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The discovery of antibiotics and the rise of resistance 

Every living organism has metabolic pathways to catabolize and produce organic 

molecules, collectively called natural products. A crude distinction made in 1891 

by A. Kossel separates these molecules into two classes: those that are directly 

essential for growth, development and reproduction of the organism belong to 

primary metabolism, while the remainder belong to secondary metabolism [1]. 

Secondary metabolites are highly versatile and cover a large chemical space. 

Even closely related strains may produce a different repertoire of secondary 

metabolites [2-5]. While mostly not required for the growth of an organism in a 

pure culture, secondary metabolites are thought to confer advantages in the 

natural environment of the producing strains. They have been found to act as 

means of communication with other species, signal cellular differentiation and 

scavenge metal ions. Most importantly, many secondary metabolites act as 

competitive weapons against other species and can be used as anti-bacterial 

agents in the clinic [2]. 

Interest in secondary metabolites for medical applications arguably 

started in 1928, with the discovery of penicillin by Alexander Flemming [6]. 

Penicillin, first isolated from the fungus Penicillium notatum, has strong 

antimicrobial properties, making it a highly promising candidate for use as a 

medicine against bacterial infections.  It would take another ten years before 

penicillin was isolated in a pure form and further investigated as a potential 

drug. When it appeared that the drug had low toxicity and proved suitable for 

human consumption, its use would become standard practice in the clinic [7]. 

The potential of secondary metabolites to be of practical use led to a 

surge of investigations towards the discovery of more of these molecules. 

Selman A. Waksman would follow up on the discovery of penicillin by screening 

soil samples for strains harboring biological activities. From these efforts, several 

more antibiotics were isolated, including actinomycin D, neomycin and 

streptomycin, all produced by filamentous bacteria belonging to the genus of 

Actinobacteria [8-10]. Similar screening methods were later executed on a much 

larger scale by the pharmaceutical industry. Between the 1940’s and the 1970’s, 

more than 20 different classes of antibiotics were discovered by high-
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throughput screening (HTS) efforts, many of which are still being used in the 

clinic today [11]. Thousands of compounds with antibiotic activity are currently 

known, the majority of which were isolated from Actinobacteria [12]. By 

changing the parameters of the screening, additional secondary metabolites 

with different useful functions were identified, which could be used as 

insecticides, hypertension relievers or immunosuppressants [13]. Overall, this 

period is often considered a golden age of antibiotic discovery and 

biotechnology.  

However, that golden age has since then been declining. A major 

problem is the rise of resistance against our current repertoire of antibiotics 

[14]. Although antibiotic resistance is not an unnatural phenomenon [14-16], it 

is generally accepted that the human over-, under- and misuse of antibiotics is 

the main cause for the spread of resistance. Genes conferring resistance, e.g. by 

encoding a copy of a household gene that is insensitive to the antibiotics, are 

thought to quickly swap between bacteria by horizontal gene transfer (HGT) 

events. As a result, infectious diseases involving multidrug-resistant (MDR) 

pathogenic strains, are one the rise, most notably those involving the six ESKAPE 

pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas 

aeruginosa and Enterobacter species), and MDR Mycobacterium tuberculosis 

(TB) [17]. Several variants of TB have been identified which are extensively-drug-

resistant (XDR) and even total-drug-resistant (TDR), setting us back to the time 

before antibiotics were discovered [18-20]. Resistance to antibiotics is 

considered a major threat to our health by the WHO, with casualty projections 

in 2050 exceeding those of any other disease [21]. 

At the same time, traditional methods for drug discovery have been on 

the decline. HTS approaches toward drug discovery suffer greatly from high 

rediscovery rates of known compounds, with massive screening efforts only 

finding a handful of potential leads [22-24]. These approaches have become 

unreliable investments for the pharmaceutical industry, further decreasing the 

overall output [25]. It appears that much of the low-hanging fruit that could be 

discovered by HTS has been found, and now, new methods are necessary to 

keep discovering novel antimicrobials.  
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Genome mining for antibiotics  

The advent of next generation sequencing (NGS) in the past two decades has 

made sequencing of entire genomes feasible and this has given the discovery of 

natural products new momentum. Due to newly developed techniques like 

Illumina, Nanopore and PacBio sequencing, it is now cheaper than ever to 

analyze the genomes of the bacteria and fungi that produce natural products. 

Conveniently, the genes encoding the enzymes capable of synthesizing natural 

products are clustered together into biosynthetic gene clusters (BGCs). By using 

biosynthesis genes characterized from known BGCs as queries, new, 

homologous BGCs can quickly be identified [26]. The first study investigating 

genome sequences of Streptomyces coelicolor, a model organism of the prolific 

antibiotic producers, the streptomycetes, discovered more than 20 BGCs, while 

the strain was known to only produce three compounds [27]. It quickly became 

clear that only a fraction of identified BGCs could be linked to a natural product. 

At time of writing, more than a million BGCs can be detected in publicly available 

genomic and metagenomic sequences [28], while only about 2,000 compounds 

have been directly linked to a BGC [29]. The BGCs without a known product, 

called cryptic BGCs, represent a vast reservoir of novel natural products that 

could be clinically relevant. 

The existence of large amounts of uncharacterized BGCs raises the 

question about why their products have not been previously detected. A 

reasonable explanation is that secondary metabolite production is a costly 

process for a microorganism. Production levels must therefore be finely tuned 

in order to gain a competitive edge while not wasting resources, likely as a 

response to chemical signals in the environment [30, 31]. In Actinobacteria, this 

finetuning is accomplished by extensive regulatory networks that govern natural 

product production [30, 32]. A large number of two-component regulators and 

as many as 60 different sigma factors per strain make an organism capable of 

responding to many signals and scenario’s.  

In an attempt to exploit this, strategies have been developed to activate 

silent BGCs work by giving cultures specific signals they might encounter in their 

natural environment. These strategies include the use of molecular elicitors in 
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high-throughput elicitor screening (HiTES), screening with various carbon 

sources, applying stress conditions like starvation, and co-culturing strains 

together [33, 34]. Besides the novel natural products that are isolated in these 

studies, they also provide insight into what role the secondary metabolite might 

fulfill, knowing under what conditions it is activated. Alternatively, silent BGCs 

can be activated by genetically refactoring the BGC. Genes and operons can be 

rearranged and promoters can be replaced with strong, constitutive promoters 

to find optimal production conditions [35]. These efforts are generally more 

labor-intensive than using general chemical signals, requiring a large amount of 

genetic engineering to isolate the product or products of a single BGC. However, 

they do allow one to target a single BGC at a time, rather than evoke a more 

general response from an organism with potentially unwanted side effects. 

Combination of both approaches are required at different stages of 

investigation to completely understand the roles and products of novel BGCs.   

The tradeoff between confidence and novelty in genome mining 

Natural products are divided into classes or families based on their chemical 

makeup and biochemical origins. These products are built up from primary 

metabolites, such as amino acids and acetyl- or malonyl moieties. Natural 

products belonging to the same class share a common biosynthetic logic and 

homologous enzymes carrying out the reactions. For example, two major 

classes, called the non-ribosomal peptides (NRPs) and the type I polyketides 

(PKs), are synthesized by assembly-line machineries [36]. These are large 

enzyme complexes, that can be divided into modular units, each of which 

attaches one precursor molecule to a growing chain. The diversity of the 

resulting secondary metabolites is achieved either by using a large variety of 

precursors, or by applying additional tailoring to the products, such as 

glycosylation or cyclization. Other classes, like terpenes and type II PKs, rely on 

other enzymes to convert precursors into the final product, but these enzymes 

are still encoded by conserved genes [37, 38].  

The classification of natural products provides a suitable framework for 

the purpose of identifying BGCs from genomic information. For each class of 

natural products, a set of enzymes can usually be identified that determines a 

family of natural products, and which can be used as “bait” to identify more 
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BGCs of that family. Tools like antiSMASH [39] and PRISM [40] use rule-based 

identification of these BGCs by targeting specific genes conserved among 

specific natural product classes. The surrounding region of hits found is the 

scanned for genes encoding additional tailoring enzymes, transporters, 

regulators, and immunity proteins, thereby identifying the BGC.  

While these methods for genome mining have identified large amounts 

of BGCs, only BGCs with some relation to previously characterized ones will be 

detected. Methods extrapolating from known BGCs may give high-confidence 

output, but depending on the exact ruleset used, the BGCs detected will lack 

novelty [26]. Given the large diversity of natural product classes, it is tempting 

to speculate about the existence of completely novel classes and chemical 

scaffolds. To identify BGCs of these classes using only bioinformatics is a difficult 

challenge, as there should be at least some criteria to identify them. One tool 

has been described primarily for this purpose, called ClusterFinder [41]. 

ClusterFinder uses two collections of protein domains: one with those that are 

frequently associated with BGCs, and one with those that are present in other 

parts of the genome. It then uses a Hidden Markov Model (HMM) to identify 

regions of the genome that are enriched in domains indicating BGCs. Combined 

with large comparative genomics, a novel class of BGCs was identified and 

characterized. In general, using less restricted search criteria will increase the 

amount of candidate BGCs found, such as was the case with ClusterFinder. 

Among these may be more novel BGCs, but at the same time the amount of false 

positives will increase. This tradeoff between confidence and novelty is one that 

everyone undertaking of genome mining must consider carefully [26].  

RiPPs form a diverse group of peptidic natural products 

The ribosomally synthesized and post-translationally modified peptides (RiPPs) 

are an important and diverse group of natural products, produced by all three 

branches of life. The unifying theme among all RiPPs is their biosynthetic logic: 

a precursor gene is translated into a precursor peptide, usually no longer than 

100 amino acids. The precursor peptide is then extensively modified by a set of 

RiPP Tailoring Enzymes (RTE). RTEs usually recognize the peptide by binding a 

recognition sequence located outside the region that is modified.  
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Figure 1. The conserved features of RiPP BGCs provides a framework for genome mining tools. 

A) A RiPP BGC typically has a gene for a precursor peptide (red) in an operon-like arrangement 

with genes for RTEs. These genes are used as targets for genome mining tools (see also Table 2). 

A red line indicates that the detection method is the primary detection method, while black lines 

indicate additional annotation. B) After translation, a precursor peptide is modified by RTEs, which 

use the leader peptide as a handle for peptide recognition. After modifications are applied, the 

leader peptide is cleaved off, resulting in the final product, the RiPP. 

 

This recognition sequence is called the leader peptide if N-terminal, or follower 

peptide if C-terminal. Afterwards, leader and follower peptides are cleaved off, 

resulting in the mature RiPP [42-44] (Figure 1). 

RiPPs are classified into subclasses or families, all of which share the 

biosynthetic logic with wildly different results depending on the precursor 

sequence and the enzymes involved. Every subclass of RiPPs typically has one 

characteristic modification. For example, all lasso peptides have at least a single 

crosslink, forming a small loop through which the amino acid chain is threaded 

[45]. Thiopeptides are all macrocyclized as the result of a 4+2 cycloaddition 
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between two dehydrated serine residues [46]. Lanthipeptides contain a 

thioether bridge between a non-C-terminal cysteine and a dehydrated serine or 

threonine residue [47]. Asides from core modifications, RiPPs may be tailored 

with several accessory modifications like disulfide bridges, acetylation, 

methylation and glycosylation. The combination of different precursor 

sequences and different possible combinations of modifications applied to them 

creates a wide diversity of different natural product (Figure 2). 

As a rapidly expanding class of natural products, RiPPs represent an 

excellent candidate for further exploration to discover novel chemical scaffolds 

and antimicrobial leads. The last comprehensive review from 2013 [42] lists 

more than 20 different RiPP classes. Since then, several dozen RiPPs have been 

identified with modifications and genetic markers that set them apart from 

known RiPPs and thus form new RiPP families. An updated review published in 

2020 expands this list to more than 40 different candidates [48] (Table 1). Given 

the number of novel RiPP classes discovered in the past decade, it is likely that 

many more exist. After all, it takes only a few evolutionary steps for a RiPP BGC 

to take shape. While the BGCs encoding the assembly lines of NRPS and PKS can 

be more than 100 kbp long, a RiPP BGC only needs to encode a small precursor 

and a single modifying enzyme for it to be a RiPP, and some are no larger than 

that [49]. RTEs could arise out of primary metabolism enzymes and protein 

modification enzymes with relatively few mutations and genetic arrangements. 

These BGCs would not need to be directly homologous to known RiPP classes, 

and would therefore be missed by the current methods of RiPP genome mining.  

The diversity of RiPP BGCs reflects the diversity on the chemical level, 

and as such, there is no single method that effectively identifies all RiPP BGCs. 

Rather, new genome mining tools are still being developed and new approaches 

are still being experimented with. Uniquely, the small precursor genes provide 

a handhold suitable for all RiPP families.  In the following section, we review the 

available tools and the way they differ in their approaches (Figure 1, Table 2), 

and highlight a few concentrated genome mining efforts has dramatically 

expanded the number of members of known RiPP families. 
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Figure 2. Examples of the rich chemical diversity of RiPPs. RiPP precursors are highly diverse in 

sequence and can be modified in many ways. Several old and new examples are shown here: nisin 

A (lanthipeptide) [50], lyciumin A (lyciumin) [51], thiovarsolin B (thioamitide) [52], gymnopeptide 

B (borosin) [51], microcin J25 (lasso peptide) [53], plesiocin segment R1 (omega-ester containing 

peptide/graspetide) [54] and freyrasin (ranthipeptide) [55]. 

 

Bioinformatic tools for homology-based genome mining of 
known RiPP families 

A widely used approach for RiPP genome mining is to target the modifying 

enzymes encoded by the RiPP BGC. Most RiPP families contain conserved genes 

that encode the enzymes responsible the post-translational modification (PTM) 

characteristic of that RiPP family. The earliest methods of RiPP genome mining 

used simple BLAST or PSI-BLAST [56, 57] searches to identify homologs of genes 

encoding RTEs as a starting point for novel RiPP BGCs. These searches lead to 

the discovery of novel RiPPs with similar modifications as known RiPPs, like 

haloduracin, trichamide and capistruin [58-61]. BAGEL [62, 63] developed in 

2006, was the first tool for automated genome mining of RiPPs. Since then, the 

more general algorithms antiSMASH [39] and PRISM [40, 64] have been 

developed, which allow genome mining for BGCs of any class of natural 

products, including RiPPs. All of these tools use profile Hidden Markov Models 

(pHMMs [65]) rather than BLAST queries, which are built from protein 

alignments of many members of a protein domain family. RiPP BGCs are 

identified based on manually set rules determining which pHMMs detected in 
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Table 1. All currently classified RiPP families. Adapted from [48]. 

Class  Example Class-defining PTM(s) 

Amatoxins/phallotoxins Phalloidin N-to-C cyclization, Cys-Trp crosslink 

Amidinotides  Pheganomycin  Amidino amino acid containing peptides 
(ATP-grasp) 

Atropitides Tryptorubin Aromatic amino acids crosslinked to give a 
noncanonical atropisomer 

Autoinducing peptides AIP-I Cyclic ester or thioester 

Bacterial head-to-tail 
cyclized peptides 

Enterocin AS-48  N-to-C cyclization (DUF95 & ATP-grasp) 

Borosins Omphalotin Amide backbone N-methylation (N-MT), N-
to-C cyclization (POP) 

Bottromycins Bottromycin A1 Macrolactamidine (YcaO) 

ComX ComX168 Indole cyclization and prenylation 

Conopeptides Conantokin G Peptides produced by cone snails 

Crocagins Crocagin A Indole-backbone cyclization 

Cyanobactins Patellamides N-terminal proteolysis (PatA protease) 

Cyclotides Kalata B1 N-to-C cyclization, disulfide(s) (AEP) 

Dikaritins Ustiloxin  Tyr-Xxx ether crosslink (UstY) 

Epipeptides  YydF  D-amino acids (rSAM) 

Glycocins Sublancin 168 S, O, or N-glycosylation of Ser/Cys 

Graspetides Microviridin J Macrolactones/lactams (ATP-grasp) 

Lanthipeptides Nisin (Methyl)lanthionine, labionin 

Lasso peptides  Microcin J25 Macrolactam with threaded C-terminal tail 
(Asn synthetase homolog) 

Linaridins Cypemycin Dhb, no lanthionines 

Linear azol(in)e containing 
peptides (LAPs) 

Microcin B17 Cys, Ser, or Thr derived azol(in)es (YcaO) 

Lipolanthines Microvionin C-terminal labionin/avionin containing 
peptide and N-terminal FAS/PKS segment 

Lyciumins Lyciuman A Pyroglutamate, Trp-Gly crosslink 

Methanobactins Methanobactin Oxazolones (DUF692) 

Microcin C   Microcin C Aminoacyl adenylate or cytidylate with a 
phosphoramidate linkage (ubiquitin E1 
homolog) 

Mycofactocin   Mycofactocin Val-Tyr crosslink (rSAM) 

Orbitides   Cyclolinopeptide A N-to-C cyclization; no disulfides 

Pantocins   Pantocin A Glu-Glu crosslink (PaaA) 

Pearlins   Thiaglutamate aa-tRNA derived (PEARL) 

Proteusins   Polytheonamide Nitrile hydratase LP 

Pyrroloquinoline quinones PQQ  Glu-Tyr crosslink (rSAM) 

Ranthipeptides   Freyrasin Sulfur-to-non-Cα thioether crosslink (rSAM) 

Rotapeptides   TQQ Oxygen-to-α-carbon crosslink 

Ryptides   RRR Arg-Tyr crosslink (rSAM) 

Sactipeptides   Subtilosin Thioether crosslink  to alpha-carbon (rSAM) 

Spliceotides   PlpA β-amino acids (rSAM) 

Streptides Streptide Trp-Lys crosslink 

Sulfatyrotides RaxX  Tyrosine sulfation 

Thioamitides   Thioviridamide Backbone thioamide (YcaO) 

Thiopeptides  Thiostrepton [4+2] Cycloaddition of two Dha 

Thyroid hormones  Triiodothyronin Triiodothyronin 
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close proximity of one another form a RiPP BGC. For example, type I 

lanthipeptide BGCs can be identified by targeting the protein domains present 

in the modifying enzymes LanB (PF04738/PF14028) and LanC (PF05147), both of 

which should be be found encoded by genes located near one another on the 

genome. 

These methods excel at the detection of known RiPP families, for which 

the RTEs responsible for the hallmark modifications have been identified. 

Completely novel RiPP families which lack these modifications cannot be 

detected, however. Nevertheless, these BGCs may still specify RiPPs that are 

novel because they encode different precursor. Examples of studies 

investigating these are numerous, and only a handful are mentioned here. For 

example, antiSMASH-based genome mining led to the discovery of streptocollin, 

a type IV lanthipeptide [66]. A study investigating the RiPP BGCs of 629 

actinobacterial genomes using BAGEL3 detected 477 different RiPP BGCs[67]. 

Most of these contained unique precursor peptides (e.g. lanthipeptides: 276 out 

of 301 unique, lasso peptides: 62 out of 67 unique, LAPs: 43 out of 48 unique). 

A more thorough investigation into only lanthipeptide-like BGCs in 

Actinobacteria detected 1,163 in 830 genomes. These were further grouped into 

100 gene cluster families (GCFs) based on sequence and RTEs encoded. 

Interestingly, several GCFs encoded RTEs not previously associated with 

lanthipeptide BGCs, like O-methyltransferases, NRPSs and PKSs [68].  

Although detection of RTEs is relatively straightforward, the challenge 

in the automated detection of RiPP BGCs lies in the correct annotation of the 

genes encoding precursor peptides. Gene finding algorithms such as Glimmer 

[69, 70] and Prodigal [71] frequently miss the open reading frames (ORFs) that 

encode precursor peptides, as they can be as small as 15 nucleotides [49]. 

BAGEL4, the latest of version of BAGEL, takes additional steps to increase the 

number of precursor genes detected [62]. In a genomic area that contains genes 

encoding RTEs, all intergenic small ORFS (<= 72 nt) are extracted, translated and 

BLASTed against a database of the core sections of known RiPP precursor 

peptides. This method provides a more detailed annotation of precursor genes. 

However, since detection is based on known core peptides, completely novel 

precursor peptides will not be detected by this method. 
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A more sophisticated approach for precursor detection is taken by 

RODEO [45, 55, 72-74]. RODEO allows a user to analyze the genomic context of 

any gene matching a query domain on NCBI. Given its accession number, genes 

in the context of a query gene are annotated with Pfam and TIGRFAM [75, 76]. 

The tool was first used to mine genomes for lasso peptide BGCs, using a rule-

based system based on detected protein domains. To better detect precursor 

genes, a machine learning classifier called a Support Vector Machine (SVM) was 

trained to distinguish between lasso precursor peptides and other peptides. This 

SVM was trained on several hundreds of features, such as frequency of specific 

amino acids or amino acid pairs, charge and hydrophobicity. The prediction of 

this SVM was combined with heuristic scoring of a given small ORF to effectively 

detect precursor genes. The same model for precursor detection was integrated 

into antiSMASH, as of version 4.0 [77].  

The prerequisite of both a precursor peptide and a specific protein 

domain has been used to mine for thiopeptides [72], sactipeptides and 

ranthipeptides [55], lasso peptides [45], lanthipeptides[73] and linaridins [74]. 

These genome mining efforts have expanded the list of candidate BGCs 

belonging to each family, and led to the discovery of novel RiPPs, such as 

citrulassin. In theory, the same process could be applied to any RiPP family, as 

long as sufficient precursor sequences are available to train an SVM. This 

method therefore lends itself mostly to well-characterized classes. Interestingly, 

like in the study described above, the BGCs detected contain a wide assortment 

of different putative modifying enzymes, which occasionally co-occur within the 

core RTEs (1-25%). These are predicted to encode for e.g. acetyltransferases, 

glycosyltransferases, FAD oxidoreductases or methyltransferases. The existence 

of RiPPs with additional tailoring is not without precedence, exemplified by 

reports of acetylated lasso peptides [78], glycosylated lanthipeptides [79] and 

lipidated lanthipeptides [80]. Characterization of these secondary tailoring 

enzymes provides interesting opportunities to further chart the chemical 

landscape covered by RiPPs. In addition, given that many RTEs recognize via the 

leader peptide, these enzymes may be capable of modifying other RiPPs as well, 

allowing one to further tweak their properties with synthetic biology [81]. 
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Explorative domain-based genome mining expands and 
defines novel RiPP families 

The rule-based genome mining used by high-confidence RiPP genome mining 

tools described above is an effective way to expand known RiPP families, for 

which a conserved set of genes has been identified. However, for many newly 

discovered RiPP families, sometimes only a single example BGC is known. Highly 

homologous BGCs can easily be identified, but more interesting is perhaps the 

identification of a minimal set of genes that is required for a specific 

modification unique to the RiPP. Identification of these in novel contexts could 

lead to the discovery of novel RiPPs that belong to the same or related families. 

In the following section, we will describe several studies aimed at genome 

mining of novel RiPP families as well as the discovery of related RiPP families by 

shared modifications. 

Discovery and expansion of omega-ester peptides 

The first member of the omega-ester peptides of RiPPs was microviridin, a 

cytotoxic RiPP with three intramolecular omega-ester or omega-amide 

crosslinks, which was isolated in 2008 [82]. While initial studies focused on 

identifying microviridins from the cyanobacterial genus Mycrocystis [83], the 

characterization of two homologous BGCs from Plesiocystis pacifica and Bacillus 

thuringiensis serovar huazhongensis led to the identification of plesiocin and the 

thuringinin group, respectively [54, 84]. Like microviridin, these RiPPs also 

contained omega-ester and omega-amide crosslinks, although the number of 

crosslinks and the overall topology of the products were different. As all BGCs 

encoded a homologous ATP-grasp ligase, these proteins could be used as a 

query for genome mining of novel BGCs of the same type [85]. This search 

resulted in 5,276 homologous proteins. Inspection of context of the encoding 

genes for possible precursor peptides resulted in the identification of 12 groups 

of new omega-ester containing peptides. This is a sizable increase in the number 

of candidate BGCs of this family, especially considering that only four ATP-grasp 

ligases were used as a query. However, the authors note that ~3,200 protein hits 

could not be assigned a specific precursor, which could be false positives.  
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Table 2. Tools available for RiPP genome mining. 

Name 
BGC 

identification 
target 

Method description Reference 

antiSMASH Core enzymes Identifies RiPP BGCs with 

core enzymes per class. 

Identifies precursor peptides 

with RODEO’s SVMs. 

Blin et al. [39] 

BAGEL Core enzymes Identifies RiPP BGCs with 

core enzymes per class. 

Identifies precursor peptides 

with BLAST and a known 

precursor database. 

Van Heel et al. [62] 

RiPP-PRISM Core enzymes Identifies RiPP BGCs with 

core enzymes per class. 

Identifies precursor peptides 

with HMMer and a motif 

search. 

Sknnider et al. [40, 

64] 

RODEO Core enzymes Identifies RiPP BGCs with 

core enzymes per class. 

Identification of precursor 

peptides with SVMs. 

Tietz et al [45], 

Schwalen et al [72], 

Hudson et al [55], 

DiCaprio et al [86], 

Walker et al [73], 

Georgiou et al [74].  

RiPPer Any enzyme Identifies RiPP BGCs with any 

query enzyme. Prioritizes 

candidate precursor peptides 

with prodigal-short and 

BLAST-based clustering. 

Santos-Aberturas et 

al. [52] 

RiPPMiner Precursor 

peptides 

Identifies and classifies 

precursors with a single SVM. 

Agrawal et al. [87] 

NeuRiPP Precursor 

peptides 

Identifies precursors with a 

neural network. 

De Los Santos. [88] 
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Table 2 (continued). 

DeepRiPP Precursor 

peptides 

Identifies and classifies 

precursors and BGCs with a 

neural network 

(NLPPrecursor). Predicts 

products and estimates 

novelty based on genetic 

context and known 

modifications (BARLEY). 

Compares metabolomics and 

matches MS/MS spectra to 

predicted products (CLAMS). 

Merwin et al. [89] 

DEREPLICATOR NA Clusters peptide natural 

products based on MS/MS 

spectra. 

Mohimani et al. [90] 

VarQuest NA Matches peptide natural 

products to their variants 

with unknown modifications 

based on MS/MS spectra. 

Gurevich et al. [91] 

MetaMiner Core enzymes Identifies RiPP BGCs with 

antiSMASH. Predicts 

products based on genetic 

context and known 

modifications. Matches 

predicted products to MS/MS 

spectra. 

Cao et al. [92] 

 

 

Novel thioamidated RiPPs found by a bait-based approach combined with 

precursor clustering 

The above example highlights how the combination of a putative precursor and 

a single RTE of interest as a query allows identification of new types of RiPP 

BGCs. RiPPer was developed to generalize this procedure for any type of RTE 

[52]. The search starts with a query RTE, which is used find the genes encoding 

their homologs within a given database. To identify possible precursor genes, 

the surrounding region (+- 8 kbp) of each hit is reannotated with an adapted 

version of the genefinding software Prodigal called prodigal-short. The adapted 

version has a lower cut-off point for the minimum size of a gene (60 nt instead 

of 90), allowing it to more effectively identify RiPP precursors. All short genes 
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(between 60 and 360 nt) are scored by the prodigal score, which is increased if 

it is on the same strand as the query RTE. This approach does not take into 

account the sequence of the precursors, but was still able to detect 94.1% and 

96.7% of two test sets of precursor peptides from microviridin and lasso peptide 

genome mining studies [45, 83]. However, because multiple candidate 

precursor peptides are reported per BGC, the total number of precursor 

peptides identified by this method was several times higher than the training 

set. To increase the specificity of detected precursors, the authors clustered the 

precursor peptides detected based on sequence similarity. Large groups of 

conserved peptides are more likely to be encoded by real ORFs, and indeed, the 

largest group of peptides was found to overlap with previously identified 

precursor peptides. Peptides encoded by spurious ORFs are less likely show 

significant similarity to one another, and therefore small groups of precursor 

peptides can be discarded as false positives. 

The authors used the tfua gene as a query RTE, which encodes a protein 

thought to be involved in the formation of thioamidated RiPPs, like 

thioviridamide [93, 94]. The nearby candidate precursors were clustered, which 

resulted in thirty networks, two of which were encoded by thioviridamide-like 

BGCs. Of each of the networks, the genomic context of the genes encoding these 

precursor peptides for each of the networks was manually analyzed. Based on 

this, the authors highlighted 12 different candidate RiPP families. Experimental 

characterization of one of these families led to the discovery of the 

thiovarsiolins. These RiPPs share the small thioamidated amino acids 

backbones, but otherwise share no similarity with thioviridamide-like RiPPs. 

While a single RTE like the one encoded by the tfua gene may not be a reliable 

marker, in conjunction with a group of predicted precursor peptides, it leads to 

many promising and yet to be uncovered RiPPs. 

Radical SAM enzymes as a versatile RiPP marker 

Genes that are shared between different RiPP families make interesting targets 

for the discovery of novel RiPP families. Examples include the cyclase domain, 

which is shared between all different lanthipeptides subtypes [47], and the YcaO 

protein, which is involved in the maturation of bottromycins, LAPs, thiopeptides 

and thioamitides, and can catalyze three different reactions [95]. A protein that 
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is involved in the maturation of a wide number of RiPPs is the radical S-adenosyl 

methionine (rSAM) enzyme. The rSAM enzyme uses a radical S-adenosyl 

methionine (SAM) intermediate to catalyze a range of different reactions [96], 

ranging from simple methyltransferase reactions in bottromycins [97] to 

conversions of L-D stereochemistry in proteusins [98] to crosslinks in 

sactipeptides [99]. Radical SAMs can be involved in primary metabolism as well 

as secondary metabolism, and are highly diverse, which makes them somewhat 

unreliable for RiPP genome mining [100]. In conjunction with a precursor 

peptide, however, or by targeting a specific clade more closely associated with 

RiPP metabolism, many more interesting RiPP BGCs could be uncovered. 

rSAMs themselves are as diverse as their modifications, but pHMMs 

have been developed for rSAMs in specific niches, such as those responsible for 

the maturation of sporulation killing factor A (TIGR04403) [101]. Identification 

of a specific subclade of rSAMs and using this as a query has previously led to 

the discovery of mycofactocin [102]. The authors in this study identify a subclade 

of without any assigned function, and use partial phylogenetic profiling to 

discover protein families associated with this subclade. A group of proteins was 

found strongly associated with this particular clade, which led to the discovery 

of the new RiPP mycofactocin.  Expanded genome mining using the rSAMs 

associated with sactipeptides as a query, in conjunction with SVM-based 

precursor identification, has led to the discovery of ranthipeptides [55]. In 

addition, rSAMs were identified in a RiPP BGC in Pleurocapsa sp. PCC 7319, 

which was found to specify α-keto-β-amino acid-containing RiPPs, although the 

exact genome mining method was not reported [103].  

Last of all, by building a query for the detection of genes encoding rSAMs 

and quorum-sensing type regulators, a study reported the presence of these 

enzymes in many genomes [104]. The rules for detection were based on the BGC 

of streptide [105]. The production of streptide is regulated by quorum sensing, 

and its BGC contains two genes encoding a two-component system that mediate 

this regulation. A search in Streptococcal genomes revealed that the three genes 

encoding the regulatory system and a rSAM appeared to co-occur frequently. 

One of these BGCs was experimentally characterized, leading to the discovery 

of WGK, rotapeptides and ryptides [104, 106-108]. 
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The RiPP recognition element as a guide for novel RiPP family discovery 

The core element that is associated with most RiPP families is the RiPP 

Recognition Element (RRE). RREs were first discovered as short domains of 

roughly 100 amino acids that showed high structural similarity to PqqD [109]. 

Experimental characterization showed that the element could bind precursor 

peptides, and in many cases was required for RiPP maturation. Thorough 

analysis of all known RiPP classes revealed that the element is present in roughly 

half of all RiPP classes discovered to date. This domain may either be present in 

a small, stand-alone protein, or be fused to another enzymatic domain. In many 

cases, the domain is essential for RiPP maturation, even for stand-alone RREs, 

suggesting they act as a guide for other modifying enzymes to aid in precursor 

peptide recognition. In some cases, though, the domain is vestigial [110]. This 

similarity was discovered with HHPred [111], an algorithm for the comparison 

of pHMMs and secondary structure predictions made by PSIPRED [112]. As of 

now the only known method for the reliable detection of RREs is via HHPred, 

which is a time-consuming algorithm taking several minutes per query. 

Nevertheless, as this element promises to be highly specific towards RiPPs, but 

is still independent of any specific RiPP family, it would make an excellent target 

for RiPP genome mining. 

Shared enzymology between RiPPs and non-RiPPs leads to discovery of 3-

thiaglutamate 

In a few unusual cases, genome mining for RiPP BGCs can lead to the discovery 

of non-RiPP BGCs. For example, a recent genome mining effort aimed at finding 

lanthipeptide-like gene clusters in Actinobacteria identified several genes for 

LanB, without a nearby gene encoding LanC [68]. LanB is involved in the 

dehydration of serine and threonine residues in type I lanthipeptides. This 

reaction takes place in two steps, where first the hydroxyl group is glutamylated 

using tRNA-glutamate as the donor, and then eliminated by a separate protein 

domain [47]. Strikingly, these LanB homologs did not contain an elimination 

domain. Characterization of the BGC showed that the precursor peptide is used 

catalytically to produce 3-thiaglutamate [113]. A cysteine was attached to the C-

terminus of a precursor-like peptide by the LanB homolog, converted to 3-

thiaglutamate and then excised. The precursor peptide could still be used as a 
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recognition site for the other enzymes, three of which even contained RREs, but 

was otherwise not consumed for the production. The LanB homologue was 

renamed as a peptide aminoacyl-tRNA ligases, and these products were 

collectively called pearlins. 

Precursor-centric genome mining of RiPP BGCs 

The one thing that all RiPP BGCs have in common is the gene encoding a 

precursor peptide, and this is a vital element in all RiPP genome mining 

strategies. Usually, the precursor gene is in operon with the genes encoding the 

modifying enzymes, so detection of a precursor gene will result in detection of 

a new BGC. The precursor peptides show a high amount of variability, however, 

which limits precursor-centric genome mining using similarity-based methods, 

even within a single RiPP family. In addition, the precursor genes may be very 

small (<= 100 nt), and therefore missed by automatic gene annotation programs. 

Nevertheless, identification of the precursor peptide is highly valuable as it 

greatly speeds up experimental characterization.  

The reliability of machine-learning methods to detect encoded 

precursor peptides could re-invigorate precursor-centric genome mining. In 

general, any such method should have a low false positive rate in order to be 

useful for precursor-based genome mining. After all, the number of small open 

reading frames that are precursor candidates far exceeds the number of 

expected RiPP precursors. A Streptomyces genome will likely contain only 1 to 5 

RiPP BGCs [67]. Assuming that on average, a small ORF can be found between 

each pair of genes, there will be 8,000 small ORFs to analyze. A RiPP classification 

method with a low false positive discovery rate of 1% and a perfect true positive 

discovery rate of 100% will detect all positive hits, but also roughly 80 negative 

hits, outweighing the positive hits 40 to 1. Therefore, these models should either 

have a very low false positive rate or be integrated into larger pipelines in order 

to be useful for novel RiPP discoveries. This proves a difficult challenge, 

especially considering that there are relatively few positive examples of RiPP 

precursors compared to the number in the negative training set. Besides 

RODEO, three other tools use different machine-learning models to detect and 

classify precursor peptides: RiPPMINER, NeuRiPP and DeepRiPP.  
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Like RODEO, RiPPMINER uses a trained SVM to distinguish precursor 

peptides from other peptides, although unlike RODEO, a single SVM is used for 

all RiPP classes [87]. The predicted precursor peptides are then classified to their 

respective RiPP class using a multi-class SVM. The tool can identify well-

characterized RiPP families such as lanthipeptides, lasso peptides and linaridins, 

by training on a manually curated training set of more than 500 RiPP precursors. 

The precision and sensitivity for identification were 0.93 and 0.90, respectively. 

While these values are fairly high, the tool might still report a fair number of 

false positives when used as a starting point for genome mining for the reasons 

stated above. Nevertheless, RiPPMINER was used in a pipeline with the 

ClusterFinder algorithm [41] and transcriptome data analysis to detect novel 

candidate RiPP BGCs in the fungus Trichoderma spp [114] showing that tools 

with relatively low sensitivity can find novel results when used in conjunction 

with other datasets. 

NeuRiPP [88] uses a neural network rather than an SVM for precursor 

peptide classification. The model trained here takes the raw sequence as input, 

instead of calculated features like amino acid frequency or hydrophobicity. 

Several network architectures were tested, of which the parallel convoluted 

neural network (CNN) performed best. The tool separated precursor peptides 

from non-precursor peptides with an accuracy of 99.84% on the entire training 

set. In addition, it was capable of detecting bottromycin precursor peptides, 

despite the fact that these were lacking from the training data. This suggests 

that the network was capable of identifying precursor-specific features from the 

raw sequences across different RiPP families. The author suggested integration 

of the tool into RiPPer [52] as an effective means to filter precursor peptides in 

a class-independent manner. As a proof of concept, the precursor peptide 

networks associated with the tfua gene, also identified by RiPPer (see above) 

were analyzed. Of the 12 peptide networks prioritized by the authors, 8 were 

identified as precursor peptides by NeuRiPP, despite the fact to no precursor 

peptides of these RiPP classes were present in the training data. 

DeepRiPP is an assembly of three modules and the first tool described 

that fully integrates precursor-centric mining with comparative genomics and 

metabolomics tools [89]. The first module, NLPPrecursor, uses a Universal 
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Language Model Fine-Tuning (ULMFiT) neural network to detect encoded 

precursor peptides. This is a neural network architecture used for language 

processing that has shown to be highly effective in building models from training 

sets with low amount of data. It further classifies detected precursor peptides 

into specific RiPP families. BARLEY, the second part of the pipeline, then tries to 

estimate all possible RiPPs that may be produced from a detected precursor 

peptide, using known modifying enzymes in the surrounding genomic context, 

and a machine-learning model to estimate the cleavage site. All possible final 

products are compared to each other and to a database of known RiPPs and the 

distance between all products is calculated, either using the genomic predictions 

of the final products of the known products. In this way, known products can be 

easily dereplicated, and BGCs can be identified whose predicted products are 

distant from known RiPP BGCs, increasing the odds that new RiPP variants will 

be discovered. In the final step, extracts of all the strains analyzed made under 

various growth conditions are analyzed by LCMS. CLAMS, the third module of 

the pipeline, then tries to find correlations between the absence and/or 

presence of predicted RiPP products with detected LCMS peaks. The 

fragmentation data of these peaks are also matched to possible peptide 

fragments calculated from the precursors. By mining 65,421 bacterial genomes, 

19,498 new possible RiPP products were identified. The authors then extract 

463 of these strains under various conditions, creating a metabolomics database 

of 10,498 extracts. In these extracts, three new RiPPs could be identified with 

CLAMS, belonging to the lanthipeptide, lasso peptide and thiopeptide RiPP 

families, respectively. 

In summary, machine-learning methods provide an excellent way to 

accurately predict precursor peptides. These methods can supplement RiPP 

genome mining of known classes, as is done in RODEO and antiSMASH. More 

importantly, precursor-centric genome mining can lead to the discovery of novel 

RiPP BGCs, without needing to first identify characteristric modifying enzymes. 

Since precursor-centric genome mining carries an inherent risk for a high 

amount of false positives, the results of these classifiers need to be carefully 

analysed. Indeed, these methods proved most successful when combined with 

more extensive data analysis, such as analysis of genomic context, comparative 

genomics, transcriptomics and metabolomics.    
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Integration with omics in larger pipelines 

As illustrated by DeepRiPP described above, the integration of metabolomics 

data could accelerate the identification of RiPPs. In contrast to normal proteins, 

however, RiPPs contain modified amino acids and are rarely linear. For known 

RiPP classes, the modifications can be predicted based on genomic information. 

Predicted peptide fragments containing these modifications can be matched to 

the spectra with tools like DEREPLICATOR [90] (recently updated with NPS [115]) 

and CLAMS (available within the DeepRiPP pipeline [89]). DeepRiPP is perhaps 

the most integrative pipeline for RiPP discovery. Besides structure prediction 

based on the identification of known modifications, it also combines 

comparative genomics with comparative metabolomics, to prioritize peaks 

whose presence/absence matches that of the BGCs of interest. However, it could 

even be extended further, by also considering transcriptomics and proteomics data. 

Elicitors should therefore be added to activate the expression of cryptic BGCs, 

whereby comparative metabolomics combined with transcriptomics or 

proteomics will allow linkage of BGC expression profiles to changes in 

metabolites. This will allow scientists not only to observe more metabolites than 

under one specific growth condition, but also to predict which metabolites are 

produced by which BGCs. 

A major challenge for automated MS/MS analysis that remains is dealing 

with new modifications. VarQuest [91], an extension of DEREPLICATOR, can 

identify peptide variants based on known peptides, even if these variants contain 

unknown modifications. MetaMiner [92] combines genomics and metabolomics 

to predict precursor modifications and find associated spectra, which can 

contain unknown modifications. Completely de novo identification of novel 

RiPPs with only unknown modification has yet to be explored by tools like these, 

but represents a sizable computational challenge. Even so, just matching a small 

sequence of unmodified amino acids to part of a candidate novel RiPP precursor 

is a valuable addition to more explorative RiPP searches. Identified, novel 

precursors could then be fed back to the training data of the precursor classifiers, 

creating an iterative process in which the classifiers will become increasingly 

specific and tuned toward a larger variety of RiPP classes. 
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Outline of the thesis: towards the detection of completely 
novel RiPP subclasses 

The diversity in tools described above highlights the challenges in RiPP genome 

mining. Traditional RTE-based approaches do an excellent job at increasing the 

number of members of a RiPP family, as long as a well-defined set of enzymes 

characteristic of that class is known. Increasingly well-polished methods for the 

identification of RiPP precursors make an excellent supplement to these 

methods, providing additional information to properly identify the final product. 

Integration with metabolomics further streamlines RiPP identification, and can 

unite metabolomic and genomic information.  

Most of the tools described above, however, do not focus on the 

discovery of completely novel RiPP subclasses. The discovery of these is a 

difficult challenge – after all, if no modifying enzymes can be used as queries, 

BGCs cannot be discovered with methods that target specific domains. Even 

though RiPPer gives a user more freedom in this regard, it still relies on the 

selection of a query domain, which biases the results. However, one feature is 

always present in almost all RiPP subclasses: each RiPP BGC should encode a 

precursor, and contain at least one modifying enzyme. These domain-

independent features could be exploited to mine RiPPs in a less restricted 

manner, and lead to the discovery of new RiPP subclasses. 

Detection of precursors in a class-independent manner could be 

accomplished with machine-learning-based classifiers. The high confidence of 

these classifiers has already led to precursor-based genome mining, but mostly 

of known RiPP subclasses. Interestingly, NeuRiPP was capable of predicting 

some RiPP precursors of RiPP classes for which it had not been trained. 

Apparently, this neural network is capable of identifying some property of 

combination of properties that distinguishes precursors of any class from other 

peptides. If this set of properties is shared among not-yet-discovered RiPPs, it is 

possible that precursor-based genome mining could lead to the identification of 

completely novel RiPPs, as no restrictions would be placed onto the genomic 

contexts in terms of known RTEs.  
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In Chapter 2, we describe a novel tool for the detection of RiPP 

Recognition Elements (RREs) – the domain that is shared among the most 

different bacterial RiPP classes. Specific profile Hidden Markov Models have 

been designed for each of the different types of RRE. This allows for high-

confidence detection of RREs of known classes in precision mode. A second 

mode, called exploratory mode, is based on HHPred and can detect more 

distantly related RREs, at the cost of computational power and more false 

positives. These methods allow the detection of novel RRE-enzyme fusions, that 

can lead to the discovery of novel RiPP subclasses.  

In Chapter 3, we describe an innovative tool for the identification of 

novel RiPPs, called decRiPPter (Data-driven Explorative Class-independent RiPP 

TrackER). This tool utilizes an SVM-based RiPP precursor classifier, which is 

independent of RiPP subclass, and can therefore be used to identify novel RiPPs. 

Instead of focusing on the amino acid sequence, decRiPPter examines the 

genomic contexts of encoded precursor peptides for possible RTEs, associated 

with RiPPs or otherwise. The results have been combined across many genomes 

to form candidate RiPP families. The work underlines the power of artificial 

intelligence approaches for the discovery of new candidate bioactive molecules.  

Chapter 4 describes the application of decRiPPter for the identification 

of a novel class of lanthipeptides. BGCs of this family are widespread among 

Actinobacteria and Firmicutes, but so far their function was unknown. 

Experimental characterization of a gene cluster from Streptomyces 

pristinaespiralis revealed that it indeed specifies a novel RiPP, that we called 

pristinin A3. Pristinin A3 contains many modifications also found in other types 

of lanthipeptides. Lanthipeptides are further classified by their modifying 

enzymes. Since the modifying enzymes involved in the generation of this family 

of RiPPs are novel, we classified this RiPP as a new lanthipeptide subclass, called 

class V. The complex two-dimensional structure of pristinin A3 was elucidated 

by mass spectrometry and NMR. 

In Chapter 5, a different type of RiPP BGC is characterized. This BGC 

shows distant similarity to known RiPP BGCs of different classes, as it contains 

genes encoding a radical SAM enzyme and an ATP-grasp ligase. Still, the 

presence of these genes alone do not place it clearly in any known RiPP subclass. 
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In addition, two well-conserved genes encoding predicted precursors show a 

unique motif that is repeated multiple times. A detailed bioinformatic 

description is given explaining the homologies of this BGC and it’s relation to 

other known RiPP BGCs. In addition, experimental work is presented describing 

the activation of the BGC and the analysis of chemical extracts aimed at 

identifying the final product.   

In Chapter 6, the results are summarized and reviewed in a general 

discussion. The explorative approach taken towards RiPP genome mining, and 

the use of machine learning classifiers for this purpose, are reviewed. the 

challenges encountered in this thesis are described and possible solutions are 

proposed. Further extenstions for the decRiPPter pipeline are outlined, which 

could futher help future efforts in class-independent RiPP genome mining. Also, 

the RiPP BGCs that were studied in this work are further discussed, including 

their possible classifications with regard to currently accepted schemes.   
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