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Abstract 

Microbial natural products constitute a wide variety of chemical compounds, 

many which can have antibiotic, antiviral or anticancer properties that make 

them interesting for clinical purposes. Natural product classes include 

polyketides (PKS), non-ribosomal peptides (NRPS) and ribosomally synthesized 

and post-translationally modified peptides (RiPPs). While variants of 

biosynthetic gene clusters (BGCs) for known classes of natural products are easy 

to identify in genome sequences, BGCs for new compound classes escape 

attention. In particular, evidence is accumulating that for RiPPs, subclasses 

known thus far may only represent the tip of an iceberg. Here, we present 

decRiPPter (Data-driven Exploratory Class-independent RiPP TrackER), a RiPP 

genome mining algorithm aimed at the discovery of novel RiPP subclasses. 

DecRiPPter combines a classifier based on Support Vector Machines (SVMs) that 

identifies candidate RiPP precursors, with pan-genomic analyses to identify 

which of these are encoded within operon-like structures that are part of the 

accessory genome of a genus. Subsequently, it prioritizes such regions based on 

the presence of new enzymology and based on patterns of gene cluster and 

precursor peptide conservation across species. We then applied decRiPPter to 

mine 1,295 Streptomyces genomes, which led to the identification of 42 new 

candidate RiPP families that could not be found by existing programs. The BGCs 

of these families encode enzyme families not previously associated with RiPP 

biosynthesis, or precursors with interesting repeating patterns. These results 

highlight how novel natural product families can be discovered by methods 

going beyond sequence similarity searches to integrate multiple pathway 

discovery criteria. 

Code and data availability 

The source code of decRiPPter is freely available online at 

https://github.com/Alexamk/decRiPPter. Results of the data analysis are 

available online at https://decrippter.bioinformatics.nl. All training data and 

code used to generate these, as well as outputs of the data analyses, are 

available on Zenodo at doi:10.5281/zenodo.3834818.   

https://github.com/Alexamk/decRiPPter
https://decrippter.bioinformatics.nl/
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Introduction 

The introduction of antibiotics in the 20th century contributed hugely to extend 

the human life span. However, the increase in antibiotic resistance and the 

concomitant steep decline in the number of new compounds discovered via 

high-throughput screening [22, 25], means that we again face huge challenges 

to treat infections by multi-drug resistant bacteria [157]. The low return of 

investment of high throughput screening is due to dereplication, in other words, 

the rediscovery of bioactive compounds that have been identified before [23, 

24]. A revolution in our understanding was brought about by the development 

of next-generation sequencing technologies. Actinobacteria are the most 

prolific producers of bioactive compounds, including some two-thirds of the 

clinical antibiotics [32, 158]. Mining of the genome sequences of these bacteria 

revealed a huge repository of previously unseen biosynthetic gene clusters 

(BGCs), highlighting that their potential as producers of bioactive molecules had 

been grossly underestimated [27, 32, 159]. However, these BGCs are often not 

expressed under laboratory conditions, most likely because the environmental 

cues that activate their expression in their original habitat are missing [26, 30]. 

To circumvent these issues, a common strategy is to select a candidate BGC and 

force its expression by expression of the pathway-specific activator or via 

expression of the BGC in a heterologous host [33]. However, these methods are 

time-consuming, while it is hard to predict the novelty and utility of the 

compounds they produce. 

To improve the success of genome mining-based drug discovery, many 

bioinformatic tools have been developed for identification and prioritization of 

BGCs. These tools often rely on conserved genetic markers present in BGCs of 

certain natural products, such as polyketides (PKs), non-ribosomal peptides 

(NRPs) and terpenes [39, 40, 62]. While these methods have unearthed vast 

amounts of uncharacterized BGCs, they further expand on previously 

characterized classes of natural products. This raises the question of whether 

entirely novel classes of natural products could still be discovered. A few 

genome mining methods, such as ClusterFinder [41] and EvoMining [160, 161], 

have tried to tackle this problem. These methods either use criteria true of all 

BGCs or build around the evolutionary properties of gene families found in BGCs, 
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rather than using BGC-class-specific genetic markers. While the lack of clear 

genetic markers may result in a higher number of false positives, these methods 

have indeed charted previously uncovered biochemical space and led to the 

discovery of new natural products.  

One class of natural products whose expansion has been fueled by the 

increased amount of genomic sequences available is that of the ribosomally 

synthesized and post-translationally modified peptides (RiPPs) [42]. RiPPs are 

characterized by a unifying biosynthetic theme: a small gene encodes a short 

precursor peptide, which is extensively modified by a series of enzymes that 

typically recognize the N-terminal part of the precursor called the leader 

peptide, and finally cleaved to yield the mature product [43]. Despite this 

common biosynthetic logic, RiPP modifications are highly diverse. The latest 

comprehensive review categorizes RiPPs into roughly 20 different subclasses 

[42], such as lanthipeptides, lasso peptides and thiopeptides. Each of these 

subclasses is characterized by one or more specific modifications, such as the 

thioether bridge in lanthipeptides or the knot-like structure of lasso peptides. 

Despite the extensive list of known subclasses and modifications, new RiPP 

subclasses are still being found. These often carry unusual modifications, such 

as D-amino acids [98], addition of unnatural amino acids [162, 163], β-amino 

acids [103], or new variants of thioether crosslinks [55, 106]. These discoveries 

strongly indicate that the RiPP genomic landscape remains far from completely 

charted, and that novel types of RiPPs with new and unique biological activities 

may yet be uncovered. However, RiPPs pose a unique and major challenge to 

genome-based pathway identification attempts: unlike in the case of NRPSs and 

PKSs, there are no universally conserved enzyme families or enzymatic domains 

that are found across all RiPP pathways. Rather, each subclass of RiPPs 

comprises its own unique set of enzyme families to post-translationally modify 

the precursor peptides belonging to that subclass. Hence, while biosynthetic 

gene clusters (BGCs) for known RiPP subclasses can be identified using 

conventional genome mining algorithms, a much more elaborate strategy is 

required to automate the identification of novel RiPP subclasses. 

Several methods have made progress in tackling this challenge. ‘Bait-

based’ approaches such as RODEO [45, 55, 72-74, 86] and RiPPer [52] identify 
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RiPP BGCs by looking for homologues of RiPP modifying enzymes  of interest, 

and facilitate identifying the genes encoding these enzymes in novel contexts to 

find many new RiPP BGCs. A study was also described using a transporter gene 

as a query that is less dependent on a specific RiPP subclass [164]. However, 

these methods still require a known query gene from a known RiPP subclass. 

Another tool recently described, NeuRiPP, is capable of predicting precursors 

independent of RiPP subclass, but is limited to precursor analysis [88]. Yet 

another tool, DeepRiPP, can detect novel RiPP BGCs that are chemically far 

removed from known examples, but is mainly designed to identify new 

members of known subclasses [89]. In the end, an algorithm for the discovery 

of BGCs encoding novel RiPP subclasses will need to integrate various sources of 

information to reliably identify genomic regions that are likely to encode RiPP 

precursors along with previously undiscovered modifying enzymes. 

Here, we present decRiPPter (Data-driven Exploratory Class-

independent RiPP TrackER), an integrative algorithm for the discovery of novel 

subclasses of RiPPs, without requiring prior knowledge of their specific 

modifications or core enzymatic machinery. DecRiPPter employs a classifier 

based on Support Vector Machines (SVMs) that predicts RiPP precursors 

regardless of RiPP subclass, and combines this with pan-genomic analysis to 

identify which putative precursor genes are located within specialized genomic 

regions that encode multiple enzymes and are part of the accessory genome of 

a genus. Sequence similarity networking of the resulting precursors and gene 

clusters then facilitates further prioritization. Applying this method to the gifted 

natural product producer genus Streptomyces, we identified 42 new RiPP family 

candidates. Experimental characterization of a widely distributed candidate 

RiPP BGC led to the discovery of a novel lanthipeptide that was produced by a 

previously unknown enzymatic machinery. 
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Results and Discussion 

RiPP BGC discovery by detection of genomic islands with characteristics 

typical of RiPP BGCs 

Given the promise of RiPPs as a source for novel natural products, we set out to 

construct a platform to facilitate identification of novel RiPP subclasses. Since 

no criteria could be used that are specific for individual RiPPsub classes, we used 

three criteria that generally apply to RiPP BGCs: 1) they contain one or more 

open reading frames (ORFs) for a precursor peptide; 2) they contain genes 

encoding modifying machinery in an operon-like gene cluster together with 

precursor gene(s); 3) they have a sparse distribution within the wider taxonomic 

group in which they are found. To focus on novel RiPP subclasses, we added a 

fourth criterion: 4) they have no direct similarity to BGCs of known classes 

(Figure 1).  

For the first criterion, we trained several SVM classifiers to distinguish 

between RiPP precursors and other peptides. A collection of 175 known RiPP 

precursors, gathered from RiPP clusters from the MIBiG repository [29, 140] was 

used as a positive training set (Table S1). For the negative training set, we 

generated a set of 20,000 short non-precursor sequences, consisting of 10,000 

randomly selected short proteins (<175 amino acids long) from Uniprot without 

measurable similarity to RiPP precursors (representative of gene encoding 

proteins but not RiPP precursors), and 10,000 translated intergenic sequences 

between a stop codon and the next start codon of sizes 30-300 nt taken from 10 

genomes across the bacterial tree of life (representative of spurious ORFs that 

do not encode proteins). From both positive and negative training set 

sequences, 36 different features were extracted describing the amino acid 

composition and physicochemical properties of the protein/peptide sequences, 

as well as localized enrichment of amino acids prone to modification by 

modifying enzymes. Based on these, several SVMs were trained with different 

parameters and kernel functions, of which the average was taken as a final score 

(Materials and Methods). To make sure that this classifier could predict 

precursors independent of RiPP subclass, we trained it on all possible subsets of 

the positive training set in which one of the RiPP subclasses was entirely left out.  
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Figure 1. decRiPPter pipeline for the detection of novel RiPP families. The SVM classifier is used 

to identify all candidate RiPP precursors in a given group of genomes, using all predicted proteins 

smaller than 100 amino acids. The gene clusters formed around the precursors are analyzed for 

specific protein domains. In addition, all COG scores are calculated to act as an additional filter, 

and to aid in gene cluster detection. The remaining gene clusters are clustered together and with 

MIBiG gene clusters to dereplicate and organize the results. In addition, overlap with antiSMASH 

detected BGCs is analyzed. 

 

We termed this strategy leave-one-class-out cross-validation. Typically, the 

classifier was still capable of predicting the subclass that was left out. To validate 

the classifier, we used it to score precursor hits from the various RiPP mining 

studies performed using RODEO [45, 55, 72-74, 86]. In general, 66.7% of all 

precursors identified by RODEO’s SVMs were scored as positive by decRiPPter’s 



3 

A.M. Kloosterman 

82 
 

classifier (Table S2). This shows that, for known RiPP subclasses, the classifier 

described here is well capable of detecting the majority of precursor peptides, 

although it is, unsurprisingly, outperformed by the dedicated, subclass-specific 

SVMs of RODEO. 

For the second criterion, we made use of the fact that the majority of 

RiPP BGCs appear to contain the genes encoding the precursor and the core 

biosynthetic enzymes in the same strand orientation within close intergenic 

distance (81.6% of MIBiG RiPPs). Therefore, candidate gene clusters are formed 

from the genes that appear to reside in an operon with predicted precursor 

genes, based on intergenic distance and the COG scores calculated (Cluster of 

Orthologous Genes, see description below, Materials and Methods, Figure 2 and 

Figure S1). These gene clusters were then analyzed for protein domains that 

could constitute the modifying machinery (Figure 1B). Rather than restricting 

ourselves to specific protein domains, we constructed a broad dataset of Pfam 

and TIGRFAM domains that are linked to an E.C. number using InterPro 

mappings [165]. This dataset was extended with a previously curated set of 

Pfam domains found to be prevalent in the positive training set of the 

ClusterFinder algorithm [41], and manually curated, resulting in a set of 4,131 

protein domains. We also constructed Pfam [75] and TIGRFAM [76] domain 

datasets of transporters, regulators and peptidases, as well as a dataset 

consisting of known RiPP modifying domains to provide more detailed 

annotation and allow specific filtering of RiPP BGCs based on the presence of 

each of these types of Pfam domains (Data S1, available from 

https://github.com/Alexamk/decRiPPter/tree/master/data/domains/). 

For the third criterion, we sought to distinguish specialized genomic 

regions from conserved genomic regions. Indeed, most BGCs are sparingly 

distributed among genomes, with even closely related strains showing 

differences in their BGC repertoires [3-5]. We therefore developed an algorithm 

that separates the ‘core’ genome from the ‘accessory’ genome, by comparing 

all genes in a group of query genomes from the same taxon (typically a genus), 

and identifying the frequency of occurrence of each gene within that group of 

genomes (Figure 1C and Figure 2).  

 

https://github.com/Alexamk/decRiPPter/tree/master/data/domains/
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Figure 2. decRiPPter determines the frequencies of occurrence of genes to calculate the COG 

score. In this example, the COG scores of four genomes are calculated. A) All encoded proteins 

are aligned to find bidirectional best hits (BBHs; edges). All clusters of BBHs conserved across all 

genomes are displayed as red. If one genome does not contain a homologous gene, or the gene 

in question is not a BBH with all genes from the cluster from other genomes, it is not considered 

a conserved group of BBHs. B) If the flanking genes of the clusters of BBHs are also part of clusters 

of BBHs, the center genes are considered to form a true Cluster of Orthologous Genes (trueCOG). 

Of the three cases displayed here, only the leftmost group passes this criterion; for the center 

group, not all genes are conserved, and for the right group, not all genes are BBHs with one 

another in the flanking groups. C) The distribution of sequence similarities is used to calculate a 

sequence identity cutoff to use for each pair of genomes. D) All genes are paired using the 

sequence identity cutoffs determined in the previous step. E) The COG-score is calculated for each 

gene. Typically, a bimodal distribution can be seen, with many genes either conserved across all 

genomes, or only present in a single organism.  

 

For the purpose of comparing genes between genomes, we reasoned 

that it was more straightforward to identify groups of functionally closely 

related genes that also include recent paralogues, due to the complexities of 

dealing with orthology relationships across large numbers of genomes 

(especially for biosynthetic genes that are known to have a discontinuous 

taxonomic distribution and may undergo frequent duplications [166]). 

Therefore, decRiPPter first identifies the distribution of sequence identity values 
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of protein-coding genes that can confidently be assigned to be orthologs, and 

uses this distribution to find groups of genes across genomes with ortholog-like 

mutual similarity. First, a set of high-confidence orthologs, called true conserved 

orthologous genes (trueCOGs) are identified based on two criteria: 1) they 

should be bidirectional best hits (BBH) between all genome pairs, and 2) their 

two flanking genes should also be BBHs between all genome pairs [167]. In other 

words, decRiPPter looks for sets of three contiguous genes that are highly 

conserved in both sequence identity and synteny among all analyzed genomes, 

using DIAMOND [168]. The center genes of these gene triplets are themselves 

conserved, and have conserved surrounding genes, making it highly likely that 

they are orthologous to one another. These center genes were therefore 

considered trueCOGs. While this list of trueCOGs contains high-confidence 

orthologs, the criteria for orthology set here are strict, and many orthologs are 

missed by only considering orthologs based on BBHs [169]. We therefore further 

expanded the list of homologs with ortholog-like similarity by dynamically 

determining a cutoff between each genome pair based on the similarity of the 

trueCOGs shared between those genomes. This cutoff is used to find all highly 

similar gene pairs. Considering that only sequence identity is used as a cutoff 

here, these gene pairs are either orthologs or paralogs. The identified gene pairs  

are then clustered with the Markov Clustering Algorithm (MCL [170, 171]) into 

‘clusters of orthologous genes’ (COGs). The number of COG members found for 

each gene is divided by the number of genomes in the query to get a COG score 

ranging from 0 to 1, reflecting how widespread the gene is across the set of 

query genomes (Materials and Methods, Figure 2).  

To validate our calculations, we analyzed the COG-scores of the highly 

conserved single-copy BUSCO (Benchmarking set of Universal Single-Copy 

Orthologs) gene set from OrthoDB [172-174], as well as the COG-scores of the 

genes in the gene clusters predicted by antiSMASH. In line with our 

expectations, homologs of the BUSCO gene set averaged COG-scores of 0.95 

(Figure S2D), while the COG-scores of the antiSMASH gene clusters were much 

lower, averaging 0.311 +- 0.249 for all BGCs, and 0.234 +- 0.166 for RiPP BGCs 

(Figure S2C). While the COG-scoring method requires a group of genomes to be 

analyzed rather than a single genome, we believe that the extra calculation 

significantly contributes in filtering false positives (Table 1). In addition, the COG 
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scores aid in the gene cluster identification based on the assumption that gene 

clusters are generally sets of genes with similar absence/presence patterns 

across species (Materials and Methods).  

For the final criterion, the algorithm dereplicates the identified clusters 

by comparing them to known RiPP BGCs. All putative BGCs are clustered based 

on domain content and precursor similarity using sequence similarity 

networking [175], and compared to known RiPP BGCs from MIBiG [29, 140]. In 

addition, the overlap between predicted RiPP BGCs and gene clusters found by 

antiSMASH [39, 77] is determined (Figure 1).  

decRiPPter identifies 42 candidate novel RiPP subclasses in Streptomyces 

While RiPPs are found in many different microorganisms, their presence in 

streptomycetes reflects perhaps the most diverse array of RiPP subclasses 

within a single genus. Streptomycetes produce a broad spectrum of RiPPs, such 

as lanthipeptides [176], lasso peptides [45], linear azol(in)e-containing peptides 

(LAPs) [177], thiopeptides [46], thioamide-containing peptides [52] and 

bottromycins [97, 178, 179]. Their potential as RiPP producers is further 

highlighted by a recent study showcasing the diversity of lanthipeptide BGCs in 

Streptomyces and other actinobacteria [68]. Even though any genus or set of 

genomes can be analyzed by the decRiPPter pipeline, we hypothesized 

streptomycetes to be a likely source of novel RiPP subclasses, and sought to 

exhaustively mine it. 

We started by running the pipeline described above on all publicly 

available Streptomyces genomes (1,295 genomes) from NCBI (Data S2). Due to 

computational limits, the genomes were split into ten randomly selected groups 

to calculate the frequency of distribution of each gene (COG-scores). In general, 

the number of genomes that could be grouped together and the resulting 

cutoffs were found to vary with the amount of minimum trueCOGs required 

(Figure S3A). To make sure that as many genomes as possible could be 

compared at once, we set the cutoff for minimum number of trueCOGs at 10. 

Despite the low cutoff, the distribution of similarity scores between genome 

pairs still resembled a Gaussian distribution (Figure S3B). The bimodal 

distribution of the resulting COG-scores showed that the majority of the genes 

were either conserved in only a small portion of the genomes, or present in 
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Figure 3. Three machine-learning-based RiPP precursor classifiers give highly different results. 

All small ORFs from the 1,295 Streptomyces genomes were classified by DeepRiPP’s NLPPrecursor 

[89] module, NeuRiPP [88] and decRiPPter. The three tools have only a small overlap (10,691 hits). 

NLPPrecursor scored six times more hits as positive, and NeuRiPP roughly half when compared to 

decRiPPter. Many of these hits were very small ORFs (≤ 30 amino acids; (B)), though, while most 

of decRiPPters predicted precursors were larger than that. The exact accuracy of these tools 

cannot be determined, as it is unclear which of these hits are false positives, and which are hits in 

novel RiPP BGCs. 

 

almost all genomes (Figure S3A). We then scored all predicted products of genes 

as well as predicted ORFs in intergenic regions shorter than 100 amino acids 

(total 7.19*107) with the SVM-based classifier. While by far most of the queries 

scored below 0.5, a peak of queries scoring from 0.9 to 1.0 was observed (Figure 

S2B). Seeking to be inclusive at this stage, we set the cutoff at 0.9, resulting in 

1.32*106 candidate precursors passing this initial filter, thus filtering out 98.2 % 

of all candidates. Eliminating candidate precursors whose genes were 
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completely overlapping reduced the number to 8.17*105 precursors (1.1 %). As 

a comparison, all ORFs were also analyzed by NLPPrecursor and NeuRiPP (Figure 

3) [88, 89], and overlapping hits were removed as was done with decRiPPter’s 

hits. For all three tools, a large number of candidate precursors were hits: 

NLPPrecursor scored the most (4.4*106), and NeuRiPP the least (4.3*105). 

Surprisingly, the three tools showed little overlap in positive hits (1,1*104). 

Considering that NLPPrecursor was parametrized for the detection of precursors 

of known subclasses and NeuRiPP appeared to be more strict (while our goal 

was to be more exploratory), we continued with decRiPPter’s hits. In principle, 

the precursor-peptide-finding module of decRiPPter could easily be replaced by, 

e.g., NeuRiPP in future analyses for which this would be desirable. 

We noticed that the majority of the precursor hits of decRiPPter were 

not found by Prodigal, but were extracted from intergenic regions (6.6*105 

intergenic, 1.6*105 from Prodigal). A GC-plot analysis of 112 hits of both 

intergenic and Prodigal-detected genes showed that only 5-10% of the 

intergenic hits showed a GC-plot with clear distinctions between the first, 

second and third codon position, while the majority of Prodigal-detected genes 

had the same distinction (Figure S4). These intergenic regions are likely a source 

of many false positives, and for a more conservative approach one could choose 

to ignore intergenic hits altogether. Since our aim was to conduct an explorative 

study to detect novel subclasses, and gene-finding algorithms do frequently miss 

precursor genes, we chose to continue with all the precursors hits found here. 

In our analyses, we found that the majority of RiPP BGCs contain the 

majority of biosynthetic genes on the same strand orientation as the precursor 

(MIBiG: 81.6%; antiSMASH RiPP BGCs: 73.1%). We therefore formed gene 

clusters using only the genes on the same strand as the predicted precursor. As 

a comparison, we divided all known RiPP BGCs and all antiSMASH RiPP BGCs 

found in the analyzed genome sequences into sections containing only adjacent 

genes on the same strand. The core section was defined as the section that 

contained the most biosynthetic genes as detected by antiSMASH or as 

annotated in the MIBiG database. These sections were used as validation sets 

to fine-tune distance and COG cutoffs for two gene cluster formation methods, 

which we called the ‘simple method’ and the ‘island method’. 
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In the simple gene cluster method, genes were joined only using the 

intergenic distances as a cutoff. Using this method, we found that at a distance 

of 750 nucleotides, all MIBiG core sections were covered, and 91% of all 

antiSMASH core sections (Figure S5AB). However, using only distance may cause 

the gene cluster formation to overshoot into regions not associated with the 

BGC (e.g. Figure S1). We therefore created an alternative method, called the 

‘island method’. In this method, each gene is first joined with immediately 

adjacent genes that lie in the same strand orientation and have very small 

intergenic regions (≤50 nucleotides), to form islands. These islands may 

subsequently be combined if they have similar average COG-scores (Materials 

and Methods). We found that with this method, we could confidently cover our 

validation set, while slightly reducing the average size of the gene clusters 

(number of genes: 3.73 ± 3.75 vs 3.44 ± 3.53; Figure S5CDE). In addition the 

variation of the COG scores within the gene clusters decreased, suggesting that 

fewer housekeeping genes would be added to detected biosynthetic gene 

clusters (Figure S5F). 

Overlapping gene clusters were fused, resulting in 7.18*105 gene 

clusters. To organize the results, all gene clusters were paired to other gene 

clusters with similar protein domain content (Jaccard index of protein domains; 

cutoff: 0.5) and containing at least one predicted precursor gene with sequence 

similarity (NCBI blastp; bitscore cutoff: 30). These cutoffs were shown to 

distinguish between different RiPP subclasses (Figure S6).  Clustering these pairs 

with MCL created 45,727 ‘families’ of gene clusters, containing 312,163 gene 

clusters, while the remaining 406,105 gene clusters were left ungrouped. 

Analysis of overlap between decRiPPter clusters and BGCs predicted by 

antiSMASH revealed that 5,908 clusters overlapped, constituting 78% of 

antiSMASH hits. The majority of BGCs previously detected by RODEO were also 

found to overlap (84%, Table S3). Most of the antiSMASH BGCs missed by 

decRiPPter belonged to the bacteriocin family, which do not necessarily encode 

a small precursor peptide (Table S3). The remainder of missed BGCs are likely 

due to precursor genes not being on the same strand as the genes encoding the 

biosynthetic machinery or due to precursor genes missed by decRiPPter’s 

classifier. 
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Table 1. Correlation between the strictness of the filter used on the identified gene clusters and 

the saturation of RiPP BGCs. Genes were considered as being around the gene cluster if within 

five genes. 

Filter Filter details 

Number of 

detected 

gene 

clusters 

Gene clusters 

overlapping 

antiSMASH RiPP BGCs 

(percentage) 

None - 718,268 5,908 (0.8) 

Mild Gene cluster COG score: <= 0.25 

In the gene cluster: 

 >= 3 genes 

 >= 2 biosynthetic genes 

In or around the gene cluster: 

 >= 1 transporter gene 

21,419 1,678 (7.8) 

Strict Gene cluster COG score: <= 0.10 

In the gene cluster: 

 >= 3 genes 

 >= 2 biosynthetic genes 

In or around the gene cluster: 

 >= 1 transporter gene 

 >= 1 regulatory gene 

 >= 1 peptidase gene 

2,471 357 (14.4) 

 

The hits overlapping with antiSMASH constituted only 0.8% of all 

decRiPPter clusters (Table 1, row 2). To further narrow down our results, we 

applied several filters to increase the saturation of RiPP BGCs in our dataset. A 

mild filter, limiting the average COG score to 0.25 and requiring two biosynthetic 

genes and a gene encoding a transporter, increased the fraction of overlapping 

RiPP BGCs to 7.8% (Table 1, row 2). When only clusters associated with genes 

for a predicted peptidase and a predicted regulator were considered, and the 

average COG score was limited to 0.1, the fraction increased further to 14.4% 

(Table 1, row 3). While many antiSMASH RiPP BGCs were filtered out in the 

process (and, by extension, many unknown RiPP BGCs were likely also filtered 

out this way), we felt our odds of discovering novel RiPP families were highest 

when focusing on the dataset with the highest fraction of RiPP BGCs, and 

therefore applied the strict filter. The remaining 2,471 clusters of genes were 

clustered as described above. Since our efforts were aimed at finding new gene 
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cluster families, we discarded groups of clusters with fewer than three 

members, leaving 1,036 gene clusters in 187 families. Families in which more 

than half of the gene clusters overlapped with antiSMASH non-RiPP BGCs were 

discarded as well, leaving only known RiPP families and new candidate RiPP 

families (893 gene clusters in 151 families; Figure 4). While this step eliminated 

BGCs for hybrids of RiPP and non-RiPP pathways, we felt this filter was necessary 

to reduce the number of false positives in our dataset, especially considering the 

rarity of these hybrid BGCs. 

Roughly a third (280) of the remaining gene clusters were members of 

known families of RiPPs, including lasso peptides, lanthipeptides, thiopeptides, 

bacteriocins and microcins. In addition, many of the other candidate clusters 

(54) contained genes common to known RiPP BGCs, such as those encoding 

YcaO cyclodehydratases and radical SAM-utilizing proteins (Figure 4) These gene 

clusters were not annotated as RiPP gene clusters by antiSMASH, but the 

presence of these genes alone or in combination with a suitable precursor can 

be used as a lead to find novel RiPP gene clusters [52, 103].  

Each remaining family of gene clusters was manually investigated to 

filter out likely false positives from the candidates. A set of general guidelines 

followed can be found in the Materials and Methods. Common reasons to 

discard gene clusters were functional annotations of candidate precursors as 

having a non-precursor function (e.g. homologous to ferredoxin or LysW [180]), 

annotations of multiple genes within a gene cluster related to primary 

metabolism (e.g. genes for cell-wall modifying enzymes), or other abnormalities 

(e.g. large intergenic gaps or very large gene clusters of more than 50 genes). 

Several modifying enzymes belonging to the candidate families were 

homologous to gene products involved in primary metabolism, such as 6-

pyruvoyltetrahydropterin synthase or phosphoglycerate mutase. Given the low 

distribution (COG scores) of the genes encoding these enzymes, it seemed more 

likely to us that they were adapted from primary metabolism to play a role in 

secondary metabolism [160]. We therefore only discarded a gene cluster family 

if multiple clear relations to a known pathway were found. The remaining 42 

candidate families, containing  were further grouped together into broader 

families depending on whether a common enzyme was found (Figure 4).  



3 

Exploring the chemical space of post-translationally modified peptides in Streptomyces with 
machine learning 

 

91 
 

Among our candidate families, a large group of families all contained 

one or more genes for ATP-grasp enzymes. ATP-grasp enzymes are all 

characterized by a typical ATP-grasp-fold, which binds ATP, which is hydrolyzed 

to catalyze a number of different reactions. These enzymes have a wide variety 

of functions in both primary and secondary metabolism, and their genes are 

present in a many different genomic contexts [181]. Involvement of ATP-grasp 

enzymes in RiPP biosynthesis has been reported for microviridin [83] and other 

omega-ester containing peptides (OEPs) [84], and for pheganomycin [162], 

where they catalyze macrocyclization and peptide ligation, respectively. The 

ATP-grasp enzymes involved in the biosynthesis of these products did not show 

direct similarity to any of the ATP-grasp ligases of these candidates, however, 

suggesting that these belong to yet to be uncovered biosynthetic pathways.  

Among the candidate families were three families that contained 

homologs to mauE, and one that additionally contained a homolog of mauD. 

The proteins encoded by these genes are known to be involved in the 

maturation of of methylamine dehydrogenase, required for methylamine 

metabolism. MauE in particular has been speculated to play a role in the 

formation of disulfide bridges in the β-subunit of the protein, while the exact 

function of MauD remains unclear [182]. As no other orthologs of the mau 

cluster were found within the genomes of Streptomyces sp. 2112.3, 

Streptomyces viridosporus T7A or Streptomyces sp. CS081A, it is unlikely that 

these proteins carry out this function. Rather, the presence of these genes in a 

putative RiPP BGC suggests that they play a role in modification of RiPP 

precursors. Supporting this hypothesis, each of these gene clusters contained a 

gene predicted to a encode for a precursor containing at least eight cysteine 

residues (Table 2). 

Similarly, homologs of hypE and hypF were detected in a gene cluster 

containing another gene encoding an ATP-grasp ligase. Genes encoding these 

proteins are typically part of the hyp operon, which is involved in the maturation 

of hydrogenase. Specifically, the two proteins cooperate to synthesize a 

thiocyanate ligand, which is transferred onto an iron center and used as a 

catalyst [183]. No other homologs of genes in the hyp operon were detected,  

suggesting that these protein-coding genes have adopted a novel function.  
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As stated above, 175 gene cluster families, containing a total of 1,036 candidate 

gene clusters, were left after the strict filter. Of these, 24 families containing 143 

gene clusters were removed due to overlap with non-RiPP BGCs. An additional 

74 families containing 341 gene clusters were removed by manual curation, 

making for a total false positive count of 98 families containing 484 gene 

clusters, just under half of the total (46.7%). A total of 32 families containing 280 

gene clusters overlapped with known RiPP BGCs (27.0%), which can be 

considered true positives. The remaining 272 gene clusters (42 families; 26.3%) 

are the presented candidates. This means that the actual true positive rate lies 

between 27.0% and 53.3%, and the false positive rate between 46.7% and 

73.0%, depending on the nature of the candidates. For the results from the mild 

filter, 1,678 gene clusters out of 21,419 were overlapping with known RiPP BGCs 

(7.8%). How many of the remaining gene clusters (92.2%) are false positives and 

how many are novel RiPP BGCs can not be determined without a thorough 

manual examination. From the results of the strict filter, however, it appears 

there are roughly as many novel RiPP BGCs as there are known ones (272 vs 

280). Extending thes ratios to the results of the mild filter would mean that an 

additional 1,678 gene clusters are novel RiPP BGCs, resulting in an estimated 

true positive rate of 15.6% and false positive rate of 84.4%. These high false 

positive rates emphasize that one should interpret the results with caution. 

However, if even half of the proposed candidates are true RiPP subclasses, this 

would represent a significant contribution to the total amount discovered. 

 

Figure 4 (opposite page). decRiPPter finds 42 candidate RiPP families with a large variety of 

encoded modifying enzymes and precursors. Gene clusters found in 1,295 Streptomyces 

genomes were passed through a strict filter and grouped together. Each node of the network 

represent a candidate BGC, while edges represent similarity in both precurs and enzyme domains. 

The four panels at the top contain families of interest, grouped by common defining 

characteristics, if present (top panel: 54 gene clusters in 13 families; second panel: 12 gene 

clusters in 3 families; third panel: 65 gene clusters in 8 families; fourth panel: 141 gene clusters in 

18 families). The bottom panel contains the gene clusters marked as likely false positive (left side, 

341 gene clusters in 74 families) and the gene clusters overlapping with antiSMASH-detected RiPP 

BGCs (right side, 280 gene clusters in 33 families). Examples of 15 gene clusters of candidate 

families are given (nodes with dark circles). Arrow colors indicate enzyme family of the product, 

and the description of the putative gene products is given below the arrows. The candidate RiPP 

family represented by the network outlined with a dashed box is discussed further in Chapter 4.  
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Table 2. Precursor sequences of selected BGCs of candidate RiPP families shown in Figure 4. 

Serine and threonine residues are marked in green, and cysteine residues are marked in red.  

Family Strain Precursor sequence 

Known RiPP 

markers 

Streptomyces sp. NTK 

937 

MTENTAPEESPEVEAHSAADDAAQAPEQFHDAAEIICGVYDKEIQV 

Known RiPP 

markers 

Streptomyces fradiae 

NKZ-259 

MPSGMPNDPSTTDGLSRRRVLGTAAAAAVPLPARGAEDAEAKSGPW 

Containing 

MauE 

Streptomyces 

viridosporus T7A 

MSRALESLSSRLLGLFVPKVEAAASAQACQCFNECWQCARSACCVNT

YCGSINCWRSCPGC 

Containing 

MauE 

Streptomyces sp. 

CS081A 

MARTVGDGSKGCRPSPVSPYGLDQYGDRAASTWGASSATCGVRGEP 

MVKSLSALAGRAFARVLPQETAAAACACPAGSSSWCSGENLYTRFCCS

WNCAAKPTCTVTVVYGAC 

Containing 

MauE 

Streptomyces sp. 

2112.3  

MFKKLEAVGSALLERLVPRVDASACGTNCWNDCWQCAHSACKVNTC

TGALTCLSGNC 

ATP-grasp 

ligases 

Streptomyces sp. 

NRRL F-6491 

MARAARNLLAITASAALSFLLVQGTGAQEERAFLAGSGQGKVINDLG

WG 

ATP-grasp 

ligases 

Streptomyces sp. 

GSSD-12 

MSSDPSDAAEQGPVGGFITEPLVAAAATTGGCCGEPRSAPEPARSSCC

GEPAAEEAPRSCCGEPAAAG 

MADDMIGSGCCETSGNEDVAEDGTECGCACACCD 

MSETSLGNMFWNAAQQPPAATAEEPKKASSCCGPKPEAKAPAEQAA

APEKASSCCGPKPAAAAEPEGTPAPKKSSCCG 

Other Streptomyces sp. 

WZ.A104 

MQNVTEKDLFDGYTAYTSAEELGLHDGKEAAPAFSPTIPWAIRATIISA

RSSQQCAAALGSLAAKTVENKC 

Other Streptomyces sp. 

OspMP-M45 

MTEAGLWEEGDAGRRRPLGVPPENWPVPGGRQGMDGQWSGQSS

KTIDHPGGAT 

Other Streptomyces 

avermitilis MA-4680 

MSSLDKPGRKKWSGPEKWQVILAASSLGVAVVALVGQFAQFL 

Other Streptomyces 

koyangensis VK-A60T 

MGDLDEEVAAPGPGRWIRPSSTAGYGWTTSCRTSVFPPASPDSCQAR

ETVTWCAWVP 

Other Streptomyces sp. 

ADI95-17 

MNSLSEAGCWCHERLKSCPSECKFRVKDGGAVMKFLFLLKDKMTPEK

SLKAYAWYHWY 

MCEVCRSSRNPGPWGGCCGDGARLGHGWPVSYYETLLCKSQPHEGL

DLGASIGEGFEPTPGDLPAGGQSPHKE 

Other Streptomyces sp. 

WAC01280 

MLKGGQLGRFSTNSMNDHREQLGIGPPCLLTFDNAARSSQPSQEAAP

CARAES 

Other Streptomyces sp. 

AcE210 

MAESPTPEAVAEQPTEVAQPHRLVLLGACGCGSGCGCGCQSGAPCQ

CGGCSG 

Other Streptomyces 

puniceus NRRL B-

2895 

MRTAAAYASGEPPPVAVVKSHGVAFENRVRYVSPVPSTTHAAASAPG

SAEGSAPAATA 

Other Streptomyces lydicus 

ATCC 25470 

MLWKSCARARCGISIPWNSFEFDHGGTGVVPCVPGVCEFPARDGKEE

VT 

MNQGGGEQRGAEVSIRANVGSWLAVRKSPFEAGGSPVSRWEDLPR

GVPCPYETGAHQD 
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All candidate gene clusters presented here carry the features we 

selected, typical of RiPP BGCs: a low frequency of occurrence among the 

scanned genomes, a suitable precursor peptide, candidate modifying enzymes, 

transporters, regulators and peptidases. However, many known RiPP BGCs were 

removed, suggesting that there may be more uncharacterized RiPP families 

among the gene clusters we discarded. While the complete dataset could not 

be covered here, the command-line application of decRiPPter has been set up 

to allow users to set their own filters. The pipeline can be run on any set of 

genomes. We recommend choosing a set of genomes that are sufficiently 

closely related to share a `core genome` for the COG-score calculations. At the 

same time, genomes should not be too similar, so that a wide variety of BGCs 

can be found among them that show variability in their presence/absence 

pattern across genomes. decRiPPter runs are visualized in an HTML output, in 

which the results can be further browsed and filtered by Pfam domains and 

other criteria, allowing users to find candidate families according to their 

preferences. The results from this analysis of the strict and the mild filter is 

available at https://decrippter.bioinformatics.nl.  

  

https://decrippter.bioinformatics.nl/
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Conclusion and final perspectives 

The continued expansion of available genomic sequence data has allowed for 

discovery of large reservoirs of natural product BGCs, fueled by sophisticated 

genome mining methods. These methods must make tradeoffs between novelty 

and accuracy [26]. Tools primarily aimed at accuracy reliably discover large 

numbers of known natural product BGCs, but are limited by specific genetic 

markers. On the other hand, while tools aimed at novelty may lead to the 

discovery of new natural products, these tools have to sacrifice on accuracy, 

resulting in a larger amount of false positives.    

Here, we take a new approach to natural product genome mining, aimed 

specifically at the discovery of novel types of RiPPs. To this end, we built 

decRiPPter, an integrative approach to RiPP genome mining, based on general 

features of RiPP BGCs rather than selective presence of specific types of 

enzymes and domains. To increase the accuracy of our methods, we base 

detection of the RiPP BGCs on the one thing all RiPP BGCs have in common: a 

gene encoding a precursor peptide. With this method, we identify 42 candidate 

novel RiPP families, mined from only 1,295 Streptomyces genomes. These 

families are undetected by antiSMASH, and show no clear markers identifying 

them as belonging to previously known RiPP BGC subclasses. While the 

approach to RiPP genome mining taken here inevitably gives rise to a higher 

number of false positives, we feel that such a ‘low-confidence / high novelty’ 

approach [26] is necessary for the discovery of completely novel RiPP 

subclasses. Additionally, users are able to set their own filters for the identified 

gene clusters, allowing them to search candidate RiPP subclasses containing 

specific enzymes or enzyme types within a much more confined search space 

compared to manual genome browsing. As such, decRiPPter can function as a 

platform for explorative RiPP genome mining, enabling a large variety of 

different search strategies to explore further into RiPP chemical space.  
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Materials and Methods 

decRiPPter pipeline 

Genome data preparation 
As input, decRiPPter uses a set of genomes from species that are part of the same taxonomic 

group (e.g., genus, family), which it requires for its comparative genomic analyses. decRiPPter 

downloads genomes from NCBI [184] based on NCBI taxonomic identifiers of species, genera or 

higher orders of classification. Additional requirements for level of assembly (e.g. “Representative 

genome”) can also be given. decRiPPter can reannotate genomes with prodigal 2.6.3[71], and 

automatically does so when DNA FASTA files are given as input. In addition, users may analyze 

their own genomes, in isolation or in conjunction with downloaded genomes.  

SVM-based classifier 
To predict RiPP precursors, we first collected positively and negatively labeled training data. The 

positive training data was collected from MIBiG [140] and recent literature, resulting in 175 RiPP 

precursors across ten subclasses. For the negative training set, we generated a set of 20,000 short 

non-precursor sequences. Half of these were randomly selected from a set of 35,000 short 

proteins (<175 amino acids long) from Uniprot (queried June 2014) that were not similar to RiPP 

precursors based on an NCBI blastp search. The other half were randomly selected from a set of 

17,000 translated intergenic sequences between a stop codon and the next start codon of sizes 

30-300 nt taken from 10 genomes across the bacterial tree of life: Escherichia coli, Bacillus subtilis, 

Streptomyces coelicolor, Bacteroides fragilis, Rhizobium etli, Chloroflexus aurantiacus, 

Synechococcus sp. PCC 7002, Opitutus terrae, Acidobacterium capsulatum and Pirellula staleyi. 

For all sequences from both the positive and negative training sets, we computed several physio-

chemical properties, such as its length, hydrophobicity, charge, counts of canonical amino-acid 

residues and classes of amino acids, and highest counts of, e.g., cysteines and serines within 

contiguous blocks of 20 or 30 amino acids. The method for computing these properties is part of 

the decRiPPter pipeline, and can be found in the code repository, at 

https://github.com/Alexamk/decRiPPter/blob/master/lib/features.py. All training data and data 

collection scripts are available online (https://zenodo.org/record/3834818#.X7JmIOTsbvs) 

We then utilized Scikit-Learn implementations of several different supervised machine-

learning algorithms. We varied several parameters associated with a given algorithm (e.g., kernel 

functions, penalty parameters, penalty functions, etc.). Furthermore, we mapped the accuracy as 

a function of scaling the dataset or changing class weights to take into account the unbalanced 

dataset (only ~1% of gene clusters in our dataset represent known RiPPs). The RiPP cluster 

classification accuracy of each combination of scaling, algorithm, and the corresponding set of 

parameters was evaluated using accuracy and area under receiver operating characteristics (ROC) 

curve, and leave-one-class-out cross-validation. SVMs with three different kernel functions were 

trained: two with polynomal kernel function (SVM3: 3rd degree, coef0 of 2.154, kernel coefficient 

gamma of 2.78*10^-2, regularization parameter C of 0.158; SVM4: 4th degree, coef0 of 2.154, 

kernel coefficient gamma of 4.64*10^-3, regularization parameter C of 25.119) and one with a 

radial basis function kernel (SVMr: kernel coefficient gamma of 1*10^-5, regularization parameter 

C of 6.310*10^5). For each type, one SVM was trained with all training data, while eighteen more 

were trained by leaving out the sequences of one RiPP subclass from the positive training data at 

a time. The average of all 57 SVMs was taken as the final SVM score. 

https://github.com/Alexamk/decRiPPter/blob/master/lib/features.py
https://zenodo.org/record/3834818#.X7JmIOTsbvs
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COG scores calculation 
To calculate the relative frequency of occurrence of each gene, we constructed a pipeline to find 

all groups of homologous genes (Figure 2). In the first step, protein-coding genes for which 

orthology can confidently be assigned are grouped into Clusters of Orthologous Groups (COGs). 

All proteins are aligned to one another using DIAMOND [168], and all bidirectional best hits (BBHs) 

are identified that share at least 60.0% similarity (Figure 2A). We established two requirements 

for genes to be confidently annotated as orthologs, based on recent papers [167, 169]: 1) they 

should constitute BBHs, and 2) their immediate genomic surroundings should be conserved, i.e. 

the two flanking genes should also be bidirectional best hits between the two genomes. Genes 

fulfilling these two criteria are paired together, resulting in groups of orthologous genes. Among 

these groups, decRiPPter then selects those that are completely conserved across all genomes: 

each group should contain at least one ortholog in each genome, and all orthologs in the group 

should all fulfill the same requirements for each genome pair. These groups are considered true 

Clusters of Orthologous Genes (trueCOGs; Figure 2B). 

In the second step, a cutoff for protein-coding gene sequence identity is determined for 

each genome pair, in order to separate orthologs as well as recently evolved paralogs from more 

distantly related homologs. For any given pair of genomes, the distribution of sequence identities 

of all gene pairs of their trueCOGs is calculated. The cutoff is then calculated as the average 

percentage identity, minus three times the standard deviation (Figure 2C). Any two aligned genes 

with a percentage identity higher than this cutoff are considered to be functionally closely related 

to one another and paired up. The resulting groups of homologous genes were clustered with the 

Markov Cluster Algorithm[170, 171] (Figure 2D). From these groups, the relative frequency of 

occurrence of groups of homologous genes across all query genomes is calculated, called the COG-

score (Figure 2E).  

In cases when insufficient numbers of trueCOGs (<= 10) could be found in our analyses 

(because the set of genomes was too diverse, and/or contained too many draft genomes that 

each miss some of the trueCOGs), the genomes were rearranged into smaller subgroups. We used 

two general rules to create the groups: 1) Groups should be as large as possible, so that trueCOGs 

found are conserved across many species, and represent conserved widespread genes. 2) 

Genomes should be compared to as many other genomes as possible, so as not to introduce bias 

into the calculation of the COG-score. To fulfil both requirements, partially overlapping subgroups 

were formed, with the goal of letting each genome be a part of a collection of subgroups that 

together covered as many of the genomes as possible. To form the subgroups, a pair of genomes 

with the highest number of trueCOGs was used as a seed, and genomes were added one at a time 

until the number of trueCOGs dropped below the set cutoff. All the genomes in the group were 

said to be linked together by this group. The process of group formation was then repeated, 

starting with genomes for which no group had yet been formed. If all genomes were already part 

of at least one subgroup, the genomes were selected which were linked to the fewest genomes 

via the groups they were part of. The process was terminated when adding additional groups did 

not increase the number of links between genomes for several successive iterations.  

Gene cluster formation 
In this stage, decRiPPter identifies putative operon-like gene clusters around each candidate 

precursor peptide-encoding gene, by either of two different methods (Figure S1): In the first 

method, called the simple method, genes in the same strand orientation as the candidate 
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precursor peptide-encoding gene are added to the putative gene cluster if the intergenic distance 

to the previous gene is within a given cutoff. The second method, called the island method, uses 

both intergenic distance and levels of conservation (COG-score) to determine the gene clusters. 

First, all genes in the same strand orientation within 750 nucleotides of one another are identified 

and then grouped into islands. Within islands, genes should be almost directly adjacent (intergenic 

distance: <= 50 nucleotides). We then fused the islands together using the COG-scores (see 

above), building on the assumption that genes in a gene cluster should all have similar levels of 

conservation. Islands were fused together if the average of their COG-scores was within a set 

range (0.1 plus the sum of the standard deviations of both islands). Not all gene families have 

similar COG scores when they occur within the gene clusters thus formed; e.g., genes encoding 

ABC-transporters frequently have close relatives in other biomolecular systems and therefore 

often have higher COG scores. Hence, to counteract gene cluster formation breaking off 

prematurely, up to two outlier genes are allowed when fusing islands, if, after adding the outliers, 

more islands can be added that are within the range for COG-score deviation. Intergenic distances 

and cutoffs were iteratively finetuned to ensure gene clusters in known RiPP BGCs would be 

effectively found. Finally, gene clusters that overlap or lie within 50 nucleotides of one another 

are fused together.  

Annotation 
For purposes of data exploration (annotation and visualization), each gene cluster is extended to 

include the 5 flanking genes on either side, and all encoded proteins in the extended gene clusters 

are annotated with Pfam 31.0 [75] and TIGRFAM [76]. Lists were compiled of all TIGRFAM and 

Pfam domains associated with either peptidases, transporters, regulators, using a combination of 

keyword searches on the Pfam and TIGRFAM websites, combined with manual curation. A list of 

protein domains associated with biosynthetic activity was constructed by linking Pfam domains to 

E.C. numbers, using InterPro mappings [165]. Biosynthetic TIGRFAM domains were taken directly 

from the database. Each domain linked to an E.C. number was assumed to have enzymatic activity. 

The biosynthetic domain list was further expanded with domains used in the ClusterFinder [41] 

algorithm that were indicative of a biosynthetic gene cluster. The resulting lists are used by 

decRiPPter to mark proteins either as a regulator, peptidase, transporter or biosynthetic enzyme, 

in that order, by seeing if any of the identified domains overlapped with the domains in the 

precompiled lists (Data S1). 

Clustering 
To cluster the detected gene clusters, the distance between them is calculated in two different 

ways: 1) amino acid sequences of candidate precursor peptide-encoding genes in the gene 

clusters are aligned with NCBI BLAST blastp [56] (cutoff: 30 bitscore), and 2) the content of the 

gene clusters is compared by calculating the Jaccard index of their constituent protein domains 

(cutoff: 0.5). Gene clusters are paired only if they are paired by both methods. The distance 

between paired gene clusters is calculated as the average between the Jaccard index and the 

percentage identity of the aligned precursors. Finally, pairs are clustered using MCL.  

Overlap with antiSMASH 
Overlap with antiSMASH was determined using antiSMASH 4.0 [77] run in minimal mode.  

Availability 
The decRiPPter pipeline is available at https://github.com/Alexamk/decRiPPter/. Data from the 

analysis discussed here is available at https://decrippter.bioinformatics.nl. 

https://github.com/Alexamk/decRiPPter/
https://decrippter.bioinformatics.nl/
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Data analysis 

Comparison with NeuRiPP and NLPPrecursor 
NeuRiPP classifications were performed using the parallel CNN network with the network weights 

provided by the author [88]. NLPPrecursor was installed and executed with default settings [89]. 

All open reading frames were analyzed with both methods, and completely overlapping precursor 

hits on the same frame were removed, as in the decRiPPter pipeline.  
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Supplementary information for Chapter 3 

Data S1. Categorized Pfam and TIGRFAM domains used in decRiPPter pipeline. Available from 

https://github.com/Alexamk/decRiPPter/tree/master/data/domains/. 

Data S2. Streptomyces genomes analysed with decRiPPter. Available upon request. 

 

 

Figure S1. decRiPPter forms putative gene clusters around candidate precursor peptide-

encoding genes. Two examples are provided here to illustrate identification of putative gene 

clusters in decRiPPter. A) In the sapB gene cluster, four genes form the main BGC. These four 

genes are sequential, share the same strand orientation and lie within a small distance of one 

another (<= 50 nt). They are therefore fused together into a single gene cluster. The flanking genes 

are on opposite strands, and therefore not considered. B) The skfA BGC consists of eight genes 

sequential genes that share the same strand orientation. However, it is flanked by several other 

genes that also share the same strand orientation, within relatively short intergenic distances (<= 

200 nucleotides). Using the island method, the genes are first fused into six islands, within 50 

nucleotides distance of one another (indicated by lines underneath the genes). These islands may 

then be fused depending on the COG-score, which does not happen here because the difference 

is too large. The result is that the flanking genes, with a too high COG-score, are not added, and 

the correct BGC remains.  

 

https://github.com/Alexamk/decRiPPter/tree/master/data/domains/
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Figure S2. COG and SVM scores in all analyzed 1,295 Streptomyces genomes. A) COG scores of 

all genes in all 1,295 analyzed Streptomyces genomes. A high COG score indicates presence of 

homologs in many different genomes, while a low COG score indicates a more infrequent 

distribution. COG scores were calculated as described in the methods. B) Distribution of the scores 

assigned by decRiPPter’s SVM-based classifier. A total of 7,1 * 107 small ORFs were analyzed. C) 

Comparison of COG scores of antiSMASH-detected gene clusters. COG scores were averaged over 

all genes in the predicted gene clusters. COG scores averaged 0.311 +- 0.249 for all gene clusters, 

and 0.234 +- 0.166 for RiPP gene clusters. D) Comparison of average COG scores of BUSCO genes. 

The average of each BUSCO [173, 174] gene was calculated for each genome analyzed.   
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Figure S3. COG-scores calculations depend on genome group size. A) As the minimum number of 

trueCOGs increases, the number of genomes that can be analyzed together (red line) decreases. 

In addition, the average COG cutoff (blue line) decreases when more trueCOGs are added, and the 

spread of COG cutoffs (shaded area; average cutoff +- the standard deviation) increases, 

suggesting that additional trueCOGs that were added were less conserved and showed higher 

variability in sequence similarity. B) TrueCOG distribution between 36 randomly sampled genome 

pairs. Based on these distributions, COG cutoffs were determined.   
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Figure S4. GC-plots of randomly sampled Prodigal-detected precursor hits (A) and intergenic 

precursor hits (B). GC values are shown as the moving average of the first, second and third 

positions, using a window-size of 5 and a step-size of 2. Only a small percentage of intergenic hits 

showed clear distinction between the three moving averages as in the Prodigal-detected hits, 

suggesting the majority of these are not encoding genes. 
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Figure S5. Gene cluster formation effectively covers antiSMASH and MIBiG BGC core gene 
sections. In the simple gene cluster formation method, genes are sequentially added as long as 
they are in the same strand orientation, within a certain distance. At a distance of 700 nucleotides, 
all MIBiG core gene sections are covered (A), as well as 91% (3947/4321) of antiSMASH core gene 
sections. (B). In the ‘island method’, genes are first fused into islands, which may be further fused 
if their average COG-scores are within a cutoff. Using just the standard deviation of the islands as 
a cutoff resulted in incomplete coverage of both the MIBiG and the antiSMASH core sections (C, 
D, middle boxes). Increasing the cutoff to the standard deviation plus 0.1 resulted in comparable 
coverage (C, D, right boxes) of these sections when compared to the simple method (C, D, left 
boxes). In addition, the overall gene cluster length (E) and variation of COG scores (F) within all 
formed gene clusters decreased. 
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Figure S6. Combining precursor similarity with domain similarity is an effective strategy to group 
RiPP subclasses. Starting at precursor similarity bitscore cutoffs of 20 and Jaccard scores of 
overlapping protein domains found in MIBiG RiPP BGCs of 0.4, the number of intraclass 
homologies is larger than the number of crossclass homologies. Combining the two methods 
greatly decreases the number of cross-class homologies found, proving it as an effective method 
to group RiPP BGCs of different subtypes.   
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Table S1. RiPP classes in positive training data of decRiPPter. 

RiPP class Amount of precursors 

Bottromycin 3 

Cyanobactin 14 

Glycocin 1 

head-to-tail cyclized peptide 10 

Lanthipeptide 79 

LAP 4 

Hybrid 4 

lasso peptide 13 

Linaridin 2 

Microcin 7 

Microviridin 4 

Proteusin 1 

Sactipeptide 4 

Thiopeptide 12 

Unclassified 17 

 

 

Table S2. decRiPPter detects most RiPP precursors of known classes found by RODEO. RODEO 

results were extracted from previous studies [55, 72-74, 86]. 

RiPP Class 
Number detected 

by RODEO 

Scored ≥ 0.9 by 

decRiPPter 

Lanthipeptide 453 329 

Lasso peptide 5270 3738 

Linaridin 2152 1127 

Sactipeptide/ranthipeptide 1524 953 

Thiopeptide 399 387 

Total 9798 6534 
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Table S3. Comparison of detected BGCs with antiSMASH and RODEO. Note that not all genomes 

were analyzed by RODEO. Results from earlier RODEO genome mining [55, 72-74, 86] where only 

used if within the 1,295 Streptomyces genomes.  
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Lanthipeptide 1530 1447 421 102 2768 2570 850 175 

Lasso peptide 397 175 112 14 878 742 315 59 

Linaridin 97 85 33 4 229 199 82 5 

Thiopeptide 71 45 23 4 612 584 264 57 

Sactipeptide/ 

ranthipeptide 

1 1 1 0 
    

Bacteriocin 
   

 2735 1402 184 41 

Bottromycin 
   

 2 2 0 0 

Cyanobactin 
   

 31 27 3 1 

Proteusin 
   

 2 2 2 0 

RiPP hybrid 
   

 321 312 96 32 

  


