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Impact of the local inflammatory 
environment on mucosal vitamin 
D metabolism and signaling in 
chronic inflammatory lung diseases
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Abstract 
 

Vitamin D plays an active role in the modulation of innate and adaptive immune 
responses as well as in the protection against respiratory pathogens. Evidence for 
this immunomodulatory and protective role is derived from observational studies 
showing an association between vitamin D deficiency, chronic airway diseases and 
respiratory infections, and is supported by a range of experimental studies using 
cell culture and animal models. Furthermore, recent intervention studies have now 
shown that vitamin D supplementation reduces exacerbation rates in vitamin D-
deficient patients with chronic obstructive pulmonary disease (COPD) or asthma 
and decreases the incidence of acute respiratory tract infections. Vitamin D is 
known to contribute to the integrity of the mucosal barrier, promote killing of 
pathogens (via the induction of antimicrobial peptides) and to modulate 
inflammation and immune responses. These mechanisms may partly explain its 
protective role against infections and exacerbations in COPD and asthma patients. 
The respiratory mucosa is an important site of local vitamin D metabolism and 
signaling, a process that can be affected by exposure to inflammatory mediators. 
As a consequence, mucosal inflammation and other disease-associated factors, as 
observed in e.g. COPD and asthma, may modulate the protective actions of vitamin 
D. Here, we discuss the potential consequences of various disease-associated 
processes such as inflammation and exposure to pathogens and inhaled toxicants 
on vitamin D metabolism and local responses to vitamin D in both immune- and 
epithelial cells. We furthermore discuss potential consequences of disturbed 
vitamin D bioavailability for chronic lung diseases. Additional insight into the 
relationship between disease-associated mechanisms and local effects of vitamin D 
is expected to contribute to the design of future strategies aimed at improving local 
vitamin D bioavailability in chronic inflammatory lung diseases. 

  

172

Chapter 7



Introduction 
 

Vitamin D is a pleiotropic hormone that is well known for its role in the regulation 
of calcium and phosphate homeostasis and bone mineralization. The receptor for 
vitamin D (VDR) is however expressed in nearly all tissues and cells and regulates a 
large number of genes (approximately 0.8-5% of the total genome) (1, 2). As a 
result, vitamin D affects many additional processes including cell proliferation and 
differentiation, apoptosis, DNA repair, ion transport, metabolism, cell adhesion, 
and oxidative stress responses (1, 3). Vitamin D deficiency (serum 25(OH)D < 50 
nmol/L; 25(OH)D is the main circulating form of vitamin D and its levels are used to 
assess vitamin D status in the clinic (4, 5)) affects more than 30% of the children 
and adults worldwide and is a major cause of bone diseases such as rickets and 
osteoporosis (6). Increasing evidence has indicated that vitamin D deficiency is also 
associated with various other diseases such as cancer, cardiovascular disease, 
Alzheimer’s disease and muscle myopathy, as well as several immune-related 
diseases such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease 
(IBD), psoriasis and chronic inflammatory lung diseases including asthma, cystic 
fibrosis (CF)  and chronic obstructive pulmonary disease (COPD) (6-9).  

Several studies have now shown that vitamin D deficiency is prevalent in COPD 
patients and inversely correlated with lung function and severity of the disease (8, 
10-12). It is currently unknown whether vitamin D deficiency is a cause or 
consequence of COPD, since many COPD patients have low physical activity levels 
and spend most time indoors (13). There are however studies suggesting that low 
vitamin D levels are associated with development of COPD, based on observed 
associations between polymorphisms in the vitamin D binding protein (VDBP), 
vitamin D serum levels and COPD severity (8, 10, 11, 14). In addition, one study in 
mice showed that maternal vitamin D deficiency can impair lung -development, -
structure and -function in the offspring and suggests that even before birth, 
maternal 25(OH)D serum levels are important for a healthy lung development (15). 
This might be relevant, since associations have been found between lower 
childhood lung function and development of COPD later in life (16). The link 
between maternal 25(OH)D status and asthma development is however much 
clearer, since two recent randomized controlled trials (RCTs) have shown that 
maternal vitamin D supplementation reduces the risk of childhood 
asthma/recurrent wheeze (17). This might be explained by the fact that multiple 
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vitamin D-regulated genes are transcriptionally active during alveolar maturation 
and a number of these genes are differentially expressed in asthma (18). 
Additionally, this protective effect was linked to  the GG-genotype of the 17q21 
functional SNP rs12936231, which is associated with lower expression of ORMDL3 
and increased sphingolipid metabolism (19). Moreover, maternal circulating 
25(OH)D levels affect the gut microbiota and can therefore indirectly modulate 
immune responses in the lung via the gut-lung-axis (20). Also later in life, optimal 
25(OH)D levels remain crucial for keeping the lungs healthy. For example, Heulens 
et al. showed that subacute and chronic cigarette smoke (CS) exposure decreased 
lung function and promoted early signs of emphysema and airway inflammation in 
vitamin D-deficient mice compared to vitamin D-sufficient animals (21). Similarly in 
an elastase-induced COPD mouse model, topical administration of vitamin D in the 
lungs counteracted alveolar damage and improved lung function (22). Yet in 
humans, it is still unclear whether vitamin D affects COPD development and disease 
progression. Taken together, these observations suggest an important role for 
vitamin D during fetal and childhood lung maturation, and indicate that sufficient 
vitamin D levels might contribute to protection against development of childhood 
asthma and possibly COPD at older age.  

Systemic levels of biologically active vitamin D are tightly regulated to preserve 
sufficient levels of calcium (Ca2+) and phosphate (PO4

2-) for optimal bone 
mineralization, whereas in mucosal tissues locally produced (autocrine) active 
vitamin D levels and signaling can be elevated or decreased upon exposure to 
inflammatory mediators, pathogens or inhaled toxicants (6). This could be 
important, since the inflamed airway mucosa of patients suffering from chronic 
inflammatory lung diseases is constantly exposed to these disease-associated 
factors (8, 23, 24). Impaired vitamin D bioavailability and signaling might have 
consequences for disease pathogenesis and progression. Dysregulated host 
defenses as found in patients with chronic inflammatory airway diseases include 
aberrant immune responses, altered microbiome composition, impaired epithelial 
barrier function and aberrant secretion of host defense molecules (25-27). 
Adequate vitamin D levels may provide protection against these dysregulated 
processes by maintaining the integrity of the mucosal barrier and promotion of 
killing of pathogens (e.g. via the induction of the antimicrobial peptide [AMP] 
hCAP18/LL-37) and via the modulation of both innate and adaptive immune 
responses (7, 28, 29).  
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In this review, we first discuss the effects of these disease-associated factors on 
local bioavailability of vitamin D and vitamin D-induced responses in the lung 
mucosa. In the second part of the review we will describe the mechanistic links 
between vitamin D deficiency and the pathogenesis of chronic inflammatory lung 
diseases such as asthma, CF and COPD, and discuss recent evidence related to the 
protective effects of vitamin D on COPD and on COPD exacerbations.  

 

Regulation of mucosal vitamin D metabolism in health  
 

Vitamin D enters the circulation either via food intake or as a result of its synthesis 
in the skin by UVB radiation. It subsequently binds to the VDBP (30, 31), after which 
this complex is transported to the liver where it is converted by vitamin D-25-
hydroxylases (CYP2RI and CYP27A1) into 25-hydroxy-vitamin D [25(OH)D]. 
However, recent studies showed that also other cell types such as airway epithelial 
cells, keratinocytes, intestinal epithelial cells, and monocytes/macrophages express 
CYP2RI and CYP27A1, and thus are able to (locally) convert vitamin D3 into 25(OH)D3 
(32, 33). This inactive 25(OH)D needs to be converted into the active 1,25 
dihydroxy-vitamin D (1,25(OH)2D) by 25-hydroxyvitamin D-1α-hydroxylase 
(CYP27B1) in the kidney and in other cells, including several immune- and epithelial 
cells (34-40). 1,25(OH)2D regulates expression of several genes by binding the 
nuclear VDR, which heterodimerizes with the retinoic acid receptor (RXR) to 
interact with vitamin D response elements (VDREs) that are present on the 
promoter region of these genes (1, 2). VDR is most abundantly expressed in 
intestinal enterocytes, pancreatic islets, renal distal tubules and osteoblasts, but is 
also present at lower levels in most other tissues and several other epithelial- and 
immune cells (41-45). Expression of VDR is classically regulated by 1,25(OH)2D, 
growth factors and hormones such as FGF-23 and PTH respectively, circulating 
calcium-levels, bile acids, transcriptional co-activators/repressors, and genetic- and 
epigenetic modifications, which is tissue specific (46-49). 1,25(OH)2D regulates its 
own negative feedback by several mechanisms, including induction of expression 
of the catabolic enzymes 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) and 
CYP3A4 (50, 51). CYP24A1 is expressed in most tissues and converts both 25(OH)D 
and 1,25(OH)2D into biologically inactive 24,25(OH)2D and 1,24,25(OH)2D 
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respectively (50), whereas CYP3A4, mainly expressed in the liver and small 
intestines, contributes to the metabolic clearance of 25(OH)D and 1,25(OH)2D by 
converting 25(OH)D into 4β,25(OH)2D, and 1,25(OH)2D into 1,23R,25(OH)2D or 
1,24S,25(OH)2D (51). Expression of both CYP27B1 and CYP24A1 in the kidneys is 
tightly regulated to maintain optimal Ca2+- and PO4

2- levels in the circulation, which 
are important for bone mineralization(52). The complex mechanisms that explain 
how vitamin D and its metabolic enzymes maintain sufficient Ca2+ and PO4

2- levels 
in the circulation are explained by Quarles et al. (52). In summary, it has become 
increasingly evident that the effects of vitamin D are not limited to homeostasis of 
Ca2+ and PO4

2- and bone mineralization, because several extra-renal cells such as 
airway epithelial cells and immune cells express the VDR and are capable of 
converting circulating 25(OH)D into the active 1,25(OH)2D metabolite (Figure 1). 

 

Figure 1. Vitamin D metabolism and expression of hCAP18/LL-37 (CAMP) in epithelial cells. The 
vitamin D binding protein (VDBP)-25(OH)D complex enters the epithelial cell from the circulation and 
25(OH)D is subsequently released from the complex. In the cytoplasm, 25(OH)D is hydroxylated by 
25-hydroxyvitamin D-1α-hydroxylase (CYP27B1; localized to the inner mitochondrial membrane) into 
the active metabolite 1,25(OH)2D. 1,25(OH)2D subsequently binds to the nuclear vitamin D receptor 
(VDR) which heterodimerizes with the retinoic acid receptor (RXR) to interact with vitamin D response 
elements (VDREs) that are present on the promoter region of numerous genes, including CAMP 
(hCAP18/LL-37) and CYP24A1 (25-hydroxyvitamin D-24-hydroxylase). 1,25(OH)2D thereby regulates 
its own negative feedback via direct induction of CYP24A1 that converts both 25(OH)D and 1,25(OH)2D 
to biologically inactive 24,25(OH)2D and 1,24,25(OH)2D respectively (53).
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Altered regulation of mucosal vitamin D metabolism and 
vitamin D responsiveness in chronic inflammatory airway 
diseases 
 

Local bioavailability and activity of 1,25(OH)2D are in part determined by expression 
of VDR and the equilibrium between the vitamin D metabolic enzymes CYP27B1 
and CYP24A1. It is important to realize that mucosal expression of CYP24A1, 
CYP27B1 and also VDR can be affected by several disease-associated inflammatory 
mediators, toxicants and pathogens, summarized in Table I. As a consequence of 
this, the local bioavailability of vitamin D in tissues such as the inflamed airways of 
patients that suffer from chronic inflammatory airway diseases might be reduced. 

Cell/tissue type Stimulus Effect References 
Primary airway 
epithelial cells 

Poly(I:C); RSV; IL-13; IL-4; PM CYP27B1 ↑ (38, 54-56) 

 TNF-α; IL-1β; IL-17A; TGF-β1; 
NTHi 

CYP24A1 ↑ (57, 58) 

 CSE CYP27B1 ↓ (59, 60) 
 A. fumigatus; HRV; RSV VDR ↓ (56, 61) 
BEAS-2B  
(bronchial 
epithelial cell line) 

HRV; RSV VDR ↓ (56) 

 PM VDR ↑ (55) 
16HBE  
(bronchial 
epithelial cell line) 

A. fumigatus VDR ↑ (62) 

 TGF-β1 CYP27B1 ↑ (54) 
 A. fumigatus CYP27B1 ↑ (62) 
A549  
(lung carcinoma 
cell line) 

CSE VDR translocation ↓ (63) 

HCT116  
(colon cancer 
epithelial cell line) 

LPS; TNF-α CYP27B1 ↑ (64) 

 LPS; TNF-α VDR ↓ (64, 65) 
 LPS CYP24A1 ↓ (64) 
COGA-1A  
(colon cancer 
epithelial cell line) 

TNF-α ± IL-6 CYP27B1 ↓ (66) 
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Trophoblasts TNF-α; IL-1β; IL-6 CYP24A1 ↑ (67) 
 IFN-γ CYP27B1 ↑ (67) 
Macrophages ss-RNA CYP27B1 ↑ 

VDR ↑ 
(68) 

Macrophages  
(derived from 
THP-1) 

CSE VDR ↑ (69) 

Macrophages  
(derived from 
THP-1) 

BaP CYP24A1 ↑ (70) 

Monocytes TLR2/1L ± IFN-γ; LPS; IL-15 CYP27B1 ↑ 
VDR ↑ 

(39, 71-73) 

 IL-4 ± TLR2/1L CYP24A1 ↑ (39) 
    
Neutrophils IFN-γ 

S. pneumoniae T4R 
CYP27B1 ↑ 
VDR ↑ 

(74) 
 

T cells T cell activators (anti-CD3/anti-
CD28; PHA; PMA/ionomycin) 

CYP27B1 ↑ 
VDR ↑ 

(75) 

B cells B cell activators (anti-IgM/anti-
CD40/IL-21) 

CYP27B1 ↑ 
VDR ↑ 

(76) 

Table 1: Effects of inflammatory mediators on the expression of VDR, CYP24A1 and CYP27B1 in 
immune cells and epithelial cells.  
Abbreviations: Polyinosinic:polycytidylic acid (Poly(I:C); Particulate matter (PM); nontypeable 
Haemophilus influenzae (NTHi); Aspergillus fumigatus (A. fumigatus); Cigarette smoke extract (CSE); 
Human rhinovirus (HRV); Respiratory syncytial virus (RSV); Single stranded RNA (ssRNA); 
Benzo[a]pyrene (BaP); Toll like receptor 2/1 Ligand (TLR2/1L); Phytohemagglutinin (PHA); Phorbol 12-
myristate 13-acetate (PMA). 

Epithelial cells 
Chronic lung diseases are characterized by airway inflammation and impaired 
respiratory host defense, which is illustrated by the increased susceptibility for 
respiratory infections and exacerbations (77-79). Furthermore, exposure to inhaled 
toxicants such as cigarette smoke and air pollutants are associated with disease 
pathogenesis and exacerbations in COPD, CF and in asthma patients (80-82). It 
would therefore be of great interest to investigate these effects on vitamin D 
bioavailability and vitamin D-mediated respiratory host defense in the airway 
mucosa. Studies in airway epithelial cells have shown that exposure to UV-
inactivated nontypeable Haemophilus influenzae (NTHi) increased expression of 
the vitamin D-degrading enzyme CYP241, whereas exposure to viral double 
stranded-RNA analogue polyinosinic:polycytidylic acid (Poly[I:C]) increased 
expression of CYP27B1 and conversion of 25(OH)D into the active metabolite (38, 
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57). On the other hand in the bronchial cell line BEAS-2B, expression of VDR was 
decreased after infection with respiratory viruses such as human rhinovirus (HRV) 
and respiratory syncytial virus (RSV) (56). Collectively, these studies have shown in 
airway epithelial cells that respiratory viral- and bacterial infections can either 
promote or impair vitamin D activation and responses.  

A local airway inflammatory milieu can also exert differential effects on vitamin D 
bioavailability and signaling, dependent on the type of inflammatory mediators that 
are predominantly present. We have shown in differentiated primary airway 
epithelial cells that Th2 cytokines such as IL-4 and IL-13, enhance expression of 
CYP27B1 and vitamin D-mediated expression of hCAP18/LL-37, which suggests that 
a Th2-inflammatory environment, as found in allergic airway inflammation 
increases vitamin D bioavailability (81, 83). The observation that levels of both 
1,25(OH)2D and hCAP18/LL-37 were increased in bronchoalveolar lavage (BAL) after 
allergen challenge is in line with this proposed mechanism (84). This effect of Th2 
cytokines was in contrast to the effects (chronic) exposures to the proinflammatory 
cytokines IL-1β, TNF-α and IL-17A that strongly increased the expression of the 
vitamin D-degrading CYP24A1, even in absence of vitamin D (57). Furthermore, 
short-term exposures to TGF-β1, a pleiotropic growth factor which is elevated in 
the lungs of COPD, CF and asthma patients, also increases the expression of 
CYP24A1 (85). As a consequence, 1,25(OH)2D-mediated expression of the AMP 
hCAP18/LL-37 was impaired, which was likely the result of the enhanced 
degradation of both 25(OH)D and 1,25(OH)2D by this enzyme (57, 58). In addition 
to pathogens and cytokines, exposure to inhaled toxicants such as cigarette smoke 
(CS) and particulate matter (PM) may also alter expression or activity of VDR and 
CYP27B1. Studies have demonstrated that cigarette smoking or exposure to CS 
extract (CSE) decreases expression of CYP27B1 and inhibited membrane bound 
(m)VDR translocation to the cell membrane in airway epithelial cells and A549 cells 
(an alveolar tumor cell line) respectively (59, 60, 63) This inhibition reduces the 
conversion of 25(OH)D to 1,25(OH)2D and 1,25(OH)2D-mediated gene expression as 
well as non-genomic actions of 1,25(OH)2D-membrane associated, rapid response 
steroid-binding (MARRS)- signalling (59, 60, 63). This adverse effect of cigarette 
smoking on vitamin D bioavailability and effects in airway epithelial cells was 
recently confirmed in vivo by Vargas Buonfiglio et al., who demonstrated that 
vitamin D supplementation increased antimicrobial activity in apical surface liquid 
(ASL) in the airway of healthy non-smokers, but not in smokers (59). On the other 
hand, exposure to PM increases the expression of both CYP27B1 and VDR in airway 
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epithelial cells, thereby possibly promoting vitamin D bioavailability (55). It is 
however important to consider that several retrospective and observational studies 
have demonstrated that air pollution is an independent risk factor for developing 
vitamin D deficiency (86). In conclusion, exposure to CS, TGF-β1 and presence of a 
proinflammatory milieu appeared to most strongly decrease vitamin D 
bioavailability and signaling in airway epithelial cells.   

Immune cells 
Whereas various studies show that exposure to proinflammatory stimuli affects 
vitamin D metabolism and reduces the effects of vitamin D in (airway) epithelial 
cells, the opposite appears to be the case for immune cells. In monocytes, 
macrophages and neutrophils, effects on vitamin D bioavailability and vitamin D-
mediated antimicrobial responses were generally enhanced by these 
proinflammatory stimuli as illustrated by increased expression of both VDR and 
CYP27B1 (39, 68, 71-74). It is therefore tempting to speculate that this apparent 
increase in vitamin D-mediated antimicrobial responses in immune cells in an 
inflammatory environment may serve as a second line of defense and compensate 
for the enhanced epithelial degradation of vitamin D during inflammation. Inhaled 
toxicants may also affect vitamin D responsiveness of immune cells. This is 
illustrated by two recent studies studying the effects of cigarette smoke on the 
human monocyte/macrophage-like cell line THP-1. One study showed that 
treatment with cigarette smoke extract (CSE) increased the expression of VDR 
without enhancing vitamin D responses (69), while the other study -that focused 
on the effects of Benzo[a]pyrene (BaP) (a component produced by cigarette 
combustion)- demonstrated that vitamin D-mediated CYP24A1 expression was 
induced, which was found to further enhance degradation of 1,25(OH)2D (70). In 
summary, proinflammatory stimuli generally increased vitamin D responses and 
bioavailability in immune cells, whereas more studies are needed to fully determine 
the impact of exposure to cigarette smoke and other inhaled toxicants. 

Lung mucosa 
Whereas these studies provide evidence that inflammation and inhaled toxicants 
may affect vitamin D metabolism and responsiveness in epithelial cells and immune 
cells, it is not clear whether this has an impact on these events in lung tissue of 
patients with chronic lung diseases. Although evidence is limited, we can speculate 
that vitamin D bioavailability and responses are also affected by disease-associated 
factors in mesenchymal cells that are present in the lung mucosa. One study that 
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showed in a bleomycin fibrosis model and in primary lung mouse fibroblasts that 
TGF-β1 reduced expression of the VDR might support this assumption (87). It is 
currently insufficiently studied whether exposures to disease-associated factors 
promote or impair vitamin D bioavailability and responses in immune-, 
mesenchymal and epithelial cells combined to give a better reflection of the in vivo 
situation. Interestingly, one study did already show that nasal CYP27B1- and 
1,25(OH)2D-levels are both reduced in chronic rhinosinusitis (CRS) patients with 
nasal polyps as compared to CRS-patients without nasal polyps, whereas no 
difference was found in circulating 1,25(OH)2D-levels (88). Since most other studies 
were performed in vitro using monocultures of epithelial cells or immune cells, 
more complex models are needed to delineate this. Therefore, animal models or 
preferably more complex animal-free cell culture models using co-cultures or 
organ-on-a-chip models of primary fully differentiated epithelial cells, airway-
derived fibroblasts or smooth muscle cells and immune cells could be considered 
in future studies. 

 

Protective effects of vitamin D on mucosal homeostasis  
 

After discussing altered vitamin D metabolism and responsiveness in the inflamed 
airway mucosa, it is important to consider the possible consequences of these 
inflammation-induced changes in the airway mucosa keeping in mind the 
pleotropic effects of vitamin D that were introduced earlier. In several cells, tissues 
and organs, vitamin D regulates multiple cellular processes that affect normal and 
malignant cell growth and differentiation (89, 90). Vitamin D displays furthermore 
protective effects on mucosal host defense by maintaining the integrity of the 
epithelial barrier, inhibition of epithelial-to-mesenchymal transition (EMT), 
stimulating production of AMPs and modulating both innate- and adaptive immune 
functions (29, 91, 92). In addition, vitamin D maintains both energetic and survival 
homeostasis in the mucosal epithelium through the modulation of stress and 
damage responses, including clearance of disturbing and stressful agents (3, 93) 
(Figure 2).  
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Figure 2. Effect of vitamin D on airway epithelial host defense-mechanisms in chronic airway 
disease. The promoting or inhibitory effects of vitamin D are indicated by the red arrows.  
Abbreviations: Antimicrobial peptides (AMPs); Cystic fibrosis transmembrane conductance regulator 
(CFTR); Oxidative stress (Ox-stress); Suppressor of cytokine signaling proteins (SOCS); Tight junctions 
(TJs); Adherens junctions (AJs); Glucose-6-phosphate dehydrogenase (G6PD); Soluble suppression of 
tumorigenicity 2 (sST2); Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB); Naieve 
T cell (Th0); Regulatory T cell (Treg); T helper type 1 cell (Th1); T helper type 2 cell (Th2); T helper type 
17 cell (Th17); Regulatory B cell (Breg); See text for details and references. 
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Epithelial barrier function 
In chronic inflammatory lung diseases, epithelial barrier function is impaired, and 
as a consequence the susceptibility towards respiratory infections is increased (94). 
There is increasing evidence that vitamin D promotes epithelial barrier integrity or 
protects against epithelial barrier destruction. In cells of the bronchial epithelial cell 
line 16HBE, vitamin D inhibited CSE-mediated reduction of the epithelial barrier and 
expression of E-cadherin and β-catenin (95). Recently, two murine studies were 
published that investigated the effects of vitamin D on pulmonary epithelial barrier 
function. Shi et al. showed that vitamin D-supplementation alleviated lung injury in 
LPS-treated mice through maintenance of the pulmonary barrier by inducing 
expression of Zonula occludens (ZO)-1 and occludin in whole lung homogenates 
(96), whereas Gorman et al. showed in healthy mice, fed with a vitamin D-poor diet, 
that vitamin D supplementation had little effect on epithelial integrity (97). Only 
the first study that used a more severe mouse model with higher levels of 
inflammation and edema found an effect on vitamin D on epithelial barrier 
function. Since inflammation is detrimental for epithelial barrier integrity (98), it 
cannot be excluded that the main protective effects of vitamin D on the epithelial 
barrier in the first study by Shi et al. were in fact exerted through inhibition of 
inflammation rather than via direct induction of cell junction proteins. Vitamin D 
might also promote epithelial barrier function through its ability to increase 
expression of cystic fibrosis transmembrane conductance regulator (CFTR) in 
airway epithelial cells (99). CFTR maintains optimal ASL- and mucus hydration, 
volume and pH that support mucociliary clearance and activity of AMPs (100). 
Moreover, CFTR is also affected in the airways of smokers and COPD patients (101). 
In summary, these studies indicate that vitamin D promotes both the integrity and 
function of the epithelial barrier and might additionally protect against epithelial 
damage by dampening inflammatory responses. 

Anti-fibrotic effects of vitamin D 
The loss of epithelial barrier function with a decrease in epithelial polarization and 
cell-junction proteins and a gain of expression of mesenchymal markers is a 
hallmark of EMT (94). EMT is primarily involved in development, wound healing and 
stem cell differentiation, and TGF-β signaling plays a major role in this process 
(102). Elevated TGF-β1 levels are found in the lungs of patients with chronic 
inflammatory lung diseases and this was associated with cigarette smoking, 
inflammation and fibrosis (77, 103). There are indications that vitamin D 
counteracts various pathways leading to EMT. In mouse models and in airway 
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epithelial cell lines, vitamin D has been shown to inhibit EMT and fibrosis, in 
particular when this process is induced by TGF-β1 (87, 104-107).  

Effects of vitamin D on epithelial antimicrobial responses 
In addition to maintenance of the epithelial barrier and inhibition of fibrosis as 
discussed in the previous paragraphs, vitamin D is also actively involved in 
respiratory host defense by a variety of mechanisms (3, 29). Vitamin D is an 
important inducer of AMPs, which are mostly cationic peptides that have a broad-
spectrum antimicrobial activity, the ability to modulate immune responses and to 
promote epithelial wound repair and angiogenesis (108). hCAP18/LL-37 is likely to 
be the most prominent AMP that is induced by vitamin D and is expressed in several 
types of mucosal epithelial cells and immune cells such as monocytes and 
neutrophils (38, 74, 109). In macrophages and intestinal epithelial cells, vitamin D 
also increases expression of human β-defensin-2 (hBD-2), whereas in keratinocytes 
expression of both hBD-2 and human β-defensin-3 (hBD-3) is increased by vitamin 
D (110-113).  Collectively these data show that AMPs are modulated by vitamin D 
in mucosal tissues, which could have impact on susceptibility to both bacterial and 
viral infections and on the composition of the microbiota, which will be discussed 
in the next section .  

Effects of vitamin D on innate and adaptive immune responses 
Diseases such as COPD and asthma are characterized by chronic inflammation, a 
low-grade and prolonged inflammation that may result in destruction and aberrant 
repair of surrounding tissue by growth factors, proteases and cytokines that are 
released at the site of inflammation (114-116). Cumulative data suggest that 
vitamin D exerts anti-inflammatory effects via its actions on both innate and 
adaptive immune responses. Upon viral infection or exposure of pro-inflammatory 
stimuli such as Poly(I:C) or PM, vitamin D attenuates induced expression of 
cytokines and chemokines e.g. via inhibition of nuclear factor (NF)-κB or oxidative 
stress respectively in (airway) epithelial cells (38, 55, 117). Furthermore, vitamin D 
increases expression of the soluble decoy receptor for IL-33 (sST2) by airway 
epithelial cells, which in turn inhibits the actions of the type 2 alarmin IL-33 (118). 
Further effects of vitamin D on local innate and adaptive immune responses in the 
epithelial mucosa are mediated through its actions on immune and structural cells 
and have been reviewed by Heulens et al., Vanherwegen et al. and Pfeffer et al. 
(29, 119, 120).  
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Taken together, these findings suggest that on the one hand vitamin D protects 
against infections by enhancing epithelial barrier function and production of AMPs, 
and on the other hand vitamin D induces tolerance and dampens proinflammatory 
responses in various cell types of the airway mucosa. Thereby, vitamin D may 
prevent exaggerated inflammatory responses and further damage to the mucosal 
tissue, qualities that are very relevant in the context of chronic inflammatory (lung) 
diseases (Figure 2). 

Effects of vitamin D on epithelial oxidative stress and aging  
COPD is considered to be a disease of accelerated ageing lungs, underscored by 
markers of aging being increased in these patients partly as a result of oxidative 
stress (121). Evidence that vitamin D may protect epithelial cells from oxidative 
stress was provided by Pfeffer et al., who demonstrated that vitamin D increased 
expression of the antioxidant gene G6PD in airway epithelial cells. Furthermore, 
vitamin D increased the ratio of reduced to oxidized glutathione and decreased the 
formation of 8-isoprostane after exposure to PM (55). The induction of klotho by 
vitamin D might be another vitamin D-mediated anti-ageing mechanism (122). 
Klotho is an anti-ageing protein that is mainly expressed in the kidney, brain and in 
the lung by airway epithelial cells and exerts its protective effects through the 
inhibition of inflammation, insulin/IGF-1 signaling and activation of forkhead 
transcription factor (FoxO) signaling, which enables removal of reactive oxygen 
species (ROS) (123-125). Expression of klotho is impaired in the airways of smokers 
and further decreased in the airways of COPD patients and in cultures of the 
bronchial epithelial cell line 16HBE after CSE exposure (125). These studies suggest 
that vitamin D may protect against ageing via inhibition of oxidative stress and 
possibly via its ability to restore klotho expression (Figure 2). However, direct 
evidence showing that vitamin D indeed increases expression of klotho in airway 
epithelial cells is currently lacking. 

Effects of vitamin D on epithelial autophagy and apoptosis 
In addition to providing protection against oxidative stress and ageing, data from 
studies using intestinal epithelial cells suggest that vitamin D may also promote 
cellular survival via the induction of autophagy and reduction of apoptosis (126, 
127). In chronic inflammatory lung diseases, aberrant activation of autophagy plays 
a role in disease pathogenesis (128). A recent study showed that club cells and 
autophagy-related proteins were both decreased in COPD patients and that these 
proteins were important for club cell structure and function in airways (129). 
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However, the effects of vitamin D on autophagy in the airway mucosa of chronic 
inflammatory lung diseases are still unclear and need to be further evaluated (128).   

 

Role of vitamin D in the treatment of chronic airway diseases  
 

Clearly vitamin D has pivotal actions in host defense that are relevant in the context 
of chronic inflammatory lung diseases, in which vitamin D deficiency may be 
prevalent. Strategies to promote local bioavailability of vitamin D or use it as a 
treatment itself could be therefore of interest. Here, we will discuss the latest 
clinical evidence accompanied with functional in vitro- and animal studies that may 
explain the effects of vitamin D treatment on typical hallmarks of chronic airway 
diseases.  

Effect of vitamin D on inhaled corticosteroid responsiveness in chronic 
airway diseases  
Currently, inhaled corticosteroid (ICS)-use with or without long acting 
bronchodilators is the most frequently used treatment for COPD and asthma 
patients (130). However, the response to corticosteroids is not always effective in 
many COPD patients and in patients with steroid resistant (SR)-asthma (131). There 
are several complex mechanisms that underlie the resistance to corticosteroids in 
both COPD and SR-asthma that include but are not limited to genetic background, 
impaired glucocorticoid receptor binding, T helper type 17 cell (Th17)-inflammation 
and oxidative stress (e.g. from air pollution or smoking) and decreased numbers of 
IL-10 secreting regulator T cells (Tregs), which normally prevent skewing towards 
Th17-inflammation (131). Direct evidence of the ability of vitamin D to reverse SR 
was provided by a study showing that ex-vivo stimulation with 25(OH)D promoted 
generation of IL-10–secreting Tregs which restored sensitivity towards 
corticosteroids in CD4+ T cells that were derived from SR-asthma patients (132). A 
further potential treatment role of vitamin D was elegantly illustrated by studies 
that showed that vitamin D deficiency is associated with decreased steroid 
responsiveness in asthmatics and by the fact that several potential underlying 
mechanisms of SR such as oxidative stress and Th17-mediated inflammatory 
responses could be reversed by vitamin D treatment (55, 133-138). Interestingly, 
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the corticosteroid dexamethasone was shown to increase expression of the vitamin 
D degrading enzyme CYP24A1 in renal cells and osteoblasts (139), which suggests a 
bidirectional interaction between corticosteroids and vitamin D and could further 
limit its bioavailability for patients. Additional research is needed to determine if 
vitamin D may also improve corticosteroid responsiveness in COPD.   

Vitamin D and exacerbations in COPD 
Exacerbations are a major burden for COPD patients, they accelerate decline in lung 
function and frequently result into hospital admissions (140, 141). Exacerbations 
are often triggered by pollutants or by bacterial- and/or viral infections (80, 142, 
143). COPD patients generally have lower serum 25(OH)D-levels than age- and 
smoking-matched controls, which is associated with more and more severe 
exacerbations (8, 10). Several in vivo and in vitro studies have provided evidence 
that explain the protective effects of vitamin D on exacerbations in COPD patients 
and this will be discussed accordingly.  

Air pollution  
First of all, Pfeffer and colleagues showed that 25(OH)D and 1,25(OH)2D reduce the 
production of proinflammatory cytokines in part via the ability to enhance 
antioxidant responses in airway epithelial cells that were exposed to PM (55). This 
was also demonstrated in human DCs that were matured in presence of PM, where 
treatment with 1,25(OH)2D counteracted the expansion of proinflammatory IL-17A+ 
and IFN-γ+ Th17.1 cells (136). In line with this, Bolcas et al., showed that vitamin D 
supplementation counteracted the development of airway hyperresponsiveness 
and accumulation of Th2/Th17 cells in mice that had been repeatedly exposed to 
both diesel exhaust and house dust mite allergens (144). Vitamin D could therefore 
exert a protective role in air pollution-triggered exacerbations.  

Respiratory viral infections 
In addition to its protective effects against pollutants, there is also increasing 
evidence that vitamin D may enhance clearance of respiratory viral infections that 
account for 30-50% as underlying cause of exacerbations in COPD patients (145). 
Infections with respiratory viruses such as HRV, coronaviruses and to a lesser 
extend respiratory syncytial virus (RSV) and (para)influenza virus are present during 
exacerbations and may predispose the host towards secondary bacterial infections 
that can eventually lead to uncontrolled bacterial outgrowth, more severe 
exacerbations and neutrophilic inflammation (145, 146). Two recent in vitro studies 
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showed that acute exposure to relatively high doses (100 - 1000 nM) of 1,25(OH)2D 
reduced HRV-infection in undifferentiated cultures of airway epithelial cells  (56, 
147). In those models, vitamin D most likely interfered with viral replication by 
increasing expression of interferon-stimulated genes and expression of hCAP18/LL-
37, which has been shown to have direct antiviral activity (56, 147, 148). In fully 
differentiated airway epithelial cells, treatment with lower concentrations of 
1,25(OH)2D (10 nM) during epithelial differentiation had no effect on acute HRV 
infection (149). As for other viruses than HRV, both Hansdottir et al. and Telcian et 
al. showed that vitamin D did not decrease RSV infection in airway epithelial cells, 
but did reduce virus-induced inflammatory responses  (56, 117). In addition, two 
other studies reported in influenza (H9N2 and H1N1)-infected A549 cells 
comparable findings (150, 151). Moreover, inhibitory effects of vitamin D on 
poly(I:C)-induced inflammatory responses were furthermore confirmed in primary 
airway epithelial cells Hansdottir et al. and by our group  (38, 83). Up to now, the 
afore mentioned studies suggest that higher doses of vitamin D might be protective 
against HRV-infections in undifferentiated airway epithelial cells only, whereas for 
other respiratory viral infections vitamin D mainly reduces inflammatory responses 
without affecting viral clearance. However, more studies are needed, especially in 
differentiated airway epithelial cells using multiple HRV-serotypes that use 
different receptors for infection to verify if vitamin D indeed is capable of promoting 
HRV-clearance. There is more consensus about vitamin D reducing virus-induced 
inflammatory responses and this may certainly help to alleviate the burden of 
exacerbations in COPD (38, 83).  

Bacterial infections  
In addition to viral infections, also bacterial infections are associated with COPD 
exacerbations and account for approximately 50% of all exacerbations (152). Due 
to improved study design and sampling techniques from the lower airways using 
bronchoscopy in recent decades, the causative role of bacteria in COPD-related 
exacerbations has become clear (152). This was additionally supported by Sethi et 
al., who found that acquisition of a new strain of pathogenic bacterial species into 
the airways was linked to COPD exacerbations (153). Recent developments in 
assessing the airway microbiota using 16S rRNA sequencing techniques further 
demonstrated that during exacerbations, the relative abundance of Haemophilus, 
Pseudomonas, and Moraxella was increased and the microbial composition was 
shifted towards the Proteobacteria phylum (143). The ability of vitamin D to 
promote antibacterial activity was recently demonstrated in cultures of airway 
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epithelial cells. In differentiated airway epithelial cells, we have shown that vitamin 
D treatment enhances epithelial expression of hCAP18/LL-37 and antibacterial 
activity against NTHi, a Gram-negative bacterium, which is associated with COPD 
exacerbations (57, 154). In addition, Yim et al. demonstrated that vitamin D 
treatment increased expression of the AMP hCAP18/LL-37 and killing of 
Pseudomonas aeruginosa and Bordetella bronchiseptica, which are both Gram-
negative bacteria (155). These observed antibacterial effects of vitamin D on airway 
epithelium in vitro were recently confirmed in vivo by Vargas Buonfiglio et al.. The 
authors demonstrated that vitamin D supplementation increased antimicrobial 
activity against the Gram-positive Staphylococcus aureus in ASL in healthy non-
smokers and was dependent on presence of hCAP18/LL-37 (59). 

In murine airways, studies showed no effects of vitamin D on the expression of 
Defb4 or mCramp (the murine homologue for CAMP) (156). This can be explained 
by the fact that both the promotors of mCramp and Defb4 lack VDREs, suggesting 
that mice might not be suitable for studying the role of vitamin D in AMP-mediated 
host defense in infection (157). Indeed, Niederstrasser and colleagues showed no 
effects of vitamin D deficiency on the susceptibility of mice to pulmonary infection 
with Streptococcus pneumoniae or Pseudomonas aeruginosa (158). However, in a 
recently developed mouse model by Lowry et al., who transfected mCramp 
knockout mice with the human CAMP gene, topical vitamin D treatment increased 
expression of CAMP and promoted antibacterial effects on the mucosa of the skin 
(159). There are also multiple other murine studies that demonstrate protective 
effects of vitamin D on bacterial infections in the gut, indicating that vitamin D-
mediated antibacterial effects are additional modulated by other mechanisms such 
as via enhancement of epithelial barrier integrity (64, 160). In conclusion, these 
observations show that vitamin D promotes protection against pollutants and 
enhances clearance of viral– and bacterial infections (both Gram-positive and 
negative bacteria) in combination with a dampening effect on exaggerated immune 
responses and these features might explain why vitamin D (deficiency) is linked to 
COPD exacerbations.  

Modulation of microbiota by vitamin D 
There are strong indications that modulation of immune responses and 
antibacterial activities by vitamin D and/or vitamin D-regulated AMPs as well as 
autophagy have implications for the composition of the microbiota at the epithelial 
mucosa of the airways and the gut (161). Evidence for a role of AMPs in regulating 
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the composition of the microbiota in the gut came from a variety of studies, 
including those showing that Paneth cell-derived defensins may modulate the 
composition of the microbiome (162). This notion is further supported by 
observations showing that many commensal gut bacteria are protected from killing 
by AMPs such as the vitamin D-inducible hCAP18/LL-37 and hBD-2, whereas 
pathogens are in general more sensitive (163). Alterations in the gut microbiota 
have been linked to many diseases of the gut such as IBD but also with diseases 
affecting the lungs such as COPD and asthma, implicating an important role for the 
so-called gut–lung axis (164, 165). The mechanisms that explain how gut microbiota 
affect lung health and disease are complex and include the production of short 
chain fatty acids (SCFAs). SCFA have a wide range of effects on both immune and 
structural cells, and the effect of SCFA produced in the intestine on lung immunity 
may in part be explained by modulation of myeloid cells in the bone marrow, which 
subsequently migrate to the airways and modulate local immune responses (165). 
Microbiota that are diverse, rich and contain a higher abundance of SCFA-producing 
species within these populations are considered to be associated with health (166). 
In the gut there is strong evidence that both vitamin D deficiency and/or 
supplementation affect composition of the adult and infant microbiota (166, 167), 
specifically in relation to disease (168). However, due to the limited number of RCTs 
and small sample sizes, the precise effects on the microbiota and the mechanisms 
involved in this are still unclear (166). Alterations in the lung microbiota are also 
observed in COPD and asthma patients and are likely the result of environmental 
exposures, airway remodeling, infections and treatments such as the use of 
antibiotics. This may contribute to disease pathogenesis through altered epithelial 
innate and adaptive immune responses that damages the airway epithelial barrier 
and provokes further changes in the lung microbiome that accumulates with 
increasing disease severity (169, 170).  To date only 2 studies describe a possible 
influence of vitamin D on composition of the microbiota in the airways (171, 172). 
Toivonen et al. showed an association between low serum 25(OH)D-levels and 
reduced richness of the nasopharyngeal microbiota and bronchiolitis severity in 
patients with low 25(OH)D-levels (171), whereas in another study vitamin D 
supplementation decreased the abundance of Staphylococcus aureus, 
Staphylococcus epidermidis and Corynebacterium species in sputum samples in 
vitamin D-deficient CF patients compared to sufficient CF patients (172). In 
summary, there is evidence that alterations in the airway or gut microbiota can 
affect chronic airway disease and that these changes could be related to both 
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vitamin D deficiency and/or supplementation. However, due to the limited number 
of RCTs and small sample sizes more RCTs are needed in larger patient populations. 

 

Effect of vitamin D supplementation on chronic airway diseases 

COPD  
The above described protective and therapeutic possibilities of vitamin D, together 
with observations that many COPD patients are vitamin D deficient, suggest that 
COPD patients might benefit from vitamin D supplementation. As discussed 
elsewhere in this review, the link between circulating 25(OH)D-levels and the 
number of exacerbations has been extensively studied (8). So far however, only 4 
RCTs have investigated the effect of vitamin D supplementation in the context of 
COPD: only 2 out of 4 RCTs showed that vitamin D supplementation reduces the 
number of exacerbations (173-176). However, in a post-hoc analysis, selecting 
those patients that were vitamin D deficient, exacerbations were indeed reduced 
after vitamin D supplementation. Jolliffe et al. summarized these 4 RCTs and 
performed a recent individual participant data meta-analysis and concluded that 
vitamin D supplementation is only protective against exacerbations in COPD 
patients with baseline serum 25(OH)D levels < 25 nmol/L (177). These important 
findings suggest that exacerbations in this specific subset of COPD patients are 
connected to vitamin D deficiency and this part can be resolved with 
supplementation. In summary, the protective effects of vitamin D in patients 
suffering from COPD are most prominent in those with vitamin D deficiency and 
this would indicate that serum levels 25(OH)D in these patients should always be 
determined before considering using vitamin D supplementation. Since only 4 RCTs 
with relatively small patient populations have been conducted in both vitamin D-
sufficient and -deficient COPD patients, more RCTs are needed, especially in vitamin 
D-deficient patients. Currently, a multicenter RCT is being conducted by Rafiq and 
colleagues in a group of vitamin-deficient COPD patients (25(OH)D < 50 nmol/L), 
which may reveal whether vitamin D is indeed protective against exacerbations in 
this group (178).  
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Vitamin D supplementation in asthma, cystic fibrosis and acute respiratory 
tract infections 
In addition to the effects of vitamin D supplementation in COPD patients, the 
effects of vitamin D supplementation has also been extensively investigated in 
other lung diseases (which have associations with vitamin D deficiency) such as 
asthma, cystic fibrosis, upper respiratory tract infections. Most RCTs that 
investigated the effects of vitamin D supplementation were performed in acute 
respiratory tract infections (ARTIs) and asthma. A recent meta-analysis that 
assessed the effects of vitamin D supplementation in 25 RCTs (11 321 participants) 
showed that indeed vitamin D supplementation was protective against ATRIs and 
this effect was again more profound in patients with vitamin D deficiency 25(OH)D 
< 25 nmol/L at baseline (179). A recent meta-analysis in asthma that included a total 
of 14 randomized controlled trials (1421 participants), indicated that vitamin D 
supplementation reduced the rate of asthma exacerbations and increased lung 
function, especially in patients with vitamin D insufficiency (25(OH)D < 75 nmol/L) 
(180). Interestingly, in asthma patients that were supplemented with vitamin D, the 
frequency of respiratory infections was reduced, and this effect was related to the 
increase of hCAP18/LL-37 (181). CF patients with vitamin D deficiency had a higher 
rate of exacerbations as compared to patients with sufficient vitamin D levels (182). 
However  only one recent multicenter RCT was conducted and indicated that 
vitamin D supplementation did not affect the number of exacerbations in CF 
patients with serum 25(OH)D concentrations between 25 and 137.5 nmol/L (183). 
In summary, the protective effects of vitamin D supplementation in patients 
suffering from COPD, asthma or ARTIs are most prominent in those with vitamin D 
deficiency and this would indicate the importance of establishing  serum levels 
25(OH)D in these patients as supplementation could reduce unnecessary 
aggravated disease pathology as a result of this deficiency.  
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Conclusion and Perspectives 
 

Many drivers of COPD pathogenesis such as chronic exposure to noxious particles 
and gases, which are present in CS and air pollution, proteolytic enzymes, cytokines 
and chemokines that are released by infiltrating inflammatory cells, are known to 
harm the epithelial barrier and cause aberrant remodeling of the airway epithelium 
with important functional consequences for e.g. host defense. A dysfunctional 
epithelial barrier increases the susceptibility towards bacterial and viral infections, 
which are important triggers of COPD exacerbations and these exacerbations 
contribute importantly to disease progression. Sufficient levels of vitamin D may 
provide partial protection against these effects by reducing the effects of oxidative 
stress induced by exposure to inhaled oxidants or those derived from recruited 
inflammatory cells. Vitamin D furthermore protects against impairment of 
epithelial barrier function by promoting the integrity of the epithelial barrier, and 
by modulating both innate and adaptive immune responses. Protection against the 
detrimental effects of both bacterial and viral infections is provided by the ability 
of vitamin D to promote of antiviral responses, induce expression of AMPs and 
modulate of inflammatory responses. Taken together, these activities suggest that 
vitamin D may provide protection against development and progression of COPD, 
and against disease exacerbations. 

In addition, the local inflammatory milieu as well as the chronic exposure to noxious 
particles and gases, which are present in CS and air pollution, may negatively affect 
vitamin D bioavailability and signaling. Here we discussed the recent in vitro studies 
that demonstrated that disease-associated factors such as inflammation and 
exposure to CS and air pollution could interfere with vitamin D signaling and its 
degradation and activation by affecting expression of VDR, CYP24A1 and CYP27B1 
respectively. These findings indicate that vitamin D bioavailability and the 
protective effects of vitamin D on the airway mucosa might be impaired especially 
in patients with COPD with elevated exposures to cigarette smoke and cytokines 
such as TNF-α, IL-1β, IL-17A and TGF-β1. This suggests that even in patients with 
sufficient vitamin D serum levels the local activity of vitamin D in the lungs can be 
improved. We have to start generating more information on both systemic and 
local bioavailability of vitamin D and gene expression signatures related to vitamin 
D metabolism or vitamin D responses in COPD (and other chronic inflammatory 
diseases that are related to vitamin D deficiency), both at baseline and after vitamin 
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D supplementation. This information could lead to improved treatment strategies 
that enhance local efficacy of vitamin D, using e.g. specific CYP24A1-inhibitors such 
as VID400 (184). Alternatively, degradation by CYP24A1 could be prevented by 
using 1,25(OH)2D analogs that are insensitive to CYP24A1-mediated degradation, 
such as sulfone and sulfoximine derivatives, that also act as a VDR agonist (185). A 
third option is to entail the use of combination treatment with vitamin D and anti-
inflammatory or certain anti-fibrotic drugs that target cytokines/proteins that are 
known to potentially decrease bioavailability of vitamin D by inducing expression 
of CYP24A1 (48, 186, 187). When considering such strategies, it should be noted 
that these may enhance the calcemic side effects and lead to unwanted inhibition 
of the immune system. We therefore need to carefully analyze the preclinical in 
vivo and in vitro studies and balance the pros and cons of the different strategies. 
In conclusion, future studies in COPD and but also in other chronic inflammatory 
diseases that are related to vitamin D deficiency, should be designed with more 
focus on assessing and improving local bioavailability of vitamin D. These new 
insights may lead to the development of new treatment strategies, such as those 
targeting CYP24A1 to enhance local bioavailability of vitamin D resulting in 
improved homeostasis and protection of the airway mucosa in patients with 
chronic inflammatory lung diseases. 
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