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Abstract 

Many ribosomally synthesized and posttranslationally modified peptide classes 

(RiPPs) are reliant on a domain called the RiPP recognition element (RRE). The 

RRE binds specifically to a precursor peptide and directs the posttranslational 

modification enzymes to their substrates. Given its prevalence across various 

types of RiPP biosynthetic gene clusters (BGCs), the RRE could theoretically be 

used as a bioinformatic handle to identify novel classes of RiPPs. In addition, due 

to the high affinity and specificity of most RRE-precursor peptide complexes, a 

thorough understanding of the RRE domain could be exploited for 

biotechnological applications. However, sequence divergence of RREs across 

RiPP classes has precluded automated identification based solely on sequence 

similarity. Here, we introduce RRE-Finder, a new tool for identifying RRE 

domains with high sensitivity. RRE-Finder can be used in precision mode to 

confidently identify RREs in a class-specific manner or in exploratory mode to 

assist in the discovery of novel RiPP classes. RRE-Finder operating in precision 

mode on the UniProtKB protein database retrieved ∼25,000 high-confidence 

RREs spanning all characterized RRE-dependent RiPP classes, as well as several 

yet-uncharacterized RiPP classes that require future experimental confirmation. 

Finally, RRE-Finder was used in precision mode to explore a possible 

evolutionary origin of the RRE domain. The results suggest RREs originated from 

a co-opted DNA-binding transcriptional regulator domain. Altogether, RRE-

Finder provides a powerful new method to probe RiPP biosynthetic diversity and 

delivers a rich data set of RRE sequences that will provide a foundation for 

deeper biochemical studies into this intriguing and versatile protein domain.  
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Introduction 

As of late 2019, nearly one-quarter of a million prokaryotic genomes were 

publicly available in the National Center for Biotechnology Information (NCBI) 

genome databases [116]. This vast genomic resource has accelerated the pace 

of natural product discovery, with a recent surge of interest pertaining to the 

ribosomally synthesized and posttranslationally modified peptides (RiPPs) [42]. 

RiPP biosynthesis starts with the ribosomal synthesis of a linear precursor 

peptide. The genes for RiPP precursor peptides are often short, hypervariable in 

sequence, and composed of two parts—an N-terminal leader region and a C-

terminal core region. With a few notable exceptions, the precursor peptide is 

genetically encoded adjacent to one or more genes encoding proteins that bind 

with high specificity and affinity to the leader region of the precursor. This 

interaction facilitates subsequent posttranslational modification of the core 

residues . After modification is complete, the leader region is enzymatically 

removed and the mature RiPP product is exported from the producing organism 

[117] (Figure 1). The exact nature of the posttranslational modifications is used 

to categorize RiPPs into individual classes, of which nearly 40 have been 

reported [42]. For example, lanthionine linkages define the lanthipeptide class, 

while oxazol(in)e and thiazol(in)e heterocycles define the linear azol(in)e-

containing peptide (LAP) class [118, 119]. 

Many RiPP biosynthetic proteins recognize and bind their cognate 

precursor peptide through a domain known as the RiPP recognition element 

(RRE) [109]. The RRE consists of a conserved secondary structure of three N-

terminal alpha helices followed by a three-stranded beta sheet. The precursor 

peptide binds in a cleft between the third alpha helix (α3) and the third beta 

strand (β3), forming an ordered, four-stranded, antiparallel beta sheet (Figure 

S1). RRE domains can exist either as discretely encoded proteins (<100 residues) 

or as fusions to a larger protein domain [99, 109, 120-122] . In cases where a 

RiPP biosynthetic gene cluster (BGC) encodes a discrete RRE protein, this protein 

binds the leader peptide and serves as a scaffold for recruiting the necessary 

modifying enzymes. All characterized RREs share structural similarity to PqqD, 

which is a protein involved in synthesis of pyrroloquinoline quinone (PQQ), a  
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Figure 1. RRE-dependent RiPP biosynthesis. (A) RiPP BGCs contain one or more short precursor 

peptide(s); their genes often lie adjacent to those for the modifying enzymes, leader peptidases 

and proteins for immunity/export (often ABC transporters). RRE domains are found as discrete 

polypeptides or fused to larger biosynthetic proteins. (B) Modifying proteins bind the leader 

region of the precursor peptide using RRE domains. Post-translational modifications are then 

installed on the core region of the precursor peptide. 

 

redox cofactor produced by many prokaryotes [123]. Thus, the existence of a 

PqqD-like protein encoded near regulators, enzymes, and transporters is 

strongly indicative of an RRE-dependent RiPP BGC. The prevalence of PqqD-like 

proteins in RiPP BGCs led to the discovery of the RRE domain and its 

conservation across RiPP classes in 2015 [109]. Before this, the importance of 

leader peptide recognition was established in the biosynthesis of a few RiPPs, 

such as nisin (lanthipeptide) and streptolysin S (LAP) [124, 125]. In addition, an 
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RRE-containing protein from microcin C7 biosynthesis (MccB) was cocrystallized 

with its cognate leader peptide in 2009, but owing to RRE sequence divergence, 

it was not appreciated at the time that other RiPP classes employ a similar 

domain [126]. 

Consistent with the rapid expansion of characterized RiPP BGCs, a 

diverse collection of modifications and enzymatic domains are found among the 

∼40 known RiPP classes. However, the lack of a common genetic feature 

remains a major obstacle in the bioinformatic detection of novel RiPP classes. 

The fact that RRE domains are prevalent in prokaryotic RiPP BGCs provides an 

opportunity. Of the ∼30 known RiPP classes produced by prokaryotes, over 50% 

contain an identifiable RRE domain (Table S1 and Table S2). Considering that the 

RRE domain appears to be the most conserved class-independent feature in 

RiPP BGCs, it theoretically could be used as an imperfect but useful 

bioinformatic handle to expand known RiPP sequence-function space by 

identifying new RRE-dependent RiPP classes. 

The strategy outlined above is complicated by the sequence diversity of 

the RRE domain [99, 109, 122, 123]. For example, if a pairwise sequence 

alignment method (e.g., NCBI BLAST [127]) is used to compare RRE domains 

from two unrelated RiPP classes, sequence similarity will frequently not be 

detected, particularly in cases where the RRE domain is fused to a larger protein. 

The most appropriate Pfam [128] model (a family of proteins sharing sequence 

similarity) for defining the RRE domain is PF05402, which extensively covers 

bona fide PqqD proteins from PQQ-producing BGCs. PF05402 incompletely 

retrieves RRE-containing proteins from only a few other RiPP classes (e.g., lasso 

peptides and sactipeptides), and indeed, most RREs from other RiPP classes 

have no representation in this Pfam [129-131] (Figure S2). These results 

underscore the inability of a single bioinformatic model to capture the breadth 

of RRE sequence diversity. Owing to the fact that RREs share considerable 

structural similarity, HHpred [111] is a more sensitive algorithm for detecting 

RRE domains. HHpred detects remote protein homology by aligning profile 

hidden Markov models (pHMMs; a model that defines amino acid frequency for 

a protein family) and comparing their (predicted) secondary structures. RREs 

were originally detected using this method by analyzing several RiPP-modifying 
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enzymes, which showed consistent homology to PqqD [109]. However, HHpred 

requires generation of a multiple sequence alignment (MSA) and secondary 

structure prediction using PSIPRED [112]. These steps require several minutes 

of computing time per protein query, rendering the process unattractive for 

larger data sets and precluding global analyses of RRE diversity. In this work, we 

report a customized tool that permits the rapid and accurate detection of RREs 

in known and potentially novel RiPP classes with the principal goal of directing 

natural product hunters to the most fruitful areas of the RiPP sequence-function 

space.   
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Results and Discussion 

Development of RRE-Finder 

This work presents RRE-Finder, a new tool for mining RRE domains from 

microbial genomes. RRE-Finder has two modes of operation (Figure 2). The first 

is precision mode, which employs a set of 35 custom pHMMs designed to detect 

RRE domains in a class-dependent manner (Figure S3 and Table S3). The 

precision-mode pHMMs are primarily based on known RiPP classes—in most 

cases, representative RRE-containing proteins from these classes have been 

verified to bind their cognate precursor peptide through biophysical 

experiments, such as X-ray crystallography or fluorescence polarization binding 

assays (Table S2). The second mode, exploratory mode, uses a truncated version 

of the HHpred [111] pipeline with a custom database of detected RREs. 

Depending on the end user’s objective, RRE-Finder can be used in precision 

mode to accurately predict the presence of an RRE domain as well as the likely 

RiPP class in which the precursor peptide belongs. Alternatively, in exploratory 

mode, the user can retrieve a wider array of putative RRE-containing proteins to 

assist in the discovery of novel RRE-dependent RiPP classes. RRE-Finder 

accelerates the process of identifying RRE domains by several orders of 

magnitude compared to HHpred. Precision mode, for instance, can analyze 

>5,000 protein sequences per second (Table S4). In addition to 29 core models 

based on known RiPP classes, precision mode includes 6 auxiliary models based 

on high-confidence, novel RiPP classes. We justified the inclusion of these 

models based on repeated observation of RRE domains within RiPP-like genomic 

contexts across multiple prokaryotic species. The 35 pHMMs that comprise 

precision mode are provided in Data Set S2 (available at 

https://figshare.com/articles/Dataset_S2_HMM_files/12030651). 

In general, for RiPP classes where an extensive survey of the 

bioinformatic space has been performed (e.g., lasso peptides [45, 86], 

sactipeptides and ranthipeptides [55], and thiopeptides [72]), custom pHMMs 

were built by first visualizing sequence space through use of a sequence 

similarity network (SSN) for all RRE-containing proteins in the data set [132]. SSN 

visualization using Cytoscape [133] facilitated selection of the most diverse and 

nonredundant subset of RRE primary sequences for seed sequence alignment. 

https://figshare.com/articles/Dataset_S2_HMM_files/12030651
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Figure 2. RRE-Finder employs two modes for RRE detection. Precision mode (top) of RRE-Finder 

uses a set of pHMMs to accurately predict RREs. These pHMMs are based on characterized RRE 

domains for individual RiPP classes, either from published datasets or from the MIBiG database. 

Exploratory mode uses a combination of pHMMs and a truncated HHpred pipeline (including 

secondary structure prediction) to facilitate the identification of divergent RRE sequences (albeit 

with a higher false-positive rate). 

 

In cases where a published data set was available for a given RiPP class, model 

prediction accuracy was gauged by using hmmscan (from the HMMER3 suite 

[134]) on the relevant data set using bit scores of 15, 25, and 35 (referred to 

here as tolerant, moderate, and stringent cutoffs). A given pHMM was 

considered acceptable if >95% of RRE-containing proteins within the data set 

were retrieved by the model at a bit score of 25 (Table S5). In cases where a 

deep bioinformatic profiling of a RiPP class had not been previously published 

or where a mature natural product is not known (i.e., clusters predicted by the 

auxiliary models), seed alignment input sequences were gathered using PSI-
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BLAST [57] to find diverse homologous sequences to a representative sequence 

from each given class. The generated pHMMs were considered valid if an 

hmmsearch of the UniProtKB database [135] with a bit score cutoff of 25 gave 

only hits within BGCs with architectures similar to those of the target class. In 

addition, characterized data sets of RiPP proteins (e.g., lanthipeptides [68, 73], 

lasso peptides [45, 86], and sactipeptides [55]) were used to test auxiliary 

models using hmmscan analysis. Models giving few or no hits were considered 

to have acceptably low false-positive rates. 

Exploratory mode, on the other hand, was built for the detection of RRE 

domains with greater sequence divergence from those detected by precision 

mode. For this mode, we employed a variation of the HHpred pipeline to detect 

structural similarity to RRE domains. HHpred uses a clustered UniProt database 

(uniclust30) [136], which comprises a small, representative set of all UniProt 

protein sequence diversity. Query proteins are compared to the uniclust30 

database to generate a representative protein family for the query, and the 

consensus sequence of this representative protein family is compared to those 

of other protein families. This search also incorporates comparison of 

(predicted) secondary structures. As such, HHpred can detect distantly related 

sequences and overlap in secondary structures between a query protein and the 

UniProt database. However, the vast search space used far exceeds what is 

necessary if the goal is to detect RRE domains. 

To accelerate the HHpred pipeline for RRE detection, we first built a 

smaller, more specialized HHpred database, consisting of ∼2,400 diverse RRE 

sequences. These sequences were gathered by retrieving 5,000 RiPP BGCs from 

the antiSMASH database [137] using HHpred. Rather than manually curating the 

retrieved RREs in a class-specific manner, as was done for precision mode, all 

detected RREs were indiscriminately included. The only manual curation carried 

out was the removal of helix-turn-helix-containing proteins and other 

transcriptional regulators. While these proteins may display structural similarity 

to RREs, they are not involved in RiPP biosynthesis and therefore were excluded 

from the data set. The selected RREs were supplemented with 7 RREs from LAP 

BGCs and an RRE from a proteusin BGC, as no BGCs from these RiPP classes were 

present in the antiSMASH database. 
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The collection of ∼2,400 RREs was used to build databases for two 

filtering steps. For the first filter, all RREs were clustered into representative 

protein families with MMSeqs2 [138], resulting in 377 RRE families. These RRE 

families were further enriched by querying each family against the uniclust30 

database using HHblits, an iterative search tool from HHpred [139]. For each of 

the 558 resulting RRE families, custom pHMMs were constructed, allowing an 

initial filtering step with hmmsearch [134]. The second filtering step functions in 

a manner similar to that of HHpred. However, rather than using the uniclust30 

database to retrieve a protein family for a query, we employed a smaller, custom 

HHpred database consisting of the ∼2,400 RRE sequences retrieved from the 

antiSMASH database and their related protein families retrieved by HHblits. 

When this custom database is used, only protein queries that are homologous 

to one of the 377 clustered RRE families will return results. For queries lacking 

homology, no protein family would be found in the database, effectively filtering 

out such sequences. Finally, exploratory mode compares the family of proteins 

homologous to a query protein to three RRE structures in the Protein Data Bank 

(PDB entries 5V1T, 5SXY, and 3G2B). Any proteins showing homology to these 

models are output as putative RRE domains. In all, by employing a small, custom 

library of RRE sequences, exploratory mode significantly accelerates detection 

of RREs relative to the standard HHpred pipeline. 

Model validation against the MIBiG database. 

As an initial test of accuracy, RRE-Finder was evaluated in precision and 

exploratory modes against the MIBiG database [140]. This database contains 

characterized BGCs for ∼2,000 natural products, including polyketides, 

nonribosomal peptides, and RiPPs. All proteins within the MIBiG set (version 1.4) 

of RiPP (n = 242) and non-RiPP BGCs (n = 1,575) were analyzed by RRE-Finder at 

tolerant, moderate, and stringent bit scores (Figure 3). 

In general, both precision and exploratory modes accurately predicted 

the presence of RRE domains in >90% of the RRE-dependent RiPP BGCs. Taken 

together, both modes retrieved 93% (115/122) of RRE-containing proteins 

found by HHpred (Table S6). With increasing bit score stringency, the number of 

RRE sequences retrieved decreased in both RiPP and non-RiPP BGCs, as 

expected (Figure 3). At all bit score cutoffs, exploratory mode predicted more 
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Figure 3. MIBiG validation of RRE-Finder. Both modes were used to retrieve RRE-containing 

proteins in 242 RiPP BGCs (A and B) and 1,575 non-RiPP BGCs (C and D) from the MIBiG database. 

With increasing bit score stringency, the number of RRE detected decreased in both types of BGCs 

(A and C). At a bit score of 25, exploratory mode of RRE-Finder detects most of the RREs found by 

precision mode in RiPP BGCs (B), as well as several other RREs. However, the number of RREs 

detected in non-RiPP BGCs is lower for precision mode compared to exploratory mode (D). 
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RRE domains in RiPP BGCs (higher true-positive rate than precision mode), while 

precision mode retrieved fewer proteins from non-RiPP BGCs (lower false-

positive rate than exploratory mode). After further analysis, we chose a bit score 

cutoff of 25 as a compromise between precision and recall. At this cutoff, most 

of the RREs found within the MIBiG set by precision mode were also found by 

exploratory mode (101/117) (Figure 3). Only the RREs of linear azol(in)e-

containing peptides (LAPs) [118] and streptides [104] proved more difficult to 

detect by exploratory mode (Table S6). The inability of exploratory mode and 

HHpred to reliably predict LAP RRE domains may reflect a large diversity of 

leader peptide recognition sequences within this class that is better captured by 

the five distinct LAP models used by precision mode. 

By contrast, precision mode detected only 66% (101/154) of the RREs 

retrieved by exploratory mode. A notable number (n = 17) of the RRE-containing 

proteins not detected by precision mode were those contained in LanB-like 

proteins, which are found in certain lanthipeptide and thiopeptide BGCs. It has 

been shown that the LanB RRE domain found in thiopeptide BGCs is possibly 

vestigial, as the cognate leader peptide is not required for catalytic processing 

[110]. Exploratory mode also detected several (n = 14) RREs fused to 

dehydrogenase enzymes present in cyanobactin, LAP, and thiopeptide BGCs, 

which were not detected by precision mode. These RREs may also be vestigial; 

thus, precision mode does not include models for identifying these RRE-like 

domains. HHpred analysis similarly does not detect many of these potentially 

inactive RREs; thus, exploratory mode provides the best coverage of functional 

and vestigial RRE domains in this instance. We note that some of the RREs 

detected by exploratory mode, such as those from the thioamide-containing 

RiPP and pheganomycin pathways, are presumed to be functional but have yet 

to be experimentally validated (Table S6). 

While exploratory mode detects a greater number of RREs, it also 

displays a higher false-positive rate (e.g., proteins retrieved from known non-

RiPP BGCs). The false positives primarily consisted of helix-turn-helix domains 

and proteins with homology to known RRE-containing proteins that occur in 

non-RiPP contexts, such as radical S-adenosylmethionine (rSAM) enzymes 

(Table S7). Many DNA-binding regulators possess a helix-turn-helix domain, 
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which are structurally homologous to RRE domains (Figure S4). Indeed, most 

RRE domains analyzed by HHpred show homology to known DNA-binding 

domains and regulatory elements (e.g., PDB entries 3DEE, 2G9W, and 2OBP). 

Because regulatory proteins are not known to bind or modify RiPP precursor 

peptides, RRE-Finder includes an option to filter results that correspond to such 

domains. 

RRE-Finder operating in either mode retrieved LanB-like proteins within 

polyketide BGCs. There is precedence for the assimilation of RiPP-modifying 

enzymes into polyketide pathways [68], although the RRE domain within these 

proteins may be vestigial (Figure S5, Table S7). Thus, retrieval of proteins outside 

canonical RiPP BGCs may not always constitute a false positive. Further 

biochemical validation is required to confirm or refute a functional RRE in these 

instances. 

Finally, some pHMMs employed by precision mode were generated 

largely using RRE sequences from the MIBiG database. In these cases, validation 

against MIBiG alone is not sufficient to confirm or refute whether these models 

exhibit appropriate recall and precision. As an orthogonal means of precision 

mode validation, we ran hmmscan on ∼5,000 RiPP BGCs from the antiSMASH 

database used to generate the exploratory-mode database [137]. As previously 

stated, these BGCs primarily belong to the lanthipeptide, thiopeptide, LAP, 

sactipeptide, and lasso peptide classes. Because this collection of BGCs includes 

RRE-dependent and RRE-independent RiPPs (e.g., class II to IV lanthipeptides) 

[141], there are BGCs anticipated to not be retrieved by precision mode. These 

clusters were purposely included in the analysis as a negative control. All 

proteins within the 5,000 BGCs were scanned by precision mode at tolerant, 

moderate, and stringent bit scores. The percentages of scanned BGCs predicted 

by precision mode to contain an RRE were 90%, 87%, and 83%, respectively. The 

10% of BGCs not predicted to contain an RRE by precision mode were manually 

examined, with the majority belonging to RiPP classes that are RRE independent. 

Some BGCs also contained regulatory elements that represent false positives by 

HHpred; these proteins were appropriately not retrieved by precision mode. 

Thus, precision mode accurately predicts the presence of RREs in an unbiased 

collection of BGCs and appropriately omits RRE-independent RiPP clusters. 
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Defining the scope of RRE-dependent RiPP BGCs 

Next, we profiled the extent to which the RRE domain is present within 

sequenced genomes by mining the entire UniProtKB database [135]. Using 

hmmsearch at a bit score threshold of 25, precision mode retrieved ∼25,000 

proteins (∼13,000 nonredundant sequences) (Figure 4). A parallel search using 

exploratory mode with regulators filtered out yielded ∼35,000 nonredundant 

RRE-containing proteins, almost completely encompassing the proteins 

retrieved by precision mode. As expected, the numbers of proteins retrieved by 

precision mode is larger than has been previously reported for virtually all RiPP 

classes, owing to on-going genome sequencing. For example, the thiopeptide 

precision model is the top-scoring model for more than 600 of the retrieved 

UniProtKB proteins, an ∼25% increase from the most recent bioinformatic 

survey of thiopeptide BGCs [72]. In other cases, the number of retrieved 

proteins for a given model is misleading. For example, the precision mode model 

for discretely encoded lasso peptide RREs is the top-scoring model for almost 

8,000 of the retrieved proteins. However, subsequent analysis revealed that 

only ∼4,000 of these sequences co-occur with the requisite leader peptidase 

and lasso cyclase. This number is more consistent with the most recent lasso 

peptide survey, which reported ∼3,000 lasso peptide BGCs [86, 142]. Proteins 

retrieved by the discrete lasso peptide model often co-occur with other 

common RiPP enzymes, such as rSAM enzymes which represent ∼300 of the 

false positives. Thus, we caution that the number of proteins retrieved by any 

given model should not be equated to the number of BGCs specific to a 

particular RiPP class without analysis of the local genomic neighborhood. Full 

information on proteins retrieved by precision mode is available in Data Set S3 

(https://figshare.com/articles/Dataset_S3_RRE_domains/12568193).  

Figure 4 shows the number of retrieved proteins at tolerant, moderate, 

and stringent bit score cutoffs, as a measure of precision model specificity. 

Notably, due to partial model overlap in closely related RiPP classes (e.g., 

PQQs/lasso peptides and LAPs/thiopeptides/cyanobactins), the overall numbers 

of retrieved proteins for these models do not drastically increase going from 

moderate to tolerant bit scores. Thus, the majority of “false positives” detected 

by precision models at lower significance cutoffs represent RRE-dependent RiPP 

BGCs of a separate RiPP class.  

https://figshare.com/articles/Dataset_S3_RRE_domains/12568193
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Figure 4. Summary of proteins retrieved from UniProtKB using precision mode. The number of 

proteins retrieved from the UniProtKB database are summarized for several classes of RiPPs. A 

scan of the entire UniProtKB database of non-redundant proteins was carried out at three bit 

scores. In cases where a given UniProt accession was retrieved by more than one precision model 

(due to partial model redundancy), the protein was only counted toward the model of higher 

significance. For classes with more than one precision mode HMM (e.g. LAPs and sactipeptides), 

the numbers presented are the sum of proteins retrieved by each individual model. Full data on 

proteins detected by each precision mode model is available in Dataset S3 

(https://figshare.com/articles/Dataset_S3_RRE_domains/12568193). LAP, linear azol(in)e-

containing peptide. PQQ, pyrroloquinoline quinone. 

 

The excised RREs from all proteins identified by precision mode were 

visualized using a sequence similarity network (SSN) [132]. The SSN confirms 

known relationships between RREs in separate RiPP classes. For example, 

discretely encoded lasso peptide RREs (referred to as the B1 or E protein) group 

separately from RRE-leader peptidase fusions (known as the B2 or B protein), 

consistent with a different recognition sequence for these two varieties of lasso 

peptide (Figure 5; Figure S6) [45, 86]. In contrast, the heterocycloanthracins 

(LAPs) cluster more tightly with thiopeptides than other LAPs. This relationship 

was expected given that heterocycloanthracin and thiopeptide BGCs feature an 

RRE domain fused to an ocin-ThiF-like protein (TIGR03693) that delivers the 

https://figshare.com/articles/Dataset_S3_RRE_domains/12568193


2 

A.M. Kloosterman 

48 
 

peptide substrate to the biosynthetic enzymes [118, 143]. In other LAP 

pathways, the RRE is fused to members of TIGR03882 [109, 118, 143, 144]. 

Members of TIGR03882 recognize the peptide substrate through the RRE and 

perform cyclodehydration reactions, whereas these functions are carried out by 

separate proteins in thiopeptide and heterocycloanthracin clusters 

Another method to view RRE relatedness is through model redundancy 

(Figure S7). In cases where there is overlap in the proteins retrieved by multiple 

models, the redundancy is reflective of RREs in these classes binding their 

cognate leader peptides through similar sequence motifs. Similarly, lack of 

model overlap is indicative of a divergent leader peptide recognition sequence. 

For example, at a moderate bit score, there is virtually no overlap between the 

lanthipeptide-associated RRE domains with any other RiPP class, reflective of a 

unique recognition sequence not yet observed elsewhere [141, 145] (Figure S7). 

We note that model redundancy, particularly in RiPP BGCs with more than one 

RRE-containing protein, may suggest a similar recognition sequence on the 

cognate leader peptide. For example, the 3-thiaglutamate (pearlin RiPP class) 

BGC contains three proteins predicted to contain an RRE. The precision-mode 

pHMMs for these proteins display greater redundancy with each other than with 

any other model. This suggests comparable specificity of these RRE domains, as 

dictated by the α3 and β3 regions, and that these RREs likely bind the same 

region of the precursor peptide. However, this hypothesis will require further 

experimental evaluation. 

Evolution of the RRE domain 

Sequence similarity between recognition sequences in closely related RiPP 

classes suggests that the RRE domain emerged once and then diverged to 

recognize a variety of leader peptides. Because the leader peptide binds as an 

ordered beta-strand between the α3 helix and β3 strand of the RRE, 

substitutions of key α3 and β3 residues logically tune the RRE specificity toward 

the cognate peptide substrate. Analysis of residue-level conservation between 

RREs of divergent RiPP classes reveals that the α3 and β3 regions exhibit higher 

levels of residue conservation than the remainder of the domain, presumably 

due to selective pressure to conserve leader peptide-RRE contacts. This holds 

true even when closely related RiPP classes, such as LAPs and thiopeptides, are 
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compared (Table S8). The other regions of the RRE, which are not directly 

involved in leader binding, show lower levels of conservation. 

A representative phylogenetic tree of excised RRE domains retrieved by 

precision mode (bit score of 25) is consistent with the hypothesis that the RRE 

domain coevolved with the leader peptide to provide specificity in all RRE-

dependent RiPP classes (Figure S8). The tree does not include all proteins 

retrieved by precision mode; rather, 10% of the proteins contained within each 

SSN cluster (Figure 5) were included, along with all singletons, to generate a 

diversity-maximized collection of sequences spanning all RRE-dependent 

classes. The tree employs a helix-turn-helix DNA-binding protein as an outgroup 

(PDB entry 3DEE), as this protein scores well in HHpred searches of characterized 

RRE proteins, such as PqqD and LynD. As previously mentioned, it is plausible 

that the RRE domain evolved from DNA-binding regulatory elements, given the 

shared secondary structure and the similar function of these domains to 

specifically bind a stretch of DNA or a peptide (Figure S4). Unsurprisingly, the 

diversity-maximized tree shows a subset of the discrete lasso peptide RREs 

branching directly from the helix-turn-helix outgroup. Although discrete RREs 

called by this model are dispersed throughout the tree, the subset branching 

most directly from the outgroup is mostly representative of the false positives 

discussed previously (proteins not co-occurring with lasso peptide machinery). 

This may suggest that some of these false positives are DNA-binding proteins 

more closely related to true RREs (either in RiPP or non-RiPP contexts) and that 

discrete RREs evolved from these regulators. These proteins could also 

represent discrete RREs from currently uncharacterized RiPP classes. 

Furthermore, the tree shows clades of fused RRE domains branching off from 

discrete RREs as separate events for most RiPP classes. Some fused RRE types 

(e.g., fused lasso peptide RREs, ranthipeptides, and pantocins) form 

monophyletic clades branching from parent clades with discrete RREs. Other 

classes, like the lanthipeptides, are dispersed throughout many clades. This may 

indicate that fusion of the RRE domain to other domains occurred as separate 

events, even within some RiPP classes. These data are also consistent with the 

observed domain architectures, as some classes employ N-terminally fused RRE 

domains, while others exhibit C-terminal fusions (e.g., proteusins). 
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Figure 5. Sequence similarity network of UniProtKB proteins retrieved by precision mode. 

Shown is a RepNode60 SSN at an alignment score of 22 (sequences with >60% amino acid identity 

are conflated to a single node and edges represent a BLAST expectation value better than 10-22). 

Proteins are colored based on the best-fit model by which they were detected. White nodes in 

region 3 represent proteins that were retrieved by the discrete lasso peptide RRE model but do 

not co-occur with the requisite leader peptidase and lasso cyclase. The discrete lasso peptide RREs 

clustering with sactipeptides and ranthipeptides in region 2 are discretely encoded RRE proteins 

that co-occur with radical SAM enzymes. The SSN was generated using the Enzyme Similarity Tool 

(https://efi.igb.illinois.edu/efi-est/) [132]. 

 

Using RRE-Finder to identify novel RiPP clusters 

Theoretically, the sequence space retrieved by exploratory mode and the 

auxiliary models of precision mode encompasses RRE-containing proteins from 

yet-undiscovered RiPP classes. To explore this sequence space, divergent 

clusters mined from UniProtKB were manually examined for novel RiPP 

contexts. All proteins retrieved were grouped based on their best-fit Pfam 

https://efi.igb.illinois.edu/efi-est/
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model. Since we expected many regulatory elements or proteins with helix-turn-

helix domains among the hits, we filtered these sequences after the first step of 

the exploratory pipeline, reducing the required computational time.  

Among the remaining detected proteins, RRE-Finder reveals several 

potentially novel RiPP clusters with new gene architectures containing both 

discrete and fused RRE domains (Figure S9). Included in these clusters are RRE-

protein fusions that are not present in known classes, such as RRE-

glycosyltransferase fusions and RRE-glutathione S-transferase fusions 

(Figure S10, Table S9 and Table S10). Of the nine potential RiPP BGCs shown 

in Figure S10, four encode rSAM enzymes, which are found across several RiPP 

classes [55]. The presence of rSAM enzymes in conjunction with predicted RREs 

is suggestive of a RiPP BGC. However, of the nine BGCs, only three contained 

probable precursor peptides (small genes of <150 amino acids, co-occurring 

with the RRE-containing protein), while four other BGCs contained precursor 

candidates predicted by RODEO. Therefore, manual curation of potentially novel 

BGCs found by RRE-Finder is strongly recommended. An overall sequence 

similarity network of the UniProtKB proteins accessed by exploratory mode is 

provided in Figure S9. 

To date, almost no RiPP classes have been discovered using solely a 

bioinformatic approach. The mycofactocin class was initially predicted through 

a bioinformatic study on then-uncharacterized rSAM enzymes [102]. In addition, 

the ranthipeptide class was defined solely using bioinformatics (as SCIFF [for “six 

cysteines in forty-five residues”] peptides) [146]; however, this class was 

incorrectly assumed to be part of the existing sactipeptide class [55]. In other 

cases, bioinformatics analyses have been used to expand diversity within known 

RiPP classes; for example, the streptide class has been expanded to include 

enzymes that diverge from the class-defining Lys-Trp cross-linking enzymes 

[104, 105]. Also, one new RiPP class—the α-keto β-amino acid-containing 

peptides—and one RiPP-like class—the pearlins—were discovered through 

bioinformatic means [103, 147]. These classes, however, were discovered 

through first identifying a divergent member of a known RiPP biosynthetic 

enzyme, rather than through a truly unbiased bioinformatic discovery. We 

expect that RRE-Finder will enable such discoveries. 
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RRE-Finder incorporation into antiSMASH and RODEO 

To encourage the use of RRE-Finder, the algorithm has been made publicly 

available as a command-line tool for Linux operating systems at  

https://github.com/Alexamk/RREFinder. Protein queries can be supplied in 

FASTA or GenBank format. The tool is also capable of analyzing and updating 

antiSMASH and DeepBGC output files [148]. Precision mode of RRE-Finder will 

be incorporated into the next release of antiSMASH. We further have 

incorporated the precision mode of RRE-Finder into RODEO [45], a genome-

mining tool for RiPP discovery that provides genomic neighborhood visualization 

and prediction of precursor peptides. Protein-coding sequences within the 

genetic locus are annotated according to Pfam and TIGRFAM models to identify 

conserved domains and predict function. With the “include RRE scoring” 

function enabled, proteins with an identifiable RRE are annotated, along with 

their E-value significance. Both the command line version of RODEO 

(https://github.com/the-mitchell-lab/rodeo2) and the user-friendly Web tool 

version (http://rodeo.scs.illinois.edu) have been upgraded with the capabilities 

of RRE-Finder precision mode. 

  

https://github.com/Alexamk/RREFinder
https://github.com/the-mitchell-lab/rodeo2
http://rodeo.scs.illinois.edu/
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Conclusion and final perspectives 

RRE-Finder rapidly and accurately detects RRE domains within known and 

potentially novel RiPP classes. Although not all RiPP classes are RRE dependent, 

the majority of prokaryotic RiPP classes are, including the largest known classes 

(i.e., class I lanthipeptides, lasso peptides, and ranthipeptides). RiPP natural 

products are a prime candidate for pathway engineering, as precursor peptides 

and their cognate modifying enzymes are all genetically encoded, typically 

within one BGC. However, efforts to bioinformatically predict RiPP BGCs lag 

behind those for predicting polyketide synthase (PKS) and nonribosomal peptide 

synthetase (NRPS) BGCs, due to a lack of strongly conserved protein domains 

spanning multiple RiPP classes. Through precision mode of RRE-Finder, we have 

shown that characterized RiPP classes contain more members than currently 

reported, although analysis of the genomic neighborhood should be performed 

to confirm class identity. Precision mode can further be employed, particularly 

with a tolerant bit score threshold, to predict novel RRE domains, such as those 

predicted by the auxiliary models. Finally, using RRE-Finder in exploratory mode 

reveals a set of ∼35,000 proteins that are predicted to contain an RRE, 

suggesting that additional classes of RRE-dependent RiPPs remain to be 

uncovered.  
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Materials and Methods 

Generation of precision mode models 
Precision mode was generated to accurately predict the presence of RRE domains specific to 

characterized RiPP classes, as well as RRE domains in selected bioinformatically predicted RRE-

dependent RiPP clusters. There are 29 models employed by precision mode of RRE-Finder (not 

including auxiliary models), each specific to a given discrete or fused RRE protein within a 

characterized RiPP class (see Figure S3 for represented classes). Each precision model consists of 

a custom profile hidden Markov model (pHMM). To build each pHMM, five to 20 representative 

sequences were selected from a given RRE class for seed sequence alignment. For several RiPP 

classes, an extensive bioinformatic survey of biosynthetic gene clusters has been conducted. 

When available, these data sets were employed to select seed sequences. The data sets included 

those describing known gene clusters for lanthipeptides [73], lasso peptides [45], thiopeptides 

[72], cyanobactins [149], bottromycins [150], linear azol(in)e-containing peptides (LAPs, including 

heterocycloanthracins, plantazolicins, nitrile hydratase-like leader peptides [NHLP]-derived RiPPs, 

Nif11-derived RiPPs, goadsporins, and cytolysins) [118], pantocins/microcins [151], and radical S-

adenosylmethionine-derived RiPPs (including sactipeptides, ranthipeptides, quinohemoprotein 

amine dehydrogenases, and streptides). In these cases, sequence diversity was evaluated by 

generating a sequence similarity network (SSN) using the Enzyme Function Initiative Enzyme 

Similarity Tool (EFI-EST) [132] and visualizing the SSN with Cytoscape [133]. Five to 20 sequences 

(depending on number of clusters in the SSN) were selected from divergent clusters on the SSN. 

Bioinformatic data sets were not available for the following RRE-dependent RiPP classes: 

PQQ [123], proteusins, mycofactocins, trifolitoxins, α-keto β-amino acid-containing peptides, and 

pearlins. In these cases, a list of homologous sequences to a canonical gene were obtained with 

position iterative BLAST searching (PSI-BLAST) [57] with three iterations and an E-value cutoff of 

0.05 in November 2019 using the GenBank nonredundant protein sequence database. Once a list 

of homologous sequences was obtained, an SSN was generated in the manner described above, 

and diverse sequences were selected for seed sequence alignment. 

Seed sequences were analyzed for the presence of an RRE domain using the HHpred 

Web tool (https://toolkit.tuebingen.mpg.de) [111]. A protein was considered to contain an RRE if 

part or all of the protein matched a PqqD model (either PDB entry 5SXY or 3G2B) with 80% 

probability or greater. All proteins containing RRE domains were excised in silico to contain only 

the residues matching the relevant PqqD model. Excised RRE sequences were then aligned using 

MAFFT 7.450 [152]. MAFFT alignments were run using the L-INS-I alignment option. Multiple-

sequence alignments were used directly to generate a pHMM using HMMER version 3.3 [134]. 

Models were built using the hmmbuild function and pressed into binary form using the hmmpress 

function. 

Validation of precision mode models 
Precision mode models were validated against the full data sets from which seed sequences were 

chosen, excluding the sequences which were included in the pHMMs themselves. For each model, 

the pHMM was run against the full data set for the relevant RiPP class using the hmmscan function 

of HMMER3.3 [134]. Hmmscan was run with a bit score cutoff of 25 and with all other options set 

to default. A given model was deemed functional if >95% of RRE-containing protein sequences in 

a data set were retrieved by the pHMM at this bit score threshold. In cases where this criterion 

https://toolkit.tuebingen.mpg.de/
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was not met, sequences not retrieved by the model were used to enrich the original seed 

sequence alignment and an improved model was generated. In cases where an extensive 

bioinformatic survey was not available for a certain RiPP class, model accuracy was assessed in 

two ways: First, the set of homologous proteins generated by PSI-BLAST during model generation 

was tested against the pHMM using hmmscan with a bit score cutoff of 25. Second, an hmmsearch 

was performed using the HMMER3.3 Web tool (https://www.ebi.ac.uk/Tools/hmmer/search) 

against the UniProtKB database. The biosynthetic gene clusters surrounding gene hits were 

visualized using the RODEO Web tool [45] (http://rodeo.scs.illinois.edu). A model was considered 

valid if >95% of the proteins retrieved by PSI-BLAST were detected by the model and >90% of 

proteins retrieved from the UniProtKB database co-occurred with genes belonging to Pfams 

known to associate with that RiPP class. Finally, all models were tested for false-positive rates. All 

models were run against a data set of 3,000 protein sequences selected from across the data sets 

used for generating all precision mode models using hmmscan at a bit score cutoff of 35. Models 

were considered to have acceptably low false-positive rates if <100 hits for any given model 

belonged to a divergent RiPP class. 

As described above, precision mode models were also validated against a set of ∼5,000 

proteins from the antiSMASH database. These protein sequences were employed in the 

generation of exploratory mode and thus were a form of cross-validation between the two modes 

of RRE-Finder. This data set consists of RRE-containing proteins primarily from the thiopeptide, 

lasso peptide, lanthipeptide, sactipeptide, and LAP classes. Not all proteins contained within the 

data set canonically contain RRE domains, particularly those belonging to class II to IV 

lanthipeptides. All precision-mode models were assessed by hmmscan searches against this data 

set with bit score cutoffs of 15, 25, and 35 (representing tolerant, moderate, and stringent bit 

score thresholds). 

Generation of exploratory mode 
Exploratory mode was generated for the purpose of identifying RRE sequences with higher 

divergence from RREs in known RiPP classes in a more unbiased manner than precision mode. For 

exploratory mode, we constructed a truncated version of the HHpred pipeline [111]. In this 

pipeline, a query sequence is first expanded with HHblits into a multiple sequence alignment 

(MSA) using a database of interest, in this case the uniclust30 database [136]. The secondary 

structure of the MSA is predicted using the adds.pl script available in the PSIPRED function of the 

HHsuite tool [112]. The MSA is then searched with HHsearch against a second database, which 

consists of three sequences from the Protein Databank (PDB) corresponding to RRE crystal 

structures (PDB entries 5V1T, 5SXY, and 3G2B). To closely mimic the HHpred pipeline, we used the 

uniclust30 database for MSA generation (version from August 2018 

[https://uniclust.mmseqs.com]). This database contains all sequences from the UniProt database 

clustered with MMseqs2 [138] at a cutoff of 30% pairwise sequence identity. 

For the initial generation of an RRE database, we used the above-mentioned pipeline to 

search 5,000 RiPP BGCs from the antiSMASH database against the uniclust30 database. Regions 

showing distant similarity to the reference RRE domains (probability, ≥40%; length, ≥50 residues) 

were extracted with 15 flanking residues on each side, and the extracted regions were 

resubmitted to the same pipeline with a higher cutoff to confirm the results (probability, ≥90%; 

length, ≥50 residues). Additional RRE sequences were added for the LAP, streptide, and proteusin 

RiPP families, for which no entries were available in the antiSMASH database. 

https://www.ebi.ac.uk/Tools/hmmer/search
http://rodeo.scs.illinois.edu/
https://uniclust.mmseqs.com/
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The resulting database of RREs was used to generate a custom HHpred database as 

described in the documentation of the HHsuite tool, including the addition of secondary structure 

predictions with PSIPRED. In parallel, all RREs found were clustered with MMSeqs2 using default 

settings (pairwise identity, ≥80%) and the sequences in each cluster of RREs were aligned using 

MUSCLE [153]. The resulting alignment was converted into .a3m format using the reformat.pl 

script available in the HHsuite tool. Each alignment was then further enriched with more 

homologous sequences from the UniProtKB database by using HHblits with the uniclust30 

database with three iterations. Finally, the expanded alignments were converted into pHMMs 

using HMMER3.3. 

In exploratory mode, each query is first subjected to hmmsearch using the pHMMs 

described above. Queries passing the initial cutoff (see main text) and with minimum alignment 

length of 50 residues have the relevant regions extracted, including 15 flanking residues on each 

side. The candidate RRE region is then subjected to the HHpred pipeline described above. In the 

first step of MSA generation, however, the custom database containing RRE regions is used 

instead of the uniclust30 database. RRE regions showing homology to the reference RRE domains 

(length, ≥50 residues; probability, ≥90%) are considered hits. 

Reducing false positives 
To remove sequences containing transcriptional regulators (a large source of false positives using 

exploratory mode), we constructed a list of Pfam pHMMs containing a variety of DNA-binding 

regulators and other helix-turn-helix domains that share structural homology to the RRE domain. 

Each resulting hit is searched against this database with hmmsearch using the trusted cutoffs of 

each pHMM. Overlap of a regulator with a retrieved RRE is indicated in the output file. Information 

on which Pfams were filtered out is available in Data Set S4 

(https://figshare.com/articles/Dataset_S4_Pfam_filtering/12568136). 

Analysis of the MIBiG database 
The pipeline described above was used to analyze all proteins from the MIBiG database (version 

1.4), using bit score cutoffs ranging from 15 to 50. The resulting hits were separated into those 

belonging to RiPP and non-RiPP BGCs. Hits from the RiPP BGCs were additionally clustered per 

RiPP class. RiPP BGCs containing only precursors were removed. 

Analysis of the UniProtKB database 
The pipeline described above was used to analyze all proteins from the UniProtKB/TrEMBL 

database (UniProt release 2019_09). A bit score cutoff of 25 was used for precision mode and the 

initial filter of exploratory mode. For exploratory mode, proteins identified as likely regulators 

were removed after the initial hmmsearch step in the exploratory pipeline. 

For the discovery of new classes, UniProtKB hits found by both modes of RRE-Finder, in 

particular using the auxiliary models of precision mode, were annotated with Pfam models 

(version 32.0) [130]. Several hits containing a Pfam domain that indicated an enzymatic activity 

were selected, and their genomic neighborhoods were investigated, as well as their overlap with 

antiSMASH gene clusters. In addition, the presence of RRE domains in these hits was confirmed 

by submitting to the HHpred Web tool (https://toolkit.tuebingen.mpg.de/tools/hhpred). 

For analysis of the UniProtKB database using precision mode, the HMMER3.3 Web tools 

were used. Each model was individually run through hmmsearch of the UniProtKB database with 

a bit score cutoff of 25. Retrieved proteins for each model were compiled, and duplicate protein 

https://figshare.com/articles/Dataset_S4_Pfam_filtering/12568136
https://toolkit.tuebingen.mpg.de/tools/hhpred
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accessions were removed to determine the exact number of unique proteins detected by each 

precision model. Information on duplicate hits from two or more precision models were used to 

determine model overlap and RRE relatedness, as shown in Figure S7. 

Generation of sequence similarity networks and a diversity-maximized phylogenetic tree 
The unique protein accessions from hmmsearch of the UniProtKB database using precision mode 

were directly used to generate an SSN using EFI-EST [132] (https://efi.igb.illinois.edu/efi-est/) and 

visualized with Cytoscape [133]. All sequences were excised to consist of only the RRE domain 

using a custom script. This script employs hmmsearch to identify the residues of a protein 

corresponding to the query pHMM and includes only those residues in the FASTA output. All SSNs 

shown are either a RepNode60 or RepNode80 network, meaning that protein sequences sharing 

more than 60% or 80% sequence identity are conflated into one node on the network. In general, 

alignment scores for network visualization were chosen to reflect a cutoff where sequences with 

>40% sequence identity cluster together. For the networks shown in this work, these alignment 

scores were 22 and 25 (representative of E-value cutoffs of 10−22 and 10−25, respectively). 

A diversity-maximized, maximum-likelihood phylogenetic tree was generated by first 

selecting a smaller subset of the sequences represented on the SSN. All sequences represented 

by clusters consisting of 1 to 3 nodes were included in the tree. For larger clusters, a random 

sampling of 10% of the sequences in the cluster was used for tree generation. All sequences were 

excised to contain only the RRE using the methods described above. The subset of sequences was 

used to generate a multiple-sequence alignment using MAFFT 7.450 [152]. MAFFT alignments 

were run using the L-INS-I alignment option. The MSA was transformed into an approximate-

maximum-likelihood tree using FastTree 2.1 [154] with the default Jones-Taylor-Thornton (JTT) 

model. The tree was visualized using the Interactive Tree of Life (iTOL) website 

(http://itol.embl.de/). 

Integration of RRE-Finder into RODEO and antiSMASH 
Precision mode models have also been incorporated into both the GitHub and Web tool versions 

of RODEO 2 (http://rodeo.scs.illinois.edu). Included is an option to score RRE domains, which, if 

selected, will show which precision-mode models are matched, along with the default Pfam 

matches. The integration of precision mode is in progress for version 6.0 of antiSMASH, which is 

currently in the development phase and will be reported elsewhere. In addition, the standalone 

RRE-Finder tool is available on GitHub (https://github.com/Alexamk/RREFinder) and is capable of 

detecting RREs in precision mode and exploratory mode directly from antiSMASH and DeepBGC 

output [148].  

https://efi.igb.illinois.edu/efi-est/
http://itol.embl.de/
http://rodeo.scs.illinois.edu/
https://github.com/Alexamk/RREFinder
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Supplementary information for Chapter 2 

 

Figure S1. Structural homology of the RRE domain. (A) The crystal structures of three RRE 

domains (excised for LynD and NisB) are shown from three RiPP classes. The leader peptide is 

highlighted in blue, while the conserved cleft in the RRE that binds the leader peptide (LP) is 

highlighted in green. (B) The sequences of each of the three RRE domains shown in A.  

 

Figure S2. Sequence diversity of the RRE domain. Sequences belonging to PF05402 (PqqD) are 

represented in the SSN. The network was generated at an alignment score of 25 (E-value = 10-25) 

and is presented as a RepNode80 (protein sequences with greater than 80% identity are conflated 

to a single node). Nodes are colored gold if the gene co-occurs within two open-reading frames of 

a radical SAM enzyme (i.e. a PqqE homolog), indicating that the protein may be a true PQQ 

biosynthesis protein.   
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Figure S3. Representative RiPP gene clusters for precision mode models.  One representative 

example is given for each RiPP class represented by one or more precision mode models. See Table 

S3 for a list of BGCs targeted. The 35 pHMMs comprising precision mode are provided in Data Set 

S2 (https://figshare.com/articles/Dataset_S2_HMM_files/12030651). The relevant class is shown 

in bold above the BGC, while the specific product encoded by the cluster is shown below the 

cluster. RRE domains are highlighted in red. In cases where RRE domains are fused to other 

domains, the red portion of the open reading frame represents the location of the RRE within the 

protein. QHNDH, quinohemoprotein amine dehydrogenase; DUF, domain of unknown function; 

rSAM, radical S-adenosylmethionine.  

https://figshare.com/articles/Dataset_S2_HMM_files/12030651
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Figure S4. Structural homology of the RRE to DNA-binding proteins. The RRE consists of a 

conserved secondary structure of three α-helices and three β-strands, highlighted in blue and red 

in the structures shown. This secondary structure is also present in many regulatory and DNA-

binding elements, such as the truncated DNA-binding portion of the Neisseria protein shown. 

HHpred analysis also shows high structural similarity (>90% probability) between several DNA-

binding elements and RRE-containing proteins. Sequence similarity between transcription 

regulators and RRE domains still remains low, with the two sequences shown sharing only 33% 

amino acid sequence identity. Thus, it is plausible that RRE domains evolved from transcriptional 

regulatory proteins.  

 

 

Figure S5. An RRE is detected in a type II PKS BGC by RRE-Finder. (A) RRE-containing proteins 

found in type II PKS clusters. The lymphostin BGC, a member of the pyrroloquinoline alkaloid class 

of RiPPs [155]. Many pyrroloquinoline alkaloid (PQA) clusters contain both a PKS-NRPS module 

and one or more LanB-type enzymes containing internal RRE domains. (B) Structure of lymphostin, 

a RiPP derived from tryptophan.  
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Figure S6. Sequence similarity networks of UniProt hits retrieved by precision mode. (A) 

Sequence similarity network of retrieved UniProt proteins annotated by taxonomic origin. The SSN 

is identical to Figure 5 but has been recolored by taxonomy of the producing organism (alignment 

score of 22 [RepNode60]). (B) The sequence similarity network in panel A was recolored according 

to the bit score significance of the match to a precision model (alignment score of 22 

[RepNode60]). 
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Figure S7. Overlap of retrieved UniProt proteins in the most populous RiPP classes (Top) and 

YcaO/RRE-dependent RiPP classes (bottom). Individual precision models for each of the shown 

RiPP classes were employed for hmmsearch of the UniProtKB database at a bit score cutoff of 25. 

The total number of retrieved sequences for each model is in parentheses. The numbers within 

circles indicates model redundancy or overlap, owing to the same sequence being retrieved by 

more than one precision model at a bit score of 25. The discrete lasso peptide RRE model retrieves 

more proteins than anticipated. For example, many lasso peptide RREs co-occur in clusters with 

radical S-adenosylmethionine enzymes. In addition, there is significant overlap between the RREs 

of lasso peptides and those from PQQ clusters. For the Ycao/RRE-dependent RiPP classes, model 

overlap reveals that some numbers of retrieved proteins for precision mode are artificially high. 

For example, there are only ∼500 proteins retrieved by the thiopeptide model that co-occur with 

canonical thiopeptide modifying enzymes, such as the [4 + 2] cycloaddition enzyme. The other 

proteins retrieved by this model are heterocycloanthracins, which employ a highly similar leader 

peptide recognition sequence and RRE domain primary sequence. NHLP, nitrile hydratase-like 

leader peptide [156]; HCA, heterocycloanthracin.  
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Figure S8. Representative phylogenetic tree for retrieved UniProt proteins. Shown are RRE 

sequences retrieved by a hmmsearch of the UniProtKB database using precision mode. Arc 

segments are colored based on the precision mode model matched with the highest bit score. RRE 

domains from discrete lasso peptide BGCs share the most sequence similarity to non-RiPP 

regulatory proteins and thus branch most directly from the transcriptional regulator outgroup 

(appearing at ∼10 o’clock on the tree; PDB entry 3DEE).  
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Figure S9. Sequence similarity network of retrieved UniProt proteins by exploratory mode. The 

UniProtKB database was searched using exploratory mode at a bit score cutoff of 25 (alignment 

score of 30 [RepNode60]). All proteins retrieved by exploratory mode, not inclusive of proteins 

retrieved by precision mode at the same bit score cutoff, are visualized on the sequence similarity 

network. Nodes are colored based on UniProt annotations that were highly represented in the 

network. Proteins that were retrieved by precision mode at bit score cutoffs under 25 have blue 

outlines. The network was generated using EFI-EST [132] and visualized with Cytoscape [133].   
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Figure S10. Example RiPP BGCs found by RRE-Finder. Shown are nine BGCs that contain RRE 

domains in novel contexts. Proteins highlighted in red indicate proteins containing RRE domains 

as predicted by RRE-Finder. All RRE domain-containing proteins are listed in the accompanying 

table along with protein accessions. Some of the BGCs shown were mined using exploratory mode 

of RRE-Finder, while the others were mined using the auxiliary models of precision mode. In cases 

where a likely precursor peptide was predicted by RODEO but no NCBI accession was found, the 

precursor is marked with an asterisk. 
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Table S1. Representative list of prokaryotic RiPP classes containing RREs. RRE domains are 

present in over 50% of RiPP classes produced by prokaryotes. These classes are listed along with 

information pertaining to the type of RRE fusion, and an example product. Classes are listed as 

RRE dependent if at least one protein in the BGC is predicted to contain an RRE by RRE-Finder 

exploratory mode. Not all of these classes have been confirmed to be RRE dependent by 

experimental studies. Although there are no general trends as to which classes are RRE 

dependent, some enzymes—such as rSAM enzymes and cyclodehydratases—commonly co-occur 

with discrete or fused RRE domains.  

Class Name 
Example 

Product 
RRE Type Citation DOI 

Lanthipeptides Nisin A Fused to LanB protein (class I 

lanthipeptides only) 

10.1038/333276a0  

Pyrroloquinoline 

quinones (PQQ) 

PQQ cofactor Discrete RRE 10.1128/jb.171.1.447-455.1989  

Lasso peptides Microcin J25 Fused to leader peptidase or 

discrete 

10.1128/jb.178.12.3661-

3663.1996  

LAPs Microcin B17 Fused to E1-like homolog (and 

sometimes YcaO as well)  

10.1126/science.274.5290.1188  

Sactipeptides Subtilosin Fused to rSAM sactionine 

enzyme 

10.1128/JB.182.11.3266-

3273.2000  

Pantocins/ 

Microcins 

Pantocin A Fused to E1-like homolog 10.1002/anie.200351054  

Cyanobactins Patellamide A Fused to YcaO domain 

(azoline-containing 

cyanobactins only) 

10.1038/nchembio.84  

Thiopeptides Thiostrepton Fused to the F-component of 

the cyclodehydratase 

10.1073/pnas.0900008106  

Mycofactocins Mycofactocin Discrete RRE 10.1186/1471-2164-12-21  

Bottromycins Bottromycin A1 Fused to rSAM 

methyltransferase 

10.1039/C2SC21190D 

Proteusins Polytheonamide Fused to rSAM epimerase and 

rSAM methyltransferase 

10.1126/science.1226121  

Streptides Streptide Fused to rSAM enzyme 10.1038/nchem.2237  

Ranthipeptides Freyrasin Fused to rSAM enzyme 10.1021/jacs.9b01519  

-Keto -amino 

acid-containing 

peptides 

PlpA Discrete RRE 10.1126/science.aao0157  

Rotapeptides TQQ Fused to rSAM enzyme 10.1021/jacs.9b05151  

Ryptides RRR Fused to rSAM enzyme 10.1021/jacs.9b09210  

  

http://doi.org/10.1038/333276a0
file://///VUW/Users/K_Smooth%201/Documents/RREFam%20Precision%20Models/10.1128/jb.171.1.447-455.1989
https://dx.doi.org/10.1128%2Fjb.178.12.3661-3663.1996
https://dx.doi.org/10.1128%2Fjb.178.12.3661-3663.1996
file://///VUW/Users/K_Smooth%201/Documents/RREFinder%20Final%20Drafts/10.1126/science.274.5290.1188
file://///VUW/Users/K_Smooth%201/Documents/RREFam%20Precision%20Models/10.1128/JB.182.11.3266-3273.2000
file://///VUW/Users/K_Smooth%201/Documents/RREFam%20Precision%20Models/10.1128/JB.182.11.3266-3273.2000
http://doi.org/10.1002/anie.200351054
http://doi.org/10.1038/nchembio.84
https://dx.doi.org/10.1073%2Fpnas.0900008106
http://doi.org/10.1186/1471-2164-12-21
https://doi.org/10.1039/C2SC21190D
file://///VUW/Users/K_Smooth%201/Documents/RREFam%20Precision%20Models/10.1126/science.1226121
http://doi.org/10.1038/nchem.2237
http://doi.org/10.1021/jacs.9b01519
http://doi.org/10.1126/science.aao0157
https://pubs.acs.org/doi/10.1021/jacs.9b05151
https://pubs.acs.org/doi/full/10.1021/jacs.9b09210
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Table S2. Representative RRE domains that have been structurally characterized. LAP, linear 

azol(in)e-containing peptides; PQQ, pyrroloquinoline quinone. 
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LynD Cyanobactin 4V1T A0YXD2 10.1038/nchembio.1841 

TruD Cyanobactin 4BS9 B2KYG8 10.1002/anie.201306302 

NisB Lanthipeptide 5WD9 P20103 10.1038/nature13888 

McbB LAP 6GOS P23184 10.1016/j.molcel.2018.11.032 

TfuB1 Lasso peptide 6JX3 Q47AT5 10.1021/acschembio.9b00348 

TbiB1 Lasso peptide 5V1V D1CIZ5 10.1073/pnas.1908364116 

MccB Microcin 6OM4 Q47506 10.1039/c8sc03173h  

PaaA Pantocin 5FF5 Q9ZAR3 10.1021/jacs.5b13529 

PqqD PQQ 3G2B/5S

XY 

Q8P6M8 10.1002/prot.22461 

10.1021/acs.biochem.7b00247 

CteB Ranthipeptide 5WGG A3DDW1 10.1021/jacs.7b01283 

SkfB Sactipeptide 6EFN O31423 10.1074/jbc.RA118.005369 

SuiB Streptide 5V1T A0A0Z8EWX1 10.1073/pnas.1703663114 

TbtB Thiopeptide 6EC7 D6Y502 10.1073/pnas.1905240116 

  

http://dx.doi.org/10.1038/nchembio.1841
http://dx.doi.org/10.1002/anie.201306302
http://dx.doi.org/10.1038/nature13888
http://dx.doi.org/10.1016/j.molcel.2018.11.032
http://dx.doi.org/10.1021/acschembio.9b00348
http://dx.doi.org/10.1073/pnas.1908364116
http://dx.doi.org/10.1039/c8sc03173h
http://dx.doi.org/10.1021/jacs.5b13529
http://dx.doi.org/10.1002/prot.22461
http://dx.doi.org/10.1021/acs.biochem.7b00247
http://dx.doi.org/10.1021/jacs.7b01283
file://///VUW/Users/K_Smooth%201/Documents/RREFam%20Precision%20Models/10.1074/jbc.RA118.005369
http://dx.doi.org/10.1073/pnas.1703663114
http://dx.doi.org/10.1073/pnas.1905240116
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Table S3. Description of RRE-containing proteins targeted by precision mode. BGCs are 

illustrated in Figure S3. In cases where one BGC contains more than one protein with an RRE, 

separate NCBI protein accession identifiers are given for each. 

Natural Product Protein RRE Type NCBI Accession 

Nisin A NisB Fused to lanthipeptide dehydratase ADJ56353.1 

Lariatin LarC Discrete  BAL72548.1 

Burhizin BurB Fused to lasso peptidase CBW74825.1 

Thiomuracin TbtB Fused to lanthipeptide dehydratase ADG87277.1 

Thiomuracin TbtF Fused to ocin-ThiF protein ADG87281.1 

PQQ PqqD Discrete  WP_034930240.1 

Patellamide PatD Fused to cyclodehydratase AAY21153.1 

Bottromycin BmbB Fused to methyltransferase CCM09442.1 

Bottromycin BmbF Fused to methyltransferase CCM09446.1 

Bottromycin BmbJ Fused to methyltransferase CCM09450.1 

Polytheonamide PoyB Fused to methyltransferase AFS60637.1 

Polytheonamide PoyD Fused to epimerase AFS60640.1 

Plantazolicin PznC Fused to cyclodehydratase CBJ61638.1 

Thuricin CD TrnC Fused to rSAM enzyme AED99784.1 

Thuricin CD TrnD Fused to rSAM enzyme AED99785.1 

Streptide SuiB Fused to rSAM enzyme ABJ66529.1 

Spliceotide PlpY Discrete  WP_019503879.1 

Pantocin PaaA Fused to ThiF protein WP_043190265.1 

Thermocellin CteB Fused to rSAM enzyme WP_003517268.1 

Mycofactocin MftB Discrete  WP_019735253.1 

QHNDH QhpD Fused to rSAM enzyme SDJ52620.1 

3-Thiaglutamate PmaB Fused to short LanB enzyme KPW26932.1 

3-Thiaglutamate PmaG Fused to protease KPW26903.1 

3-Thiaglutamate PmaI Fused to DUF KPW26921.1 
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Table S4. RRE-Finder computing times. RRE-Finder analysis times compared to HHpred. Both 

precision and exploratory modes of RRE-Finder significantly decrease analysis times compared to 

HHpred, the gold standard for detecting RREs. Exploratory mode has longer analysis times than 

precision mode, due to the detection of distant protein homology. However, exploratory mode is 

still roughly 3,000 times faster than HHpred analysis. Analysis was carried out on an Intel Xeon E5-

4640 at 2.4 GHz, using 4 threads. 

Method Dataset Entries Time Required (h) 

RRE-Finder (precision) MIBiG (all) 31,025 0.002  

RRE-Finder (exploratory) MIBiG (all) 31,025 0.2  

HHPred  MIBiG (RiPP only) 2,513 54  

 

 

 

Table S5. Model validation of precision mode for select RiPP classes. Four populous classes of 

RiPPs were selected for thorough model validation, using the most recent published data sets of 

predicted BGCs for sactipeptides, ranthipeptides, lanthipeptides, and thiopeptides [55, 72, 73]. In 

all cases, the proteins from each data set known to contain RRE domains were queried against the 

relevant precision model using hmmscan at tolerant (15), moderate (25), and stringent (35) bit 

score cutoffs. To determine the false-positive rate of the lanthipeptide model, all LanB-type 

enzymes in the data set belonging to type II to IV lanthipeptide biosynthetic pathways were 

queried. To determine the false-positive rates of the sactipeptide, thiopeptide, and ranthipeptide 

models, a neighboring protein to each RRE domain was queried. The neighboring proteins queried 

were ABC transporters (for sactipeptides/ranthipeptides) and cyclodehydratase enzymes (for 

thiopeptides). 

Dataset 
     Bit Score  

15 25 35 Total in Dataset 

Lanthipeptide, I (True Positive) 1950 1910 1640 2020 

Lanthipeptides, II-IV (False Positive) 90 20 3 4453 

Sactipeptide (True Positive) 799 769 690 865 

Sactipeptide (False Positive) 1 1 0 865 

Ranthipeptide (True Positive) 2241 2150 1960 2301 

Ranthipeptide (False Positive) 10 7 4 2301 

Thiopeptide F Protein (True Positive) 495 492 440 515 

Thiopeptide F Protein (False Positive) 5 3 2 515 
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Table S6. Validation of RRE-Finder modes against the MIBiG database. RRE domains predicted 

by RRE-Finder and HHpred are grouped based on RiPP class. Precision and exploratory mode 

combined detect almost all of the RRE-containing proteins detected by HHpred (rightmost 

column). Precision mode readily detects RRE domains in known RiPP classes. Exploratory mode 

also detects these RREs but additionally retrieves putative RRE domains in thioviridamide-like and 

pheganomycin BGCs. Some of these RREs were also predicted by HHpred; thus, exploratory mode 

gives results in these cases similar to those obtained with HHpred. However, exploratory mode 

only sparingly detects RREs in the LAP and streptide RiPP classes.  
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Lasso peptide 
35 Leader peptidase BGC0000581 McjB 12 8 10 7 

35 PqqD-like BGC0000575 LarC 23 23 23 23 

Lanthipeptide 
31 LanC-like BGC001392 NisC 1 0 1 1 

31 LanB dehydratase BGC0000535 NisB 30 29 30 27 

Thiopeptide 

 

24 Dehydratase BGC0000613 TpdB 17 0 16 6 

24 Cyclodehydratase BGC0000613 TpdF 2 2 2 2 

24 Radical SAM BGC0001753 TbtI 1 0 1 1 

24 ocin_ThiF-like* BGC0000603 CltD 23 18 17 17 

24 Dehydrogenase BGC0000613 TpdE 5 0 4 3 

Cyanobactin 
13 Cyclodehydratase BGC0000475 PatD 8 8 8 8 

13 Dehydrogenase BGC0000475 PatG 8 0 8 8 

LAP 

10 Cyclodehydratase BGC0000569 PtnD 7 7 1 3 

10 Dehydrogenase BGC0000565 GodE 2 1 2 2 

10 Hypothetical protein BGC0000567 TfxC 1 1 1 1 

Thioamitide 4 Methyltransferase BGC0000625 TvaG 4 0 4 1 

Sactipeptide 4 Radical SAM BGC0000600 ThnB 5 4 3 4 

Bottromycin 4 Radical SAM BGC0000468 BmbB 12 12 12 0** 

Pheganomycin 1 Radical SAM BGC0001148 Pgm3 1 0 1 1 

Proteusin 

1 Radical SAM BGC0000598 PoyB 1 0 1 1 

1 Radical SAM BGC0000598 PoyC 1 1 1 1 

1 Radical SAM BGC0000598 PoyD 1 1 1 1 

Plp 1 Radical SAM BGC0001745 PlpY 1 1 0 1 

Streptide 1 Radical SAM BGC0001209 SuiB 1 1 0 0 

Microcin 1 ThiF-like BGC0000585 MccB 1 1 1 1 

3-

thiaglutamate 

1 LanB dehydratase BGC0001486 PmaJ 1 1 1 0 

1 DUF BGC0001486 PmaI 1 1 1 1 

1 Peptidase BGC0001486 PmaG 1 1 1 1 

* 15 of these proteins show weak similarity to the ocin_ThiF_like domain (TIGR03693). 

 ** RREs in radical SAMs encoded by bottromycin BGCs are typically detected by HHpred at a 

slightly lower probability than was used as the cutoff (∼70 to 90%). 
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Table S7. Exploratory mode false-positives in non-RiPP BGCs. Exploratory mode retrieved a total 

of 36 proteins in non-RiPP BGCs at a bit score cutoff of 25. Many retrieved proteins were 

transcriptional regulators or proteins with a helix-turn-helix (HTH) motif. Other false positives 

included several proteins with sequence homology to RRE-containing proteins in RiPP BGCs. Some 

BGCs in MIBiG have poorly defined boundaries and thus may contain genes from nearby BGCs. 

Thus, some false positives shown may be true RRE domains in adjacent RiPP clusters (e.g., MIBiG 

BGC0000696, contains a neighboring LanB dehydratase and a LanC cyclase). 

False-Positive Type Number of Proteins Retrieved 

Transcription Regulators/HTH Domains 8 

Associated with Known RiPPs 17 

Other 11 
 

Table S8. Conservation of α3 and β3 regions of the RRE. Residue-level conservation was assessed 

using three metrics on eight precision mode models. The secondary structures principally 

responsible for binding the leader peptide (the α3 and β3 regions) were assessed separately from 

the remainder of the RRE domain. The region of the RRE with the greatest conservation per metric 

is indicated by red text. Individual RiPP classes were scored by selecting 10 divergent RREs from 

that class and excising the relevant substructure sequence. In some cases, pairs of RiPP classes 

that have significant mutual evolutionary relatedness were evaluated jointly; in these instances, 

a total of 20 sequences were used for the calculations (10 from each class). These data reveal a 

trend of higher conservation in the α3 and β3 regions of the RRE compared to other regions. 

Perhaps unsurprisingly, α3 displays the greatest conservation across RiPP classes, given that the 

contact with the leader peptide is primarily through side chain interactions as opposed to the β3 

strand (primarily backbone interactions). HCA, heterocycloanthracin. 

 Shannon Information Entropy ConSurf (0-9) AACon (0-9) 
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Goadsporin 0.81 0.65 0.45 7 6 4 7 6 4 

Cyanobactin 0.75 0.59 0.39 7 6 3 7 6 4 

Goadsporin/Cyanobactin 0.62 0.54 0.21 6 6 2 6 5 2 

Discrete Lasso peptide 0.43 0.33 0.23 4 3 2 4 3 2 

Fused Lasso peptide 0.51 0.32 0.31 5 3 3 4 3 2 

Discrete/Fused Lasso peptide 0.27 0.22 0.13 3 3 1 3 2 1 

Thiopeptide 0.76 0.72 0.56 7 7 6 7 7 5 

HCA 0.82 0.74 0.58 8 7 6 8 7 5 

Thiopeptide/HCA 0.71 0.64 0.49 7 6 5 7 6 5 

Ranthipeptide 0.68 0.57 0.42 7 6 4 7 5 4 

QhpD 0.71 0.59 0.47 7 6 5 7 6 5 

Ranthipeptide/QhpD 0.54 0.43 0.36 5 4 4 5 4 3 
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Table S9. RRE-containing proteins in UniProtKB found by exploratory mode. Proteins retrieved 

by RRE-Finder were grouped based on Pfam/TIGRFAM domain identification. The overlap with 

precision mode’s core models at a bit score threshold of 25 confirms that many known RRE fusions 

are detected by both modes, such as those containing YcaO and LanB dehydratase domains. 

Numbers of proteins retrieved by exploratory mode are inclusive of those retrieved by precision 

mode. Other novel RRE fusions are identified, such as fusions to metallo-β-lactamases, 

oxidoreductases, and glutathione S-transferases. RRE domains are also found in a number of 

unannotated small proteins, many of which are likely discrete RREs. Among the filtered proteins 

containing HTH domains (right column), the vast majority were annotated only as regulatory 

proteins. Notably, 1,869 short proteins (<120 residues) were filtered out during this step. Whether 

these proteins represent discrete RREs or simply small regulators could not be determined with 

the available data. Nevertheless, in most cases, no additional domain fusions were annotated 

among the filtered. 

Protein domain categories 
Number of hits exploratory 

(precision - core) 

Enzymes overlapping 

with regulator domain  

DNA-binding proteins and/or 

regulators (filtered) 

22,357 (0) NA 

Other (length >= 120 aa) 16,595 (1,094) 20,267 

Short proteins (length < 120 aa) 3,341 (952) 1,869 

Metallo-β-lactamase 11,320 (1) 7 

PqqD 10,994 (9,128) 18 

rSAMs / Fe-S-binding domains 3,919 (2,491) 0 

LanB dehydratase 3,313 (1,888) 2 

Nitroreductase 1,039 (10) 4 

YcaO cyclodehydratase 919 (837) 0 

Methyltransferases 813 (11) 65 

Translglutaminase 644 (552) 0 

Ocin-thiF-like 589 (566) 0 

Memo proteins 463 (5) 0 

Oxidoreductase 104 (0) 0 

Tryptophan halogenase 75 (0) 0 

Cyclic nucleotide binding 

domain 

67 (4) 19 

Tetratricopeptide repeat 66 (4) 18 

Peptidase 64 (2) 81 

Glycosyltransferase 56 (20) 1 

Asparagine synthase 19 (2) 0 

Cupin domain 18 (0) 0 

LanC cyclase 13 (0) 0 

Glutathione-S-transferase 10 (0) 0 

Carbamoyltransferase 8 (0) 0 
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Table S10. Description of RRE-containing proteins found by RRE-Finder. The letters used to 

identify a gene correspond to those used in the BGCs in Figure S10. 
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Acidobacterium 

bacterium 

F Fused to tetratricopeptide 

domain 

OFW29522.1 x 

Lysinibacillus sphaericus B Fused to glutathione S-

transferase 

WP_069508305.1 x 

Nitrospiraceae bacterium A Discrete  RPI38387.1 x 

Hassallia byssoidea A Discrete  KIF30015.1 x 

Hassallia byssoidea F Fused to 

glycosyltransferase 

KIF29242.1 - 

Hassallia byssoidea H Fused to phosphoribosyl 

transferase 

KIF29244.1 x 

Theioarchaea archaeon C Discrete  KYK35486.1 x 

Bathyarchaeota archaeon A Discrete  OGD46518.1 x 

Micromonospora 

rifamycinica 

D Fused to 

carbamoyltransferase 

WP_067301990.1 x 

Bulkholderia sp. AU15512 A Fused to iron redox enzyme OXI24931.1 x 

Nocardia sp. CS682 C Fused to heme-oxygenase 

enzyme 

QBS40287.1 x 

Nocardia sp. CS682 D Fused to iron redox enzyme QBS40286.1 x 
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