RiPP families. A more sophisticated pipeline could involve the 

usage of CORASON to identify gene islands widespread across many different 

RiPP-like contexts. Successful identification of these islands would help prioritize 

RiPP modifying enzymes, and by extension, RiPP families. 

Examples of novel RiPPs and their classification 

To validate decRiPPter’s capabilities to detect novel RiPP classes, we selected 

two BGCs of different candidate families to experimentally characterize. One of 

these encodes a novel lanthipeptide, pristinin A3, containing the classical 

thioether bridge, a C-terminal aminovinylcysteine and serine-to-alanine 

conversions (Chapter 4). Importantly, two candidate genes appear likely 

candidates for the formation of the thioether bridge. Their presence in many 

genetic contexts shows that this class is widespread across several taxonomic 

clades, and that these genes are excellent candidates to add to the rulesets of 

high-confidence RiPP genome mining tools. Furthermore, lanthipeptides 

frequently possess antimicrobial activity [273, 274], so the discovery of a novel 

class of these could in time lead to the discovery of novel antibiotics.  

Another promising BGC (Chapter 5) has many features that suggest it 

specifies a RiPP. This BGC contains many genes that encode enzymes previously 

associated with RiPP biosynthesis, like an rSAM and an ATP-grasp ligase. Despite 

this, the BGC was not directly recognized by other RiPP genome mining tools, 

and encodes several more predicted modifying enzymes that were not 

recognized. The repeated, conserved patterns observed in the precursor 

peptides are likely multiple core regions. Several masses were detected 

exclusively when the gene cluster was activated, which were no longer present 

when the gene cluster was inactivated. These masses were within 200 Da of the 
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mass of the predicted core peptide. Unfortunately, none of the masses could be 

matched to the core peptide, and it remains unclear whether any of the masses 

are directly derived from it. It seems likely that the many predicted enzymes 

extensively modify the core peptides, meaning more sophisticated analytical 

chemistry is required to relate the structure to the peptide. Furthermore, 

heterologous expression of the BGC could help prioritize which masses are 

exclusively derived from the BGC, and not produced due to any secondary 

effects, like the activation of another BGC. 

The two BGCs described in this work both contain genes that have 

homologs encoded by BGCs of other RiPP subclasses. Despite this, they both 

would still likely specify members of a novel RiPP class, due to a unique 

combination of modifications or novel enzymatic machinery that installs it. In 

general, however, the discovery of RiPP classes that are produced mostly by a 

combination of modifying enzymes already known makes their classification 

more complicated. The consensus for classification of RiPPs is based on 

designating modifications as core or accessory, and determining which core 

modifications are required for one RiPP family [42]. This methodology is 

becoming more and more difficult to uphold. Given that modifications can be 

swapped between different RiPP families, which one is considered a core 

modification and which one is considered an accessory one is context-

dependent. If the lanthionine bridge of pristinin A3 is considered the core 

modification, as for other lanthipeptides, then all other modifications would be 

considered secondary. These include the formation of dehydrated serine 

residues, which are considered a core modification in linaridins.  

As a result, what makes up a novel RiPP class becomes somewhat 

arbitrary. Lipolanthines, for example, are considered a standalone RiPP class, 

but they are clearly very related to other lanthipeptides [80]. By contrast, 

glycosylated lanthipeptides are not considered their own class. Since the 

definition of a RiPP class determines the rules for genome mining of that class, 

we should take care not to restrict ourselves too much with these definitions. 

Many more interesting RiPP variants can be found by alleviating the strictest of 

rules. Rather than focus on the identification of novel RiPP classes, which could 

be considered arbitrary, perhaps the priority should be the identification of 
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RiPP-associated reactions and their corresponding modifying enzymes. The RiPP 

classes can be considered examples in which specific modifications have been 

found combined. But any RiPP-associated enzyme could arguably lead to the 

discovery of new RiPP classes and variants, whether core or accessory.  

Conclusion 

Natural products and their BGCs come in many shapes and sizes, resulting in a 

rich diversity to explore. In this thesis, we have explored methods aimed at 

finding novel types of natural products, specifically novel RiPP subclasses. The 

biosynthetic logic of a RiPP can be made up of many different precursors and 

modifying enzymes. There are several features, however, which can be 

exploited for their detection. RiPP BGCs should always encode a precursor 

peptide, providing a handhold for identification with machine-learning 

classifiers. Encoded modifying enzymes in the BGC should be capable of 

recognizing the precursor peptide, which can be exploited through the detection 

of RREs or through their association with other RiPP classes. We have combined 

these methods to prioritize many different gene clusters, and illustrated that 

one of these gene clusters indeed specified a novel type of lanthipeptide 

(pristinin). The pipeline can be expanded further in many ways, including the 

integration of RRE-Finder, new precursor classifiers, or detection methods using 

evolutionary principles, which will help expanding the large chemical diversity 

of this class of natural products. 

  


