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1| Introduction

At the dawn of time,
who was there to transmit the ‘Dao’?

When the shape had not been stabilized,
by which means they could be explored?

The darkness and light are in chaos;
who could dive into the mysteries?

For this unique existence from nothing,
how to identify its pheno?

Inquiries of Heaven
Qu Yuan

(c. 340–278 BC)



2 Introduction

In the past one hundred years, our understanding of the Universe has
been tremendously improved. Cosmology, shifting away from speculative
tones of philosophy and theology, has become a solid scientific subject,
which can be analysed quantitatively and tested via precise experiments.
The current research reveals that our Universe originated from the Big Bang
13.8 billion years ago and keeps expanding from then on. Furthermore not
only the evolution history of the Universe, but also the matter distribution
within it, can be described by scientific methods. With the latest advances,
it has also become possible for the human being to give a natural and simple
explanation for the origin of the Universe.

In the history of modern cosmology, the developments of fundamen-
tal physics played an important role. At the beginning, General Relativity
reformulated our view of spacetime and provided the mathematical frame-
work for describing the expansion of the Universe, which initiated the mod-
ern advance of cosmology. Later on, the hot Big Bang theory was con-
structed with the help of nuclear physics, thermodynamics and statistical
physics. More significantly, the recent developments in Quantum Field The-
ory (QFT) have renovated our understanding for the origin of the Universe.
The most important progress in this direction is the proposal of cosmic in-
flation as a possible consequence of QFT at extremely high energy scales
of the primordial Universe [1–6]. This theory, positing an exponentially ex-
panding phase at the very beginning of the Universe, successfully explains
the very fine-tuned initial conditions of the hot Big Bang cosmology. More-
over, during inflation vacuum fluctuations of quantum fields are expected
to generate seeds for galaxy formation, which explains the origin of cosmic
structures. Thus there has been great theoretical interest in the inflation
scenario in the past several decades.

On the other hand, the last century has also witnessed a rapid revo-
lution in astronomy, which greatly changed the situation of observational
cosmology. Now we have more and more data coming from various cosmo-
logical observations, which lead us into the era of precision cosmology. In
particular, measures of temperature fluctuations in the cosmic microwave
background (CMB) have provided a clean window for looking into the pri-
mordial perturbations generated in the very early Universe. As being tested
by the CMB data more and more precisely [7, 8], cosmic inflation has been
established as the leading paradigm of primordial cosmology. Furthermore,
the upcoming experiments of large scale structure (LSS) surveys are ex-
pected to reveal more information about the early Universe in the near
future.
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Despite of the phenomenological success of inflation, it has also been
realised for many years that there are some theoretical challenges, as it
is notoriously difficult to embed inflation in more fundamental theories.
Meanwhile, the idea of Effective Field Theory (EFT) provides a constructive
approach, where the underlying microscopic details become irrelevant and
an effective description may demonstrate the interesting physics in a model-
independent way. Because of the high energy scale during inflation, typically
we expect there would be some new physics, which may leave imprints in the
primordial perturbations and become testable in cosmological observations.
This line of thinking leads us to take inflation as a natural laboratory for
probing fundamental physics at extremely high energy scales.

This thesis is a contribution to the hunting for new physics in the pri-
mordial Universe. One goal here is to trace observable effects in theoret-
ically consistent theories of inflation. In particular I will dive into infla-
tion with curved field spaces, which are generally expected in high energy
physics theories. On the other hand, there will be also phenomenological
studies directly motivated by observations. Here the main focus goes to one
particularly important observable – primordial non-Gaussianity, which is
expected to be a powerful tool for testing new physics effects.

The outline of the introduction is organized as follows. In Section 1.1,
I will briefly review how new discoveries in fundamental physics have re-
formulated our understanding of the very early Universe. In particular, I
will first introduce inflationary cosmology, including its historical origin,
current status, and possible issues. Next, I will introduce the developments
of cosmological perturbation theory and connections with astronomical ob-
servations. Section 1.2 turns to test new fundamental physics through pri-
mordial cosmology and focuses on two major frameworks. Firstly there will
be a bird’s eye review of multi-field inflation with a focus on the effects of
curved field spaces. Next, I will present the idea of EFT and its applica-
tions in inflationary cosmology. After that there will be discussions on the
current status and future directions. In the end the structure of the thesis
will be outlined in Section 1.3. In this introduction, we use natural units
with ℏ = c = 1 and set the Planck mass as Mpl ≡ (8πG)−1/2.

1.1 From fundamental physics to primordial cosmology

The advance of modern cosmology started from the theory of General Rel-
ativity which was proposed by Albert Einstein in 1915 [9]. This gravity
theory suggests we live in a curved spacetime, while for our Universe on
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the largest scales, the geometry can be described by a flat, homogeneous
and isotropic Robertson-Walker metric

ds2 = −dt2 + a(t)2
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
, (1.1)

where a(t) is the scale factor reflecting the expansion or contraction of the
space. In 1927, Lemaître proposed the recession behaviour of galaxies in
an expanding Universe [10], which was confirmed by Hubble’s observation
two years later [11]. After that the expansion of the Universe is established,
and the expansion rate is characterized by the Hubble parameter H ≡ ȧ/a,
where the dot denotes derivative with respect to the cosmic time t. Then
from the Einstein field equation, one can derive the following Friedmann
equations [10, 12]

3H2M2
pl = ρ, (1.2)

M2
plḢ = −1

2
(ρ+ p) . (1.3)

This setup, also known as the Friedmann-Lemaître-Robertson-Walker (FLRW)
model, provides a quantitative description for the background dynamics of
the Universe.

One particularly important solution of the Friedmann equations is the
de Sitter spacetime, which was proposed by Willem de Sitter in 1917 [13, 14].
There an unconventional matter content with negative pressure p = −ρ
drives the Universe to expand exponentially a(t) ∝ eHt. As we will discuss
later, a potential-dominated vacuum energy in QFT may lead to this type
of accelerating expansion, which plays an important role in the modern
studies of primordial cosmology.

With information of the density ρ and pressure p of the matter com-
ponents, we can reconstruct the expansion history of our Universe. Later
the hot Big Bang theory proposed that our observable Universe originated
from a small patch with a hot and dense state. Since the energy scales are
extremely high in the early Universe, elementary particles are unbounded
and nuclear physics effects become dominant. After the first several min-
utes of the Big Bang, free neutrons and protons formed the nuclei of light
elements, which is called the Big Bang Nucleosynthesis (BBN) [15]. As the
Universe expands and cools, nuclei and electrons were combined to form
neutral atoms around 380000 years later. As a result, photons can travel
freely through space from then on, and some of them remain in today’s
Universe. This relic radiation forms the so-called called cosmic microwave
background (CMB).
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The time evolution of the Universe is shown in Fig. 1.1 with energy
scales. Both BBN and CMB, as the landmark predictions of the hot Big
Bang theory, have been confirmed by observational experiments. In partic-
ular, astronomers precisely measured the light element abundance of BBN
and the temperature of black body radiation from the CMB, which provides
strong supporting evidence of the Big Bang origin of the Universe.

Figure 1.1: The evolution history of the Universe with energy scales. (EWPT, LHC and
inflation will be discussed in the following sections.)

In spite of these successes, some unsolved puzzles remain in the hot Big
Bang theory. The most famous one is the so-called horizon problem. In the
Big Bang cosmology, the casually connected area of the Universe was much
smaller than the physical size of today’s observable Universe in the early
times. This means that the homogeneous matter distribution we observe
today were not correlated at the very beginning. Thus it is confusing why
different casually disconnected areas shared the same properties during the
Big Bang.

Another puzzle is the flatness problem, which questions why the spatial
curvature of our Universe is negligible today. Since it is more natural to
have a spatially curved Universe after the Big Bang expansion, the current
observations of a zero spatial curvature may need fine tuning of the initial
conditions. In addition, although the Universe is homogeneous and isotropic
on the largest scales, there are also cosmic structures such as clusters, galax-
ies and stars. Their origin and distribution remain unexplained. In essence,
these puzzles are all related the initial conditions of the Universe, which
indicates that there may be an earlier phase before the hot Big Bang.

Meanwhile, if we go further back in time, and consider even earlier
stages of the Universe, the energy density becomes much higher than the
scale of particle colliders on earth, and the size of the observable Universe
enters the unknown microscopic regime. According to our understanding of
elementary particles in the subatomic world, quantum fields are expected
to play an important role in this extreme environment. This consideration
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led to studies on cosmic phase transitions and later the development of
inflationary cosmology, which will be elaborated on in the following sections.

1.1.1 Cosmic inflation

Inflation was first introduced to solve the puzzles of the Big Bang cosmology
in early 1980s by Alan Guth [1]. It assumes that around the initial 10−36

seconds, the Universe undergoes a quasi-de Sitter expansion. This expo-
nentially accelerating period expands the Universe at least e60 times larger,
and thus dilutes away the unwanted relics and possible spatial curvature at
the very beginning. Meanwhile, as a result of the rapid accelerating expan-
sion, the observable Universe today all comes from one casually connected
region at the beginning of inflation. Therefore by the end of inflation, a
flat, homogeneous and isotropic initial condition was naturally given for
the following Big Bang expansion.

Historically inflation was also proposed as one possible consequence of
QFT in the very early Universe. Here we will first review the early devel-
opments of inflation theory from the perspective of spontaneous symmetry
breaking and cosmic phase transitions, and then move to its standard sce-
nario and remaining issues.

1.1.1.1 Cosmic phase transition and inflation

Spontaneous symmetry breaking (SSB) is one of the most profound concepts
in modern QFT. It corresponds to the situation where the theory obeys a
certain symmetry, but the system in the lowest-energy vacuum state does
not respect the same symmetry. One simple example is the breaking of a
U(1) symmetry in the following theory of a complex scalar field

L = −1

2
∂µϕ

∗∂µϕ− λ(ϕ∗ϕ− v2)2 (1.4)

where the potential has a Mexican hat form as shown in Fig. 1.2. As the
minima of the potential are located at |ϕ| = v, there are an infinite number
of vacua in this theory. For each vacuum state, for instance ϕ = v, it is
no longer invariant under the U(1) symmetry. Meanwhile it is convenient
to parametrize the complex field as ϕ = ρeiθ. Then we find the radial
field ρ is massive, and the angular direction θ turns out to be massless.
This massless mode, or the angular direction in the circle of the minima, is
called a Goldstone field, which is naturally associated with a shift symmetry
θ → θ + const..
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Figure 1.2: Mexican hat potential and SSB.

The concept of SSB played a central role in the construction of the
Standard Model of particle physics, where a Higgs field is introduced to
spontaneously break the gauge symmetry SU(2)×U(1) of the electroweak
theory and unify the electromagnetic and weak interactions. Soon after, it
was realized that the SU(2)×U(1) symmetry should be restored in the early
Universe. As the energy is higher in the earlier stages, the finite-temperature
effects in QFT will change the form of the Mexican hat potential, and the
minimum is expected to become the point at the origin which respects
the symmetry. Therefore, when the temperature goes down as the Universe
expands, there should be a phase transition process in the early stage which
evolves from the symmetric phase to the broken phase.

In the Standard Model of particle physics, the electroweak phase tran-
sition (EWPT) is not expected to dramatically change the course of the
Big Bang expansion. However, there may be significant consequences if we
consider another SSB process for a larger symmetry group which can unify
the electroweak theory with the strong interaction with SU(3) symmetry
as well. This hypothetical theory, called Grand Unified Theory (GUT), al-
though has not been verified in experiments, may lead to a drastic phase
transition in the very early Universe.

The first proposal of cosmic inflation was realized in the first-order phase
transition of a GUT theory. There at the beginning the scalar field, which is
also called the inflaton, is supposed to be at the local minimum ϕ = 0. This
is a false vacuum as shown in the left panel of Fig. 1.3. As a consequence,
the nonzero vacuum energy with ρvac ≃ V and negative pressure pvac ≃ −V
becomes dominant, which drives the de Sitter expansion of the Universe.
Then as the Universe inflates, vacuum decay happens and the inflaton field
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will move to the true minimum at the bottom of the potential via quantum
tunnelling, initiating the following hot Big Bang expansion.

This first scenario was later named as “old inflation”. However, this idea
does not work, since a graceful exit from inflation is not provided here. As
the vacuum decay leads to bubbles of the true vacuum in the Universe, the
de Sitter expansion stops inside the bubbles, but still keeps going elsewhere.
As a result, bubbles may never collide with each other to end inflation in
the whole Universe.

Figure 1.3: “Old inflation” (left) and “new inflation” (right) on cross-section profiles of the
Mexican-hat-type potentials.

Soon after, the graceful exit problem was solved in the “new inflation”
scenario proposed by Andrei Linde [2]. Instead of the first-order phase tran-
sition process with bubble nucleation in the old inflation, here a continuous
GUT phase transition is considered. As shown in the right panel of Fig. 1.3,
the scalar field rolls on a Coleman-Weinberg potential without barriers. Due
to the effects of Hubble friction, the field velocity turns out to be quite slow,
and the energy is dominated by the potential. As a result, a quasi-de Sitter
expansion is provided and inflation gracefully ends in the whole Universe
as the inflaton slowly rolls to the true minimum of the potential.

1.1.1.2 Slow-roll inflation

After the idea of “slow-roll” was proposed, physicists found it is not neces-
sary to stick to GUT phase transitions, and many other models have shown
similar behaviour but are less constrained than the new inflation. In gen-
eral, they can be simply described by the following action with Einstein
gravity and a canonically normailzed inflaton field

S =

∫
d4x

√
−g

[
M2

pl
2

R − 1

2
(∂ϕ)2 − V (ϕ)

]
, (1.5)
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where the potential should satisfy the following slow-roll conditions

ϵV ≡
M2

pl
2

(
∂ϕV

V

)2

≪ 1 , |ηV | ≡ M2
pl
|∂ϕϕV |

V
≪ 1 . (1.6)

As a result, a quasi-de Sitter expansion is supposed to be driven by the
vacuum energy of the scalar field. This requirement, saying that the inflaton
potential should be sufficiently flat, can be equivalently parameterized by
using the Hubble slow-roll parameters as

ϵ ≡ − Ḣ

H2
≪ 1, η ≡ ϵ̇

ϵH
≪ 1 . (1.7)

It turns out that this slow-roll dynamics is an attractor in the phase space
(ϕ, ϕ̇), where non-slow-roll conditions will converge to it rapidly. Here the
smallness of the first slow-roll parameter ϵ ensures that the kinetic energy
of the inflaton is much smaller than the potential, such that accelerating
expansion can happen, while η ≪ 1 guarantees inflation will not end pre-
maturely. This class of models are named as single field slow-roll inflation.
Since current observations are in favor of these simplest models, they are
regarded as the standard scenario of inflation.

In recent years, more accurate CMB data indicates a hierarchy between
slow-roll parameters ϵ ≪ η. This has led to stronger constraints on slow-
roll potentials, where inflating on a concave plateau is more favoured by
observations. As a result, a subclass of slow-roll models with plateau-like
potentials have been extensively investigated lately. Famous examples here
include Starobinsky inflation [3], Higgs inflation [16] and α-attractors [17,
18].

1.1.2 Possible issues

From the phenomenological perspective, single field slow-roll scenario is
very successful. Meanwhile its theoretical construction relies on the ultra-
violet (UV) physics at higher energy scales. If we seriously look into these
inflation models in a consistent UV theory, typically they turn out to be
problematic [19]. Here I list several difficulties faced by the UV-completion
of inflation and also some generic lessons that we can learn from these
theoretical challenges.

1.1.2.1 η-problem

The most well-known challenge for single field slow-roll models is the so-
called η-problem [20]. As the slow-roll parameter η is related to the mass
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of the inflaton field via ηV ≃ m2
ϕ/H

2, the second condition in (1.6) can
also be seen as a requirement that the Hubble parameter during inflation
should be much larger than the mass scale of the inflaton field. This is fine
if we only treat the scalar field at the classical level. However, in a complete
theory with quantum fields, the effects of radiative corrections should also
be taken into account. If we do so, the inflaton mass receives contributions
from loop diagrams which are typically around or larger than the Hubble
scale ∆mϕ ≳ H2. As a result of this large correction, the second slow-roll
condition will be violated

∆ηV ≃
∆m2

ϕ

H2
≳ 1, (1.8)

thus the inflaton potential can no longer stay sufficiently flat to sustain long
enough inflation.

Generally speaking, this is a problem for most of the slow-roll models.
As the characteristic energy scale during inflation is given by the Hubble
parameter, we expect there is always a hierarchy between H and mϕ in the
system, which may generically spoil the flatness of the slow-roll potential.
Therefore the η-problem can be seen as the hierarchy problem of inflation
and is essentially the same as the one of the Higgs field in particle physics,
where with a UV cutoff for new physics, the radiative correction to the
Higgs mass is expected to be much larger than the measured value in Large
Hadron Collider (LHC) 1.

In order to solve this problem and avoid a certain level of fine-tuning,
usually it becomes necessary to impose some symmetries for the inflaton
field. A concrete example is realized in natural inflation [21], where an
approximate shift symmetry of a pseudo-Goldstone field is introduced to
protect the flatness of the potential. We shall elaborate on this issue in
Section 1.2.2.3 where its connections with SSB and implications for the
effective theory will be discussed.

1.1.2.2 Swampland conjectures

If we care about the embedding of inflation within quantum gravity, there
have been some speculative criteria called swampland conjectures which
might tell whether a low-energy effective theory of inflation can emerge from

1According to the modern understanding of QFT, the hierarchy problem can be univer-
sal for scalar fields. In general spinor and gauge fields are protected by chiral symmetries
and gauge symmetries respectively, thus will not be affected by quantum corrections, but
this is not generically the case for scalar field theories.



1.1 From fundamental physics to primordial cosmology 11

UV-complete theories or not. Although rigorous proofs are still missing,
these conjectures may give some hints about theoretical constructions of
inflation models. Here are two famous examples:

• Swampland distance conjecture. To ensure the validity of the effective
description, the field excursion distance during inflation is conjectured
to be smaller than the Planck scale [22], i.e.

∆ϕ ≲ cMpl , (1.9)

where c is a O(1) constant. This is also related to the well-studied
Weak Gravity Conjecture [23] which has got indications from various
perspectives recently. If it is generally true, many inflation models
with super-Planckian field excursion (∆ϕ > Mpl) might be problem-
atic.

• Swampland de Sitter conjecture. This one supposes scalar field po-
tentials in consistent effective theories ought to satisfy the following
condition [24] ∣∣∣∣∇V

V

∣∣∣∣ ≳ 1

Mpl
O(1) . (1.10)

Basically it means the slope of the potentials should be quite steep.
Compared with the distance conjecture, the de Sitter conjecture is
in tension with all the single field inflation models, but it is also
controversial. So far there is still no solid supporting evidence from
quantum gravity theories.

1.1.2.3 Other challenges and alternatives to inflation

Besides the issues above, some other theoretical considerations may chal-
lenge inflationary cosmology as a whole. For instance, it has been shown
that in inflationary spacetimes geodesics are incomplete towards the past
direction, thus one expects a cosmic singularity [25]. On the other hand, the
physical wavelength of some quantum fluctuations during inflation can be
much smaller than the Planck length (trans-Planckian) at the beginning,
thus one may worry if the analysis of perturbation is valid [26]. These is-
sues, though not fatal, motivate us to also consider alternative paradigms
for the primordial Universe.

Bouncing cosmologies provide a simple solution for the singularity prob-
lem and the trans-Planckian problem [27, 28]. In this class of paradigms the
Universe was contracting at the beginning, and then transited to the Big
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Bang expansion through a bouncing phase. A particular example is called
matter bounce cosmology [29–31], where the contracting phase is dominated
by the pressureless matter. In Chapter 6, I will study the distinguishable
predictions from matter bounce models and also look into their difficulties.

1.1.3 Cosmological perturbation theory

Besides inflation, cosmological perturbation theory is another great achieve-
ment of primordial cosmology in the past several decades [32–34]. There a
natural and elegant explanation is given for the origin of inhomogeneous
structures in the Universe.

For the analysis of a perturbation mode k in a cosmic background, one
particularly important length scale is the Hubble radius H−1, which is also
the curvature scale of the FLRW spacetime. Since for the de Sitter Universe,
the Hubble radius is the size of the so-called event horizon as well, we also
refer it as the horizon scale in this thesis. When the physical wavelength of
this mode is larger than this scale, it is called “superhorizon” (a/k ≫ H−1);
correspondingly “subhorizon” refers to the regime where perturbations have
shorter wavelengths than this curvature scale (a/k ≪ H−1).

According to the cosmological perturbation theory, microscopic quan-
tum fluctuations during inflation were stretched outside of the horizon by
the rapid accelerating expansion (which is called horizon-exit), and then the
primordial perturbations were generated. After inflation, these tiny inho-
mogeneities re-entered the horizon, which led to the anisotropies of temper-
ature fluctuations in the CMB, and also provided the seeds for macroscopic
objects like galaxies and clusters. We briefly introduce the basic formulation
here with the standard results of single field slow-roll inflation.

1.1.3.1 Primordial perturbations

In the primordial Universe, there are two types of metric perturbations
that are relevant to today’s cosmological observations. The first one is the
curvature perturbation R(t,x), which is the scalar component in the per-
turbed metric; while the second one are the tensor modes, also known as
the primordial gravitational waves hij(t,x).

During inflation, the curvature perturbation is generated by the quan-
tum fluctuations of the inflaton field δϕ. At the beginning these fluctuations
are in the subhorizon regime and do not feel the spacetime curvature, thus
they are well described by the vacuum state as in the flat spacetime, which is
called the Bunch-Davies initial condition. As inflation stretches these fluctu-
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ations exponentially, their physical wavelengths become superhorizon, and
a quantum-to-classical transition happens. After this horizon-exit process,
the inflaton fluctuations acquire a typical size of δϕ = H/(2π). This sources
the generation of primordial curvature perturbation on superhorizon scales
with a frozen amplitude R = H

ϕ̇
δϕ.

More specifically, one may begin with perturbing the action (1.5) of
slow-roll inflation, and then derive the quadratic action of scalar perturba-
tions

S2 =

∫
d4xa3ϵ

[
Ṙ2 − 1

a2
(∂iR)2

]
. (1.11)

As we see, there is no mass term for R, which indicates its conservation on
superhorizon scales. It is more convenient to work with the Fourier mode
in momentum space. After canonical quantization and solving the linear
equation of motion, we derive the following approximate solution for the
mode function in the de Sitter limit

Rk =
H√
4ϵk3

(1 + ikτ)e−ikτ , (1.12)

where τ is the conformal time defined by dτ ≡ dt/a(t). This provides a good
description for both the Bunch-Davies vacuum state Rk ∼ 1/

√
k inside the

horizon (−kτ ≫ 1) and the superhorizon evolution Rk ∼ k−3/2 (−kτ ≪ 1).
A similar story goes for the generation of primordial gravitational waves:

during inflation tensor fluctuations are also stretched to macroscopic scales
and freeze after horizon-exit. But here the tensor perturbations hij(t,x)
come from the vacuum of gravitons, instead of the inflaton fluctuations.
We may also write down its quadratic action

S2 =
M2

pl
4

∫
d4x a3

[
ḣij

2 − 1

a2
(∂khij)

2

]
, (1.13)

while the solution of the mode function follows as

hij =
iH√
2k3

(1 + ikτ)e−ikτeij (1.14)

where eij is the polarization tensor. As a result, a stochastic background of
gravitational waves is expected after inflation.

1.1.3.2 Cosmological observables from the primordial Universe

The statistics of primordial perturbations is well captured by the correla-
tion functions, which are also the major observational targets in today’s
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cosmological experiments. Here we list some of the important observables
for the primordial cosmology.

• Primordial power spectrum. The power spectra of perturbations, which
are the Fourier transformation of two-point correlation functions, are
the leading observables for the primordial cosmology. Again we use
single field slow-roll inflation as an example, then with the solution
(1.12) for the curvature perturbation, the prediction for its power
spectrum at the end of inflation becomes

PR(k) ≡
k3

2π2
|Rk|2 =

H2

8π2M2
plϵ

, (1.15)

where H and ϵ ought to be evaluated at the time of horizon-exit τ∗
of the k-mode given by k = aH (or −kτ∗ = 1 equivalently). This
spectrum is nearly scale-invariant, but taking into account the evolu-
tion of H and ϵ during inflation, we find it has a slight red tilt with
less power on smaller scales. Usually a spectral index is defined to
describe this mild scale-dependence

ns − 1 ≡ d lnPR
d ln k

= −2ϵ− η, (1.16)

where the definitions of the Hubble slow-roll parameters (1.7) have
been used to get the single field result. The prediction of a nearly
scale-invariant power spectrum from single field slow-roll inflation is
in agreement with the current CMB observations [7].
Similarly we can define the power spectrum of primordial gravita-
tional waves, and the single field slow-roll prediction follows directly

Pt(k) ≡
k3

2π2

∣∣h∗ij(k)hij(k)∣∣2 = 2H2

π2M2
pl

. (1.17)

This stochastic background of gravitational waves has not been de-
tected yet, which is the major target for the on-going and future
observational measurements on the B-mode polarization of the CMB
and also other gravitational wave experiments. Usually the tensor-to-
scalar ratio is defined to represent the amplitude of this spectrum

r ≡ Pt

PR
, (1.18)
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while its latest constraint comes from the Planck satellite r < 0.064
[7]. Also this power spectrum has a slight red tilt, and we define the
tensor spectral index as

nt ≡
d lnPt

d ln k
, (1.19)

which can be shown to equal −2ϵ in single field slow-roll models.

• Primordial non-Gaussianity. Power spectra can capture the proper-
ties of Gaussian statistics successfully, on the other hand, a wealth
of interesting information may exist in the non-Gaussian statistics
[35–38]. Thus after measuring the power spectrum, a lot of efforts
have been carried out in the studies of primordial non-Gaussianities.
Usually we look into higher order correlation functions for possible de-
viations from Gaussian distribution. One major observable here is the
primordial bispctrum of curvature perturbations, which is the Fourier
transform of the three-point correlation function

⟨Rk1Rk2Rk3⟩ ≡ (2π)3δ(3)(k1 + k2 + k3)BR(k1, k2, k3) . (1.20)

The three momenta must add up to zero by translation invariance and
therefore they form a triangle. As we can see here, the bispectrum can
have many possible shapes as functions of three momenta and also
overall sizes. Usually a shape function S(k1, k2, k3) is introduced to
represent the various templates, and for each shape there is a non-
linear parameter fNL describing the size of the non-Gaussian signal

BR(k1, k2, k3) =
18

5
fNLS(k1, k2, k3)P 2

R. (1.21)

The typical templates include local, equilateral and folded shapes,
while the size of the local non-Gaussianity has got the tightest obser-
vational constraint from CMB observations f local

NL = −0.9± 5.1.
Besides the shape function, another informative channel is the triangle
configurations of momenta, such as the squeezed limit with k1 ≪ k2 =
k3. The behaviours of the bispectrum at different triangle limits are
supposed to encode information about various physical effects during
inflation. One famous example is Maldacena’s consistency relation of
single field inflation, where the squeezed bispectrum is associated with
the scalar spectral index as follows [39, 40]

lim
k1≪k2=k3

BR(k1, k2, k3) =
(2π)4

4k31k
3
3

PR(k1)PR(k3)
d lnPR(k3)

d ln k3
(1.22)
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Since this result is caused by the gravitational interactions during in-
flation, it is expected to be the minimal amount of non-Gaussianity
generated, which is known as the gravitational floor. This relation
was supposed to be valid for all the single field inflation models with
Bunch-Davies vacuum. However, later a counterexample was con-
structed in non-attractor inflation [41–43]. Chapter 5 shall carefully
reexamine the violation of the consistency relation in this class of
non-standard models.

Although it is difficult to detect in observations, the rich phenomenol-
ogy of primordial non-Gaussianity makes it a very powerful tool to
probe new physics in the primordial Universe. In this thesis, besides
Chapter 5, Chapter 4 will study the imprints on the squeezed bispec-
trum from inflationary models with more complicated internal field
spaces, while Chapter 6 will investigate the non-Gaussian signals from
one alternative scenario to inflation.

• Other future opportunities. Current CMB observations show that pri-
mordial curvature perturbations on very large scales are nearly scale-
invariant and Gaussian, which is consistent with the single-field slow-
roll scenario. Meanwhile there are still many possibilities to deviate
from these standard predictions. One is called primordial features,
which correspond to deviations from the nearly scale-invariance of
the power spectrum, such as oscillating wiggles. Another possibil-
ity is called anomalies, which correspond to possible deviations from
the statistical isotropy of the primordial perturbations, such as hemi-
spherical asymmetry and cold spot indicated by the latest CMB data.
These observables, which will be further constrained by future CMB
and LSS experiments, provide opportunities for testing inflation from
different perspectives.

Finally, one recent topic is primordial black holes (PBHs) which are
hypothetical objects formed in the early Universe. Since they may
originate from enhanced curvature perturbations with wavelengths
much shorter than the cosmological scales today, one can also probe
the small-scale power spectrum via the tighter and tighter observa-
tional constraints on PBHs [44]. In order to generate PBHs which are
of observational interest, it is also important to investigate natural
mechanisms of amplifying curvature perturbations during inflation.
One attempt in this direction is the proposal of sound speed reso-
nance, where the small scale perturbations are efficiently enhanced
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by parametric resonance effects during inflation [45, 46]. It remains
an open question if this idea can be naturally realized in consistent
theories.

1.2 From primordial cosmology to fundamental physics

High energy physics aims to explore the fundamental laws of the microscopic
world, which contributes to the greatest ambition of theoretical physics –
a theory of everything, bringing together quantum mechanics and general
relativity. From the experimental perspective, the traditional approach to
high energy physics is using colliders to search for new particles. However
the energy scale that can be reached by LHC is around 1TeV which is
far below the Planck scale where quantum gravity effects are expected to
dominate. At the current stage, it also becomes more and more difficult to
achieve higher energy through particle collider experiments.

Figure 1.4: The interplay between fundamental physics and primordial cosmology.

Meanwhile, cosmology provides us a unique chance to peek into the new
physics effects. In the last section, we have seen how fundamental physics
tremendously changed the status of cosmology and helped with the devel-
opment of inflationary cosmology. Notably inflation may also provide the
highest energy scales in our Universe which can be probed via experiments.
In this sense, cosmic inflation can be seen as a natural high energy labora-
tory for testing fundamental theories. In the following I shall elaborate on
two major frameworks for this purpose.

1.2.1 Multi-field inflation in a nutshell

Although single field slow-roll models play the leading role in inflationary
cosmology, we should also notice that in high energy theories typically there
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are multiple fields. This leads to studies on multi-field inflation. One partic-
ularly interesting question is whether other fields would lead to observable
consequences. Furthermore, these additional fields and their interactions
with the inflaton are typically associated with particles, field space and
fundamental symmetries during inflation. In this sense, multi-field inflation
provides powerful techniques for us to study the effects of these interesting
physics.

Meanwhile, another motivation for studying multi-field inflation comes
from the theoretical challenges of single field models in more fundamental
theories. As we discussed in Section 1.1.2, these unsolved issues may put
constraints on the UV completion of single field inflation. While the η-
problem may be solved by assuming internal symmetries, it is still less
clear how to avoid the issues from swampland conjectures. Here multi-field
models may provide a natural solution [47, 48]. For instance, if the inflaton
trajectory is turning in a multi-dimensional field space, its geodesic distance
can remain sub-Planckian while the excursion range is larger than Mpl, and
inflating on a steep potential would also become possible because of the
centrifugal force.

In the following I will approach multi-field inflation via the covariant
formalism [49–53] and classify representative models into different regimes.
After that there will be general discussions on a recent topic in this direction
– inflation with a curved field manifold.

1.2.1.1 The covariant formalism

Figure 1.5: A generic inflaton trajectory with tangent and normal vectors in a two-dimensional
field space, and the corresponding perturbations π and σ along and orthogonal to the trajec-
tory respectively.

The starting point for many multi-field models is the following action
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with a set of scalar fields ϕa and Einstein gravity

S =

∫
d4x

√
−g

[
M2

Pl
2

R − 1

2
Gab(ϕ)g

µν∂µϕ
a∂νϕ

b − V (ϕ)

]
, (1.23)

where Gab(ϕ) is an internal field space metric. In a flat FLRW Universe,
the background equations of this system can be written as

Dtϕ̇a
0 + 3Hϕ̇a

0 + V a = 0 , 3H2 =
1

2
ϕ̇0

2
+ V , (1.24)

where Dt ≡ ϕ̇a∇a is the field space covariant derivative with respect to
cosmic time and Va = ∇aV is the gradient of the potential. Notice that the
latin field indices are manipulated with the internal space metric Gab, e.g.
V a = GabVb. The rolling motion of the inflaton forms a trajectory in the
multi-dimensional field space. Here let us consider the two-field case as a
simple example. As shown in Fig. 1.5, at each point of the trajectory we
can define the tangent and normal unit vectors

T a ≡ ϕ̇a

ϕ̇0

, Na ≡
√

detGϵabT
b , (1.25)

where ϕ̇0 ≡
√
Gabϕ̇

a
0ϕ̇

b
0 is the proper inflaton field velocity, and ϵab is the

Levi-Civita antisymmetric symbol with ϵ12 = 1. Now we can define one
particularly important parameter – the turning rate Ω of the trajectory as:

Ω ≡ −NaDtT
a (1.26)

Projecting the field equations of motion along the tangent and normal di-
rections, we get respectively

ϕ̈0 + 3Hϕ̇0 + VT = 0 , (1.27)

VN = ϕ̇0Ω , (1.28)

where VT = T aVa and VN = NaVa. The second equation shows the bal-
ancing between the centrifugal force and the gradient of the potential in
the normal direction. As we see here, if Ω = 0, which corresponds to the
situation the trajectory is a geodesic in the field space, the field dynam-
ics simply returns to the single field case. Thus for multi-field behaviour,
one major difference from the single field one is a nonzero turning rate (or
non-geodesic motion equivalently [52]).
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Now let us turn to the analysis of perturbations. There are two types
of scalar perturbations in multi-field inflation: the adiabatic perturbation
along the trajectory and the isocurvature perturbation σ orthogonal to
the trajectory. As shown in Fig. 1.5, the deviation along ϕa

0(t) can be
parametrized by a fluctuation in time π, which corresponds to the curvature
perturbation through R = Hπ. At the linear order, we can decompose the
field perturbations as

δϕa = δϕ∥T
a + σNa , (1.29)

where δϕ∥ = ϕ̇0π. Then the quadratic action in terms of curvature pertur-
bation R and σ can be derived as

S2 =

∫
d4xa3

[
ϵ

(
Ṙ − 2Ω√

2ϵ
σ

)2

− ϵ

a2
(∂iR)2 +

1

2

(
σ̇2 − 1

a2
(∂iσ)

2

)
− 1

2
µ2σ2

]
,

(1.30)

Here let us look into two important terms in this action. The first one is
the derivative interaction term Ṙσ. As we see, this term means that when
the trajectory has a nonzero turning rate, the two perturbation modes are
coupled to each other. As a result, there is conversion from isocurvature
to curvature perturbations on superhorizon scales. This is the key feature
of multi-field effects. On the other hand, generally the isocurvature modes
have a mass µ2. It can be expressed as

µ2 = VNN + ϵRH2 + 3Ω2 , (1.31)

where VNN = NaN b∇a∇bV and R is the Ricci scalar of the field space.
Thus there are three different contributions: the Hessian of the potential in
the normal direction, the field space curvature and the turning effect. This
mass term, which provides a new scale during inflation, plays an important
role in the studies of multi-field models. Based on the size of µ2 relative to
the Hubble scale, most of the models in the literature can be classified into
three different regimes.

• µ ≪ H. This is the regime with light isocurvature fields. Typically
this class of models can generate local type non-Gaussiantiy. Many
previous works, such as the curvaton scenario [54, 55], focus on the
situation where curvature and isocurvature perturbations are decou-
pled during inflation while the remaining isocurvature modes convert
into adiabatic ones in post-inflation stages. Another well-studied sit-
uation is the slow-roll slow-turn models with Ω ≪ H where R and σ
are weakly coupled.
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• µ ∼ O(H). This is the so-called quasi-single field regime with massive
isocurvature fields [56–58]. Usually with a nonzero Ω, the primor-
dial non-Gaussianity here has an intermediate shape between local
and equilateral configurations, and the squeezed limit of the bispec-
trum also demonstrates a rich phenomenology related to the new mass
scale. This regime has been extensively investigated in the framework
of cosmological collider physics [59] in the past several years. We shall
give more discussion about this direction in Section 1.2.3.

• µ ≫ H. This corresponds to the heavy field regime. In general, the
heavy field here can be integrated out and then one may get a single-
field effective theory with a reduced sound speed of the inflaton [52,
60–62]. The non-Gaussianity here has an equilateral shape as the
result of the sound speed effect.

1.2.1.2 The recent revival of interest: curved field space

For inflation model building, most of the previous efforts were focused on
the potential of the scalar fields, as it plays the central role of driving
inflation. Meanwhile, it is worth noticing that besides the potential, there
is another free function in the action (1.23) – the field space metric Gab. If
we consider inflation models from various UV theories, such as string theory,
supergravity or nonlinear sigma model (NLSM)2, typically they result in a
metric function with curved geometry. One particularly interesting question
is the role of this internal field space in inflation models.

This direction has drawn a lot of attention in the recent research of
multi-field inflation. For instance, it is shown that for models with a nega-
tively curved field manifold, a tachyonic instability caused by the field space
curvature may deflect the background trajectory near the end of inflation,
which is known as geometrical destabilization [63–67]. In another scenario
called hyperinflation [68–72], as a consequence of the hyperbolic geometry,
the multi-field evolution demonstrates a nontrival attractor behaviour on a
steep potential. The first part of this thesis mainly focuses on two classes
of models with curved field manifold. Here are some brief discussions.

The first one is the inflationary α-attractors [17, 18, 73–77]. Originated
from the so-called Kahler potential of supergravity theories, the hyperbolic
geometry plays a significant role in this class of models. There the inflaton
potential is stretched to be of the plateau-like form by the effects of the

2See Section 1.2.2.3 for discussions about the realization of a curved field manifold in
a NLSM.
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curved field space, and as a result various single-field models yield univer-
sal predictions on the spectral index and tensor-to-scalar ratio which are
favoured by the latest CMB observations. As the hyperbolic space has two-
dimensions, α-attractors are multi-field models in principle. Chapter 2 will
present the first two-field analysis and further demonstrate the role of the
curved field space there.

The second class is called the ultralight isocurvature scenario [78–82].
These models explore one particular corner of multi-field inflation, where
the additional field is massless and vigorously interacts with the infla-
ton. There the isocurvature modes freeze after horizon-exit, and source the
growth of curvature perturbations on superhorizon scales. As a result, the
final curvature perturbations at the end of inflation are mainly contributed
by the isocurvature sourcing effects, and one still recovers a single-field like
phenomenology. Chapter 3 will present a specific realization of this scenario
– shift-symmetric orbital inflation.

After these models, one may wonder if there is any unified description
of inflationary curved field space. Lately there have been studies of the
multi-field background attractor behaviour within various models [83–86],
but the perturbation analysis is still unclear. Just like in many multi-field
models, predictions from these ones with curved field space usually are also
model-dependent. And it remains a difficult question to figure out the ob-
servational signatures of the field space geometry. Chapter 4 provides an
attempt toward this investigation, where the role of the internal manifold
on the additional massive field is considered. For the further study, a more
systematic and comprehensive approach to different curved field space sce-
narios may rely on the effective field theory of inflation.

1.2.2 Effective field theory approaches

In the theoretical studies of inflation, the top-down approach aims to build
consistent models from UV-complete theories. However, it turns out to be
quite difficult as we discussed in Section 1.1.2, and the model predictions
may depend on specific constructions. Besides that, our current understand-
ing of inflation has already taught us a lot about its consistent realizations
in general. Thus one can also take the bottom-up approach, and the idea of
effective field theory (EFT) provides a constructive framework, where a low
energy theory may describe interesting physics in a model-independent way.
Here I will introduce the concept of EFT and then discuss its applications
in inflationary cosmology.
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1.2.2.1 The philosophy of EFT

The physics of natural phenomena comes with many scales. The idea of EFT
indicates that there are different theories describing the physics at distinct
scales respectively, and for the physics of a certain scale, the EFT may not
need information from other scales. In this sense, an EFT will be sufficient
for describing a low-energy system after we integrate out (coarse-grain) the
high energy physics (microscopic details). Moreover, operators in the EFT
can be uniquely determined by fundamental symmetries at play. Therefore
EFT provides a constructive approach of parametrizing our ignorance at
UV scales and studying the low-energy physics with limited information.

In modern physics, there are many interesting and successful EFTs, with
or without UV-completions, such as the Fermi theory of weak interactions,
the chiral perturbation theory of pions and the low energy description of
superconductivity. As an explicit and simple example, here let us look into
spontaneous symmetry breaking (SSB) again and show how the low-energy
physics in the broken phase can be described by an EFT of Goldstone fields.

Consider a set of scalar fields Σ whose action is invariant under a global
symmetry G. The corresponding group transformation is Σ → eiθ

ATA
Σ,

where TA are the generators of G and θA are parameters. If the vacuum of
the theory is located at a nonzero value ⟨Σ⟩ = Σ̄ which is invariant under
the transformation of a subgroup H, but changes under other remaining
symmetry transformations, then this vacuum state spontaneously breaks
the symmetry of G to the subgroup H. These remaining group elements
of the broken symmetry (denoted by the generators ta) form the so-called
coset – G/H.

In general the symmetry breaking pattern is more complicated than
the simplest U(1) breaking example discussed at the beginning of Section
1.1.1.1. But the Mexican hat potential may also help us gain some intuition
here. Suppose a UV toy model for this SSB is described by the following
linear sigma model Lagrangian

L = −1

2
∂Σ†∂Σ− λ

(
Σ†Σ− f2

)2
. (1.32)

where f is the symmetry breaking scale3 associated with the vacuum ex-
pectation value (vev) Σ̄. In this case the coset space G/H corresponds to
the vacua defined by Σ†Σ = f2 in which the massless Goldstone fields

3In the case of a pseudo-Golstone field whose shift symmetry is explicitly broken, f is
usually known as the axion decay constant.
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live. There is also a “radial” direction which is supposed to be heavy and
represent high energy physics in the system.

Now let us look at the low-energy state around the vev Σ̄. Without
losing generality, the scalar fields can be conveniently parameterized as

Σ = (Σ̄ + σ)U(π), with U(π) = eit
aπa

. (1.33)

where πa are Goldstone fields living in the coset space and σ represents
fluctuations along the heavy “radial” direction. Since at low energies the
heavy physics related to σ becomes irrelevant, the unitary matrix-valued
field U(π) contains all the information of Goldstones. Since the mass terms
are forbidden, with only derivative terms, the leading order Lagrangian of
the Goldstones’ EFT follows as

L0
eff = −f2

4
Tr[∂µU †∂µU ] . (1.34)

This is also well known as a non-linear sigma model (NLSM) which has a
curved target manifold. We can further expand the Lagrangian in terms of
πa

L0
eff = −f2

2
∂µπ

a∂µπa +
f2

6
∂µπ

a∂µπb
(
πaπb − δabπcπc

)
+ ... (1.35)

It is impressive to notice that we are only guided by the symmetry breaking
pattern to derive the low-energy interacting Lagrangian (1.35) for Gold-
stones, while knowledge about the heavy radial modes is not used. In other
words, it does not matter whether the UV physics is described by the toy
model in (1.32) or other setup, while an EFT from symmetry argument
provides good descriptions for Goldstone fields at low energy.

A concrete example of the above EFT formalism is the chiral pertur-
bation theory, where pions turn out to be the pseudo-Goldstone fields of
the SSB in quantum chromodynamics (QCD). Even if we do not know any-
thing about QCD, the low-energy pions’ interactions are well determined
by the symmetry breaking pattern there. See Ref. [87] for more detailed
discussion.

This approach of EFT is known as the Callan-Coleman-Wess-Zumino
(CCWZ) coset construction [88, 89]. Through this example, we see low-
energy physics can be mostly insensitive to the underlying microscopic
details, while symmetries strongly constrain the form of the EFT and a
model-independent description becomes possible.
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1.2.2.2 EFTs in cosmology

When we apply EFT in the studies of inflationary cosmology, there can be
different approaches. Here we mainly discusses two major ones.

• EFT of background fields. From the effective theory point of view,
the action (1.5) of slow-roll models can be seen as the leading order
approximation below some cutoff scales. In this sense higher order
non-renormalizable operators, though suppressed, may also appear
and show possible imprints of UV physics. The EFT of background
fields provide a systematic way to study these perturbative corrections
to the single-field slow-roll scenario [90].

The key guideline for writing down these EFT operators is symmetry.
As we discussed in Section 1.1.2.1, in order to avoid the η-problem,
the inflaton field is expected to be protected by an approximate shift
symmetry, thus the inflaton should appear with derivatives in the
EFT operators. As a result, the leading extension in the single field
scenario minimally coupled to gravity is to add a dimension-8 operator

(∂ϕ)2(∂ϕ)2

Λ4
k

. (1.36)

This leads to the so-called k-essence theory where the kinetic term has
a non-standard form4 [91, 92]. In order to ensure the perturbativity of
the EFT expansion, here this cutoff scale should satisfy the condition
Λk > ϕ̇.

If we consider operators with coupling to an additional field σ, again
due to the symmetry argument, the leading order operator that we
can write down is expected to be a dimension-5 one [93]

(∂ϕ)2σ

Λs
. (1.37)

This operator, which is linear in σ, can also be seen as an equivalent
description of non-geodesic trajectories in field space. Meanwhile the
next-to-leading order correction is a dimension-6 operator, whose ef-
fects have been neglected in previous studies. Chapter 4 will give a
more detailed discussion on this topic.

4In a general form the k-essence Lagrangian can be written as P (X,ϕ) with X = (∂ϕ)2.
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• EFT of fluctuations. Another approach to EFT of inflation is to put
aside background theories and directly look into perturbations’ be-
haviour. The starting point here is the observation that the back-
ground evolution in cosmology usually breaks the time translation
symmetry, and the resulting Goldstone field is identified with the
adiabatic perturbation. In this approach, one can write down all the
possible operators of perturbations with the remaining spatial trans-
lation symmetry, thus it provides the most general description of sin-
gle field inflation [94]. For instance, this EFT approach can also de-
scribe strongly coupled models, such as DBI inflation [95, 96], which
are beyond the perturbative EFT expansion of the background field
approach. However, in this framework one cannot trace the back-
ground information of inflation which may contain some important
new physics, such as the internal symmetries of the inflaton field.
Meanwhile a multi-field extension of this EFT has been investigated
in Ref. [97]. But it remains an open question how to implement the
recently discovered multi-field models with curved field manifold [98].

1.2.2.3 Inflation in coset space: a new type of EFT

As we discussed in Section 1.1.2.1, in order to avoid the η-problem, sym-
metries are expected to play an important role for inflation. In many funda-
mental constructions, the inflaton candidate is a pseudo-Goldstone boson
protected by an internal symmetry. One direct consequence is that inflation
is related to some spontaneous symmetry breaking process, and the inflaton
evolves in a coset space defined by the symmetry breaking pattern5.

Natural inflation provides the first and the simplest realization of this
idea, in which the inflaton is a so-called axion associated with the break-
ing of a U(1) symmetry, and a soft explicit symmetry breaking generates a
slow-roll potential for the axion field [21]. However, later it was realized that
there a super-Planckian axion decay constant makes the effective descrip-
tion invalid [99]. Meanwhile in high energy theories, it is more natural to
have more complicated symmetry breaking patterns, where the non-abelian
coset spaces G/H are curved, and multiple (pseudo-)Goldstone fields will
be involved besides the inflaton.

There are many interesting questions to be explored in this direction.
5This differs from the original proposals from phase transition discussed in Section

1.1.1.1. From the example of Mexican hat potential, inflation models around early 1980s
correspond to the radial field, while inflation in coset space concerns the angular directions
associated with the Goldstones.
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For instance, the behaviour of the running inflaton in a general coset space
G/H may have implications for inflation. This line of thinking was pio-
neered by the studies of spontaneous symmetry probing [100], where as one
Goldstone field rolls in a non-abelian coset, the not-running Goldstones are
found to become massive. This can be seen by considering a time-dependent
configuration π1 = ct in the example of EFT with the broken symmetry in
Section 1.2.2. After some algebra the effective Lagrangian (1.35) yields

L0
eff = −f2

2

[
∂µπ

1∂µπ1 + ∂µπ
i∂µπi + c2πiπi

]
+ ... (1.38)

where πi are the Goldstones transverse to the running π1 and they acquire
masses. The implications of this effect on inflation will be explored in Chap-
ter 4. In addition, with the CCWZ coset construction, a new type of EFT of
inflation is expected from symmetry breaking patterns. Differing from the
background and fluctuations EFTs, this one may be able to systematically
track spontaneously broken internal symmetries during inflation. Inflation
in coset space may also link a wide range of topics, such as curved field
space, UV realizations and phenomenologies. This thesis will briefly touch
some of the above topics, while more systematic investigation remains for
future work [101].

1.2.3 Hunting for new physics in the primordial Universe

With multi-field inflation and EFT as powerful frameworks, now we can
move forward to investigate new physics effects in the primordial Universe.
To achieve this purpose, model-independence is also important. In the lit-
erature, there has been a large menu of inflation models with various phe-
nomenologies. Generic conclusions will be impossible if predictions rely on
some specific models. Therefore for testing new physics, one particular diffi-
culty is to figure out the relation between theories and observable imprints,
independent of models.

One interesting attempt in this direction is the cosmological collider
physics program [59], which searches for observational signals of heavy par-
ticles during inflation in primordial non-Gaussianity. Not relying on a spe-
cific model, it is found that the squeezed limit of the primordial bispectrum
contains information about these extra particles: there the oscillation pat-
tern is uniquely determined by their masses; while the angular dependence
of the bispectrum measures the spin. Although the signals usually are quite
small, if detected, they would provide a clean channel and reveal a lot in-
formation about the possible new particles in the extreme environment of
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inflation. Lately this has been further extended to the proposal of cosmo-
logical bootstrap, which provides a systematic formalism for calculating
inflationary correlation functions from symmetries [102].

Meanwhile it is interesting to notice one major difference between QFTs
in particle physics and cosmology. The former usually has a static vac-
uum expectation value, while in cosmology field configurations are typically
time-dependent. For instance, during inflation there is an excursion of the
inflaton in the field space because of the slow-roll dynamics. This indicates
that besides adopting the traditional strategy of collider physics, there may
be novel approaches which are more suitable for searching for new physics
in cosmology. For instance, with the excursion trajectory of the inflaton
field, we may be able to probe properties related to the internal spaces,
such as their geometries and underlying fundamental symmetries. There
have been some pioneer works in this direction [103, 104], but systematic
understanding is still unclear, which deserves future investigation.

1.3 The outline of the thesis

This thesis consists of two parts. Part I mainly focuses on multi-field infla-
tion with curved field spaces, while in Part II I investigate the phenomenol-
ogy of primordial non-Gaussianity in both inflation models and alternatives
to inflation.

• Part I. Excursion in curved field spaces.
Chapter 2 performs a study on multi-field α-attractors. α-attractors
are a class of inflation models characterised by a hyperbolic field space,
which have multiple fields involved in general. We present the first
two-field analysis of this class of models and find surprisingly that
due to the underlying hyperbolic geometry, the universal predictions
of single field α-attractors are robust, even when multifield effects are
significant. This work, together with geometric destabilisation [63],
hyperinflation [68] and several others by other authors around the
same time, initiated the revival of interest in multi-field models with
curved field space. It is a collaborative project with Ana Achúcarro,
Renata Kallosh, Andrei Linde and Yvette Welling [75].
Chapter 3 proposes a new class of multi-field attractors called shift-
symmetric orbital inflation, where the inflaton trajectory is turning
significantly in field space, but the model predictions still mimic the
single-field ones. In particular, we have demonstrated that, contrary
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to expectations in the literature, the primordial non-Gaussianity for
these models is small and compatible with current bounds. This work
was done with Ana Achúcarro, Ed Copeland, Oksana Iarygina, Gon-
zalo Palma and Yvette Welling [79].
Chapter 4 tackles a more general question: are there observational sig-
natures related to the scale of field space curvature? Here I approach
this question in the context of “quasi-single field inflation/ cosmo-
logical collider physics”. Meanwhile the relation between the EFT of
background fields and inflationary curved field spaces are discussed.
Remarkably, I have found that the field space curvature can natu-
rally lead to the running of the scaling index in the squeezed scalar
bispectrum, and thus modify the collider signals in non-Gaussianity.
This project was done by myself [105].

• Part II. Tracing primordial triangles.
Chapter 5 revisits non-Gaussianities of non-attractor inflation. We
show that previous calculations of the primordial bispectrum in non-
attractor inflation were incomplete. Through careful analysis, we find
that the transition process after the non-attractor phase, which had
been previously neglected, always plays an important role. By exam-
ining the violation of Maldacena’s consistency relation in this class of
models, we worked out the first complete and detailed calculation of
non-Gaussianity in the “non-attractor to slow-roll” transition. This
was a joint project with Yi-Fu Cai, Xingang Chen, Mohammad Hos-
sein Namjoo, Misao Sasaki and Ziwei Wang [106].
Chapter 6 is about non-Gaussianities in alternatives to inflation, fo-
cusing on the distinctive features. In particular, we have calculated
the primordial bispectrum in the matter bounce scenario with a gen-
eral single scalar field. Here the non-Gaussian phenomenology of the
matter bounce cosmology is extended to the cases with a small sound
speed. Our results also lead to a “no-go” theorem which rules out
many alternative models just using current observational constraints.
This was a collaboration with Yi-Fu Cai, Yubin Li and Jerome Quintin
[107].
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2| Universality of multi-fieldα-attractors

Abstract: We study a particular version of the theory of cosmological α-
attractors with α = 1/3, in which both the dilaton (inflaton) field and the
axion field are light during inflation. The kinetic terms in this theory origi-
nated from supergravity has a hyperbolic geometry. We show that because
of the underlying negatively curved moduli space in this theory, it exhibits
double attractor behavior: their cosmological predictions are stable not only
with respect to significant modifications of the dilaton potential, but also
with respect to significant modifications of the axion potential: ns ≃ 1− 2

N ,
r ≃ 4

N2 . We also show that the universality of predictions extends to other
values of α ≲ O(1) with general two-field potentials. Our results support
the idea that inflation involving multiple, not stabilized, light fields on a hy-
perbolic manifold may be compatible with current observational constraints
for a broad class of potentials.

Keywords: inflation, supersymmetry and cosmology

Based on1:

A. Achúcarro, R. Kallosh, A. Linde, D.-G. Wang, Y. Welling
Universality of multi-field α-attractors

JCAP 1804 (2018), no. 04 028, [arXiv:1711.09478].

1Here section 2.2 has been trimmed, while a new appendix 2.C on the stabilization of
the “rolling on the ridge” trajectories is added.
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2.1 Introduction

UV embeddings of inflation typically contain multiple scalar fields beside
the inflaton. If the additional fields are stabilized, we can integrate them
out to find effectively single field inflation. On the other hand, if the addi-
tional fields remain light during inflation, we should take into account the
full multi-field dynamics. Planck [108, 109] puts tight constraints on these
inflationary models, therefore we should understand which model-building
ingredients are important to ensure compatibility with the data. In partic-
ular, both the geometry of field space and the curvature of the inflationary
trajectory play a very important role in determining the observables. In
this paper we focus on the special role played by hyperbolic geometry.

A notable example are the α-attractor models, a relatively simple class
of inflationary models that have a single scalar field driving inflation. In the
simplest supergravity embedding of these models, the potential depends on
the complex scalar Z = ρ eiθ, where Z belongs to the Poincaré disk with
|Z| = ρ < 1 and the kinetic terms read2

3α
∂µZ̄∂µZ

(1− ZZ̄)2
+ ... (2.1)

In many versions of these models, the field θ is heavy and stabilized at
θ = 0, so that the inflationary trajectory corresponds to the evolution of the
single field ρ. An important property of these models is that their cosmolog-
ical predictions are stable with respect to considerable deformations of the
choice of the potential of the field ρ: ns ≈ 1− 2

N , r ≈ 12α
N2 [17, 18, 74, 110–

115]. These predictions are consistent with the latest observational data for
α < O(10).

In the single-field realizations, the universality of these predictions can
be ultimately traced back to the radial stretching introduced by the geom-
etry (2.1) as we approach the boundary ρ ∼ 1. On the other hand it is clear
that, in the two-field embedding in terms of Z, the stretching also affects
the “angular” θ-direction and this begs the question whether perhaps there
is a regime where the predictions for the inflationary observables are also
fairly insensitive to the details of the angular dependence of the potential.
In this paper we answer this question in the affirmative for sufficiently small
α ≲ O(1).

A particularly interesting case is α = 1/3, where a class of supergravity
embeddings are known to possess an additional symmetry, which makes

2Alternatively, 3α ∂T∂T̄
(T+T̄ )2

, where T = 1+Z
1−Z

.
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both ρ and θ light [74]. This means we cannot integrate out the angular
field and we have to take into account the full multi-field dynamics. We
will show that, in contrast with the naive expectation, the cosmological
predictions of the simplest class of such models are very stable not only
with respect to modifications of the potential of the field ρ, but also with
respect to strong modifications of the potential of the field θ. Importantly,
we have to account for the full multi-field dynamics [49–52, 61, 116–118]
in order to obtain the right results3. The predictions coincide with the
predictions of the single-field α-attractors for α = 1/3: ns ≈ 1− 2

N , r ≈ 4
N2 .

It was emphasized in [74] that for 3α = 1, the geometric kinetic term

dZdZ̄

(1− ZZ̄)2
(2.2)

has a fundamental origin from maximal N = 4 superconformal symme-
try and from maximal N = 8 supergravity. Also the single unit size disk,
3α = 1, leads to the lowest B-mode target which can be associated with
the maximal supersymmetry models, M-theory, string theory and N=8 su-
pergravity, see [113, 114] and [115].

More generally, we will also show that, for sufficiently small values of
α < O(1), the class of potentials exhibiting universal behaviour becomes
very broad, and in particular it includes potentials with 1

ρVθ ∼ Vρ ∼ V .
Our results lend support to the tantalizing idea, recently explored in

some detail in [78] and building on earlier works in [120–124], that multi-
field inflation on a hyperbolic manifold may be compatible with current
observational constraints without the need to stabilize all other fields be-
sides the inflaton. Since axion-dilaton moduli systems with the geometry
(2.1) are ubiquitous in string compactifications, this observation could have
important implications for inflationary model building.

Although at first sight the universality found here resembles a similar
result obtained in the theory of multi-field conformal attractors [125] for
α = 1, the reason for our new result is entirely different. In the model
studied in [125], the light field θ evolved faster than the inflaton field, so
it rapidly rolled down to the minimum of the potential with respect to
the field θ, and the subsequent evolution became the single-field evolution
driven by the inflaton field. The observable e-folds are in the latter, single-
field regime. On the other hand, in the class of models to be discussed in
our paper, the angular velocity θ̇ is exponentially suppressed, due to the
hyperbolic geometry, and inflation proceeds (almost) in the radial direction.

3See [119] for a recent review and references there.
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The angular field will not roll down to its minimum, but instead it is ”rolling
on the ridge”. This is illustrated in Figures 2.3 and 2.4. Nevertheless, the
trajectory is curved and the inflationary dynamics is truly multi-field.

Multi-field models of slow-roll inflation based on axion-dilaton systems
have been studied for some time [126, 127]. However, it is only fairly recently
that the very important role played by the hyperbolic geometry for multi-
field inflation is being recognized (see, e.g. [63, 68, 69, 74, 78, 80, 121, 128]).
Unlike in previous works, here we choose to be agnostic about the potential,
and derive the conditions that will guarantee universality of the inflationary
predictions for the two-field system.

The paper is organized as follows. In Section 2.2 we present a new
supergravity embedding of the α = 1/3 two-field model with a light, non-
stabilized, angular field, as an anti-D3 brane induced geometric inflationary
model. We study its inflationary dynamics, and elaborate on the ”rolling
on the ridge” behaviour in Section 2.3. Next, we work out the universal
predictions for primordial perturbations in Section 2.4, and leave the details
of the full multi-field analysis for Appendix 2.B. We extend this result to
general values of α and work out the constraints on the potential to ensure
the universality of the predictions in Section 2.5 and Appendix 2.A. Section
2.6 is for summary and conclusions.

2.2 α-attractors and their supergravity implementations

There are several different formulations of α-attractors in supergravity. One
of the first formulations [18] was based on the theory of a chiral superfield
Z with the Kähler potential corresponding to the Poincaré disk of size 3α,

K = −3α ln(1− ZZ̄ − SS̄) , (2.3)

and superpotential
W = S f(Z)(1− Z2)

3α−1
2 , (2.4)

where f(Z) is a real holomorphic function. It is possible to make the field
S vanish during inflation, either by stabilizing it, or by making it nilpotent
[129]. Either way, the kinetic term for Z is

3α
dZdZ̄

(1− ZZ̄)2
. (2.5)

The field Z can be represented as ei θ tanh φ√
6α

, where φ is a canonically
normalized inflaton field. In the simplest models of this class, the mass of
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Figure 2.1: The θ-independent 3α = 1 T-model potential V (φ) = m2 tanh2 φ√
2

.

the field θ in the vicinity of θ = 0 during inflation is given by

m2
θ = 2V

(
1− 1

3α

)
, (2.6)

up to small corrections proportional to slow roll parameters. In particular,
for the simplest models with α > 1/3 one finds m2

θ > 0, which means
that the field θ is stabilized at θ = 0. Meanwhile for α > 2/5 one has
m2

θ = V /3 ⩾ H2 where H is the Hubble constant. This means that the
field θ for α ⩾ 2/5 is strongly stabilized, and the only dynamical field
during inflation is the inflaton field φ with the potential

V =
∣∣f(tanh φ√

6α
)
∣∣2. (2.7)

Meanwhile for 3α ≈ 1 one finds that during inflation |m2
θ| ≪ H2. As an

example, the potential V for f(Z) = mZ does not depend on θ at all:

V = m2 tanh2 φ√
6α

, (2.8)

see Figure 2.1.
These specific models with 3α = 1 with light, non-stabilized fields θ have

drawn a lot of attention recently. Therefore it would be interesting to revisit
all versions of these models, including the extensions with θ-dependence of
the potential. While the details of a supergravity construction are presented
in the original paper [75], in general the resulting scalar potential V (Z, Z̄)
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is a function of Z and Z̄ which is regular at the boundary ZZ̄ = 1 and
which vanishes at the minimum at Z = 0.

In the simplest cases, where V is a function of ZZ̄, it does not depend
on the angular variable θ, just as the potential in the theory (2.3) (2.4) for
3α = 1 shown in Figure 2.1. For more general potentials, V may depend on
θ, and the potentials can be quite steep with respect to ρ and θ.

The key feature of this class of models, as well as of the models (2.3) (2.4)
for 3α = 1, is that they describe hyperbolic moduli space corresponding
to the Kähler potential K = − ln(1 − ZZ̄), with the metric of the type
encountered in the description of an open universe, see Equation (2.12)
below. As we will see, the slow roll regime is possible for these two classes of
theories even for very steep potentials, because of the hyperbolic geometry
of the moduli space.

2.3 Dynamics of multi-field α-attractors

Now we come to study inflation with the above theoretical construction.
Our starting point is

g−1L =
dZdZ̄

(1− ZZ̄)2
− V (Z, Z̄) . (2.9)

The complex variable on the disk can be expressed as

Z = ρ eiθ , (2.10)

where ρ is the radial field and θ is the angular field. In general, the potential
V (ρ, θ) in these variables can be quite complicated and steep. For simplicity,
in the following we assume the potential vanishes at the origin Z = 0 and
is monotonic along the radial direction of the unit disk4, i.e. Vρ ⩾ 0. One
natural possibility is Vρ ∼ Vθ/ρ ∼ V , which at first glance cannot yield
sufficient inflation. However, the hyperbolic geometry of the moduli space
makes slow roll inflation possible even if the potential is quite steep.

To see this, and to connect this to a more familiar canonical field φ in
3α = 1 attractor models where the tanh argument is φ/

√
6α, we can use

the following relation
ρ = tanh φ√

2
. (2.11)

4We study other interesting cases with non-monotonic potential, such as the Mexican
hat potential and natural inflation with hyperbolic geometry in another work [77].



2.3 Dynamics of multi-field α-attractors 39

Figure 2.2: A stretched potential with angular dependence

Therefore, our cosmological models with geometric kinetic terms are based
on the following Lagrangian of the axion-dilaton system

g−1L =
1

2
(∂φ)2 +

1

4
sinh2(

√
2φ)(∂θ)2 − V (φ, θ) , (2.12)

where some choice of the potentials V (φ, θ) will be made depending on both
moduli fields. In terms of this new field φ, the corresponding potential near
the boundary ρ = 1 is exponentially stretched to form a plateau, where
φ field becomes light and slow-roll inflation naturally occurs. If we further
assume the potential is a function of the radial field only, then we recover
the T-model as shown in Figure 2.1. Generally speaking, the potential may
also depend on θ, and have ridges and valleys along the radial direction.
One simple example is shown in Figure 2.2. Although the θ field can appear
heavy in the unit disk coordinates, after stretching in the radial direction,
the effective mass in the angular direction is also exponentially suppressed
for φ ≫ 1.

For a cosmological spacetime, the background dynamics is described by
equations of motion of two scalar fields

φ̈+ 3Hφ̇+ Vφ − 1

2
√
2

sinh
(
2
√
2φ
)
θ̇2 = 0 , (2.13)

θ̈ + 3Hθ̇ +
Vθ

1
2 sinh2(

√
2φ)

+
2θ̇φ̇

1√
2

tanh(
√
2φ)

= 0 , (2.14)

and the Friedmann equation

3H2 =
1

2
(φ̇2 +

1

2
sinh2

√
2φ θ̇2) + V (φ, θ) , (2.15)
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where H ≡ ȧ/a is the Hubble parameter. In such a two-field system with
potential as shown in Figure 2.2, one may expect that the inflaton will first
roll down from the ridge to the valley, and then slowly rolls down to the
minimum along the valley. In the following we will demonstrate, due to
the magic of hyperbolic geometry, the dynamics of moduli fields is totally
different from this naive picture.

2.3.1 Rolling on the ridge

In single-field α-attractor models, inflation takes place near the edge of the
Poincaré disk with ρ → 1 (or equivalently φ ≫ 1). Here we also focus on
the large-φ regime where the potential in the radial direction is stretched
to be very flat. As a consequence, the radial derivative of the potential is
exponentially suppressed

Vφ ≃ 2
√
2Vρe

−
√
2φ . (2.16)

After a quick relaxation, the fields can reach the slow-roll regime with the
Hubble slow-roll parameters

ϵ ≡ − Ḣ

H2
=

φ̇2 + 1
2 sinh2(

√
2φ)θ̇2

2H2
≪ 1 , η ≡ ϵ̇

Hϵ
≪ 1. (2.17)

Thus the kinetic energy of fields is much smaller than the potential, and the
θ̇φ̇ term in (2.13) is subdominant. Moreover, we assume that the field ac-
celerations φ̈ and θ̈ can be neglected with respect to the potential gradient.
The equation of motion for θ is then simplified to

θ̇

H
≃ −8

Vθ

V
e−2

√
2φ. (2.18)

This gives us the velocity in the angular direction, which is highly sup-
pressed in the large-φ regime. Substituting the above result in the equation
of motion for φ (2.13), we can see that the centrifugal term proportional to
θ̇2 is also suppressed by e−2

√
2φ. Thus for φ ≫ 1 this term can be neglected

compared to Vφ. Therefore the equation of motion for φ is approximately

3Hφ̇+ Vφ ≃ 0 , (2.19)

which is the same as the single field case with slow-roll conditions. Similarly
we get the field velocity in the radial direction φ̇ ∼ e−

√
2φ, which is much

larger than the angular velocity θ̇. This is the main reason for the difference
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Figure 2.3: The stream of φ and θ fields on the potential with random angular dependence
shown in Figure 2.2. The dashed gray lines show the radial directions, while the blue arrows
correspond to the field flow, starting at φi = 10.

between the slow-roll regime in the present set of models, and in the multi-
field conformal attractors studied in [125]. In the conformal attractors, the
field θ was rapidly rolling down, whereas here instead of rolling down to the
valley first, the scalar fields are rolling on the ridge with almost constant θ.

To see this counter-intuitive behaviour clearly, we can look at the flow
(φ̇, θ̇) in the polar coordinate system. The numerical result of the flow of
the fields is shown in Figure 2.3 for the potential from Figure 2.2. As we
see, although the potential looks chaotic in the angular direction, the fields
always roll to the minimum along the ridge, no matter where they start.

However, it is crucial to emphasize that, although θ̇ is highly suppressed
and θ is nearly constant, the angular motion is still quite important. In the
curved field manifold, since the angular distance is also stretched for large
φ, the proper velocity in the angular direction is given by 1√

2
sinh(

√
2φ)θ̇.

We are encouraged to define a new parameter γ as the ratio between the
physical angular and radial velocity

γ ≡ sinh(
√
2φ) θ̇√

2 φ̇
≃ Vθ

Vρ
, (2.20)

where in the last step we have used large-φ and slow-roll approximations.
Since θ hardly evolves and ρ ≃ 1 for φ ≫ 1, γ is nearly constant during most
period of inflation. This parameter captures the deviation from the single
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field scenario. For instance, let us look at the potential slow-roll parameter
in the radial direction

ϵφ ≡ 1

2

(
Vφ

V

)2

≃ φ̇2

2H2
, (2.21)

which is the same with the single field one. Then in our model the full
Hubble slow-roll parameter (2.17) is approximately given by

ϵ = (1 + γ2)ϵφ . (2.22)

Thus a nonzero γ demonstrates the contribution of the angular motion in
the evolution of the two-field system. Furthermore, depending on the form
of the potential, γ can be O(1) as we shall show in a toy model later. In
such cases, the physical angular motion is comparable to the radial one,
and the multi-field effects is particularly important5.

In summary, for multi-field α-attractors, there are two subtleties caused
by the hyperbolic field space. First of all, the two-field evolution looks like
the single field case without turning behaviour in the field space. On the
other hand, the straight trajectory is an illusion, and the multi-field effect
can still be significant. In Section 2.4, we will show how these surprising
behaviours lead us to the universal predictions for primordial perturbations.

Concluding this subsection, we wish to further explain why ”rolling on
the ridge” is a quite general behaviour in multi-field α-attractors. Besides
the aforementioned approximations, importantly we also neglect the cen-
trifugal term in (2.13). Strictly speaking, this requires

Vφ ≫ 1

2
√
2

sinh
(
2
√
2φ
)
θ̇2, (2.23)

which in the large-φ regime is equivalent to the following condition of the
potential

Vρ

V
≫ 4

3

(
Vθ

V

)2

e−
√
2φ . (2.24)

Now we can see, near the boundary of the disk, unless the angular depen-
dence of the potential is exponentially stronger than the radial one, the
above condition always holds true and the system evolves as we describe
above. Finally let us stress that we have to ensure all our approximations
are valid. We collect all conditions on the potential in Appendix 2.A. A
natural choice of the potential with Vρ ∼ Vθ/ρ ∼ V certainly satisfies these
conditions.

5To see the importance of multi-field behaviour, another way is to look at the nonzero
turning parameter, which we will discuss in Appendix 2.B.
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Figure 2.4: Rolling on the ridge: the form of the potential is given by the toy model (2.26)
with A = 0.2, n = 4 and initial angle θi = π/8; the orange dots show a typical background
trajectory, while the interval between the neighboring dots corresponds to one e-folding time.

2.3.2 A toy model

Before moving to the calculation of perturbations, let us work out a toy
model to further confirm the above analysis. Consider the following poten-
tial on the unit disk

V (Z, Z̄) = V0

[
ZZ̄ +A(Zn + Z̄n)

]
. (2.25)

To ensure that it is monotonic in the radial direction of the unit disk we
need A ⩽ 1

n . Then the condition (2.24) is certainly satisfied. In terms of φ
and θ, the potential is given by

V (φ, θ) = V0 tanh2

(
φ√
2

)[
1 + 2A cos(nθ) tanhn−2

(
φ√
2

)]
. (2.26)

For demonstration, in the following we take n = 4, A = 0.2 and the initial
angle θi = π/8. We solve the background evolution of this two field system
numerically. Figure 2.4 shows the field trajectory on the toy model potential.
We can see that the inflaton is rolling on the ridge with nearly constant θ.

Using the full numerical solution, we can check the validity of the large-
φ and slow-roll approximations by looking at the evolution of background
parameters. For example, within our analytical treatment, the γ parameter
is given by (2.20) as

γ ≃ − nA sin(nθ)
1 + nA cos(nθ) . (2.27)

It is nearly constant, since θ ≃ θi during inflation. And the above choice of
parameter values gives us γ ≃ −0.8, which agrees well with the numerical
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Figure 2.5: The evolution of γ and ϵ in the toy model (2.26) with A = 0.2, n = 4 and initial
angle θi = π/8.

result as shown in Figure 2.5. Next, let us look at the slow-roll parameter
ϵ. Solving (2.19) gives us its behaviour in terms of e-folding number as

ϵ ≃ 1 + γ2

4N2
, (2.28)

where (2.22) is used. As shown in Figure 2.5, this provides a good approxi-
mation until the last several e-foldings of inflation, where φ ≫ 1 is not valid
any more. It is interesting to notice that, during inflation the scalar field
mainly rolls in the large-φ region, outside of which inflation would end very
quickly. Therefore, the approximation φ ≫ 1 does give a good description
for the background dynamics. In the following section and in Appendix
2.B, we will come back to this toy model, and use it as an example to
demonstrate other aspects of multi-field α-attractors.

2.4 Universal predictions of α-attractors

One of the most important properties of single field α-attractor inflation is
the universal prediction for observations. For α ≲ O(1) and a broad class
of potentials, as long as V (ρ) is non-singular and rising near the bound-
ary of the Poincaré disk, the resulting scalar tilt and tensor-to-scalar ratio
converge to

ns = 1− 2

N
and r =

12α

N2
, (2.29)

where N ∼ 50 − 60 is the number of e-folds for modes we observe in the
CMB.

One interesting question is whether the universal predictions are still
valid in the multi-field regime. In multi-field scenarios the curvature pertur-
bation is sourced by the isocurvature modes on superhorizon scales, thus
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Figure 2.6: The evolution of curvature power spectrum Pζ and isocurvature power spectrum
PS for perturbation modes which exit the horizon at N = 55. We use the toy model (2.26)
with A = 0.2, n = 4 and initial angle θi = π/8. The analytical solutions here are based on
calculations in Appendix 2.B.

their evolution is typically non-trivial and yields totally different results for
ns and r. As we show above, the angular dependence in the α-attractor
potentials indeed leads to multi-field evolution. For the toy model we stud-
ied, the behaviour of perturbations can be computed using the numerical
code mTransport [130]. We focus on one single k mode for curvature and
isocurvature perturbations, and show their evolution in Figure 2.6. As ex-
pected, the curvature perturbation is enhanced during inflation, while the
isocurvature modes decay. Therefore, naively one expects there would be
corrections to the single field α-attractor predictions due to the multi-field
effects.

In the following we will show that, surprisingly, the universal predictions
are still valid in the multi-field regime. We use the δN formalism to derive
the inflationary predictions for the multi-field α-attractor models studied
in this paper. A full analysis of the perturbations is left for Appendix 2.B,
where the evolution of the coupled system of curvature and isocurvature
modes is solved via the first principle calculation .

The δN formalism [131–135] is an intuitive and simple approach to solve
for the curvature perturbation in multi-field models. At the end of infla-
tion, regardless of the various field trajectories, the amplitude of curvature
perturbations is only determined by the perturbation of the e-folding num-
ber N , which is caused by the initial field fluctuations. Therefore, without
studying details of the coupled system of curvature and isocurvature modes,
as long as we know how the number of e-foldings N depends on the initial
value of the two fields, the curvature perturbation can be calculated.



46 Universality of multi-field α-attractors

Let us therefore consider how the initial φ and θ determine N . In this
paper, we define the e-folding number as the one counted backwards from
the end of inflation, thus dN = −Hdt. In terms of N , the slow-roll equation
(2.19) becomes

dφ

dN
≃ 2

√
2e−

√
2φVρ

V
. (2.30)

Since in the large φ regime ρ → 1 and Vρ/V is nearly constant for a given
trajectory, the equation above yields the e-foldings from the end of inflation
as

N =
1

B
e
√
2φ + C(θ) , (2.31)

where B ≡ 4Vρ/V and C(θ) is an O(1) integration constant which can
be fixed by setting N = 0 at the end of inflation. Thus, both two fields
affect the duration of inflation as expected in multi-field models. By this
expression, we can use the δN formalism to find curvature perturbation at
the end of inflation

ζ = δN =
∂N

∂φ
δφ+

∂N

∂θ
δθ =

√
2e

√
2φ

B
δφ+

(
Cθ −

Bθ

B2
e
√
2φ

)
δθ . (2.32)

As we see here, ∂N
∂φ and ∂N

∂θ can be comparable to each other. However, one
should keep in mind that θ field is non-canonical, thus to estimate the field
fluctuation amplitudes at horizon-exit, one should consider the canonically
normalized ones: δφ and 1√

2
sinh(

√
2φ)δθ. Approximately in the large-φ

region we have the following relation

δφ ≃ e
√
2φ

2
√
2
δθ ≃ H

2π
. (2.33)

From here, we find that the field fluctuation δθ is exponentially suppressed,
compared to the one from δφ. So we only need to take into account the
first term in equation (2.32). In addition, equation (2.21) yields ϵφ =

B2e−2
√
2φ/4, which further simplifies the δN formula to ζ ≃ δφ/

√
2ϵφ.

In the end, the power spectrum of curvature perturbation can be expressed
as

Pζ ≡
k3

2π2
|ζk|2 ≃

H2

8π2ϵφ
. (2.34)

It is interesting to note that this result does not depend on any parameters
related to the multi-field effects (such as γ). Using (2.21) and (2.31), we
also get ϵφ ≃ 1/(4N2), which has the same behaviour with the single-
field potential slow-roll parameter ϵV . Thus the power spectrum above is
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coincident with the single-field one. Then the predictions of scalar tilt and
tensor-to-scalar ratio follow directly

ns − 1 ≃ − 2

N
and r ≃ 4

N2
. (2.35)

These results are further confirmed by solving the full evolution of pertur-
bations as shown in Appendix 2.B.

The δN calculation above also demonstrates the counter-intuitive prop-
erties of multi-field α-attractors. As we show in Section 2.3, the stretching
effects of hyperbolic geometry not only flattens the potential in the radial
direction, but also suppresses the angular velocity θ̇. At the level of per-
turbations, the similar effect occurs to the field fluctuations in the angular
direction. While the canonically normalized angular field fluctuation has
the same amplitude with δφ, the original field perturbation δθ is exponen-
tially suppressed. Therefore, only the radial field fluctuation δφ contributes
to the final result.

Furthermore, the above results do not depend on the initial values of
θ, which correspond to different field trajectories as shown in Figure 2.3.
Certainly their respective e-folding number N and ϵφ can be different from
each other. However, the N -dependence of ϵφ is the same for all the ”rolling
on the ridge” trajectories. Thus regardless of various initial values of θ, the
multi-field α-attractors yield the same universal predictions for ns and r.

Typically, another prediction in multi-field inflation is large local non-
Gaussianity, which is disfavoured by the latest data [109]. Therefore it is
also worthwhile to estimate the size of the bispectrum in our model. Here
we expand the δN formula to the second order in field fluctuations

ζ = δN =
∂N

∂φ
δφ+

∂N

∂θ
δθ +

1

2

∂2N

∂φ2
δφ2 +

1

2

∂2N

∂θ2
δθ2 +

∂2N

∂θ∂φ
δθδφ . (2.36)

In principle, there are two contributions here: one captured by the δN ex-
pansion, and another one caused by field interactions of δφ and δθ. However,
for the same reason shown in (2.33), the δθ-related terms in the expansion
(2.36) are highly suppressed. Moreover, since there is no large coupling
between field fluctuations, we expect that the second contribution to the
bispectrum will also be negligible. As a result, the local non-Gaussianity is
approximately given by δφ terms in (2.36)

fNL ≃ 5

6

∂2N

∂φ2

/(
∂N

∂φ

)2

≃ 5

6N
, (2.37)
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which is coincident with the single field consistency relation fNL = − 5
12(ns−

1) [39, 40]. Again, we find the multi-field α-attractor prediction returns to
the single field one, which further demonstrates the scope of universality.

2.5 Universality conditions for more general α

Our investigation was stimulated by the realization that α-attractors have
particularly interesting interpretation in supergravity models with α = 1/3.
A significant deviation from α = 1/3 typically either makes the field θ
tachyonic, or strongly stabilizes it at θ = 0, which results in a single-field
inflation driven by the field φ, see e.g. (2.6). One may wonder, however,
what happens if we consider a more general class of two-field α-attractors,
which may or may not have supergravity embedding6, and concentrate on
their general features related to the underlying hyperbolic geometry.

For general α, the canonically normalized field in the radial direction is
defined by ρ = tanh(φ/

√
6α), which leads to the following kinetic term

1

2
(∂φ)2 +

3α

4
sinh2

(√
2

3α
φ

)
(∂θ)2 . (2.38)

The equations of motion (2.13) and (2.14) also change accordingly, see
(2.47) and (2.48). Similarly as in Section 2.4, in the slow-roll and large-φ
approximations these equations reduce to

θ̇

H
≃ − 8

3α

Vθ

V
e
−2

√
2
3α

φ
, 3Hφ̇ ≃ − 2

√
2√

3α
Vρe

−
√

2
3α

φ
. (2.39)

As we see, the angular motion is also exponentially suppressed, compared
to the radial one. So the rolling on the ridge behaviour is not unique for
α = 1/3, but quite general for any α ≲ O(1). Similarly to (2.24), we get
the following condition to ensure its validity

Vρ

V
≫ 4

9α

(
Vθ

V

)2

e
−
√

2
3α

φ
, (2.40)

which can be satisfied easily by many choices of potential, generalizing the
bound (2.24) to other values of α. Therefore, the results follow directly just
like we find in Section 2.3. For example, the ratio of proper velocities

γ =

√
3α
2 sinh

(√
2
3αφ

)
θ̇

φ̇
(2.41)

6Ref. [136] provides a supergravity embedding for the more general α < 1 models.
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is still nearly constant, while ϵφ evolves as

ϵφ ≃ 3α

4N2
. (2.42)

Repeating the same δN calculation for perturbations, we get N ≃ 3αe
√

2/3αφ/B
and

ζ = δN ≃ 1√
2ϵφ

δφ, (2.43)

which lead to the universal predictions (2.29) for generic α. Therefore in a
broader class of α-attractors without supersymmetry, adding angular de-
pendence to the potential will not modify the universal predictions either.
Importantly, in order to validate the various assumptions we make to obtain
the universal predictions, we need the potential to satisfy certain conditions.
The most non-trivial condition is already given in (2.40). The additional
constraints on the potential come from assuming the slow-roll, ‘slow-turn’
and large φ approximation. We give more detail about these approxima-
tions and collect the constraints on the potential in Appendix 2.A. Some
of the conditions should also be satisfied for single field α-attractors. The
smaller α becomes, the more pronounced the stretching of the hyperbolic
field metric gets and it will be more likely to be within the large φ regime
φ ≳

√
3α
2 and the slow-roll regime at the same time. Finally, there are

some additional constraints on the potential because of the multi-field na-
ture of our class of models. In particular, if we want to have suppressed
field accelerations, we need to satisfy the slow-roll and the slow-turn con-
ditions given in (2.49d) - (2.49f). A natural choice of the potential with
Vθ
ρV ∼ Vρ

V ∼ Vθθ
ρ2V

∼ Vθρ

ρV ∼ Vρρ

V ∼ 1, evaluated at the boundary ρ ∼ 1 amply
satisfies all conditions for α ≲ O(1).

2.6 Summary and Conclusions

In this paper we have studied the inflationary dynamics and predictions of
a class of α-attractor models where both the radial and the angular com-
ponent of the complex scalar field Z = ρ eiθ are light during inflation. We
concentrated on the special case α = 1/3, where the model has a supergrav-
ity embedding with a high degree of symmetry from N = 4 superconformal
or N = 8 supergravity. However, our results may have more general validity
under the conditions specified in Appendix A. Under the weak assumptions
that the potential is monotonic in the radial coordinate, and the angular
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gradient is not exponentially larger than the radial gradient (2.24), we find
exactly the same predictions as in the theory of the single field α-attractors:

ns − 1 ≃ − 2

N
and r ≃ 12α

N2
. (2.44)

Universality of these predictions may make it difficult to distinguish be-
tween different versions of α-attractors by measuring ns. However, from
our perspective this universality is not a problem but an advantage of α-
attractors, resembling universality of several other general predictions of
inflationary cosmology, such as the flatness, homogeneity and isotropy of
the universe, and the flatness, adiabaticity and gaussianity of inflationary
perturbations in single field inflationary models.

The hyperbolic field metric plays a key role in finding these universal
results. Let us summarize how we arrived at our new result and stress how
the hyperbolic geometry dictates the analysis.

• First, the hyperbolic geometry effectively stretches and flattens the
potential in the radial direction to a shape independent of the original
radial potential. Independent - as long as the potential obeys the
condition (2.24). The amplitude of this shape, however, varies along
the angular direction.

• Next, the angular velocity θ̇ is exponentially suppressed, due to the
hyperbolic geometry, and inflation proceeds (almost) in the radial
direction. The inflaton is ”rolling on the ridge” in the (φ, θ) plane.
This is illustrated in Figures 2.3 and 2.4.

• The straight radial trajectory is an illusion, since the physical velocity
in the axion θ direction is typically of the same order as the radial
velocity. The angle between the inflationary trajectory and the radial
direction is nonzero and practically constant in this regime. More-
over, although the field is following the gradient flow, the trajectory
is curved in the hyperbolic geometry. Therefore, the perturbations
are coupled and the multi-field effects have to be taken into account.

• Then, we use the δN formalism to compute the power spectrum of
curvature perturbations (confirmed by a fully multi-field analysis in
Appendix 2.B). The typical initial θ perturbations are very small and
have a negligible effect on the number of efolds. However, the initial
value of θ of a given trajectory determines how much a perturbation in
the radial direction affects the number of efolds, since the trajectory
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is curved. At the same time the initial value of θ determines the
renormalization of the slow-roll parameter ϵ. These two effects cancel
exactly, leaving us with the same predictions as the single field α-
attractors. Also the non-Gaussianity calculation recovers the single
field result fNL ≃ − 5

12(ns − 1).

• Finally, in Section 2.5 and Appendix 2.A, we relax the condition α =
1/3 and simply assume the hyperbolic geometry (2.1) with smooth
potentials. We identify the conditions on the potential in order to
exhibit the universal behaviour discussed in our paper, see (2.49).
For α ≲ O(1) these conditions are amply satisfied by a broad class
of potentials V (ρ, θ), including natural ones without a hierarchy of
scales: Vθ

ρV ∼ Vρ

V ∼ Vθθ
ρ2V

∼ Vθρ

ρV ∼ Vρρ

V ∼ 1, evaluated at the boundary
ρ ∼ 1.

In conclusion, the main result of our investigation is the stability of pre-
dictions of the cosmological α-attractors with respect to significant mod-
ifications of the potential in terms of the original geometric variables Z.
Whereas the stability with respect to the dependence of the potential on
the radial component of the field Z is well known [18], the stability with
respect to the angular component of the field Z is a novel result which we
did not anticipate when we began this investigation.

Our results could have important implications for constructing UV com-
pletions of inflation. We have confirmed again that multi-field models of
inflation can be perfectly compatible with the current data, in particular
when the additional fields are very light. This lends support to the idea
that it is not always necessary to stabilize all moduli fields in order to have
a successful model of inflation.

Appendix

2.A Constraints on the potential

In this Appendix we collect the conditions the potential has to obey in
order to validate our approximations for any value of α. Let us first recap
some relevant definitions and equation for general α. First of all, our three
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radial variables are given by φ and

R(φ) ≡
√

3α

2
sinh

(√
2

3α
φ

)
, ρ ≡ tanh

(
φ√
6α

)
. (2.45)

We introduced the radial variable R(φ) because it appears naturally in the
physical angular velocity R(φ)θ̇. The kinetic term can now be written in
three equivalent ways

1

2

(∂ρ)2 + ρ2(∂θ)2

(1− ρ2)2
=

1

2
(∂φ)2 +

3α

4
sinh2

(√
2

3α
φ

)
(∂θ)2

=
1

2
(∂φ)2 +

1

2
R(φ)2(∂θ)2. (2.46)

The equations of motion are generalized to

φ̈+ 3Hφ̇+ Vφ − 1

2

√
3α

2
sinh

(
2

√
2

3α
φ

)
θ̇2 = 0 , (2.47)

θ̈ + 3Hθ̇ +
Vθ

3α
2 sinh2

(√
2
3αφ

) +
2θ̇φ̇√

3α
2 tanh

(√
2
3αφ

) = 0 . (2.48)

Now we are ready to collect all constraints on the potential. In our deriva-
tion we assume that we can neglect φ̈ and that we can take the large-φ
approximation. Moreover, it is important that we can neglect the centrifu-
gal term proportional to θ̇2 in Equation (2.47). We use the gradient flow
to estimate the size of θ̇, and this leads to the first constraint (2.49a). For
consistency, we have to ensure the validity of: ncy, we have to ensure the
validity of:

• The slow-roll approximation, which gives rise to the next four con-
straints (2.49b) - (2.49e). This approximation ensures that the field
velocities are small and that we can neglect their acceleration pointing
along the corresponding field direction as well.

• The slow-turn approximation, which allows us to neglect the field
accelerations pointing along the other field direction. If we can assume
gradient flow for θ this leads to the condition (2.49f).

• The large-φ approximation, which requires us not to go to the extreme
limit of a very shallow radial potential. We want to inflate sufficiently



2.B Full analysis of perturbations 53

far from the origin in order to obtain enough efolds of inflation, such
that we can use the large-φ approximation. In our analysis we work
for simplicity with potentials

(
Vρ

V

)2
≳ α

4 so this is automatically
satisfied.

Vρ

V
≫ 4

9α

(
Vθ

V

)2

e−
√

2/3αφ,

ϵφ ≡ 1

2

(
Vφ

V

)2

=
4

3α

(
Vρ

V

)2

e−2
√

2/3αφ ≪ 1,

ϵθ ≡
1

2

(
Vθ

RV

)2

=
4

3α

(
Vθ

V

)2

e−2
√

2/3αφ ≪ 1,

ηφ ≡ 1

3

Vφφ

V
=

8

9α

Vρρ

V
e−2

√
2/3αφ ≪ 1

ηθ ≡
1

3

Vθθ

R2V
=

8

9α

Vθθ

V
e−2

√
2/3αφ ≪ 1,

ωϕ ≡
Vθφ

3RV

Vθ

RVφ
=

Vθρ

V

Vθ

Vρ

8

9α
e−2

√
2/3αφ ≪ 1.

(2.49a)

(2.49b)

(2.49c)

(2.49d)

(2.49e)

(2.49f)

Please note that all constraints have to be evaluated at ρ ∼ 1, i.e. at
φ ≫ 6α. Our conditions are satisfied for simplest potentials, because in
the large-φ regime all slow-roll and slow-turn parameters are exponentially
suppressed. For instance, natural potentials which satisfy Vθ

ρV ∼ Vρ

V ∼ Vθθ
ρ2V

∼
Vθρ

ρV ∼ Vρρ

V ∼ 1 at the boundary ρ ∼ 1, amply obey the conditions.

2.B Full analysis of perturbations

In this Appendix, we give a detailed study of turning trajectories in multi-
field α-attractors and work out the full evolution of curvature and isocur-
vature perturbations.

2.B.1 Covariant formalism and large-φ approximations

For a general multi-field system spanned by coordinate ϕa with field metric
Gab, the equations of motion in the FRW background can be simply written
as

Dtϕ̇
a + 3Hϕ̇a + V a = 0 , 3H2 =

1

2
Φ̇2 + V (2.50)

where Dt is the covariant derivative respect to cosmic time and Φ̇2 ≡
Gabϕ̇

aϕ̇b. To describe the multi-field effects, it is convenient to define the
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tangent and orthogonal unit vectors along the trajectory as

T a ≡ ϕ̇a

Φ̇
, Na ≡

√
detGϵabT

b , (2.51)

where ϵab is the Levi-Civita symbol with ϵ12 = 1. The rate of turning for
the background trajectory is defined as

Ω ≡ −NaDtT
a =

VN

Φ̇
, (2.52)

where for the second equality we have used the background equations of
motion and VN = Na∇aV is the gradient of the potential along the normal
direction of the trajectory. This quantity, which vanishes in single field
models, is particularly important for the multi-field behaviour and evolution
of perturbations. A dimensionless turning parameter is introduced as

λ ≡ −2Ω

H
. (2.53)

Another important parameter is the field mass along the orthogonal direc-
tion defined as

VNN ≡ NaN b∇a∇bV . (2.54)

Now let us come back to our model with coordinates ϕa = (φ, θ) and
hyperbolic field metric

Gab =

(
1 0

0 1
2 sinh2(

√
2φ)

)
. (2.55)

The Ricci scalar of this manifold is a negative constant R = −2. By the
definitions above, after some algebra, λ and VNN here can be written into
the following form

λ =
1

ϵH3

1√
2

sinh(
√
2φ)

[
φ̈θ̇ − θ̈φ̇− 2θ̇φ̇2

1√
2

tanh(
√
2φ)

− 1

2
√
2

sinh
(
2
√
2φ
)
θ̇3

]
,

(2.56)

VNN =
1

Φ̇2

(
Vθθφ̇

2 +
√
2
4 sinh(2

√
2φ)Vφφ̇

2

1
2 sinh2(

√
2φ)

+ 2θ̇φ̇

[ √
2Vθ

tanh(
√
2φ)

− Vθφ

]

+
1

2
sinh2(

√
2φ)Vφφθ̇

2

)
. (2.57)
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Numerical result

analytical approximation
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Figure 2.7: The evolution of the dimensionless turning parameter λ√
2ϵ

and entropy masses.
Here we use the toy model potential (2.26) with n = 4, A = 0.2 and θi = 8/π.

These expressions look very complicated, but in the large-φ regime they can
be efficiently simplified. First of all, since γ in (2.20) is nearly constant, we
can use this parameter to replace θ̇ by φ̇ in these expressions, for example
Φ̇2 = (1 + γ2)φ̇2. Then we can use the relations of background quantities
presented in Section 2.4 to further simplify the result. Finally the turning
parameter λ can be expressed as

λ =
−1

ϵH3
(1 + γ2)

√
2γφ̇3

tanh(
√
2φ)

≃ 2
√
2γ

(1 + γ2)1/2
·
√
2ϵ , (2.58)

where the large φ approximation is used in the last step. Therefore, at φ ≫
1, λ/

√
2ϵ is nearly constant. Similarly, we can work out the approximated

expression for VNN . Here we use the toy model potential for demonstration,
which yields

VNN ≈ V0Be−
√
2φ. (2.59)

Therefore, VNN is nearly zero at the beginning of inflation, but then grows
up as φ rolls to the center. These analytical approximations are checked
by using numerical solution of the toy model. In Figure 2.7 we show the
numerical results versus the analytical ones for n = 4, A = 0.2 and θi = 8/π.
Indeed we see that λ√

2ϵ
remains constant until the very end of inflation,

where the large-φ approximation breaks down.

2.B.2 Primordial Perturbations

With the analytical approximations developed above, now we can move to
study the behaviour of perturbations. In particular, we would like to derive
the analytical expression for the power spectrum of curvature perturbations.
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At the linear level, the curvature perturbation ζ and the isocurvature modes
σ are defined as

δϕa =
√
2ϵζT a + σNa (2.60)

And their full equations of motion in terms of e-foldings are given by

d

dN

(
dζ

dN
− λ√

2ϵ
σ

)
+ (3− ϵ+ η)

(
dζ

dN
− λ√

2ϵ
σ

)
+

k2

a2H2
ζ = 0, (2.61)

d2σ

dN2
+ (3− ϵ)

dσ

dN
+
√
2ϵλ

(
dζ

dN
− λ√

2ϵ
σ

)
+

k2

a2H2
σ +

µ2

H2
σ = 0 , (2.62)

where µ2 is the entropy mass of the isocurvature perturbations given by

µ2 ≡ VNN + ϵH2R+ 3Ω2 . (2.63)

Thus besides VNN , the turning effects and the curvature of the field man-
ifold also contribute to the entropy mass. But in multi-field α-attractors
here, as shown in Figure 2.7, µ2 is mainly controlled by the VNN term.
Then by (2.59) and the solution of φ in (2.31), we get

µ2

H2
≈ VNN

H2
≈ 3Be−

√
2φ ≈ 3

N
, (2.64)

which provides a good analytical approximation as shown in Figure 2.7.
The exact solutions of the full equations (2.61) and (2.62) can be ob-

tained only through numerical method, as we have shown in Figure 2.6.
But notice that the leading effect here comes from the coupled evolution
of curvature and isocurvature modes after horizon-exit. Thus for the an-
alytical approximations, we can focus on super-horizon scales. There the
isocurvature equation of motion reduces to

3
dσ

dN
+

µ2

H2
σ ≃ 0. (2.65)

If we focus on the mode that exits horizon at N∗ with amplitude σ∗, then
we get the following solution for its evolution

σ(N) ≈ σ∗
N

N∗
. (2.66)

Remember that e-folding number is counted backwards from the end of
inflation. Thus this solution shows the decay of the isocurvature perturba-
tion outside of the horizon. The evolution of the normalized isocurvature
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power spectrum PS is shown in Figure 2.6, where S = σ/
√
2ϵ. As we see,

the analytical approximation above successfully captures the super-horizon
decay, compared with the numerical result.

Next, we look at the curvature perturbation, which after horizon-exit is
sourced by the the isocurvature modes in the following way

dζ

dN
=

λ√
2ϵ

σ. (2.67)

Also for the mode exits horizon at N∗ with amplitude ζ∗, we get the solution

ζ(N) = ζ∗ +

∫ N

N∗

dN ′ λ√
2ϵ

σ(N ′). (2.68)

As we noticed in (2.58), λ/
√
2ϵ is nearly constant, thus it can be seen as

unchanged after horizon-exit λ/
√
2ϵ = λ∗/

√
2ϵ∗. Meanwhile, notice that

since σ is almost massless in the large-φ regime, one has the relation√
2ϵ∗ζ∗ ≃ σ∗ ≃ H/(2π). Then the evolution of ζ is given by

ζ(N) = ζ∗ +
λ∗
2

N2 −N2
∗

N∗
ζ∗. (2.69)

These two contributions are uncorrelated with each other, since they come
from the different parts of the quantized fluctuations. Thus finally we can
write down the power spectrum at the end of inflation (N = 0)

Pζ = P
(1)
ζ + P

(2)
ζ =

H2

4π2

1

2ϵ∗

(
1 +

λ2
∗N

2
∗

4

)
=

H2

8π2ϵ∗

(
1 + γ2

)
=

H2

8π2ϵφ∗
, (2.70)

where we used the relation (2.22), the expression of λ (2.58), and ϵφ ≃
1/(4N2). Therefore, we recover the same result as we got in δN calculation.

It is interesting to note that, although the turning effects play an im-
portant role in the intermediate calculation, they vanish in the final an-
swer. There are two effects on the curvature perturbation in multi-field
α-attractors: first, the growth on super-horizon scales gives an enhance-
ment factor

(
1 + γ2

)
; secondly, due to the motion in the θ direction, the

slow-roll parameter ϵ is also enhanced by the same amount. Thus as a conse-
quence, these two changes cancel each other, and the final power spectrum
of curvature perturbation here becomes the same as the single field result.
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2.C Geometrical stabilization of α-attractors

Now let us look at the three contributions to the isocurvature mass. For
field spaces with a Ricci scalar R < 0, the second term in (2.63) is negative.
As inflation goes on, ϵ increases and thus the second term may become
dominant, which leads to a negative entropy mass. As a result one gets a
tachyonic instability here and the inflaton direction is destabilized. This
effect of a negatively curved field space is dubbed as geometrical destabi-
lization [63]. This phenomenon can end inflation prematurely, or separate
inflation into two stages, in both cases modifying the standard predictions
of single field models.

For α-attractors with unstabilized extra fields, at first sight, geometrical
destabilization seems to be a problem. For instance, in the U(1)-symmetric
potential without angular dependence, one has Vθθ = 0 and thus it looks
like the Ricci curvature term would contribute a negative µ2. However, in
the following we shall show that this naive guess fails since the Christoffel
symbol term in VNN is always positive and larger than the negative Ricci
term. To be more specific, let us look at the field space metric in (2.55).
The Ricci scalar of this manifold is a negative constant R = − 4

3α , while we
also get the following Christoffel symbol term

Γφ
θθ = −1

2

√
3α

2
sinh

(
2

√
2

3α
φ

)
. (2.71)

Now we take the simplest case as an example, where inflaton only rolls in
the radial direction, i.e. θ̇ = 0. In this case we have Ω = 0 and

T a = (1, 0), Na = (0,
1√

3α
2 sinh

(√
2
3αφ

)). (2.72)

Therefore, the entropy mass can be expressed as

µ2 =
Vθθ − Γφ

θθVφ

3α
2 sinh2(

√
2
3αφ)

− 2φ̇2

3α

≃ Vθθ

3α
2 sinh2(

√
2
3αφ)

+

√
4ϵ

3α
V − 4ϵ

α
V

≃ Vθθ

3α
2 sinh2(

√
2
3αφ)

+
1

N
V − 3

N2
V . (2.73)
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In the second step, we used slow-roll and large-φ approximations, and ϵ ≃
3α/(4N2) was used in the last step. These approximations are valid as long
as inflation is not close to the end, i.e. N ≫ 1. As we see, for the situation
where the angular direction of the potential is not stabilized, e.g. Vθθ = 0
in the U(1)-symmetric case, the second term from the Christoffel symbol is
still larger than the negative curvature term. Thus the entropy direction is
automatically stabilized during inflation.

Even if we consider a tachyonic mass in the angular direction Vθθ <
0, which is the case on the top of the ridges in multi-field α-attractors,
we find that the Christoffel terms from the hyperbolic manifold always
give leading and positive contributions to the entropy mass. This further
confirms the observation in Fig. 2.7, where VNN is always the dominating
contribution in µ2. Therefore, instead of geometrical destabilization, the
hyperbolic geometry of α-attractors helps us stabilize the “rolling on the
ridge” trajectories.
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Abstract: We present a new class of two-field inflationary attractor mod-
els, known as ‘shift-symmetric orbital inflation’, whose behaviour is strongly
multi-field but whose predictions are remarkably close to those of single-
field inflation. In these models, the field space metric and potential are
such that the inflaton trajectory is along an ‘angular’ isometry direction
whose ‘radius’ is constant but arbitrary. As a result, the radial (isocur-
vature) perturbations away from the trajectory are exactly massless and
they freeze on superhorizon scales. These models are the first exact realiza-
tion of the ‘ultra-light isocurvature’ scenario, previously described in the
literature, where a combined shift symmetry emerges between the curva-
ture and isocurvature perturbations and results in primordial perturbation
spectra that are entirely consistent with current observations. Due to the
turning trajectory, the radial perturbation sources the tangential (curva-
ture) perturbation and makes it grow linearly in time. As a result, only
one degree of freedom (i.e. the one from isocurvature modes) is respon-
sible for the primordial observables at the end of inflation, which yields
the same phenomenology as in single-field inflation. In particular, isocur-
vature perturbations and local non-Gaussianity are highly suppressed here,
even if the inflationary dynamics is truly multi-field. We comment on the
generalization to models with more than two fields.
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3.1 Introduction

Single field slow roll inflation is the leading explanation for the observa-
tions through the CMB [7] that primordial perturbations are very close to
Gaussian and adiabatic, yet embedding it in an ultraviolet complete the-
ory such as string theory is notoriously difficult. Moduli fields arising from
string compactifications require stabilizing to realize single field inflation
[19], and large field excursions test the validity of using four dimensional
effective theories1.

One may therefore wonder whether there are multi-field inflationary sce-
narios with a phenomenology similar to that of single field inflation. Most
of the previous studies on multi-field inflation focus on the slow-roll slow-
turn regime, where the isocurvature and curvature perturbations are weakly
coupled, therefore one may get single-field like phenomenology unsurpris-
ingly. Meanwhile, models with significant multi-field turning behaviour are
commonly considered to be problematic. In the usual understanding of this
regime, light fields during inflation may lead to isocurvature perturbations
and local non-Gaussianity tightly constrained by current observations. How-
ever, it has been suggested recently that inflation with non-stabilized light
fields on an axion-dilaton system can be compatible with the latest CMB
data [75, 78, 120–124]. In particular, it was pointed out in [78] that, when
the perturbations orthogonal to the trajectory are massless but efficiently
coupled to the inflaton, the isocurvature modes are dynamically suppressed.
This is the “ultra-light isocurvature” scenario.

In this paper we provide for the first time a family of exact models of
inflation in which the multi-field effects are significant, but the phenomenol-
ogy remains similar to single field inflation. The models combine two ingre-
dients: First, the inflaton trajectory proceeds along an isometry direction
of the field space, so it is Orbital Inflation in the sense of [81, 82]. This en-
sures time independence of the coupling between the radial and tangential
inflationary perturbations. Second, the trajectory can have an arbitrary ra-
dius (within some range described below), and a constant radius is proven
to be a neutrally stable attractor. Hence, isocurvature perturbations be-
come exactly massless. The two ingredients, combined, guarantee that the
sourcing of the curvature perturbation is sustained over many e-folds of in-
flationary expansion. The action for the perturbations inherits a symmetry

1The recent swampland debate highlights the importance of finding viable scenarios
for inflation that are not strictly single-field. See, for instance, the discussion in [47] as
compared to [24, 137]
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between background solutions that is not manifest in the potential or in the
Lagrangian. We show that, at the end of inflation, only the isocurvature
degree of freedom is responsible for the generation of primordial observ-
ables, but perturbations still remain adiabatic and Gaussian. We call this
scenario shift-symmetric orbital inflation.

Crucially this scenario provides a new direction to explore inflation and
a potential resolution to some of the problems faced by the embedding
of inflation in string theory. That is, in the construction of inflationary
models wherein every modulus is stabilized except for the inflaton, one
could be missing less restrictive realizations of inflation compatible with
current observational constraints. We set ℏ = c = 1 and the reduced Planck
mass Mp ≡ (8πG)−1/2 = 1, where G is Newton’s contant.

3.2 A toy model

To illustrate the idea, we first consider the following Lagrangian in flat field
space with polar coordinates (illustrated in Fig. 3.1)

L =
1

2

[
ρ2(∂θ)2 + (∂ρ)2

]
− 1

2
m2

(
θ2 − 2

3ρ2

)
. (3.1)

The potential has a monodromy in the angular coordinate, and although it
is unbounded at ρ → 0, inflation only takes place in the physically consistent
regime where V (ρ, θ) > 0. Moreover, as shown in the perturbation analysis
below, our study is restricted to radii that cannot be too small. Therefore,
we only care about the local form of the potential close to the inflationary
trajectory, which we assume is captured well by (3.1). In general, it is
difficult to solve the background equations analytically in such a system.
However, this model has the following exact neutrally stable solutions at
any radius (see Fig. 3.1)

ρ = ρ0, θ̇ = ±
√

2

3

m

ρ20
. (3.2)

The Friedmann equation becomes H2 = m2θ2/6 on the attractor, where H
is the Hubble parameter, and the first slow-roll parameter is ϵ ≡ −Ḣ/H2 =
2

ρ20θ
2 . This trajectory is nongeodesic in field space, with turning effects that

depend on the radius κ of the trajectory. Note that here κ = ρ0 but, if the
field space geometry is curved, κ will be a more general function of ρ0.

The situation is reminiscent of circular orbits in a spherically symmetric
gravitational field, where the centripetal force stabilizes the radial direction,
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Figure 3.1: The toy model potential V (ρ, θ) given in (3.1) together with a typical inflationary
trajectory indicated with the solid black line.

and the inflaton can circle at any radius with the corresponding angular
velocity. For the field system on the cosmological background, only the
isometric circular orbits appear, and we need to break the shift symmetry
of θ in the potential to overcome the Hubble friction. We can label each
solution by a continuous parameter c with the corresponding map

ρc = ρ0 + c,
(
θ2c
)′
=

(
θ20
)′

(1 + c/κ)2
, (3.3)

where the prime ′ denotes a derivative with respect to efolds d/dN =
d/(Hdt). This transformation identifies all the trajectories in (3.2) and hints
at the existence of a shift symmetry for the perturbations. In flat gauge, the
isocurvature perturbation σ is associated with δρ and the curvature pertur-
bation R with ρ√

2ϵ
δθ, which equals 1

4ρ
2δ
(
θ2
)

in this toy model. To find the
effect of the transformation on the perturbations, we split ρ = ρ0 + σ and(
θ2
)′

=
(
θ20
)′
(1−R′). This allows us to determine how a small c changes

σ and R′. In the long wavelength limit every transformed set of perturba-
tions (σc,R′

c) provide a new solution to the equations of motion. This is
because homogeneous perturbations map background solutions onto each
other. Therefore, we expect the following symmetry for linearized pertur-
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bations
σ → σ + c, R′ → R′ +

2

κ
c. (3.4)

Given the shift symmetry of σ, the isocurvature perturbation is expected
to be massless and freeze after horizon-exit. Meanwhile, the symmetry also
indicates that R has a growing solution that is dictated by the constant σ
on superhorizon scales.

To get an intuitive notion of the perturbations behavior, we employ
the δN formalism [131–135]. From the Friedmann equation and the exact
solution (3.2), the number of efolds until the end of inflation is N = ρ2θ2/4−
1/2. The curvature perturbation at the end of inflation is

R(k∗) = δN ≃ 1√
2ϵ∗

(ρδθ)∗ +
2N∗
κ

δρ∗, (3.5)

where (ρδθ)∗ and δρ∗ are field fluctuations with typical amplitude H∗
2π at

horizon-exit of the k∗ mode. This yields the following power spectrum of
curvature perturbations

PR(k∗) ≃
H2

∗
4π2

(
1

2ϵ∗
+

4N2
∗

κ2

)
. (3.6)

Here the first contribution has an adiabatic origin, just like in the single-field
models, and the second term corresponds to the conversion from isocur-
vature to curvature modes on superhorizon scales. When the radius of
the trajectory is small enough, namely 8ϵ∗ ≪ κ2 ≪ 8ϵ∗N

2
∗ ≈ 4N∗, the

second term in (3.6) dominates. Then the final power spectrum becomes
PR(k∗) ≃ H2

∗N
2
∗ /(π

2κ2), which is generated by one single degree of freedom
– the isocurvature mode.

3.3 Shift-symmetric orbital inflation

To construct generic models with the above properties, we begin with
an axion-dilaton system in a non-trivial field manifold (θ, ρ) with kinetic
term K = −1

2 (f(ρ)∂µθ∂
µθ + ∂µρ∂

µρ). This field space, of curvature R =
f2
ρ/2f

2−fρρ/f , arises generically from UV completions of inflation in quan-
tum gravity or from an effective field theory (EFT) viewpoint. To realize
shift-symmetric orbital inflation, we assume the inflationary trajectory to
be isometric, i.e. along the θ direction at any (constant) radius in field
space. The potential can be derived by generalizing the Hamilton-Jacobi



66 Shift-symmetric orbital inflation

formalism [131, 138–140] to a two-field system. It has the general form

V = 3H2 − 2
H2

θ

f(ρ)
, (3.7)

where H is a function of θ only, Hθ ≡ dH/dθ and f(ρ) > 0. The model
(3.1) is recovered for H ∝ θ and f(ρ) = ρ2, corresponding to a flat field
space parametrized by polar coordinates. This non-linear system admits
exact solutions

θ̇ = −2
Hθ

f
, ρ = ρ0. (3.8)

Thus the inflaton moves in an orbit of constant radius, as ensured by the
Hamilton-Jacobi formalism. As in the toy model, this trajectory is not
along a geodesic. Here the tangent and normal vectors to the trajectory
are T a = 1/

√
f(1, 0) and N a = (0, 1), and the radius of the turning trajec-

tory is a constant given by κ = 2f/fρ. It follows that all these trajectories
are neutrally stable: a small perturbation orthogonal to a given orbital tra-
jectory will bring us to one of the neighbouring trajectories. The attractor
behaviour is explicitly demonstrated in the appendix of the original paper.

3.4 Analysis of perturbations

In flat gauge, the comoving curvature perturbation R is defined as the
projection of the field perturbation along the inflationary trajectory R =
1√
2ϵ
Taδϕa, and the isocurvature perturbation σ corresponds to the orthogo-

nal projection σ = Naδϕ
a. Then for generic multi-field models, the quadratic

action of perturbations takes the following form [78]

S(2) =
1

2

∫
d4xa3

[
2ϵ

(
Ṙ − 2H

κ
σ

)2

+ σ̇2 − µ2σ2 + . . .

]
, (3.9)

where ellipses stand for the gradient terms −(∂iσ)
2 − 2ϵ(∂iR)2. The in-

teraction between curvature and isocurvature modes is given by the term
a3(8ϵH/κ)Ṙσ. To guarantee perturbative analysis we require that

√
8ϵ/κ ≪

1 [78, 141]. The mass of entropy perturbations is defined as µ2 ≡ VNN +
ϵH2

(
R+ 6/κ2

)
, where the first term is obtained from the standard Hessian

of the potential VNN ≡ N aN b (Vab − Γc
abVc), the second and third terms

correspond to the field space curvature and turning contributions respec-
tively.

For shift-symmetric orbital inflation, we expect the isocurvature pertur-
bations to be exactly massless, as in the toy model, and this is confirmed by
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using (3.8) to show µ2 = 0. This implies that the quadratic action (3.9) has
the combined shift symmetry (3.4), as in the toy model. The power spectra
of perturbations in the massless limit can be directly estimated from the
coupled evolution of perturbations [78]. When µ = 0, the linearized system
simplifies in the superhorizon limit, yielding

R′
k =

2

κ
σk, σk =

H∗
2π

, (3.10)

where ∗ denotes evaluation at the time of horizon crossing. That is, on su-
perhorizon scales the isocurvature perturbation quickly becomes a constant,
and it sources the growth of R. At the end of inflation, the primordial curva-
ture perturbation can be expressed as Rk = R∗ +2N∗σk/κ, where the first
term is the curvature perturbation amplitude at horizon-exit, and the sec-
ond term comes from the isocurvature source. Thus these two contributions
are uncorrelated with each other, and the dimensionless power spectrum for
R is given by

PR =
H2

∗
8π2ϵ∗

(1 + C) , (3.11)

where C = 8ϵ∗N
2
∗ /κ

2 represents the contribution from isocurvature modes.
This result agrees with the δN calculation for the toy model given in (3.6).
The full calculation via the in-in formalism gives the same answer up to
subleading corrections [78]. Note that the power spectrum is completely
determined by the isocurvature perturbations if C ≫ 1, which corresponds
to trajectories with a small radius κ or, equivalently, significant turning
effects with 8ϵ∗ ≪ κ2 ≪ 8ϵ∗N

2
∗ . Thus at the end of inflation, curvature

perturbations are highly enhanced compared to the ones at horizon-exit.
Meanwhile, the isocurvature power spectrum for S ≡ σ/

√
2ϵ remains un-

changed as PS = H2
∗

8π2ϵ∗
. Therefore, the amplitude of the isocurvature per-

turbation is dynamically suppressed, i.e. PS/PR ≃ 1/C ≪ 1. The details
of how PS ̸= 0 can generate isocurvature components in the CMB are
rather model-dependent, and one cannot automatically claim that a sup-
pressed ratio PS/PR is compatible with observations. However, if R and S
contributed similarly to the curvature and isocurvature components in the
CMB, the result is compatible with current constraints.

3.5 Phenomenology

We now turn to the observational predictions of shift-symmetric orbital
inflation. For any positive C, from (3.11), the tensor-to-scalar ratio can be
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expressed as r = 16ϵ∗/(1 + C), and the scalar spectral index is ns − 1 ≡
d lnPR
d ln k = −2ϵ∗ − η∗ + (dC/dN)/(1 + C), where we used d ln k = dN . Note

that ∂N∗
∂N = −1, since N∗ counts the number of efolds backwards. These

predictions depend on the function H(θ). As in single field inflation, this
function determines how slow-roll parameters ϵ and η ≡ ϵ′/ϵ scale with N∗.

For concreteness, we consider models with H ∼ θp. Solving (3.8) for
θ(N) yields2 ϵ∗ ≃ p/(2N∗) and η∗ ≃ 1/N∗. The predictions for ns and r are
therefore well approximated by

ns − 1 ≃ −p+ 1

N∗
− 4p

κ2 + 4pN∗
, r ≃ 8pκ2

N∗κ2 + 4pN2
∗
. (3.12)

We plot these results against the Planck 1σ and 2σ contours [7] in Fig. 3.2.
N∗ is taken to be between 50 and 60, and the radius κ2 varies between 1
and 105. The purple region is for p = 1, corresponding to the toy model
(3.1), and we also show the predictions for p = 0.5 (red region), p = 0.2
(yellow region) and p = 0.1 (green region).

Notice that ns and r only depend on the value of κ and are therefore
insensitive to the details of the field metric. When κ → ∞ one recovers the
predictions of chaotic inflation with V ∝ ϕ2p. Meanwhile as κ decreases,
predictions are pushed downwards and to the left in this ns − r diagram.
Therefore, in the case of power-law potentials only for small p do the predic-
tions remain within the Planck contours. The interesting regime here is still
the case with significant turning (small κ or C ≫ 1), where the final power
spectrum PR ≃ H2

∗N
2
∗

π2κ2 mainly has an isocurvature origin. Then the tensor-
to-scalar ratio is given by r = 2κ2/N2

∗ = 16ϵ∗/C, which is suppressed. The
spectral index reduces to ns − 1 = −(p + 2)/N∗ which, for small p, lies in
the sweet spot ns = 0.9649± 0.0042.

Another important observable is primordial non-Gaussianity, which is
currently bounded by Planck through f loc

NL = 0.8 ± 5 [109]. There are ex-
amples in the literature of how O(1) local non-Gaussianity can arise in
multi-field models, especially when the coupling between isocurvature and
curvature modes is large [57, 142–144] - see [145] for a review. There are
also examples of how small levels of non-Gaussianity can arise in mul-
tifield models [146–148]. However, in most cases a detailed analytic un-
derstanding of the size of the non-Gaussianity is lacking because the as-
sociated dynamics is non-linear and complicated. This is not the case in

2We note that for 0 < p < 1 this toy model is not well defined as θ → 0, as can be
seen in (3.7). This is not a problem as the inflationary period we are interested in occurs
before that point is reached. The true underlying potential would have to be completed
in some way. This is similar to case with say axion monodromy.
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Figure 3.2: The analytical predictions (3.12) for (ns, r) compared to the Planck 1σ and 2σ
contours [7]. We show the predictions for wavenumbers which cross the horizon 50−60 efolds
before the end of inflation. The predictions for ns − r depend on the value of κ ∈ [1, 1000],
where the values (1, 2, 4, 8, 16, 32, 64, 128, 256) are depicted with thick lines (from bottom to
top).

shift-symmetric orbital inflation, where we find that we can both easily
satisfy the Planck constraint and crucially understand its origin analyti-
cally. The amplitude of local non-Gaussianity can be determined using the
δN formalism. In a generic multi-field inflation model with curved field
manifold, we have f loc

NL = 5
6G

abGcdNaNcNbd/(G
abNaNb)

2 [142, 149], where
Gab = diag{f(ρ), 1} is the field space metric, Na and Nab are derivatives of
N with respect to the fields (θ, ρ). To gain some analytical understanding,
here we still focus on models with H ∼ θp, where N can be expressed as
N = f(ρ)θ2/4p− p/2. The amplitude of local non-Gaussianity then follows

f loc
NL =

5

12
η∗

[
1− C2

(1 + C)2
κ2R
2

]
, (3.13)

where we used the relation C = 2p2/(ϵ∗κ
2). When κ → ∞, we have C → 0

and C2κ2 → 0. Thus the second term in (3.13) vanishes, which leads to
the single field result f loc

NL = 5η∗/12 as expected. The enhancement of non-
Gaussianity is possible in the intermediate regime C ∼ O(1), where the
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transfer from isocurvature to adiabatic modes is inefficient. In that case,
f loc

NL ∼ −5pR/12 can be large if the field space is highly curved.
For the interesting regime with C ≫ 1, the δN expansion is dominated

by Nρ and Nρρ. This then leads to what, at first sight, appears as the
counterintuitive result that f loc

NL is negligible and slow-roll suppressed

f loc
NL ≃ 5

6

Nρρ

N2
ρ

=
5

12
η∗

(
1− κ2R

2

)
. (3.14)

This is the same as happened in the calculation of the power spectrum:
the contribution to the curvature perturbation sourced by the isocurvature
modes dominates the final result. The bispectrum is found to be slow-roll
suppressed, just like in single field inflation, but there are small corrections
from the field space curvature, which violates Maldacena’s consistency rela-
tion [39, 40]. We have recently confirmed this result via a scaling symmetry
approach in [80].

3.6 Discussions

We have proposed a class of multi-field inflationary models that demon-
strate a new type of attractor trajectory along the isometry direction in field
space. Here the isocurvature modes become massless and freeze on super-
horizon scales. Moreover, when the turning effects become significant, the
curvature perturbations keep growing after horizon-exit and thus isocurva-
ture modes are dynamically suppressed. As a consequence, these multi-field
models yield the single-field-like phenomenology favored by observations.

Additional isocurvature perturbations will either decay if they are mas-
sive or freeze if they are light. Therefore, although our computations were
done in a simple two-field setting, we expect the conclusions will continue
to hold in multi-field extensions with more than two fields, provided that
the number of additional light isocurvature fields is not too large.

We have shown and explained how in shift-symmetric orbital inflation,
a negligible amount of local non-Gaussianity is produced. Here the isocur-
vature degree of freedom can be the dominant contribution to the bispec-
trum, but in such cases fNL is slow-roll suppressed. This result teaches
us a generic lesson: that in multi-field models, even if the isocurvature-
to-adiabatic conversion is very efficient, the resulting non-Gaussianity can
still be suppressed. A large coupling between curvature and isocurvature
modes enhances the transfer of non-Gaussianity, but for this transfer to
generate large non-Gaussianity, one needs sizable self-interactions affecting
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the isocurvature field during horizon crossing [57, 141]. In this class of sce-
narios, however, the shift symmetry along the radial direction (3.4) has a
role in suppressing the self-interactions of the isocurvature field (see [80]).
Therefore, it is perfectly fine to study multi-field models with significant
and sustained turning trajectories, without worrying about generating large
non-Gaussianity.

Our model has important implications on the realization of inflation in
UV-complete theories. Contrary to what is usually assumed, and as em-
phasized in [78], it is not always necessary to stabilize all compactification
moduli, or to have a large mass hierarchy between the inflaton and other
fields. The most problematic effects usually associated with multi-field ef-
fects – the generation of isocurvature perturbations and non-Gaussianity
at unacceptable levels – cancel each other in the shift-symmetric orbital
scenario 3. From an EFT point of view this can be traced back to the
effect of derivative interactions among the curvature and isocurvature per-
turbations that are absent in single-field inflation. These are unavoidable
on curved trajectories and curved field spaces and, therefore, ubiquitous in
string compactifications.

3As already emphasized, large isocurvature perturbations at the end of inflation do
not necessarily imply large isocurvature components in the CMB, the details of which
are rather model dependent. Nevertheless, in this class of models the potentially signif-
icant generation of isocurvature modes in the CMB is automatically alleviated by the
mechanism at play.
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Abstract: Massive fields during inflation provide an interesting opportu-
nity to test new physics at very high energy scales. Meanwhile in fundamen-
tal realizations, the inflationary field space typically has a curved geometry,
which may leave detectable imprints in primordial observables. In this pa-
per we study an extension of quasi-single field inflation where the inflaton
and the massive field belong to a curved field manifold. Because of the non-
trivial field space curvature, the massive field here can get significant mass
corrections of order the Hubble scale, thus the quasi-single field predictions
on primordial non-Gaussianity are affected. We derive the same result in
an equivalent approach by using the background effective field theory of
inflation, where a dimension-6 operator is identified to play an important
role and its cutoff scale is associated with the curvature scale of the field
space. In addition, due to the slow-roll evolution of the inflaton, this type of
mass correction has intrinsic time-dependence. Consequently, the running
mass modifies the scaling behaviour in the squeezed limit of the scalar bis-
pectrum, while the resulting running index measures the curvature of the
internal field space. Therefore the minimal setup of a massive field within
curved field space during inflation may naturally lead to new observational
signatures of the field space geometry.
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4.1 Introduction

Cosmic inflation, which provides a good description of the very early Uni-
verse [7, 8], can also be seen as a physics laboratory at extremely high
energy scales. Through primordial perturbations, we can trace the imprints
left by fundamental physics during inflation in astronomical observations,
such as the cosmic microwave background (CMB) and large scale structure
(LSS) surveys. Moreover primordial non-Gaussianity, which encodes the
field interactions during inflation, is believed to be one of the most pow-
erful tools for testing new physics effects [35, 37, 150, 151]. Therefore it is
phenomenologically interesting to work out various non-Gaussian templates
from inflation theories for future observations. From this point of view, one
well-studied example is quasi-single field inflation (QSFI) [56–58, 152–154],
where the extra fields during inflation with mass of O(H) can leave unique
signatures in the primordial bispectrum of curvature perturbation. This
idea has been further developed into model-independent frameworks for
probing primordial physics, such as the proposals of cosmological collider
physics [59, 102, 155–161] and primordial standard clocks [162–165].

Meanwhile, another important question in the primordial cosmology is
the physical realizations of inflation in more fundamental theories. From
this theoretical perspective, one common observation is that the result-
ing low-energy effective theories of inflation are typically associated with a
curved field manifold. For instance, it could be the moduli field space arising
in string compactifications, or the coset field space of (pseudo-)Goldstones
after spontaneous symmetry breaking. This theoretical consideration leads
to the studies on inflation with curved field space. Recently there has been
a revival of interest in this direction, and the representative works include
α-attractors [17, 18, 73, 74] and their multi-field extensions [75–77, 166–
168], geometrical destabilization [63–67, 83], ultra-light isocurvature sce-
nario [78, 80] and orbital inflation [79, 81, 82], hyperinflation [68–72], the
two-field regime of axion monodromy [169], and the analysis of new multi-
field attractors [84–86]. Usually in the curved field manifold the inflaton tra-
jectory may demonstrate turning dynamics (or equivalently non-geodesic
motion in the field space). It has also been suggested that such kind of
multi-field behaviour may be free from some possible problems faced by
single field inflation [47, 48, 170]. Moreover, richer phenomenology emerges
in this class of multi-field models, which could be interesting for future
observational detections.

Having various models of inflation with curved field space, now one may
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ask a more generic question: considering that the field space curvature is
associated to a new energy scale during inflation, then what are the obser-
vational signatures of this curvature scale? One attempt in this direction
was lately performed in Ref. [171], where the generic cubic action is derived
for the multi-field system with curved field space, and after a heavy field
is integrated out, the geometrical effects manifest in the effective cubic ac-
tion of curvature perturbations. The question remains, if there are other
observable imprints uniquely left by the geometry of the internal space
during inflation.

In this paper, we attack the above question in the context of QSFI, by
focusing on the behaviour of a massive field living in a curved field manifold
of inflation. The main results are summarized as follows:

• We extend the QSFI model to the case where the inflaton and the
massive field span a curved field space with a nontrivial metric. Using
the covariant formalism of multi-field inflation, we perform the back-
ground and perturbation analysis of this two-field system. Due to the
presence of the non-trivial field space curvature, the massive field gets
mass corrections which can be comparable to (or even larger than)
the “bare” mass. Then we provide one simple realization of QSFI with
significant curved field space effects. Furthermore, through this con-
crete case study, we explicitly demonstrate how the curvature of the
field space is related to an energy scale during inflation.

• Next, we investigate the background effective field theory (EFT) of
inflation with the dimension-five (dim-5) and dimension-six (dim-6)
mixing operators. This EFT approach, which has been widely adopted
in the studies of massive fields, provides an alternative description for
the curved field space system. We explicitly bridge the gap between
these two languages. In particular, the dim-6 operator in the EFT can
give a significant contribution to the mass of the extra field, thus has
the same effects as the curved field space. Moreover, this correction to
the “bare” mass is essentially time-dependent, and we further consider
the running behaviour of the final isocurvature mass.

• Finally, we study the phenomenological consequences of the curved
field space on QSFI predictions. As is known, the mass of the ad-
ditional field leaves a unique scaling signature in the squeezed limit
of the scalar bispectrum. Here the curved field space may result in
two modifications: i) the field space curvature contribution corrects
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the original “bare” mass, thus changes the predictions in the scaling
index; ii) the time-dependence of this mass correction leads to the
running of the scaling in the squeezed bispectrum. Therefore through
the phenomenology of the running isocurvature mass, we can find the
observational signatures left by the field space curvature.
The time dependence of the isocurvature mass µ is divided into three
different regimes: running within µ < 3H/2 and µ > 3H/2, and
also running through µ = 3H/2. To search for new predictions, we
work out the modified scaling behaviour of the squeezed bispectrum
caused by them one by one. In the first two cases, the modification
corresponds to the running of the scaling index in the power-law and
oscillatory signals respectively, while the third case demonstrates a
transition behaviour between these two types of signals. Implications
for non-Gaussianity observations are discussed.

Some of the results, for instance the field space curvature contribution
to the mass of the extra field, have been noticed in different setups, such as
geometrical destabilization [63] (for negative correction, also see the early
discussion in Ref. [53]) and spontaneous symmetry probing [100] (for posi-
tive correction). Here we look into more generic cases of this contribution,
and find it illuminating to further interpret the curved field space effects
from the perspective of inflationary massive fields. In addition, the corre-
spondences among several different research topics are clarified. Other re-
sults, such as the curved field space modifications to QSFI and the running
phenomenology of µ2, were not discussed in the previous studies.

The outline of the paper is as follows. In Section 4.2 we study the
massive field within a curved field space during inflation via the multi-
field analysis, and demonstrate the effects of the field space curvature in a
concrete example. In Section 4.3 we take the background EFT approach to
reexamine QSFI, and identify the role of a dim-6 operator and its connection
with curved field space. Section 4.4 focuses on the phenomenology, where
the consequences of the running isocurvature mass are investigated in detail.
We summarize in Section 4.5 with discussions on future works .

4.2 When quasi-single field inflation meets a curved field space

QSFI corresponds to one particular regime of inflation models, where the
extra fields besides the inflaton are massive and thus generate isocurvature
pertubations with a mass around the Hubble scale H. The original model
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of QSFI in Ref. [56, 57] is described by the following matter Lagrangian

Lm = −1

2
ρ2(∂θ)2 − 1

2
(∂ρ)2 − V (ρ)− Vsr(θ) , (4.1)

where the radial field ρ is taken to be massive and stabilized around ρ = ρ0,
with V ′′(ρ0) ∼ O(H2). Meanwhile the angular field θ plays the role of the
inflaton, which is slowly rolling on a nearly flat potential along the angular
direction. In this section, we shall extend this model, and consider the
situation while the inflaton and the massive field are living in a curved field
manifold.

The curved field space generically arises in the low-energy effective the-
ory of inflation, whose action with a scalar sector and Einstein gravity can
be formulated as

S =

∫
d4x

√
−g

[
M2

pl
2

R − 1

2
Gab(ϕ)g

µν∂µϕ
a∂νϕ

b − V(ϕ)

]
. (4.2)

Notice that besides the spacetime metric gµν , an internal field space metric
Gab(ϕ) of a non-linear sigma model also appears. Generally speaking, the
inflaton field here corresponds to one particular trajectory in the multi-
dimensional field space. Thus in addition to the adiabatic perturbations
along this inflaton trajectory, the isocurvature perturbations in the orthog-
onal direction are also present. To be specific, we consider an axion-dilaton
system spanned by ϕa = (θ, ρ) with the field space metric

Gab =

(
f(ρ) 0
0 1

)
, (4.3)

which yields a non-trivial kinetic mixing for the two scalar fields. Here
the axion θ can be seen as an “angular” field, while the dilaton field ρ
corresponds to the “radial” direction in this internal space. The non-trivial
geometry of this internal manifold is characterized by the Ricci curvature
scalar

R =
f ′(ρ)2

2f(ρ)2
− f ′′(ρ)

f(ρ)
, (4.4)

which is of mass dimension −2. With the choice of the potential, QSFI can
be easily realized in this multi-field system1. One direct extension of the

1One can construct exact models of QSFI with curved field space by using the extended
Hamilton-Jacobi formalism, as done in orbital inflation [81, 82]. This approach is not
adopted here.
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original model yields the following two-field Lagrangian

Lm = −1

2
f(ρ)(∂θ)2 − 1

2
(∂ρ)2 − V (ρ)− Vsr(θ) , (4.5)

where again θ is the inflaton and ρ is the massive field. Thus the original
model can be seen as a special case of the above setup with f(ρ) = ρ2,
where the field space is flat and described by the polar coordinate. Next,
with the help of multi-field techniques, we shall investigate the QSFI with
a general metric function f(ρ).

4.2.1 The multi-field analysis of the massive field

For inflaton trajectories in a curved field space, the covariant formalism of
multi-field inflation [49–53] provides a powerful tool to describe the back-
ground dynamics and perturbations. Consider a turning trajectory with
ρ = ρ0, then the field velocity of the canonically normalized inflation is
given by ϕ̇2 = Gabϕ̇

aϕ̇b = f(ρ)θ̇2 , where the dot denotes the derivative
with respect to the cosmic time. Thus we can build the tangent and normal
unit vectors of this trajectory

T a ≡ ϕ̇a

ϕ̇
=

1√
f(ρ0)

(1, 0) , Na = (0, 1) . (4.6)

Also the turning rate is defined as

Ω ≡ −NaDtT
a =

f ′(ρ0)

2
√
f(ρ0)

θ̇ , (4.7)

where Dt is the covariant derivative of the field space with respect to cosmic
time. In general a geodesic trajectory in the field space yields Ω = 0, thus
the turning parameter measures the deviation from a geodesic [52]. For the
flat field metric f(ρ) = ρ2, it simply yields Ω = θ̇. With these notations, the
background equations of motion (EoMs) Dtϕ̇

a + 3Hϕ̇a + V a = 0 become

ϕ̈+ 3Hϕ̇+ VT = 0 , Ωϕ̇ = VN , (4.8)

where VT = T a∇aVsr and VN = Na∇aV , with ∇a being the covariant
derivative of the field space. The first equation captures the slow-roll dy-
namics, while the second one describes the balance between the turning and
the centrifugal force. Meanwhile the slow-roll parameters here are given by

ϵ ≡ − Ḣ

H2
=

ϕ̇2

2M2
plH

2
=

f(ρ0)θ̇
2

2M2
plH

2
, η ≡ ϵ̇

Hϵ
= 2ϵ . (4.9)
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Now let us describe the behaviour of perturbations using the background
parameters above. At the linear level, we can define the curvature pertur-
bation ζ and the isocurvature modes σ as δϕa =

√
2ϵζT a+σNa. Expanding

(4.2) to the second order, we get the general form of the quadratic action

S2 =

∫
d4xa3

[
ϵ

(
ζ̇ − 2Ω√

2ϵ
σ

)2

− ϵ

a2
(∂iζ)

2 +
1

2

(
σ̇2 − 1

a2
(∂iσ)

2

)
− 1

2
µ2σ2

]
.

(4.10)
Here notice that at the quadratic level, the interaction between ζ and σ is
given by the turning parameter Ω. From the EoM of perturbations, this cou-
pling corresponds to the conversion from isocurvature to curvature modes
on superhorizon scales. For a geodesic trajectory (Ω = 0), the curvature and
isocurvature perturbations are decoupled. In this work we mainly focus on
the weakly coupled regime, i.e. Ω/H ≪ 1. Another interesting result of
the covariant formalism is the isocurvature mass, which in general can be
expressed as

µ2 = VNN +
1

2
ϕ̇2R+ 3Ω2 . (4.11)

Here the first term is the Hessian of the potential in the normal direction
VNN = NaN b∇a∇bV . For the turning trajectory along the θ direction, we
simply get VNN = V ′′(ρ0), which can be seen as the “bare” mass of the
radial field, and is the one usually considered in QSFI. The second and
third terms are the contributions from field space curvature and turning
rate. Since we work in the weakly coupled regime with Ω ≪ H, thus the
last term contribution can be neglected for µ2 ∼ O(H2).

The main focus of this paper is the second term in (4.11). This field
space curvature contribution can be tracked back to the kinetic term of
the the two-field system in (4.5). Naively speaking, when we derive the
perturbed Lagrangian, the σ field mass has contributions from the second
order expansion of f(ρ), which is related to the Ricci scalar in (4.4). This is
a unique correction in the quantum field theory with time-dependent back-
ground. Thus for inflation, it is always accompanied by the inflaton field
velocity ϕ̇2, whose magnitude can be estimated from the current observa-
tions2: ϕ̇2 ≃ 107H4. Therefore unless the field space curvature is extremely
small, the second term in (4.11) should not be neglected.

In the following we shall demonstrate in a case study that the field
space curvature is typically associated with a new energy scale during in-

2In the weakly coupled regime of QSFI, since the massive field correction to the final
power spectrum of ζ is small, the single field prediction Pζ = H4/(4π2ϕ̇2) remains valid
approximately. Then from the observational result Pζ ≃ 2×10−9 [7], one gets ϕ̇2 ≃ 107H4.
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flation, and for natural choices of this scale, the curvature term in µ2 can
be comparable to or even larger than the V ′′ term.

4.2.2 A concrete example: inflation in coset space

In order to avoid the η-problem [20], the low-energy effective theories of in-
flation are usually supposed to be described by (pseudo-)Goldstone bosons
protected by an (approximate) internal symmetry, such that the slow-roll
potential is free from quantum corrections. Consequently the inflaton may
roll in a non-abelian coset space G/H defined by the symmetry breaking
pattern. While the details of a relevant project will be presented in a fu-
ture paper [101], here let us look at two simplest cases of coset space with
nontrivial geometries which have been considered before in Ref. [172, 173].

Figure 4.1: The SO(3)/SO(2) (left) and SO(2, 1)/SO(2) (right) coset spaces, with the
corresponding geodesic trajectories (blue curves) and examples of possible deviations (orange
curves).

• SO(3)/SO(2). This coset space is a 2d-sphere defined by ϕ2
1+ϕ2

2+ϕ2
3 =

R2 in the three-dimensional Euclidean space, where the constant R
is the radius of the spherical surface. Thus it is convenient to use the
spherical coordinates

ϕ1 = R cos ϱ cos θ , ϕ2 = R cos ϱ sin θ , ϕ3 = R sin ϱ , (4.12)

where θ and ϱ are two Goldstone fields in the coset. As a result, the
line element of this field space becomes ds2 = R2

(
dϱ2 + cos2 ϱdθ2

)
.

If we canonically normalize ϱ by redefining ρ = Rϱ, then the kinetic
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term of the two Goldstones is expressed as

K = −1

2
(∂ρ)2 − 1

2
R2 cos2

( ρ

R

)
(∂θ)2 , (4.13)

which corresponds to the system in (4.5) with f(ρ) = R2 cos2(ρ/R).
This field space has a positive constant curvature with R = 2/R2.

• SO(2, 1)/SO(2). This non-compact coset yields a 2d-hyperbola de-
fined by ϕ2

1+ϕ2
2−ϕ2

3 = R2 in the three-dimensional Minkowski space,
as shown in Fig. 4.1. We use the following field coordinates

ϕ1 = R cosh ϱ cos θ , ϕ2 = R cosh ϱ sin θ , ϕ3 = R sinh ϱ . (4.14)

Again the coset space is spanned by the Goldstone fields θ and ϱ,
with the line element ds2 = R2

(
dϱ2 + cosh2 ϱdθ2

)
. Using the field

redefinition ρ = Rϱ, we get the Goldstone kinetic term as

K = −1

2
(∂ρ)2 − 1

2
R2 cosh2

( ρ

R

)
(∂θ)2 , (4.15)

which has f(ρ) = R2 cosh2(ρ/R). This is a hyperbolic space3 with a
negative constant curvature given by R = −2/R2.

As we see from these two examples, the Ricci scalar is determined by the
radius R of the field space, which corresponds to the symmetry breaking
scale in this setup. Now we take into account the motion of the inflaton
by assuming a slow-roll potential which softly breaks the shift symmetry.
Let us first consider the geodesic trajectories in these field spaces, which
can be related to the spontaneous symmetry probing solutions discussed in
Ref. [100].

In the SO(3)/SO(2) coset, the geodesic is a trajectory along the max-
imal circle, as shown by the blue curve in the left panel of Fig. 4.1. Here
without losing generality we take it to be the equator with ρ = 0, and the
canonically normalized inflaton ϕ is driven by a slow-roll potential in the θ
direction, with ϕ = Rθ. If there is no explicit symmetry breaking for the ρ
field, naively this Goldstone is supposed to be massless. However, because
of the rolling of another Goldstone θ, the “not-rolling” Goldstone ρ acquires
a mass [100]

m2
ρ = θ̇2 =

ϕ̇2

R2
, (4.16)

3One can connect this with the hyperbolic field space in α-attractors with R =
−2/(3α), and there α is related to the radius of curvature by α = R2/3.
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which is exactly the second term in (4.11). From here we can explicitly
see that, the curved field space contribution to the isocurvature mass is
associated with the internal curvature scale. For R ∼ ϕ̇/H ≃ 3600H, this
contribution is O(H2); while for R ∼ Mpl it becomes slow-roll suppressed
as ∼ ϵH2.

For the non-compact coset SO(2, 1)/SO(2), let us consider the inflaton
trajectory that is also along the θ direction, then for the field space in (4.15)
the geodesic motion is given by ρ = 0, which is the blue curve in the right
panel of Fig. 4.1. Here the ρ field also acquires a similar mass correction
from the rolling of the inflaton in the hyperbolic field space. But this is a
tachyonic contribution −ϕ̇2/R2, since the field space curvature is negative.
Thus to stabilize the isocurvature perturbation during inflation, one needs
to break the shift symmetry and engineer a potential in the ρ direction.

Now we consider small deviations from the geodesics, for which Ω/H ≪
1 and thus the curvature and isocurvature perturbations are weakly cou-
pled. This can be easily achieved by perturbing the above geodesics away
from the equator4, such as the orange trajectories in Fig. 4.1. For the spher-
ical space case, the trajectory is taken to be the latitude line ρ = δ, where
δ parametrizes the deviation. Then (4.7) yields Ω ≃ −(δ/R)θ̇ which can be
much smaller than H for δ ≪ R. Similarly in the hyperbolic field space,
a non-geodesic trajectory with ρ = δ yields Ω ≃ (δ/R)θ̇. Since these de-
viations from the geodesics are kept to be small, the field space curvature
contribution to µ2 discussed above remains valid. Therefore these isome-
try trajectories in the coset space provide simple realizations of QSFI with
curved field manifold.

In summary, from the above example we identify that R ∼ 1/R2, where
the curvature radius R can be seen as the energy scale describing the curved
field space geometry. Moreover, it may lead to significant contribution to
the isocurvature mass

µ2 ≃ V ′′(ρ0) +
ϕ̇2

2
R = V ′′(ρ0)±

ϕ̇2

R2
, (4.17)

which should not be neglected. For certain ranges of the curvature scale,
this correction could be comparable to or even larger than the Hubble scale,
which may dominate µ2 in QSFI. As a result, the model predictions of QSFI

4A potential in the ρ direction is needed for this type of toy model trajectories. Here
we keep agnostic about the specific form of the potential, and consider the consequences
of this non-geodesics motion directly.
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for primordial non-Gaussianities would be affected, which we shall explore
in detail in Section 4.4.

Before concluding this section, we would like to mention another in-
teresting observation: in (4.11) the second term ϕ̇2R/2 is time-dependent
during inflation, since the inflaton field velocity ϕ̇2 = 2ϵH2M2

pl is evolving.
Although it is a small effect, when the field space curvature contribution is
non-negligible, we may expect running behaviour for the isocurvature mass,
which we shall describe in detail at the end of the next section.

4.3 The EFT of background fields revisited

In this section we reexamine QSFI via the background EFT of inflation.
Usually to achieve the slow-roll evolution and the nearly scale-invariant pri-
mordial perturbations, the inflaton field is believed to be protected by an
(approximate) shift-symmetry. Based on this argument, one can construct
the EFT of background fields for inflation without the knowledge of micro-
physical realizations [90], which provides a model-independent framework
for studying physics in the primordial Universe.

Here we are mainly interested in the coupling between the extra-fields
and the inflaton (denoted as φ in this section). Since the massive field ρ
does not respect the shift symmetry, the leading contribution to the mixing
between the inflaton and ρ is given by a dimension-five (dim-5) operator in
the EFT expansion

L5
int = − 1

2Λ1
(∂φ)2ρ , (4.18)

where Λ1 is the cutoff scale. This operator, which has been elaborately
investigated in the studies of QSFI and related topics [59, 93, 174, 175],
is the leading order term in the EFT expansion. Realistically higher order
terms should also be present. In the following we shall show how one could
connect the background EFT with the curved field space in QSFI, and then
focus on the role of a dimension-six (dim-6) operator

L6
int = ± 1

2Λ2
2

(∂φ)2ρ2 , (4.19)

which can introduce the same effects as the field space curvature. The con-
nection has also been noticed in geometrical destabilization [63], while in
the current work we bridge the gap explicitly and highlight the generic
effects for massive fields.
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4.3.1 Bridging the background EFT with curved field spaces

Let us begin with the following EFT Lagrangian of two background fields

Lm = −1

2

(
1 + c1

ρ

Λ
+ c2

ρ2

Λ2

)
(∂φ)2 − 1

2
(∂ρ)2 − 1

2
m2ρ2 − Vsr(φ) . (4.20)

where Λ is an overall cutoff for the dim-5 and dim-6 operators. The di-
mensionless coefficients c1 and c2 with |c1,2| ⩽ 1 are introduced to rep-
resent their relative size and signs, thus Λ1 = Λ/c1 and Λ2 = Λ/

√
|c2|.

Furthermore these two mixing operators are considered to be perturbative
corrections to the single field slow-roll inflation, i.e. ρ/Λ ≪ 1. Notice that
the system has the same form with (4.5), while in the curved field space
language these two operators yield a non-trivial field space metric function

f(ρ) = 1 + c1
ρ

Λ
+ c2

ρ2

Λ2
. (4.21)

Thus the EFT in (4.20) can be seen as the expansion of a curved manifold
Lagrangian around a fixed trajectory with constant ρ. From (4.4) we also
get the Ricci curvature as

R ≃ −2c2 − c21/2

Λ2
+O

( ρ
Λ

)
. (4.22)

As we see, since the curvature contains the second order derivative of the
metric, the dim-6 operator will play a role here in general.

First let us look at the background dynamics. The EoM of the ρ field,
which is the centrifugal force equation in (4.8), yields the stabilized value
for the massive field at ρ = ρ0

5

1

2

(
c1

1

Λ
+ 2c2

ρ0
Λ2

)
φ̇2 = m2ρ0 ⇒ ρ0

Λ
=

c1
2

φ̇2/Λ2

m2 − c2 (φ̇2/Λ2)
. (4.23)

To ensure the validity of EFT, one needs ρ0/Λ ≪ 1. Then the canonically
normalized inflaton is just ϕ = f(ρ0)φ with f(ρ0) ≃ 1. Also there is a
turning rate given by6

Ω2 ≃ 1

4

(
c1 + 2c2

ρ0
Λ

)2 φ̇2

Λ2
+O

(ρ0
Λ

)
, (4.24)

5Note here ρ0 depends on the inflaton velocity, thus strictly speaking it is not a
constant. See Ref. [81, 82] for models with exactly constant ρ0.

6In the expansion we also consider the possibility for a hierarchy between c1 and c2,
such as c1 ∼ c2(ρ0/Λ).
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thus the curvature and isocurvature perturbations are coupled at the lin-
ear level. The weak coupling condition Ω/H ≪ 1 here implies that |c1 +
2c2(ρ0/Λ)|(φ̇/Λ) ≪ 2H. The isocurvature mass follows from (4.11) as

µ2 ≃ m2 +

[
c21 − c2 + 3c22

(ρ0
Λ

)2
+ 3c1c2

(ρ0
Λ

)]( φ̇

Λ

)2

≃ m2 +

(
c21
4

− c2

)(
φ̇

Λ

)2

, (4.25)

where in the second approximation the weak coupling condition is used.
Here the ρ field “bare” mass m2 gets corrections from the mixing operators
due to the time-dependent background of the inflaton field.

Now we comment on the role of the dim-5 operator. At the background
level, this operator contains a tadpole for ρ which contributes to stabilize
the massive field . If we switch it off by setting c1 = 0, the centrifugal
force equation (4.23) yields ρ0 = 0 and the trajectory becomes a geodesic
with Ω = 0. Thus this operator is important for the non-geodesic motion of
the inflaton, and leads to the mixing between curvature and isocurvature
perturbations. Also it contributes to the left diagram in Fig. 4.2 for the
scalar bispectrum in QSFI, thus its size can be related to the amplitude
of the non-Gaussian signals. Meanwhile the cutoff scale of this operator is
constrained in the weakly coupled regime. If we turn off the dim-6 operator
by setting c2 = 0, the weak coupling condition |c1|(φ̇/Λ) ≪ 2H yields a
lower bound on Λ1 = Λ/c1. As a result, the dim-5 operator itself gives
negligible corrections to the isocurvature mass which simply reduces to the
“bare” one µ2 ≃ m2.

Figure 4.2: Different roles of dim-5 and dim-6 operators shown in Feynman diagrams.

4.3.2 On the role of the dimension-6 operator

As a next-to-leading order correction, usually the dim-6 operator in (4.19) is
supposed to be sub-dominant. For instance, it contributes to the scalar bis-
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pectrum through loop diagrams, which turns out to be negligible [59, 160].
But as discussed above (and also pointed out in Ref. [63, 160, 176] pre-
viously), this operator may give nontrivial corrections to the isocurvature
mass. One can interpret this effect by the right diagram in Fig. 4.2, where
the two inflaton legs are taken to be the background, and then the extra
field get mass corrections through this operator.

To show its effects explicitly, let us consider the situation where the
massive field enjoys an approximate Z2 symmetry, such that the coefficients
of two mixing operators satisfy

|c1| ≪ |c2| = 1. (4.26)

Thus the overall cutoff scale Λ coincides with the one for the dim-6 operator
Λ2, and there is a hierarchy: Λ1 ≫ Λ2. The Ricci scalar becomes R ≃
−2c2/Λ

2. In the curved field space analogy, this case corresponds to the
small deviations from the equator (ρ = 0) in the coset space discussed
in Section 4.2.2. For instance, in the SO(3)/SO(2) system (4.13), suppose
the massive field is stabilized around ρ = ρb ≪ R by a potential V (ρ) =
m2(ρ − ρb)

2/2. If we look at a local patch of the spherical surface around
the latitude ρ = ρb, then the metric function there can be expanded as

R2 cos2
( ρ

R

)
= R2

[
1− 2

ρb
R

ρ− ρb
R

− (ρ− ρb)
2

R2

]
+ ... (4.27)

By redefining ρ− ρb → ρ and Rθ → φ, we recover the EFT Lagrangian in
(4.20) with Λ = R, c1 = −2ρb/R and c2 = −1. Similarly the SO(2, 1)/SO(2)
example can also be formulated into the Background EFT language, with
Λ = R as well, but c1 = 2ρb/R and c2 = 1 instead. As we see here, the
cutoff scale Λ of the dim-6 operator plays the role of the curvature scale of
the field space, while the sign of c2 denotes if it is positively or negatively
curved.

The background dynamics of this hierarchical system follows directly.
Because of the small but nonzero dim-5 operator, the massive field gets
deviated from the potential minimum by the centrifugal force (4.23). Since
|c1| ≪ 1, we find it easy to guarantee ρ0/Λ ≪ 1, and thus the EFT descrip-
tion is justified. Notice that, while the size of the dim-5 operator is still
constrained by the weak coupling condition, there is more freedom for the
cutoff scale of the dim-6 operator. One particularly interesting regime for
QSFI is for φ̇2/Λ2 ∼ H2, which corresponds to Λ ∼ 3000H by considering
φ̇2 ≃ ϕ̇2 ≃ 107H4. The isocurvature mass becomes
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µ2 ≃ m2 − c2

(
φ̇

Λ

)2

= m2 − 2c2ϵH
2

(
Mpl
Λ

)2

, (4.28)

where in the second equality we introduced the slow-roll parameter ϵ. The
second term, which represents the contribution from the dim-6 operator,
can be comparable with (or even larger than) the “bare” mass m2, and thus
should not be neglected. This expression has the same form with (4.17)
in terms of the field space curvature. Thus for c2 = 1, this correction is
negative, which is equivalent to the hyperbolic field space case; while c2 =
−1 makes the massive field heavier and corresponds to the positively curved
field space.

Moreover, as we briefly mentioned at the end of Section 4.2, this correc-
tion to µ2 is time-dependent due to the rolling behaviour of the inflaton7.
Now let us formulate the running behaviour of the isocurvature mass more
specifically. If we consider the evolution of ϵ from the time denoted by the
number of e-folds Nl, then as long as N −Nl is not too big we have

ϵ(N) ≃ ϵ(Nl) + ϵ′(Nl)(N −Nl) = ϵl [1 + ηl(N −Nl)] , (4.29)

with ϵl = ϵ(Nl) and ηl = η(Nl). Correspondingly the time dependence of
µ2 in (4.28) can be parametrized as

µ2(N) = µ2
l + λ(N −Nl)H

2 , (4.30)

where µ2
l = m2 − 2c2ϵlH

2(Mpl/Λ)
2 is the isocurvature mass at the time of

Nl, and λ is the running parameter expressed in both the curved field space
and the EFT languages as

λ = ηl
ϕ̇2

2H2
R = −ηl

c2
H2

φ̇2

Λ2
. (4.31)

As expected, typically the time-dependence is small and suppressed by ηl.
We estimate the size of λ in the conformal limit of inflation ϵ ≪ η [177]. This
hierarchy between slow-roll parameters8 is indicated by the observational

7This is similar to what happens for geometrical destabilization [63], where the running
isocurvature mass with negative R may lead to tachyonic instability, which ends inflation
prematurely or initiates a sidetracked phase [66, 83]. Here instead of µ2 < 0, we are
interested in both the positive- and negative-running behaviour in the stable (QSFI)
regime with µ2 ∼ O(H2), and mainly focus on its effects on the large-scale modes which
can be probed by CMB or LSS surveys.

8It can be achieved by taking Vsr(φ) to be the plateau-like potentials, such as Starobin-
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upper bound on the tensor-to-scalar ratio r = 16ϵ < 0.064 and the observed
value of the scalar tilt ns = 1 − η − 2ϵ = 0.9649 ± 0.0042 [7], which also
yields η ≃ 0.035. Then the running parameter in (4.31) is mainly controlled
by the cutoff scale Λ. For Λ ∼ 3000H, and thus φ̇2/(H2Λ2) ∼ O(1), we
get |λ| ≲ 0.1. In principle a larger running can be achieved by lowering Λ,
but then for the interest of QSFI one may need fine tune the correction in
(4.28) against the “bare” mass such that µ2 ∼ O(H2).

4.4 Phenomenology of the running isocurvature mass

With the above analysis of massive fields living in curved field space, the
goal of this section is to investigate the phenomenological consequences of
a nontrivial field space curvature in QSFI, and focus on the effects of the
running isocurvature mass.

First of all, let us briefly review the phenomenology of QSFI. To charac-
terize primordial non-Gaussianity, the bispectrum of curvature perturbation
is usually defined as

⟨ζk1ζk2ζk3⟩ ≡ (2π)3δ(3)(k1 + k2 + k3)Bζ(k1, k2, k3) . (4.32)

We are particularly interested in the squeezed configurations of the momen-
tum triangles formed by two short modes k1 = k2 = ks and one long mode
k3 = kl, with kl ≪ ks. One of the most interesting results in QSFI is that,
the scaling behaviour of the bispectrum in this squeezed limit is uniquely
determined by the isocurvature mass as follows [57, 58, 154]

lim
kl≪ks

Bζ ∝ 1

k3l k
3
s

(
kl
ks

)3/2−ν

for µ <
3H

2
,(4.33)

lim
kl≪ks

Bζ ∝ 1

k3l k
3
s

(
kl
ks

)3/2

cos
[
iν ln

(
kl
ks

)
+ δν

]
for µ >

3H

2
.(4.34)

where the scaling index ν is a function of the isocurvature mass

ν =

√
9

4
− µ2

H2
, (4.35)

and δν is a phase factor depending on ν. Here µ = 3H/2 is the critical mass
which divides the isocurvature mass spectrum into light and heavy regimes.

sky inflation [3] and α-attractors [17, 18, 73, 74], where the slow-roll parameters evolve
as ϵ ∼ 1/N2 and η ≃ 2/N .
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Notice that in our notation, 0 < ν < 3/2 for µ < 3H/2, and it becomes
imaginary when µ > 3H/2. Therefore through this observational channel
of non-Gaussianities, one can measure the mass of the additional field in a
model-independent manner.

Intuitively, the above scaling can be understood from the superhori-
zon behaviour of the massive field [58]. During inflation, the EoM of the
isocurvature mode is

σ′′
k +

k2

a2H2
σk + 3σ′

k +
µ2

H2
σk = 0 , (4.36)

where primes denote derivatives with respect to the number of e-folds N .
For QSFI, we are mainly interested in the regime µ/H ∼ O(1). Thus on the
superhorizon scales (k ≪ aH), the second term is sub-dominant compared
with the mass term. Approximately the EoM above becomes the one for a
damped oscillator σ′′

k + 3σ′
k + (µ2/H2)σk ≃ 0, and for a constant µ2 it has

two decaying solutions

σk(N) ∝ e−(3/2±ν)(N−Nk) . (4.37)

Here Nk is the e-folds when σk mode exits the horizon. For the light field
case (µ < 3H/2), the solution with minus sign dominates, and it corre-
sponds to the underdamped decay. For the heavy field case (µ > 3H/2),
the imaginary ν leads to the overdamped oscillations. Now we consider the
modulation of a long wavelength mode (kl) on the short wavelength modes
(ks). Suppose that the kl-mode exits the horizon at Nl, then later when
the ks-modes exit the horizon at Ns, the amplitude of the kl-mode already
decays by

σkl(Ns) = σkl(Nl)e
−(3/2±ν)(Ns−Nf ) = σkl(Nl)

(
kl
ks

)3/2±ν

, (4.38)

where in the second equality eNs−Nf = ks/kl is used. As a result, the
modulation of the long wavelength mode on the ks modes will inherit this
decayed amplitude. When µ < 3H/2, the decaying solution with minus sign
gives the power-law scaling in (4.33). While for µ > 3H/2, ν is imaginary
and the scaling can be written into the oscillatory form in (4.34).

For QSFI with curved field space, we first notice that the scaling be-
haviour of the squeezed bispectrum is determined by the full isocurvature
mass. Thus when the field space curvature contribution to µ2 is significant,
what we measure in the non-Gaussianity observation is no longer the “bare”
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mass of the additional field, since the scaling index ν in (4.35) is changed
by this nontrivial mass correction9. It is also possible that in µ2 the domi-
nant contribution comes from the field space curvature term. For instance,
in the example of inflation in coset space discussed in Section 4.2.2, the
Goldstone field in the normal direction of the inflaton trajectory has a zero
“bare” mass, but can still become massive due to the curved field space
effect. In this sense the QSFI predictions based on the “bare” mass will be
corrected, though it is difficult to distinguish these two mass contributions
from each other. However, the time-dependence of the field space curvature
term may break the degeneracy, which we shall study in the rest of this
section.

Let us take the parametrization in (4.30) as our starting point. Before
horizon-exit, since in (4.36) the second term dominates, the evolution of
σk is barely affected by the running mass. Thus the conventional mode
function with a Bunch-Davies initial condition provides a good description.
This is also shown in the shaded regions of Figs. 4.3 and 4.4, where the full
numerical solutions with running mass agree with dashed grey curves very
well in the subhorizon regime. But the superhorzion evolution of σk differs
from the conventional case with a constant mass. For simplicity, we define
a rescaled mode function as

σ̃k = e3N/2σk . (4.39)

Then for the kl mode which exits the horizon at e-folds Nl, the superhorizon
EoM can be approximately written into the following form

σ̃′′
kl
−
[
ν2l − λ(N −Nl)

]
σ̃kl = 0 , (4.40)

where the scaling index at Nl is given by the isocurvatue mass at that time
ν2l = 9/4−µ2

l /H
2. This equation has the following analytical solution with

two Airy functions

σ̃kl = C1Ai
[
ν2l − λ(N −Nl)

(−λ)2/3

]
+ C2Bi

[
ν2l − λ(N −Nl)

(−λ)2/3

]
, (4.41)

where C1 and C2 are two integration constants determined by the initial
condition. In the following we shall explore the behaviour of this solution in
three different regimes, and their modification on the scaling of the squeezed
bispectrum.

9Similar correction has been noticed in the context of cosmological colliders as a
contamination [157, 158].
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4.4.1 Running in the µ < 3H/2 regime

First, let us look at the situation where the isocurvature mass is running
in the µ < 3H/2 regime, which means ν2l − λ(N − Nl) > 0. Since µ2

varies slowly, in most cases the EoM (4.40) can be solved by the WKB
approximation. More specifically the adiabatic condition here is given by

ν2l − λ(N −Nl) ≫ (| − λ|)2/3 . (4.42)

This breaks down when the isocurvature mass is running close to 3H/2,
which we leave for consideration in Section 4.4.3. Then the first order WKB
solution of the rescaled mode function follows as

σ̃k
l

(N) =
σ̃k

l

(Nl)[
1− λ

ν 2

l

(N −N1)
]1/4 exp

(∫ N

N
l

√
ν2l − λ(N ′ −Nl) dN

′

)
, (4.43)

where∫ N

N
l

√
ν2l − λ(N ′ −Nl) dN

′ =
2

3

1

λ
ν3l − 2

3

1

λ

[
ν2l − λ(N −Nl)

]3/2
. (4.44)

We can get the same solution by taking the asymptotic expansion of Airy
functions in Eq. (4.41). The evolution of the rescaled mode function is shown
in the left panel of Fig. 4.3 for the negative running case, and in the left
panel of Fig. 4.4 (the first 10 e-folds there) for λ > 0. We see that, the WKB
solutions agree with the full numerical results of Eq. (4.36). Moreover, on
superhorizon scales, they deviate from the results with constant masses,
and thus are expected to modify the scaling behaviour in the squeezed
bispectrum.

To show the phenomenological effects more explicitly, we further con-
sider the situation with ν2l ≫ |λ(N − Nl)|, then the series expansion of
(4.44) yields

νl · (N −Nl)−
1

4νl
λ(N −Nl)

2 + ... (4.45)

Then the superhorizon decay of the isocurvature mode function is approx-
imately given by

σkl(N) = σkl(Nl)e
−(3/2−νl)(N−Nl)− 1

4νl
λ(N−Nl)

2

. (4.46)

Therefore one can easily get its amplitude at Ns when the short wavelength
modes exit the horizon. Similar with the situation in (4.38), the long mode
modulation yields the squeezed limit accordingly, and here the scaling is
modified to be
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lim
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≪k
s

Bζ ∝ 1

k3l k
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)

, with αν ≡ λ

4νl
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1

4νl
ϵlM

2
plR · ηl.

(4.47)

We notice that the running index αν leads the bispectrum to interpolate
between the scalings given by the mass µl and the mass µ(Ns). When the
curvature is positive, µ2 increases and αν > 0. If we fix kl, then for small
ks the bispectrum is closer to the local shape, and it moves towards the
equilateral scaling when ks increases. For negative R, the running of the
scaling index with ks would be the opposite.
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Figure 4.3: The evolution of the rescaled isocurvature mode function for cases with: negative-
running mass in the µ < 3H/2 regime (left panel) and positive-running mass in the µ > 3H/2
regime (right panel). In both figures, the blue curves are the full numerical solutions of σ̃k,
the orange dotted lines are the WKB approximation on superhorizon scales, and the dashed
grey lines are the solutions with constant masses (λ = 0). The shaded parts correspond to
the subhorizon regime.

4.4.2 Running in the µ > 3H/2 regime

Next we turn to study the heavy field case. In this regime, νl is imaginary
and the running isocurvature mass satisfies ν2l − λ(N − Nl) < 0. Simi-
larly we take the WKB approximation and leave its violations for the next
subsection, while here the adiabatic condition becomes

|ν2l − λ(N −Nl)| ≫ (| − λ|)2/3 . (4.48)
Under this, (4.40) yields the following oscillating WKB solutions

σ̃k
l

(N) → C±

|ν2l − λ(N −N1)|
1/4

exp
(
±i

∫ N

N
l

√
|ν2l − λ(N −Nl)| dN

)
, (4.49)
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whose real part can be further simplified into

Re σ̃k
l

(N) ∝ 1

|ν2l − λ(N −N1)|
1/4

cos
[
i
2

3λ

∣∣ν2l − λ(N −Nl)
∣∣3/2 − i

2ν3l
3λ

+ δl

]
.

(4.50)
Here δl depends on νl and the initial conditions. Again this can also be

obtained by taking the asymptotic expansion of Eq. (4.41). The result of
the positive running mass is in the right panel of Fig. 4.3, and the right
panel of Fig. 4.4 (the first 7 e-folds there) shows the ones for the negative
running mass. We find good agreement with numerical results. As we can
see, the positive running decreases the oscillation period while the negative
running increases it. This can be shown more clearly if we take |νl|2 ≫
|λ(N −Nl)| and expand the above solution. The superhorizon isocurvature
mode function follows as

Re σk
l

(N) ∝ e−
3

2

(N−N
l

) cos
[
iνl(N −Nl)

(
1− λ

4ν2l
(N −Nl)

)
+ δl

]
. (4.51)

Again considering its modulation on the ks-mode at Ns, we get the follow-
ing scaling behaviour in the squeezed bispectrum

lim
k

l

≪k
s

Bζ ∝ 1

k3l k
3
s

(
kl
ks

)3/2

cos
[
iνl ln

(
kl
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)
− iαν ln2

(
kl
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)
+ δl

]
, with αν ≡ λ

4νl
.

(4.52)

Notice here like νl, the running index αν is also imaginary and can be
expressed as αν = −iϵlM

2
plR · ηl/(4|νl|). Therefore due to the field space

curvature, the oscillatory signal in the heavy field regime of QSFI would
also be modified.

4.4.3 Running through µ = 3H/2

Now we consider the situation where the WKB approximation breaks down.
This corresponds to the cases when the isocurvature mass runs through
µ = 3H/2, and thus ν2l − λ(N −Nl) ≃ 0.

Let us first take a look at the numerical results in Fig. 4.4. For a posi-
tive λ, the isocurvature field runs from the light field regime to the heavy
field regime, and the superhorizon behaviour of σk demonstrates a smooth
transition from the overdamped decay to the underdamped oscillation (left
panel). On the other hand, for the negative running, µ2 drops below the
critical mass, and then the mode function transits from the oscillatory form
to the exponential decay (right panel).
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Numerical result
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Figure 4.4: The evolution of the rescaled isocurvature mode function for cases with: positive-
running mass from µ < 3H/2 to µ > 3H/2 (left panel) and negative-running mass from
µ > 3H/2 to µ < 3H/2 (right panel). In both figures, the blue curves are the full numerical
solutions of σ̃k, the orange dotted lines are the superhorizon solutions using Airy functions,
the WKB approximations are given by the green curves, and the dashed grey lines describe
the evolution with constant masses (λ = 0). The shaded parts correspond to the subhorizon
regime.

We can clearly see that the WKB solution becomes invalid when the
mass runs close to 3H/2. However, the analytical solutions (4.41) with two
Airy functions still holds true in this transition regime, and provides a good
description for the mode function. It is also interesting to notice that, the
mathematics describing the transition between underdamped decay and
overdamped oscillation is the same with the semi-classical approximation
in quantum mechanics [178], where the wave function is oscillating in the
classically allowed region and decaying in the tunnelling regime. Therefore
the critical mass µ = 3H/2 here can be seen as a “turning point” where
the WKB approximation cannot be valid.

For the squeezed limit of the bispectrum, this transition behaviour of the
superhorizon mode function may leave distinct imprints, with a combination
of power-law and oscillatory signals. Thus in this case, the deviation from
the standard QSFI predictions could be large, and can be seen as a new
template for the squeezed bispectrum. But for detectability, we need to be
lucky such that the transition behaviour just occurs for the perturbation
modes that correspond to our observational window. Or it is also possible
that, future observations for different scales may help us to find the hint
of this signature. For instance, if an oscillatory signal is detected by large
scale experiments (such as CMB), while we observe power-law scaling of the
squeezed bispectrum on small scales (such as LSS and CMB distortions),
then it would indicate a negative running isocurvature mass caused by a
hyperbolic-type field space.
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In summary, the running of the isocurvature mass leads to the running in
the scaling of the squeezed bispectrum, and the running index αν measures
the curvature of the field space. With the above analysis, we close this
section by giving two final remarks:

Figure 4.5: Two types of squeezed configurations of momentum triangles. The bispectrum
may only depend on the shapes (left), or there is dependence on the size as well (right).

Shape-dependence & scale-dependence. In the standard QSFI with con-
stant mass, one interesting fact is that, although the squeezed limit depends
on the ratio of kl/ks, the full bispectrum is still scale-invariant. That is to
say, if we rescale three momenta but keep their ratio fixed, which corre-
sponds to the transformation to a similar triangle, then the bispectrum
remains unchanged. Meanwhile the nontrivial scaling behaviour in (4.33)
and (4.34) can be seen as a function of the various squeezed configurations.
For instance, if we fix the long wavelength mode kl, and let ks vary, the
bispcetrum becomes different. Thus this result is shape-dependent. For a
running isocurvature mass, as we can see from (4.47) and (4.52) the shape
dependence remains. Furthermore the bispectrum here also becomes scale-
dependent. If we rescale three wavenumbers together, for instance kl → κkl
and ks → κks, then the new scaling index νκ should be determined by the
µ2
κ when the rescaled long wavelength mode κkl exits the horizon

νκ =

√
9

4
− µ2

κ

H2
≃ νl −

λ

2νl
(Nκ −Nl) . (4.53)

Notice that the scale-dependent running index here α̃ν ≡ dνl/(dN) =
−λ/(2νl) differs from the ones parametrizing shape-dependence in (4.47)
and (4.52). This is because, a running isocurvature mass would continu-
ously affect the superhorizon evolution of σkl , which plays an important
role for the shape-dependence; while the scale-dependence is controlled by
the mass at different times, thus the running can be simply obtained by
taking derivative of µ2.

Implications on the scale-dependent bias. In the LSS observations, the
halo overdensity δh tracing galaxy distribution and the dark matter density
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contrast δm are related by the bias b through δh = bδm. It has been shown
that, signals in the squeezed limit of the primordial scalar bispectrum can
lead to a scale-dependent component in the bias bNG, which becomes dom-
inant on large scales [179, 180] (see Ref. [181] for a recent review). Thus
this scale-dependent halo bias provides an observational opportunity for
the detection of the modified scaling behaviour studied above. In the con-
ventional QSFI models, the scaling signals in (4.33) and (4.34) respectively
imply bNG(k) ∝ k−1/2−ν and bNG(k) ∝ k−1/2 cos(iν ln k). Accordingly the
squeezed bispectra with running in (4.47) and (4.52) yield

bNG(k) ∝ k−1/2−ν
l

−α
ν

ln k and bNG(k) ∝ k−1/2 cos(iνl ln k − iαν ln2 k) , (4.54)

which suggests that, besides ν, the running index αν can also be set as a
free parameter for the data analysis of future LSS surveys.

4.5 Conclusion and discussion

In this paper we explore the implications of nontrivial internal spaces in the
context of inflationary massive fields. Here QSFI is generalized to curved
field manifold, and then analyzed by using both the multi-field techniques
and the background EFT approach. Through the multi-field analysis, we
show that the field space curvature could contribute significantly to the
isocurvature mass in QSFI, thus modify its predictions on non-Gaussianity.
Meanwhile the same result is also derived in the EFT of the background
fields, where a dim-6 operator is identified to generate the same effects as
the curved field space. We build the connection between these two different
but equivalent approaches, and further demonstrate that the cutoff scale of
the dim-6 operator is associated with the curvature scale of the field space.

Moreover, as a result of the slow-roll dynamics of the inflaton field,
the field space curvature contribution to the isocurvature mass is time-
dependent in nature. We perform the first analysis on phenomenological
consequences of the running isocurvature mass, and find new features in
the scaling of the squeezed scalar bispectrum. Besides the power-law and
oscillatory signals of QSFI in the light and heavy mass regimes, the time-
dependence of the isocurvature mass leads to running behaviour in the
squeezed scaling. If the field space is positively curved, the isocurvature
mass increases, which leads to the positive running in the squeezed scal-
ing. While for the field space with negative curvature, the running becomes
negative. Also a transition signal between the power-law and oscillatory
scalings is discovered when the mass runs through µ = 3H/2. These modi-
fications to the previous results of QSFI provide new templates for detecting
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primordial non-Gaussianity. Therefore in future observations, through the
precise measurement of running behaviours in the squeezed bispectrum,
we may be able to probe the geometry of the internal field space during
inflation.

This work can also be seen as the first step towards several possible
directions for future research. First of all, it is interesting to study the im-
plications on cosmological collider physics [59]. Our results indicate that,
due to the time-dependent background of the inflaton field, higher dimen-
sion operators may become non-negligible for the collider signals. While the
current work can be directly applied to heavy scalar particles, it is worth
investigating similar effects of particles with spins, whose “bare” mass may
also be corrected by higher order EFT operators mixing with the inflaton.

Next, considering that one of our main motivations is to probe field
space curvature during inflation model-independently, the current results
are not sufficiently general and unique yet. For instance, in principle it is
possible to engineer other models of QSFI with running isocurvature mass,
which would lead to similar phenomenology degenerate with the geometrical
effects10. Thus we are encouraged to explore the truly unique signatures of
the curved field space with more generalities.

Finally, the running scaling signals in the squeezed limit of the scalar
bispectrum have implications for observations, which deserve a closer look.
For example, the observability of these signals and the fitting of the running
index using CMB and LSS data remain to be investigated.

10The analysis of the time-dependent isocurvature mass starting from the parametriza-
tion (4.30) can be seen as an independent part of this paper, which is also of phenomeno-
logical interest in contexts beyond curved field space. Though one may wonder if other
constructions are as simple and natural as the one considered here.
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Abstract: Non-attractor inflation is known as the only single field inflationary sce-
nario that can violate non-Gaussianity consistency relation with the Bunch-Davies
vacuum state and generate large local non-Gaussianity. However, it is also known
that the non-attractor inflation by itself is incomplete and should be followed by a
phase of slow-roll attractor. Moreover, there is a transition process between these
two phases. In the past literature, this transition was approximated as instant and
the evolution of non-Gaussianity in this phase was not fully studied. In this pa-
per, we follow the detailed evolution of the non-Gaussianity through the transition
phase into the slow-roll attractor phase, considering different types of transition.
We find that the transition process has important effect on the size of the local non-
Gaussianity. We first compute the net contribution of the non-Gaussianities at the
end of inflation in canonical non-attractor models. If the curvature perturbations
keep evolving during the transition - such as in the case of smooth transition or
some sharp transition scenarios - the O(1) non-Gaussianity generated in the non-
attractor phase can be completely erased by the subsequent evolution, although
the consistency relation remains violated. In extremal cases of sharp transition
where the super-horizon modes freeze immediately right after the end of the non-
attractor phase, the original non-attractor result can be recovered. We also study
models with non-canonical kinetic terms, and find that the transition can typ-
ically contribute a suppression factor in the squeezed bispectrum, but the final
local non-Gaussianity can still be made parametrically large.
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5.1 Introduction

Inflationary cosmology is the leading paradigm of the very early universe
[1–6], in which the universe has experienced a primordial phase of quasi-
de Sitter expansion. The simplest inflation model is realized by a canoni-
cal scalar field slowly rolling along a sufficiently flat potential. The asso-
ciated perturbation theory successfully predicted a nearly scale-invariant
power spectrum of primordial curvature perturbation, which is favoured
by the latest cosmic microwave background (CMB) observations [108, 182].
Moreover, it is widely acknowledged that the primordial non-Gaussianity,
which encodes information about the very early universe, could be a pow-
erful tool to discriminate different inflation models or alternative scenarios
[35–38]. Remarkably, there is a consistency relation for non-Gaussianity in
single-field slow-roll inflation models pointed out by Maldacena [39, 40].
The consistency relation states that the amplitude of the primordial non-
Gaussianity in squeezed configuration - where the wavelength of one mode
is much larger than the other two in the three point correlation fucntion - is
proportional to the spectral index of the power spectrum of scalar pertur-
bations, i.e. fNL = 5(1−ns)/12. Accordingly, the observation of the almost
scale invariant power spectrum of linear perturbation indicates extremely
small amount of nonlinear correlations in squeezed limit. As a result, one
expects that the simplest inflation model in terms of single slow-roll scalar
field would be ruled out if any squeezed limit non-Gaussianity could be
detected.

It is, however, interesting to notice that there exists a nontrivial infla-
tionary scenario, dubbed as non-attractor inflation [41–43, 183–185], that
can violate Maldecena’s consistency relation even in the framework of sin-
gle scalar field with Bunch-Davies initial states. This is due to the fact
that curvature perturbations generated from quantum fluctuations during
the non-attractor phase are dominated by the growing modes at super-
Hubble scales, of which the behaviour is much similar to the matter bounce
cosmology [28–30] rather than the cosmology of slow-roll inflation. Accord-
ingly, similar to the matter bounce cosmology [107, 186], large amount
of local non-Gaussianity - which contributes dominantly to the squeezed
limit bispectrum - can be achieved in non-attractor inflation models. Ref.
[42] considers a simple model with canonical kinetic term which predicts
fNL ≃ 5/2. The idea is then further generalized to the models with non-
canonical kinetic terms in [43, 184, 185] where it has been shown that the
non-Gaussianity can be arbitrarily large. Inspired by this unconventional
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behaviour of primordial perturbations, many studies have been devoted to
understand the possible violation of the consistency relation during the non-
attractor phase from a variety of theoretical perspectives [103, 187–189].

Furthermore, it is important to notice that the non-attractor inflation
alone is not phenomenologically viable [190]. Namely, without a conven-
tional attractor phase, the non-attractor inflation does not provide enough
e-folds or cannot fit the COBE normalization of the density perturbations.
For a more realistic consideration, the phase of non-attractor inflation shall
be regarded as some initial stage of the whole inflationary era, and a phase
transition from non-attractor to the slow-roll attractor evolution becomes
essential for this class of models. Therefore, the non-attractor inflation
model consists of at least three different kinds of phases: the non-attractor
phase, the transition phase, and the slow-roll phase. We shall define these
phases more explicitly in models we study. During the transition phase,
modes that exited the horizon may not freeze, the main focus of this pa-
per is to understand how the transition process would influence primordial
non-Gaussianities generated in the non-attractor phase.

In this work, we revisit primordial non-Gaussianities from non-attractor
inflation by focusing on the impact of the non-attractor to attractor transi-
tion. We begin with a detailed analysis of the non-attractor inflation model
with a canonical scalar field, which was previously studied in Ref. [42, 190].
Here the transition processes are classified into two different cases, depend-
ing on whether the background evolution around the transition is smooth
or sharp. We first apply the in-in formalism to study the bispectrum in
these two cases separately. For the smooth transition, our calculation shows
that the non-Gaussianity generated in the non-attractor phase cannot sur-
vive through the transition to the slow-roll attractor phase. So the value
fNL = 5/2 generated during the non-attractor phase returns to ∼ 0 (slow-
roll-suppressed) in the slow-roll phase, and the net contribution to the local
fNL is negligible as in the slow-roll attractor case. The situation is more com-
plicated in the sharp transition. After a detailed analysis on the background
and perturbations, we find that, in general the non-Gaussianity generated
in the non-attractor phase is also suppressed after the transition. But in
extremal cases where the curvature perturbations freeze out immediately
at the transition time, the original result fNL ≃ 5/2 can be recovered. We
confirm all these results by employing the simple and intuitive calculation
of the δN formalism. Note that despite the non-trivial evolution of non-
Gaussianity during the transition phase, the consistency relation is still
violated even though the amplitude of non-Gaussianity might be slow-roll
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suppressed. This is a consequence of the fact that the curvature perturba-
tion modes keep evolving after they crossed the Hubble horizon; in con-
trast with the conventional, slow-roll models where curvature perturbation
is conserved on super-horizon scales.

We further study the transition process in the non-attractor inflation
model driven by a non-canonical scalar field, as constructed in [43, 184]. The
background evolution shows that, the inflaton field first becomes canonical
before the cosmological system enters into the phase of slow-roll attractor
through a smooth transition phase. The difference between these models
and the above canonical model is that now we have two types of terms
in the non-canonical models. The first type behaves very similarly to the
interaction term in the canonical model, and it does not contribute to large
local non-Gaussianity either when a smooth transition is taken into ac-
count. However, the non-canonical models have another set of qualitatively
different terms. These second type of terms are unique due to the pres-
ence of the non-canonical kinetic terms. The contribution to large local
non-Gaussianity from these terms do not get exactly erased by the smooth
transition period, but instead gets an additional suppression factor. Since
the suppression factor and the amplitude of primordial non-Gaussianity
generated in the non-attractor phase are independent of each other, the
large local non-Gaussianity is still possible for certain model parameters.
So the main conclusions of [43, 184] remain unchanged.

The paper is organized as follows. In Section 5.2 we study the canon-
ical model of non-attractor inflation. After reviewing previous works, we
focus on the detailed transition process from the initial non-attractor phase
to the subsequent phase of slow-roll attractor. Then we elaborate on the
behaviour of local non-Gaussianity in two different cases – smooth transi-
tion and sharp transition, via both in-in formalism and δN formalism. In
Section 5.3 we generalize the study of the non-attractor inflation to models
with non-canonical kinetic terms, where we only consider smooth transition
case. The detailed transition process in these models is shown by full anal-
ysis of the background dynamics. After that, we estimate the size of the
non-Gaussianity and find a suppression effect caused by the background
evolution of the transition process. We summarize our conclusions with a
discussion in Section 5.4. Throughout the paper we take the convention of
the reduced Planck mass to be M2

pl = 1/8πG = 1.
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5.2 The canonical model

In this section we revisit the calculation of primordial non-Gaussianities in
the model of canonical non-attractor inflation, and show how the different
transition processes may change the non-Gaussianity generated in the non-
attractor phase.

5.2.1 The non-attractor phase and local non-Gaussianity

The canonical non-attractor model is constructed by assuming that the
inflaton’s potential is almost a constant, i.e. for sufficiently large regime
one has V (ϕ) ≃ V0 [41, 42]. Accordingly, the background equations in this
model are given by

ϕ̈+ 3Hϕ̇ ≃ 0 , 3H2 =
1

2
ϕ̇2 + V ≃ V0 , (5.1)

where a dot denotes the derivative with respect to cosmic time t, and H ≡
ȧ/a is the Hubble parameter. This leads to the following behaviour for the
slow-roll parameters

ϵ ≡ − Ḣ

H2
=

ϕ̇2

2H2
∝ a−6 , η ≡ ϵ̇

Hϵ
= −6 . (5.2)

As shown in the above equation, the slow-roll parameter ϵ decays very
quickly during the non-attractor phase, and thus, one can take the limit
ϵ → 0 as a good approximation here. As a result, the Hubble parameter H
is nearly constant during the non-attractor phase and in terms of conformal
time τ the scale factor takes a ≃ −1/(Hτ). In addition, the second slow-roll
parameter η is of order O(1).

For the primordial curvature perturbation R, we define z ≡ a
√
2ϵ and

uk ≡ zRk. Then at the linear level, the perturbation variable uk is governed
by the Mukhanov-Sasaki equation

u′′k +

(
k2 − z′′

z

)
uk = 0 , (5.3)

where the prime denotes the derivative to conformal time τ . Following the
standard treatment, the effective mass can be written as z′′/z ≃ (ν2 −
1/4)/τ2, where for ϵ ≪ 1, ν is given by

ν2 =
9

4
+

3

2
η +

1

4
η2 +

η̇

2H
+O(ϵ) . (5.4)



106 Revisiting non-Gaussianity from non-attractor inflation

In the non-attractor stage, η = −6, and thus, ν = 3/2. Consequently, Eq.
(5.3) yields the mode function of curvature perturbation as follows,

Rk(τ) =
uk
z

=
H√
4ϵk3

(1 + ikτ)e−ikτ , (5.5)

which looks the same as the one in the lowest order slow-roll approxima-
tion. But notice that ϵ is rapidly evolving here in contrary to the slow-roll
case. After Hubble-exit, one can get a scale-invariant power spectrum of
primordial curvature perturbation, of which the form takes PR(k) ≡ H2

8π2ϵ
.

However, since ϵ ∝ a−6, the amplitude of curvature perturbation grows as
Rk ∝ a3 at super-Hubble scales. As a result, the final form of the power
spectrum ought to be evaluated after the end of the non-attractor phase.

In order to calculate the non-Gaussianity, one needs to study the three-
point correlation function of primordial curvature perturbation

⟨Rk1Rk2Rk3⟩ ≡ (2π)3δ(3)(k1 + k2 + k3)BR(k1, k2, k3) . (5.6)

At the squeezed limit k1 ≃ k2 ≫ k3, the bispectrum BR can be expressed
as

BR(k1, k2, k3) = (2π)4
1

k31k
3
3

PR(k1)PR(k3)
3

5
fNL , (5.7)

where fNL is the amplitude of non-Gaussianity in squeezed limit. The con-
sistency relation, predicts fNL ≃ 5

12(1 − ns) which we will see is violated
in non-attractor models. Notice that the local shape has the same scaling
behaviour in squeezed limit, although it is well defined in any configuration
[37]. The non-Gaussianity that is generated during the non-attractor phase
is indeed in the local shape but we are only interested in the squeezed limit
(which tells us whether the consistency relation is violated or not); therefore
we will not discuss non-Gaussianities in general configurations.

Ref. [42] uses two methods to compute the size of local non-Gaussianity.
The first method focuses on the non-attractor phase alone. Because the
contributions from the terms in cubic Lagrangian are slow-roll suppressed
in this phase, Ref. [42] focuses on the contribution from a field-redefinition
term in

R = Rn +
η

4
R2

n +
1

H
RnṘn , (5.8)

which yields
fNL = −5

4
(η + 4) =

5

2
(5.9)

at the end of the non-attractor phase τe. If these perturbations got frozen
immediately at the end of this phase and were carried along to the attractor
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slow-roll phase, we would end up with this order-one non-Gaussianity. How-
ever, the transition from the non-attractor phase to the slow-roll phase may
not be an instant process and the process is not generically an attractor so-
lution either. It turns out that the evolution of modes at the super-horizon
scales can be non-negligible during this transition period.

The second method used in Ref. [42] indeed considers this transition, but
treating it as an instant process. In this method, the field redefinition term
no longer contributes because the parameter η should now be evaluated
at the end of inflation instead of at the end of the non-attractor phase.
This value of η is negligible. The corresponding contribution should now,
equivalently, come from an interaction term in the cubic Lagrangian,

S3 ⊃
∫

dtd3x
a3ϵ

2
η̇R2Ṙ . (5.10)

as correctly considered in Ref. [42]. The bispectrum coming from this in-
teraction term is

BR(k1, k2, k3) = −2ℑRk1(τ0)Rk2(τ0)Rk3(τ0)

∫ τ0

−∞
dτa2ϵη′

×
[
R∗

k1(τ)R
∗
k2(τ)R

∗′
k3(τ) + perm.

]
, (5.11)

where τ0 is the conformal time after which the super-horizon curvature
perturbation as well as the corresponding bispectrum cease evolving. We
also remind that τe denotes the end of the non-attractor phase. The η
parameter goes from −6 to nearly zero and then the coefficient η′ can be
comparably large. If the transition is approximated as an instant process
that takes place suddenly at the time τe when the non-attractor phase
ends [42], then one may expect τ0 = τe and the behaviour of η during the
transition period can be approximated by a step function

η = −6 [1− θ(τ − τe)] . (5.12)

As a result, the interaction term (5.10) leads to

lim
k3/k1→0

BR(k1, k2, k3) = (2π)4
1

4k31k
3
3

PR(k1)PR(k3)

∫
dτη′ , (5.13)

and the value fNL = 5/2 will be recovered. However, one may still wonder
whether this conclusion holds true if we consider a complete transition
process. In the next subsections, we will study various transition cases in
details, and show that, for a smooth transition the actual contribution from
(5.10) is negligible; while the O(1) local non-Gaussianity can be recovered
from a sharp transition.
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5.2.2 The non-attractor to slow-roll transitions

The reason that the ultra-slow-roll inflation with a constant potential can-
not be a complete model (even if we impose an abrupt cutoff and start
the reheating instantly in the non-attractor phase) is that, after 40 ∼ 60
efolds, the density perturbation cannot produce the observed value.1 So a
transition to a slow-roll phase is needed. In the following, we construct a
model that describes such a transition. The advantage of our model is that
the exact analytical solutions can be obtained, in which the inflaton field
begins the evolution in the non-attractor phase and then joins the slow-roll
phase gradually.

Figure 5.1: A sketch plot of the potentials of non-attractor inflation with smooth and sharp
transitions. Note that the inflaton rolls from right to left, i.e. ϕ is decreasing during the
evolution.

Suppose that the non-attractor phase ends at ϕe = ϕ(τe), and after
that, a slow-roll potential V (ϕ) is attached to the constant one. Since the
transition process is very short and the inflaton field excursion is very tiny,
during this period, the attached slow-roll potential can be expanded as
follows,

V (ϕ) = V (ϕe) +
√
2ϵV V (ϕe)(ϕ− ϕe) +

1

2
ηV V (ϕe)(ϕ− ϕe)

2 + . . . . (5.14)

1If we require only the non-attractor inflation to solve the flatness and horizon prob-
lems, the total number of efolds of the non-attractor phase should be 40 ∼ 60 efolds, at the
end of which the value of ϵ would be diminishingly small. To fit the COBE normalization,
H would be diminishingly small and ruled out already.
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Here we have introduced the potential slow-roll parameters

ϵV ≡ 1/2(V ′(ϕe)/V (ϕe))
2 and ηV ≡ V ′′(ϕe)/V (ϕe),

which are expected to be small constants such that the slow-roll dynamics
can be triggered after the transition. Accordingly, one can sketch the pos-
sible form of potentials depending on different values of parameters which
correspond to different types of transition, as shown in Figure 5.1. We may
distinguish two extreme possibilities: if we require the derivative of the po-
tential to be continuous, then ϵV = 0 and thus the transition is smooth;
whereas for other cases, such as

√
2ϵV ≳ |ηV |, we get sharp transition.

Note that by considering the above potential we restricted ourselves to the
case with continuous potential and the positivity of the second term also
implies that the inflaton rolls-down instead of jumping up. By the end of
this section, however, we will discuss how the results may change by con-
sidering non-standard cases of discontinuous potential or negative slope.
Finally, notice that the above additional potential in a single field model of
inflation, breaks the internal shift symmetry explicitly; therefore even the
generalized consistency relations [103, 189] are not applicable, unless if the
bispectrum does not evolve when the potential (5.14) switches on.

In this type of inflation model, initially the inflaton field rolls along the
constant potential V = V0 for ϕ > ϕe, which we define as the non-attractor
phase. After the inflaton field reaches ϕe, the potential becomes (5.14), on
which inflation transits to the slow-roll attractor. We define this period
as the transition phase, as shown by the light green region in Figure 5.1.
Using e-folding number N as variable (with the convention dN = Hdt), the
background equations become

d2ϕ

dN2
+ 3

dϕ

dN
+ 3

√
2ϵV + 3ηV (ϕ− ϕe) ≃ 0 , and 3H2 ≃ V (ϕe) , (5.15)

where we have assumed that the Hubble parameter is a constant. Without
losing generality, we can set N = 0 at ϕe and the field velocity at the
same moment is introduced to be πe, then we have the following analytical
solution

ϕ =
s− 3− h

s(s− 3)
πee

1
2
(s−3)N − s+ 3 + h

s(s+ 3)
πee

− 1
2
(s+3)N +

2πeh

s2 − 9
+ ϕe , (5.16)

π ≡ dϕ

dN
= e−3N/2

[
πe cosh

(s
2
N
)
− 3 + h

s
sinh

(s
2
N
)]

, (5.17)
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with the parameters

s ≡
√

9− 12ηV ≃ 3− 2ηV , h ≡ 6
√
2ϵV /πe , (5.18)

being introduced. Notice that in our convention πe < 0 (because ϕ is de-
creasing throughout the evolution) and hence h < 0. After some simple
algebra, the slow-roll parameters defined in (5.2) during the transition are
given by

ϵ(N) =
π2
e

2
e−3N

[
cosh

(s
2
N
)
− 3 + h

s
sinh

(s
2
N
)]2

, (5.19)

η(N) = s− 3− 2s(3 + s+ h)

esN (s− 3− h) + 3 + s+ h
. (5.20)

We can see from the above that, as N increases, η goes from −6 − h to
−2ηV during the transition.

Non-attractor initial condition

Slow-roll attractor
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Figure 5.2: Smooth transition. Left Panel: the phase space diagram of non-attractor to slow-
roll transition on a plateau-like potential. Right Panel: the evolution of η parameter during
the transition.

Note that, the background evolutions in smooth and sharp transitions
behave manifestly different, and h is a crucial parameter to characterize
their difference. For the smooth transition, h → 0, and thus at the beginning
of the transition phase η = −6, which continuously follows the non-attractor
phase and then smoothly evolves to the slow-roll attractor. Figure 5.2 shows
this behaviour via the phase space diagram and the evolution of η, where the
smooth transition is depicted by the numerical solution of the non-attractor
initial condition on a plateau-like potential2.

2See Section 5.2.3.1 for more discussions about this implementation.
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For the sharp transition, h is a negative constant determined by the field
velocity πe at the end of the non-attractor phase. From (5.19) we see that,
when the attractor is reached after the sharp transition, we have ϵ0 ≃ ϵV
with ϵ0 = π2

0/2, where π0 is the field velocity dϕ
dN during the slow-roll phase.

Therefore, the parameter h can be described also by the ratio between π0
and πe

h ≡ 6
√
2ϵV /πe ≃ 6

√
2ϵ0/πe = −6π0/πe . (5.21)

From the relative magnitudes of πe and π0, it is straightforward to see that,
the value of |h| can be of order unity or even bigger, and there are three
possible cases in sharp transition: h < −6, h = −6 and −6 < h < 0,
as shown in the phase space diagram in Figure 5.3. Consequently at the
beginning of the transition η = −6 − h can be quite large, which differs
from its value during the non-attractor phase (where it is η = −6). Thus
there is a sudden change of η at the transition time, from −6 to −6− h, as
shown by the numerical examples in the right panel of Figure 5.3. For the
later convenience, we formulate the evolution of η around τe as

η = −6− hθ(τ − τe) , τe− < τ < τe+ . (5.22)

Therefore, typically a sharp transition process consists of an instant tran-
sition at the beginning and a following period of relaxation described by
(5.16) – (5.20). One special case is h = −6+2ηV ≃ −6, where inflaton joins
the slow-roll attractor immediately after the instant transition and there is
no relaxation process. However, it still differs from the oversimplified case
in (5.12). As we shall show in Section 5.2.4, this realistic instant transi-
tion does not imply immediate freezing of the curvature perturbation (i.e.
τ0 ̸= τe), and the evolving super-horizon mode after the instant transition
can still modify the non-Gaussianity generated during the non-attractor
phase.

With these background solutions of transitions, in the following we shall
perform a detailed study of non-Gaussianities. The in-in formalism is ap-
plied in Section 5.2.3 and 5.2.4, for smooth and sharp transitions respec-
tively. In Section 5.2.5, we further confirm the in-in results in both cases
via δN formalism.

5.2.3 Non-Gaussianity in a smooth transition

In this subsestion, we focus on in-in calculation of the smooth transition
case, which corresponds to the limit ϵV → 0 in the potential (5.14), and
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Figure 5.3: Sharp transition. Left Panel: the phase space diagram of sharp transition for three
different cases. Right Panel: the evolution of η parameter during the sharp transition.

demonstrate that there is a cancellation for the local non-Gaussianity gen-
erated during the non-attractor stage. Then in Section 5.2.3.1, we confirm
this conclusion by the numerical study of a realistic model. At last, in Sec-
tion 5.2.3.2, we perform an extended analysis to show that this conclusion
holds true for smooth transition in general.

Before the in-in calculation, we should first check the behaviour of the
mode function during the transition, which is governed by the Mukhanov-
Sasaki equation (5.3) and the index ν in (5.4). Even though η and η̇ varies
dramatically during the transition, surprisingly the exact solution (5.19)
and (5.20) gives us ν2 = 9/4− 3ηV , which is constant and the same as the
result in slow-roll attractors3. Therefore, the mode function in (5.5) still
applies here as the leading order approximation, and the resulting power
spectrum in this period is still nearly scale-invariant. We should further
remark that, the curvature perturbation still evolves during the transition,
and should be fixed after the slow-roll attractor is reached. That is to say
the final amplitude of the power spectrum is PR(k) ≡ H2

8π2ϵ0
, where ϵ0 is the

ϵ in the slow-roll stage.
With this analytical description of the smooth transition, now let us

look at the bispectrum caused by the cubic interaction term (5.10). We can
substitute the mode function (5.5) into the in-in integral in (5.11). Notice
that, even though ϵ is small, it varies fast during the transition, thus

R′
k(τ) =

H√
4ϵk3

k2τe−ikτ − η

2
aH

H√
4ϵk3

(1 + ikτ)e−ikτ , (5.23)

3In Section 5.2.3.2, we shall show that the cancellation giving this result of ν2 is not
a coincidence.
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where the second term is due to the ϵ’s evolution4. Taking the squeezed
limit k1 = k2 = k ≫ k3, we get

BR(k1, k2, k3) = − (2π)4

4k31k
3
3

P 2
Rℑ

∫ τ0

−∞
dτ

η′√
ϵ/ϵ0

e2ik(τ−τ0)

×
[
1− ikτ

kτ
+

3η

4

(1− ikτ)2

k3τ3

]
(1 + ikτ0)

2 .(5.24)

Since η′ is negligible during the non-attractor and slow-roll phase, we only
need to compute this integral during the transition process (from τe to τ0).
As mentioned earlier, the evolution of the bispectrum after τ0 is suppressed,
as is well-known in the attractor case where the super-horizon curvature
perturbation freezes out. Since we are mainly interested in the perturbation
modes which exit the Hubble radius during the non-attractor phase, we can
use |kτe| < |kτ0| ≪ 1. Thus the leading order contribution of the above
bispectrum becomes

BR(k1, k2, k3) = − (2π)4

4k31k
3
3

P 2
R

∫ τ0

τe

dτ
η′√
ϵ/ϵ0

[
1 +

η

2
− η

2

(τ0
τ

)3]
. (5.25)

Plugging in the analytical expressions for ϵ and η in (5.19) and (5.20), we
find after the transition

3

5
fNL ≃ −

√
2ϵ0
πe

ηV
2

. (5.26)

Here
√
2ϵ0 can be expressed as the field velocity dϕ

dN at the beginning of the
slow-roll phase τ0, thus

√
2ϵ0 ≪ |πe|. As a result, the local non-Gaussianity

becomes negligible after the transition.
If we compare this calculation with the result (5.13) in the instant tran-

sition approximation, we can just identify τ = τ0 and ϵ = ϵ0 in (5.25)
using the step function (5.12) for η. However, here when we compute the
smooth transition explicitly, the third term in the bracket becomes negli-
gible, since τ0/τ < 1 during the transition. And we have seen that there
is a cancellation between the first two terms, in contrast with the instant
transition approximation which gives order one result. This cancellation is
also demonstrated numerically as follows.

4This contribution was neglected in the calculation of [190], see Eq.(4.15) there.
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5.2.3.1 Numerical study on a plateau-like potential

In a realistic case, non-attractor inflation can be seen as imposing the
ultra-slow-roll initial condition on a plateau-like inflaton potential (such
as Starobinsky inflation [3] and α-attractors [17, 18]). In such a situation,
the smooth transition to slow-roll attractor occurs automatically. In ad-
dition, due to the scale-invariant power spectrum generated in the initial
non-attractor phase, the primordial perturbations can be suppressed on
large scales, which is favored by current CMB observations [190].

Now we study the background evolution of this realistic model numer-
ically, and then further check the analytical results above. Consider the
following potential of Starobinsky inflation [3]

V (ϕ) = V0

(
1− e−

√
2/3ϕ

)2
, (5.27)

which is very flat for large ϕ. In the slow-roll attractor, the field velocity
satisfies ϕ̇sr = −V ′/(3H). However, if inflation starts with a much larger
velocity |ϕ̇| ≫ |ϕ̇sr| on this very flat potential, initially it would be in the
non-attractor phase. Solving the background equations numerically, we get
the results shown in Figure 5.2. As we can see from the phase space diagram
and the evolution of η, this realistic model indeed has a non-attractor initial
phase, and then it will join the slow-roll attractor very quickly.

With this numerical solution, we can go back to do the full computation
for the integral in (5.24), not only for the perturbation which exit the Hub-
ble radius before the transition (non-attractor modes), but also for those
small scale modes (slow-roll modes). The final bispectrum receives contri-
butions from both terms in (5.24). The numerical result of local fNL as a
function of k is shown in Figure 5.4. As we see, if we only consider one con-
tribution, the local non-Gaussianity is O(1) for the non-attractor modes,
and then it vanishes for the slow-roll modes. However, when we combine
these two contributions together, they cancel each other and yield vanish-
ing fNL even for non-attractor modes. This result confirms the analytical
calculation above.

In summary, both analytical and numerical calculation of the smooth
transition process show that, there is a mysterious cancellation happening
during this transition period. In the following subsection, we shall under-
stand this cancellation in a more general way.
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Figure 5.4: The cancellation in the in-in integral (5.24).

5.2.3.2 A more general analysis:

To understand what is going on during a smooth transition, we present a
more general analysis as follows. First of all, let us remind of the background
equations

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , 3H2 =
1

2
ϕ̇2 + V (ϕ) , (5.28)

Here the potential is required to have a slow-roll attractor, but for now we do
not assume any slow-roll conditions. Then using the background equations
and the Hubble ”slow-roll” parameters defined in (5.2), the second and third
order derivatives of the slow-roll potential can be exactly expressed as

V ′′ =

(
6ϵ− 3

2
η − η2

4
+

5

2
ϵη − 2ϵ2 − η̇

2H

)
H2 ,

V ′′′ =
1√
2ϵ

(
9ϵη − 3η̇

2H
− ηη̇

2H
+ 3ϵη2 +

3ϵη̇

H
− 9ϵ2η

− η̈

2H2
− 12ϵ2 + 4ϵ3

)
H2 , (5.29)

which respectively correspond to the inflaton mass and self-coupling. Note
that these derivatives of the potential should be suppressed so that the slow-
roll attractor is possible. Due to this requirement, some useful combinations
of η and η̇, that we will soon encounter, should be much smaller than unity,
even though η and η̇ can be individually large during the non-attractor and
transition stages. One consequence of this observation is the behaviour of
the effective mass in the Mukhanov-Sasaki equation (5.3). As we mentioned
in the last subsection, the coefficient ν2 − 9/4 there is always small, even
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during the transition where η and η̇ are big. Now we see this parameter is
directly related to inflaton mass

ν2 − 9

4
= −V ′′

H2
+O(ϵ) , (5.30)

which does not care if inflation is in the attractor or not.
With this knowledge, let us look at the cubic interaction term (5.10)

again. In our in-in calculation above, one subtlety is caused by the evolution
behaviour of Ṙ. We can remove it via integration by part, and express (5.10)
as

−
∫

dtd3x
d

dt

(
a3ϵη̇

6

)
R3 + surface term . (5.31)

Since there is no more time derivative on R, the only important effect lies
in the cubic coupling. Here we are encouraged to introduce the effective
coupling as

1

6a3ϵ

d

dt

(
a3ϵη̇

)
=

H2

3

(
3η̇

2H
+

ηη̇

2H
+

η̈

2H2

)
. (5.32)

Again it looks like due to the drastic variation of η, these terms could
be large during the transition. However, if we plug in our analytical and
numerical solutions in the last section, this combination is shown to be
negligible. Interestingly, they are also present in V ′′′, and can be written as

1

6a3ϵ

d

dt

(
a3ϵη̇

)
= −1

3

√
2ϵV ′′′ +O(ϵ)H2 . (5.33)

Therefore the contribution from this term is always small, no matter how
big η and η̇ are during the transition. The presence of V ′′′ is not a coinci-
dence here. In the flat gauge, the operator which contributes to the cubic
Lagrangian (5.10) comes from the self-interaction of field fluctuations

L3 ⊂
a3

6
V ′′′δϕ3 =

a3ϵ

3

√
2ϵV ′′′R3 . (5.34)

Taking the decoupling limit, we have

V ′′′ =
1√
2ϵ

(
− 3η̇

2H
− ηη̇

2H
− η̈

2H2
+O(ϵ)

)
H2 . (5.35)

And after integration by parts, the self-interaction term exactly gives us
the cubic term (5.10).
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In summary, for a smooth non-attractor to slow-roll transition, as long
as we have a slow-roll potential (V ′′′ is small), the non-Gaussianities would
be always small. The cubic interaction term (5.10), which was previously
thought to contribute sizable fNL in the instant transition approximation,
actually never contributes in the realistic smooth transition case. However,
this argument may not work in sharp transition cases. There the potential
is unsmooth around the transition, which may yield large V ′′′. Furthermore,
the unconventional behaviour of the mode function will add extra compli-
cations. These issues of the sharp transition will be addressed in the next
subsection.

5.2.4 Non-Gaussianity in a sharp transition

As we discussed previously, the background of sharp transition differs from
the smooth transition case. Now we come to study the effect of a sharp
transition on the evolution of perturbations, especially on the local non-
Gaussianity. The sharp transition corresponds to the case where the second
term in the potential (5.14) is also important. In this subsection, we shall
study the case

√
2ϵV ≳ |ηV |. The form of the potential (5.14) can be invalid

after the inflaton field evolves to sufficiently large distances from the tran-
sition point. But we can assume that the slow-roll limit is already reached
before that happens so that we do not need to keep track of perturbations
any more.

First of all, unlike the smooth transition case, the behaviour of the
mode function in the sharp transition is more complicated. If we look at the
Mukhanov-Sasaki equation and the index ν in (5.4), the analytical solution
of the sharp transition (5.19) and (5.20) still gives us ν2 = 9/4 − 3ηV .
However, due to the sudden change of η at the transition time τe, one
cannot simply continue using the initial mode function (5.5) after τe. Here
when the transition happens, the matching condition requires the mode
function and its first derivative to be continuous, i.e. R(τe−) = R(τe+)
and R′(τe−) = R′(τe+). This gives us the following behaviour of curvature
perturbation after τe

Rk(τ) = αk
H√
4ϵk3

(1 + ikτ)e−ikτ + βk
H√
4ϵk3

(1− ikτ)eikτ , (5.36)

R′
k(τ) = αk

[
H√
4ϵk3

k2τe−ikτ +
η

2τ

H√
4ϵk3

(1 + ikτ)e−ikτ

]
+βk

[
H√
4ϵk3

k2τeikτ +
η

2τ

H√
4ϵk3

(1− ikτ)eikτ
]

, (5.37)
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where

αk = 1 + i
h

4k3τ3e
(1 + k2τ2e ) , βk = −ih(1 + ikτe)

2 e
−2ikτe

4k3τ3e
. (5.38)

We can easily check the long wavelength behaviour of the mode function
after τe

Rk(τ) ≃
6− h

6

H√
4ϵk3

+
τ3

6τ3e

H√
4ϵk3

for k → 0 . (5.39)

This solution satisfies the super-horizon EoM: R̈+ (3 + η)HṘ = 0. At the
time τ0 of the slow-roll stage, we get the freezed amplitude

Rk(τ0) ≃
6− h

6

H√
4ϵ0k3

=

(
1 +

√
ϵ0
ϵe

)
H√
4ϵ0k3

. (5.40)

For large values of |h| the above relation reduces to Rk(τ0) ≃ H√
4ϵek3

which
is similar to the mode function at the transition time τe. Thus, for |h| ≫ 1,
the final power spectrum does not change much by the transition and we
have PR ≃ H2

8π2ϵe
. Therefore, we expect to recover the previously calculated

non-Gaussianity fNL = 5/2 in the |h| ≫ 1 limit where the mode function is
assumed to freeze instantly after transition. We will confirm this expecta-
tion explicitly below. Note also that, in the h = −6 case with only instant
transition, the super-horizon modes still evolve from τe to τ0, as can be
seen from (5.39). This shows that a realistic instant transition to the slow-
roll evolution (which corresponds to h = −6) does not imply an instant
freezing of the mode function, thus we do not expect to recover fNL = 5/2
after this transition. On the other hand, for |h| ≫ 1, the adiabatic limit is
reached instantly and the mode function freezes out immediately whereas
the background evolution experiences a transition period before it relaxes
to the slow-roll dynamics.

For the sharp transition, the in-in integral in the bispectrum (5.11) can
be divided into two nontrivial pieces : one is the contribution from the
instant transition at τe, where η can be approximated by the step function
as in (5.22); and the other one is the relaxation period from τe to τ0, which
is described by the analytical solution in Section 5.2.2.

For the first piece, the integral goes from τe− to τe+ . At τe− , the mode
function is described by (5.5), and η = −6. At τe+ , the mode function
is given by (5.36), and η = −6 − h. Thus taking the squeezed limit and
focusing on perturbation modes which exit the Hubble radius during the
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non-attractor phase, we can write this contribution to the bispectrum as

lim
k3/k→0

Ba
R(k, k, k3) = −ℑRk(τ0)

2Rk3(τ0)

∫ τe+

τe−

dτa2ϵη′

×
[
R∗

k(τe−)R∗
k(τe−)R∗′

k3(τe−)θ(τe − τ)

+R∗
k(τe+)R∗

k(τe+)R∗′
k3(τe+)θ(τ − τe) + perm.

]
=

(2π)4

k31k
3
3

P 2
R

∫ τe+

τe−

dτ
−η′

4

h (h+ 12)

(h− 6)2

× [θ(τe − τ) + θ(τ − τe)] . (5.41)

Then via (5.22), the integral above yields∫ τe+

τe−

dτ
h

4

h (h+ 12)

(h− 6)2
θ′(τ − τe) [θ(τe − τ) + θ(τ − τe)]

=
h2

4

h+ 12

(h− 6)2
, (5.42)

where in the last step we took an integration by parts to reduce the integral
to boundary terms.

The second part of the integral corresponds to the relaxation process
after τe. Substituting the mode function (5.36) and (5.37) into (5.11), its
contribution to the squeezed bispectrum is given by

lim
k3/k→0

Bb
R(k, k, k3) =

(2π)4

k31k
3
3

P 2
R

∫ τ0

τe

dτ
−η′

8

√
ϵ0
ϵ

[
2 + η

+
2h

6− h

τ3

τ3e
(4 + η) +

h2

(6− h)2
τ6

τ6e
(6 + η)

]
.(5.43)

Using the analytical solution during the relaxation (5.16) and (5.17), the
above integral becomes∫ τ0

τe

dτ
−η′

8

√
ϵV
ϵ

[
2 + η +

2h

6− h

τ3

τ3e
(4 + η) +

h2

(6− h)2
τ6

τ6e
(6 + η)

]
= −h

4

6h+ h2 + 12ηV
(6− h)2

, (5.44)

where we used ϵ0 ≃ ϵV which holds in the sharp transition with
√
2ϵV ≳

|ηV |.
Adding these two contributions together, we get

3

5
fNL =

3h(h− 2ηV )

2(h− 6)2
. (5.45)
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As we see, the amplitude of local non-Gaussianity is mainly determined
by the h parameter in sharp transition case. For |h| ≫ 1, it yields the
maximum value fNL ≃ 5/2, which recovers the result in the initial non-
attractor phase. For the instant transition (h = −6), we get a reduced value
fNL = 5/8. In general, the sharp transition suppresses the amount of local
non-Gaussianity generated during the non-attractor phase. The extremal
case is h → 0, where we have negligible contribution 3

5fNL = −hηV /12,
similar to the smooth transition result.

Concluding the subsection, we remark that the sharp transition of non-
attractor inflation is different from the inflationary feature models, where
due to the kink or step on the potential, one may have a short non-slow-
roll period which connects two slow-roll stages before and after the local
feature. Since initially inflation is on the slow-roll attractor, long wavelength
modes will remain constant during the non-slow-roll period. Therefore these
feature models cannot result in nontrivial local non-Gaussianity for large
scale perturbations, and the consistency relation is still valid. The reason is
that once the mode is frozen in the adiabatic limit it remains so regardless of
what may happen after, because a constant is a solution of the EoM for the
super-horizon mode function. However, in the sharp transition here, because
of the initial non-attractor phase, long wavelength modes may continue to
evolve on super-horizon scales. As a consequence, local non-Gaussianity can
be modified on large scales due to the transition.

Related to this issue, it is also known that the presence of sharp fea-
ture on potential will generate scale-dependent oscillatory signals in power
spectrum and non-Gaussianities (See e.g. [37] for a review). The argument
is very general and should apply here as well. However, this sinusoidal os-
cillation starts to appear around the scale k ∼ 1/τe and has a wavelength
∆k ∼ 1/τe. So they appear at much shorter scales than what we are inter-
ested in in this paper.

5.2.5 δN calculation

The δN formalism [131–135, 142, 191] is a simple and intuitive approach to
the non-linear behaviour of curvature perturbations. Based on the separate
universe assumption, it mainly captures the super-horizon effects of the
perturbation modes, thus it just provides what we need for the calculation
of local non-Gaussianity. For non-attractor inflation, one extra subtlety one
should take care of is that the number of e-folds N does not only depend
on the initial field value ϕ, but also on the initial field velocity π [42]. In
the following, via δN formalism we give a unified calculation of local non-
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Gaussianity that captures both smooth and sharp transition cases, and
recovers the in-in results in Section 5.2.3 and 5.2.4 in two extreme limits.

For the non-attractor phase, the number of e-folds N can be easily
worked out. As in Section 5.2.2, we set N = 0, ϕ = ϕe and dϕ/dN = πe
at the end of the non-attractor phase, then the background equations (5.1)
yield the following non-attractor solution in terms of e-folding number N

ϕ(N) = ϕe +
πe
3

(
1− e−3N

)
, π(N) ≡ dϕ

dN
= πee

−3N . (5.46)

Next we can invert this solution and obtain the e-folds of the non-attractor
phase in terms of the initial ϕ and π

Ni = −1

3
ln
[

π

π + 3 (ϕ− ϕe)

]
= −1

3
ln π

πe
, (5.47)

where in the second equality we used the following relation of the non-
attractor phase

3 [ϕ(N)− ϕe] + π(N) = πe. (5.48)

For the subsequent transition and slow-roll stages, the analytical solu-
tions are already worked out in (5.16) and (5.17). Here we need to study
the evolution until the end of the transition, where the slow-roll attractor
is reached. Let us set N = Nf and ϕ = ϕf at that time. Then Nf is big,
and (5.16) yields the following approximation

ϕf ≃ s− 3− h

s(s− 3)
πee

1
2
(s−3)Nf +

2πeh

s2 − 9
+ ϕe , (5.49)

which gives us

Nf ≃ 2

s− 3
ln
[
s(s− 3)

s− 3− h

(
ϕf − ϕe

πe
− 2h

s2 − 9

)]
=

2

s− 3
ln
[

1

−2ηV πe − 6
√
2ϵV

]
+ const. (5.50)

In the second equality, we separate out the parts unrelated with initial
condition (ϕ, π) as a constant. Note here, due to the relation (5.48), πe and
also h are determined by the initial ϕ and π in the non-attractor phase.

Finally, the total e-folding number from the non-attractor phase to the
slow-roll stage counted backward in time is given by

N(ϕ, π) = Nf−Ni =
2

s− 3
ln
[

1

−2ηV πe − 6
√
2ϵV

]
+
1

3
ln π

πe
+const. (5.51)
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The δN formula is simply given by

δN =
∂N

∂ϕ
δϕ+

∂N

∂π
δπ +

1

2

∂2N

∂ϕ2
δϕ2 +

∂2N

∂ϕ∂π
δϕδπ +

1

2

∂2N

∂π2
δπ2 . (5.52)

Since δϕ is approximately constant on super-horizon scales, δπ is exponen-
tially suppressed and thus can be neglected. As a result, from (5.51) we
get

δN =

(
∂Nf

∂ϕ
− ∂Ni

∂ϕ

)
δϕ+

1

2

(
∂2Nf

∂ϕ2
− ∂2Ni

∂ϕ2

)
δϕ2 (5.53)

=

(
− 1

πe
+

3

3
√
2ϵV + ηV πe

)
δϕ

+

[
3

2π2
e

− 9ηV
2(3

√
2ϵV + ηV πe)2

]
δϕ2 , (5.54)

where again we used the initial condition dependence of πe(ϕ, π) from (5.48).
And the local non-Gaussianity directly follows

3

5
fNL =

1

2

∂2N

∂ϕ2

/(
∂N

∂ϕ

)2

=
3
[
4(ηV − 3)ηV + h2 + 4ηV h

]
2(2ηV + h− 6)2

(5.55)

This calculation is valid for both smooth transition (h → 0) and sharp
transition (h ̸= 0). As we discussed previously, ηV is always small, but |h|
can be large for the sharp transition. Thus similar with the in-in result
(5.45), when |h| ≫ 1, we recover fNL = 5/2. For the smooth transition or
sharp transition with small h, we get fNL ≃ −5ηV /6 = 5η0/12, where η0
is the second Hubble slow-roll parameter in the slow-roll stage. Note that
this also agrees with the full in-in calculation. In such cases, the in-in result
from cubic interaction term (5.10) is sub-dominant, and thus the leading
contribution comes from the field redefinition (5.8), which yields the same
result as above.

We close this section by some concluding remarks. It is interesting to
discuss the implications of our results on the consistency relation violation
in canonical non-attractor inflation. As we know, the power spectrum gener-
ated in the non-attractor phase is scale-invariant with ns−1 = 0. However,
the final result (5.55) yields nonzero value for fNL after the transition. Even
in the smooth transition case where fNL is slow-roll suppressed, we do not
have fNL = 5

12(1−ns). Therefore, the consistency relation is still violated in
the non-attractor inflation with full consideration of the transition process.
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It is also interesting to notice that fNL = 5/2 is the maximum non-
Gaussianity that one can obtain from such a model irrespective of the de-
tails of the transition period. This upper bound holds true even if one
considers either a bump potential (where the slope at the transition point
is negative) or a step potential (where the potential is discontinuous). That
is, although the final fNL as a function of parameters is clearly different for
these cases, its value cannot exceed the fNL that is generated purely during
the non-attractor phase. In terms of δN formalism, there can be two con-
tributions to the final non-Gaussianity: one from the non-attractor e-folds
Ni in (5.51), another one from Nf . When Ni terms are the dominant con-
tribution in the δN expansion (5.53), we recover the O(1) non-Gaussianity
of the non-attractor phase. In the opposite limit, where Nf terms are domi-
nating, it turns out that the non-Gaussianity is small. This is an interesting
observation without rigorous proof. But we remark that the Nf part of the
evolution is basically the case with non-slow-roll initial condition on a slow-
roll potential, which is generically expected to yield small non-Gaussianity,
as we argued in Section 5.2.3.2. Thus if Nf terms dominate in δN expan-
sion (5.53), we expect a slow-roll suppressed fNL. As a consequence, the
upper bound is given by the non-attractor result fNL = 5/2 when Ni terms
contribute.

5.3 Models with non-canonical kinetic terms

After studying the transition in the canonical ultra-slow-roll inflation, it
is also interesting to re-examine the non-canonical model presented in [43,
184]. We will discuss the background evolution in details. However, since
this model cannot be considered as a realistic model of inflation due to the
fine tuning of its initial conditions, we study the perturbations only in a
specific limit where the analytic calculation is still tractable.

In this model the non-attractor inflation is realized by a k-essence field
with the following Lagrangian

L = P (X,ϕ) = X +
Xα

M4α−4
− V (ϕ) , V (ϕ) = V0 + vϕβ , (5.56)

where X = −1
2(∂ϕ)

2, and α, M , V0, v, β are free parameters. In this model,
the sound speed cs is given by

c2s ≡
P,X

P,X + 2XP,XX
=

1 + α
(

X
M4

)α−1

1 + α(2α− 1)
(

X
M4

)α−1 . (5.57)
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The following variables are also defined here for future reference:

Σ ≡ XP,X + 2X2P,XX =
XP,X

c2s
, (5.58)

λ ≡ X2P,XX +
2

3
X3P,XXX =

XP,X

c2s
(1− c2s)

2α− 1

6
. (5.59)

To the best of our knowledge, so far this is the only model which can
give us f local

NL ≫ 1 in single-field inflation with Bunch-Davies initial state.
In this section, we will give a detailed analysis for the transition process
in this model, and perform the full calculation to test whether large non-
Gaussianity remains or not.

5.3.1 Background evolution of k-essence non-attractor model

First of all, let us focus on the background dynamics of this model. The
equation of motion for inflaton can be written as(

ϕ̈

c2s
+ 3Hϕ̇

)[
1 + α

(
X

M4

)α−1
]
+ Vϕ = 0 . (5.60)

From the above equation and (5.57) we can see that one important param-
eter here for the evolution is the ratio X/M4. For X ≫ M4, this model
is non-canonical with c2s ≃ 1/(2α − 1); but for X ≪ M4, it returns to
the canonical case. In this model initially the inflaton field climbs up the
hilltop potential, with the kinetic energy dominated by the non-canonical
term. Later on, as X decreases dramatically in the non-attractor phase, the
system would go from the non-canonical regime to the canonical regime.

For k-essence field, the slow-roll parameters are expressed as

ϵ ≡ − Ḣ

H2
=

XP,X

H2
, (5.61)

η ≡ ϵ̇

Hϵ
≃ ϕ̈

Hϕ̇

(
1 +

1

c2s

)
. (5.62)

As we know, a non-attractor phase happens when ϵ ∝ a−6 and η ≃ −6. In
the original papers [43, 184], an ansatz ϕ(t) ∝ aκ was used to get the initial
non-attractor stage. This was achieved by letting the Vϕ term compete
with the ϕ̈ and ϕ̇ terms in the equation of motion (5.60). And the following
conditions for parameter choices are required

β = 2α , κ =
η

2α
, v = −M4

c2s

(
V0κ

2

6M4

)α(
1 +

3c2s
κ

)
. (5.63)



5.3 Models with non-canonical kinetic terms 125

However, it is still not clear how the system transits to the attractor
phase in details. In the following we perform a full numerical study of the
”non-attractor to slow-roll” transition in the k-essence model. Before that,
we summarize the generic behaviour for the evolution first:

The main results of the numerical solution are shown in Figure 5.5.
At the beginning, since the potential is tuned to accommodate with the
ansatz as shown in (5.63), inflation occurs in the phase with η = −6, while
X ≫ M4 gives a small sound speed. We call this initial stage the non-
attractor I. Then as the inflaton approaches the hilltop, the Vϕ term in
(5.60) becomes subdominant, and thus the equation of motion becomes
ϕ̈+ 3Hc2sϕ̇ ≃ 0, which according to (5.62) yields

η = −3(c2s + 1) . (5.64)

Since the inflaton field is still non-canonical (cs ≪ 1), we have η ≃ −3. We
dub this period as the non-attractor II phase. Next, X continues decreasing
and becomes smaller than M4, then the canonical term in P (X,ϕ) begins to
dominate the kinetic energy of inflaton. After that, the scalar field becomes
canonical, and we call this moment the canonical transition. And from
(5.64), we see the system goes to the canonical non-attractor regime with
η = −6. This stage has the same behaviour with the canonical non-attractor
model, and is called non-attractor III here. Finally, the following transition
to the slow-roll attractor is the same as what we discussed in Section 5.2. As
we see, the ”non-attractor to slow-roll” transition is much more complicated
in the non-canonical model. One important feature is that there is also a
canonical transition prior to the slow-roll attractor phase. This qualitative
description is confirmed by the numerical analysis below.

Numerical Study.
Following the choice of parameter values in [43, 184], here we take α =

Figure 5.5: The transition process in the k-essence non-attractor model.
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Figure 5.7: The evolution of η and cs in the k-essence non-attractor model.

10, M = 5×10−5, V0 = 6.25×10−4, while v and β are given by the relation
in (5.63). Initially inflaton field is set to roll up the hilltop potential from
ϕi = 2 × 10−6. Then via varying the initial field velocity, we find different
transition behaviours. The numerical solutions of background dynamics are
shown here. Figure 5.6 gives us the phase space diagram. In Figure 5.7, we
focus on the evolution of two parameters: the second slow-roll parameter η,
which is important for the non-attractor behaviour, and the sound speed
cs, which tells if inflaton field is canonical or not.

From these figures, we can see a generic pattern for the transition pro-
cess: after the non-attractor I stage (η ≃ −6), inflation first enters the
non-attractor II phase (η ≃ −3), and later as shown by the evolution of cs,
the canonical transition happens. Here we introduce a critical field velocity
ϕ̇c, for which inflaton can just reach the top of the potential and will stay
there forever. Then accordingly the numerical analysis can be classified into
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three representative cases:

• Undershoot (blue curves). This corresponds to the case where the ini-
tial field velocity is smaller than |ϕ̇c|. After a very short non-attractor
II phase, in the canonical non-attractor regime, inflaton stops some-
where before reaching the top of the potential and then rolls backward
to initiate the slow-roll phase. At the turning point, since ϕ̇ = 0, we
have ϵ = 0 and η = ∞.

• Critical case (red curves). The initial field velocity is set to be the
critical value. In this case, after the canonical transition, the system
reaches an eternal non-attractor stage with η = −6 and cs = 1.

• Overshoot (orange curves). This is the case where the initial field
velocity is larger than |ϕ̇c|. As we see, here the non-attractor I stage
is very short, while the non-attractor II phase lasts for a longer time,
during which the inflaton field rolls over the top of the potential. After
this, inflation goes into the canonical non-attractor regime and then
transits to the slow-roll stage as we discussed before.

In these three cases, only undershoot and overshoot can give us successful
”non-attractor to slow-roll” transition. Although the details can be very
different, both these two numerical results verify the evolution in Figure
5.5 and the qualitative description there, i.e. in these non-canonical models
the canonical transition always occurs before the relaxation to slow-roll.
This holds true at least for our choice of parameters which are consistent
with [43]. It would be interesting to see whether it is also true for other
values of the parameters; however, we do not go further in this direction
here. In the following rough calculation of non-Gaussianity, we shall use
this general transition behaviour as the basic setup and refer to these two
cases (overshoot and undershoot) for details.

5.3.2 Non-Gaussianities

With the above background analysis, we are ready to study the primordial
perturbations. At first glance, a full calculation could be very difficult, since
the transition behaviour is quite complicated. Numerical calculation also
faces a technical UV-convergence problem because the non-attractor phase
is rather short.

However, the problem can be simplified if we focus on the generic pattern
of the transition. As we see, the main difficulty comes from the occurrence
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of the non-attractor II phase, during which we have η = −3. If this period
lasts for a long time (as in the overshoot case), we cannot get a scale-
invariant power spectrum for curvature modes that are leaving the horizon
during this period. This can be interesting for the research of features in
the primordial perturbations, but in this paper we keep focusing on the
behaviour of non-Gaussianity during the transition. And for the analysis of
the bispectrum, it is the canonical transition that plays a crucial role here.

Therefore we propose the following limit case for analytical study: The
non-attractor II phase is so short such that its effect can be neglected. In
this approximation, before the slow-roll attractor, η can always be seen
as −6 and the canonical transition occurs at some time in this stage. In
principle this does not agree with the numerical results since it breaks the
relation (5.64), but it can be seen as an approximated description of the
undershoot case.

Based on the qualitative analysis above, next we focus on the modes
which exit the Hubble radius during the non-attractor I stage, and do the
back-of-the-envelope estimates for the non-Gaussianities. The starting point
is the cubic action for a general k-essence field in the comoving gauge [192,
193]. Since ϵ ≪ 1 always holds true during the whole transition process,
again we can focus on the decoupling limit with only three operators left

S3 ⊃
∫

dtd3x

[
−a3ϵ

c2s
Ξ
Ṙ3

H
− 3

a3ϵ

c4s
(1− c2s)RṘ2 +

a3ϵ

2c2s

d

dt

(
η

c2s

)
R2Ṙ

]
. (5.65)

The coefficient of the Ṙ3 term is given by

Ξ ≡ 1− 1

c2s
+

2λ

Σ
=

(
2α− 1

3
− 1

c2s

)
(1− c2s) , (5.66)

where (5.57), (5.58), (5.59), (5.61) and (5.62) are used for the second equal-
ity. Before the canonical transition we have Ξ = 2(c2s − 1)/3c2s. This co-
efficient and the one for the second term in (5.65) both vanish after the
canonical transition. At the same time, the following field redefinition is
also considered in [184]

R = Rn +
η

4c2s
R2

n +
1

c2sH
RnṘn , (5.67)

which can give large non-Gaussianity in the non-attractor I phase. However,
since this term should be evaluated in the slow-roll stage where η ≃ 0 and
Ṙ ≃ 0, its contribution can be neglected. For the last operator in (5.65),
again we re-express it via integration by part

−
∫

dtd3x
d

dt

[
a3ϵ

6c2s

d

dt

(
η̇

c2s

)]
R3 + surface term . (5.68)
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Plugging in the numerical solution, we confirm that the effective coupling
here is also negligible during the transitions as in the canonical case.

The difference from the canonical case arises due to a couple of in-
teraction terms in the Lagrangian that are unique for the non-canonical
models. Let us estimate their contributions. The first term in (5.65) gives
the bispectrum of

BṘ3(k1, k2, k3) = 12ℑ
[
Rk1(τ0)Rk2(τ0)Rk3(τ0)

×
∫ τc

−∞

aϵdτ

c2sH
Ξ(τ)R′∗

k1(τ)R
′∗
k2(τ)R

′∗
k3(τ)

]
,(5.69)

where τc is the conformal time at the canonical transition, and τ0 is the one
at the beginning of the slow-roll phase. Since Ξ vanishes after the canon-
ical transition, the in-in integral stops at τc. Another subtlety here is the
mode function Rk. Since there is a sudden change of cs around the transi-
tion, in principle one has to use the general slow-roll formalism to solve its
behaviour, taking into account the discontinuity around the canonical tran-
sition. However, since the integral above vanishes right after the canonical
transition, the mode function after transition becomes irrelevant for that
integral; and it is easy to check that it does not affect the prefactors Rki(τ0)
in (5.69) at leading order either. Therefore, for a rough estimate, here we
take the following zeroth order approximation

Rk =
H√

4ϵcsk3
(1 + icskτ)e

−ic
s

kτ R′
k =

H√
4ϵcsk3

c2sk
2τe−ic

s

kτ − 3

τ
Rk (5.70)

Since we mainly care about the modes crossing the Hubble radius during
the initial non-attractor phase, we have −kτ0 ≪ −kτc ≪ 1. Meanwhile in
this limited case we assume η = −6 before the time τ0, which means for
this whole period ϵ(τ) = ϵ0τ

6/τ60 . As a result, the bispectrum becomes

BṘ3(k1, k2, k3) = (2π)4
(

H2

8π2ϵ0cs

)2
3(c2s − 1)

4c2s

(
τ0
τc

)6 k31 + k32 + k33
k31k

3
2k

3
3

,(5.71)

which is in the local shape. As we see, when τ0 = τc it returns to the previous
result in [184]. However, if the canonical transition occurs ∆N e-folds be-
fore the slow-roll phase, (τ0/τc)6 would give a suppression factor ∼ e−6∆N .
Correspondingly in the squeezed limit, we get the following amplitude of
non-Gaussianity

3

5
f Ṙ3

NL =
3

2c2s
(c2s − 1)

(
τ0
τc

)6

∼ − 3

2c2s
(1− c2s)e

−6∆N . (5.72)
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This suppression is caused by the super-Hubble evolution of the curvature
perturbation after the canonical transition. Since R keeps growing until
the end of the non-attractor phase, the difference between R(τc) and R(τ0)
yields the suppression factor above.

With a similar procedure, the second term in (5.65) gives

BRṘ2(k1, k2, k3) = (2π)4
( H2

8π2ϵ0cs

)2(τ0
τc

)3
×
[
3

(
τ0
τc

)3

− 2
]3(1− c2s)

8c2s

k31 + k32 + k33
k31k

3
2k

3
3

, (5.73)

Therefore, it is still in the local form and the final amplitude of non-
Gaussianity is given by

3

5
fRṘ2

NL =
3

4c2s
(1− c2s)

(τ0
τc

)3[
3

(
τ0
τc

)3

− 2
]
∼ − 3

2c2s
(1− c2s)e

−3∆N , (5.74)

where in the last step we ignored the e−6∆N suppression term. Again, the
above result agrees with the one in [184] when τ0 = τc. In general, the
duration of the non-attractor stage after the canonical transition can be
∆N ∼ O(1), thus the large non-Gaussianity generated in the non-attractor
stage can be suppressed a lot. Summing up the leading terms of two con-
tributions above, we get the following overall amplitude

3

5
fNL ∼ − 3

2c2s
e−3∆N . (5.75)

This estimate shows us how the non-Gaussianity generated in the initial
non-attractor stage is suppressed after the canonical transition. Notice that
the sound speed is determined by the model parameters, while the duration
of the non-attractor III stage is related to the choice of initial conditions,
thus cs and ∆N are two independent parameters. Thus, we conclude that,
it is still possible to have large non-Gaussianity in single field inflation.

5.4 Conclusion and discussion

In this paper, we investigated the production of primordial non-Gaussianities
from models of non-attractor inflation. We revisited various non-attractor
models constructed in the literature in order to understand the evolution of
large local non-Gaussianity when the models undergo the transition from
the non-attractor phase to slow-roll phase. The purpose of this study is
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less of trying to present these fine-tuned toy-models as phenomenological
candidates for data fitting, rather trying to understand more precisely the
physical implications of Maldacena’s single field consistency relation and
various counter-examples that have been constructed.

Comparing with previous studies, we pay special attention to the tran-
sition period from the non-attractor phase to the conventional slow-roll
phase. Such a transition is necessary for these models to have sufficient
efolds or have the correct amplitude of density perturbations. We consid-
ered two types of non-attractor inflation, which are driven by a canonical
scalar field and a non-canonical k-essence field, respectively.

For models with canonical kinetic terms, we consider two different evo-
lutionary processes after the non-attractor phase: smooth transition and
sharp transition. Through the calculation of both in-in and δN formal-
ism, we find that a full consideration of the transition process generically
suppresses the local non-Gaussianity generated in the non-attractor phase,
but Maldacena’s consistency condition is still violated. In the smooth tran-
sition, the super-horizon modes continue evolving after the non-attractor
phase, and the O(1) non-Gaussian signals are completely erased during the
transition period and the final fNL at the end of inflation is slow-roll sup-
pressed. Meanwhile for sharp transition, the final amplitude of the local
non-Gaussianity generated in the non-attractor phase depends on the de-
tails of the transition process. In the extremal cases where the curvature
perturbation freezes immediately right after the non-attractor phase, we
get the maximum possibility of local non-Gaussianity, which recovers the
original result in the non-attractor phase fNL = 5/2.

For models with non-canonical kinetic terms, although similar situa-
tion applies to one of the terms in the Lagrangian, the non-Gaussianities
coming from two other terms, which are unique to non-canonical models,
survive. Nonetheless, our rough estimations of this case show that the effect
of smooth transition is still non-negligible. In addition to the contribution
∼ 1/c2s obtained in the previous studies, the transition period contributes
to an extra suppression factor due to mode evolution outside the horizon
during the transition phase. Since these two contributions are independent
of each other, the conclusion, that the large local non-Gaussianity can be
obtained in such single field models, remains the same; but the expression
of fNL should be revised.

As a final remark, we note that, recently, Ref. [194] argued that the
O(1) local bispectrum generated from the canonical non-attractor inflation
model, as calculated in Ref. [42], is not locally observable. The study of
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Ref. [194] focuses on the non-attractor phase. Here we will not analyze their
argument in detail which is beyond the scope of this paper. For our purpose,
we simply point out that one of the main differences between their work and
ours is that we have analyzed in details the subsequent transition process
from the non-attractor phase to the standard single field slow-roll inflation,
in order to be able to discuss the observability at all. As we have concluded,
the final fNL can range anywhere between zero and a value much larger than
1. If the value of fNL is much larger than 1−ns, these local bispectra should
be in principle observable. At the reheating surface, these local bispectra
are indistinguishable from those arising from models in which we replace
the single field non-attractor phase with a multifield phase and use the
multifield phase to generate the same amount of primordial local bispectra.
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6.1 Introduction

Matter bounce cosmology [31] is a very early universe structure formation
scenario alternative to the paradigm of inflationary cosmology (see, e.g.,
[195] for a review of inflation, its problems and its alternatives). The idea
is that quantum fluctuations exit the Hubble radius in a matter-dominated
contracting phase before the Big Bang, which generates a scale-invariant
power spectrum of curvature perturbations [29, 30]. The contracting phase
is then followed by a bounce and the standard phases of hot Big Bang cos-
mology. This construction solves the usual problems of standard Big Bang
cosmology such as the horizon and flatness problems, but in addition, it
is free of the trans-Planckian corrections that plague inflationary cosmol-
ogy [26], and one can naturally avoid reaching a singularity at the time of
the Big Bang (contrary to standard1 inflation [25, 197]) under the assump-
tion that new physics appears at high energy scales [31, 195]. Nonsingular
bounces can be constructed in various ways using matter violating the Null
Energy Condition (NEC), with a modified gravity action, or within a quan-
tum theory of gravity (see the reviews [27, 28, 31, 198, 199] and references
therein).

A typical way of constructing a nonsingular matter bounce cosmology is
to assume the existence of a new scalar field. With a canonical Lagrangian,
the oscillation of the scalar field can drive a matter-dominated contracting
phase when the ratio of the pressure to the energy density averages zero.
As the energy scale of the universe increases, new terms can appear in
the Lagrangian that violate the NEC and drive a nonsingular bounce. For
example, using a Galileon scalar field [200] (or equivalently, in Horndeski
theory [201]), one can construct a stable NEC violating nonsingular bounce
[202–207] that may be free of ghost and gradient instabilities [208, 209] (see,
however, the difficulties in doing so as pointed out by [210–213]).

To distinguish the matter bounce scenario from inflation observation-
ally, studying primordial non-Gaussianities is a useful tool2. In the case
of inflation, after the calculation of the bispectra generated in single field
slow-roll models [39], there have been many studies in the past decade try-
ing to extend the simplest result, which largely enriched the phenomenol-
ogy of nonlinear perturbations (see [37, 38] for reviews). In particular,

1The singularity before inflation could be avoided with, for example, bounce inflation
(e.g., [196]).

2Another observable quantity, besides non-Gaussianities, that would allow one to dif-
ferentiate between inflation and the matter bounce scenario is the running of the scalar
spectral index (see [214, 215]).
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one important progress has been to generalize the canonical inflaton to
a k-essence scalar field [91, 92], such as k-inflation [216, 217] and DBI
models [95, 96], which are collectively known as general single field infla-
tion [193]. In these models, due to the effects of a small sound speed, the
amplitude of the bispectrum is enhanced and interesting shapes emerge
[37, 38, 94, 192, 193, 218]. In a matter-dominated contracting phase, the
calculation of the bispectrum has only been done by [186] for the original
matter bounce model with a canonical scalar field. A natural extension is
thus to consider a k-essence scalar field3 similarly to what has been done in
inflationary cosmology, especially since the appearance of a noncanonical
field is quite common in the literature of nonsingular bouncing cosmology
in order to violate the NEC as explained above. Because the perturbations
behave differently in matter bounce cosmology compared to inflation, in
particular due to the growth of curvature perturbations on super-Hubble
scales during the matter-dominated contracting phase, the canonical mat-
ter bounce yields non-Gaussianities with negative sign and order one am-
plitude, which differs from the results in canonical single field inflation. It
would be interesting to explore how these non-Gaussianity results change
when one generalizes the original matter bounce scenario to be based on a
k-essence scalar field.

Besides non-Gaussianity, another interesting observable for very early
universe models is the tensor-to-scalar ratio r. In the original matter bounce
scenario, this ratio is predicted to be very large [225, 226]. Indeed, the scalar
and tensor power spectra share the same amplitude, and accordingly, the
tensor-to-scalar ratio is naturally of order unity [227]. This is well beyond
the current observational bound from the Cosmic Microwave Background
(CMB), which states that r < 0.07 at 95% confidence [228].

A resolution to this problem is to allow for the growth of curvature per-
turbations during the bounce phase, which suppresses the tensor-to-scalar
ratio. However, curvature perturbations tend to remain constant through
the bounce phase on super-Hubble scales [207, 229]. In fact, amplification
can only be achieved under some tuning of the parameters, and the over-
all growth is still limited4 [227]. Yet, if the scalar modes are amplified,

3This could be easily further generalized to a Galileon field [219], which has also been
done for inflation (see, e.g., [220–224]).

4The studies of Refs. [207, 227, 229] have been carried out for models where the
nonsingular bounce is attributed to a noncanonical scalar field. Loop quantum cosmology
(LQC) provides an alternative class of nonsingular bouncing models that could suppress
r during the bounce. In LQC, the amplitude of the suppression depends on the equation
of state during the bounce; if it is close to zero, then the suppression is very strong
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another problem follows in that it leads to the production of large non-
Gaussianities [227], a problem that might be generic to a large class of
nonsingular bounces [232, 233]. Again, these large non-Gaussianities are
excluded by current measurements from the CMB [109]. This leads to con-
jecture that single field matter bounce cosmology suffers from a no-go the-
orem [227], which states that one cannot satisfy the bound on r without
violating the bounds on non-Gaussianities and vice versa.

There is another way to suppress the tensor-to-scalar ratio if the sound
speed of the perturbations can be smaller than the speed of light during the
matter-dominated contracting phase. For example, in the ΛCDM bounce
scenario [230] (and its extension [234]; see the review [215]), if there ex-
ists a form of dark matter with a small sound speed that dominates the
contracting phase when the scale-invariant power spectra are generated,
then the tensor-to-scalar ratio is already suppressed proportionally to the
sound speed. Therefore, this provides another motivation to study non-
Gaussianities when the sound speed is small during the matter-dominated
contracting phase. An immediate question is whether the no-go theorem
still holds true in this case or whether it can be circumvented. In this work,
we want to explore this possibility of having a k-essence scalar field that
would mimic dust-like matter with a small sound speed at low energies and
that could play the role of the NEC violating scalar field during the bounce.

In this paper, we will evaluate the bispectrum produced by a k-essence
scalar field in a matter-dominated contracting universe. This more general
setup will yield richer features, which have the potential to be detected by
future non-Gaussianity observations. In particular, the shapes, amplitudes,
and scaling behaviors will be studied systematically. We will show that a
small sound speed implies a large amplitude associated with the three-point
function. Accordingly, we will claim that the no-go theorem is not circum-
vented but rather extended: in single field matter bounce cosmology, one
cannot suppress the tensor-to-scalar ratio, either from the onset of the ini-
tial conditions in the matter contracting phase or from the amplification of
the curvature perturbations during the bouncing phase, without producing
large non-Gaussianities.

The outline of the paper is as follows. In section 6.2, we first introduce
the background dynamics of the matter bounce scenario and introduce the
class of k-essence scalar field models that we study in this paper. In section
6.3, we calculate the power spectra of curvature perturbations and ten-

(see [226, 230, 231] and references therein for a discussion of LQC effects in nonsingular
bouncing cosmology).
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sor modes and show how a small sound speed coming from the k-essence
scalar field allows for the suppression of the tensor-to-scalar ratio. We then
consider the primordial non-Gaussianity in section 6.4. Using the in-in for-
malism, we evaluate every contribution to the three-point function and give
a detailed analysis of the size and shapes of the resulting bispectrum. In
section 6.5, we compute the amplitude parameter of non-Gaussianities in
different limits and finally combine these results with the bound on the
sound speed from section 6.3 to show that the no-go theorem in matter
bounce cosmology is extended. We summarize our results in section 6.6.
Throughout this paper, we use the mostly plus metric convention, and we
define the reduced Planck mass to be Mpl = (8πGN)−1/2, where GN is
Newton’s gravitational constant.

6.2 Setup and background dynamics

The idea of the matter bounce scenario is to begin with a matter-dominated
contracting phase. At the background level, this corresponds to having a
scale factor as a function of physical time given by

a(t) = aB

(
t− t̃B

tB − t̃B

)2/3

, (6.1)

and the Hubble parameter follows,

H(t) =
2

3(t− t̃B)
, (6.2)

where tB corresponds to the time of the beginning of the bounce phase and
t̃B corresponds to the time at which the singularity would occur if no new
physics appeared at high energy scales. Accordingly, aB is the value of the
scale factor at tB. In terms of the conformal time τ defined by dτ = a−1dt,
the scale factor is given by

a(τ) = aB

(
τ − τ̃B
τB − τ̃B

)2

, (6.3)

where τB and τ̃B are the conformal times corresponding to tB and t̃B.
Throughout the rest of this paper, the scale factor is normalized such that
aB = 1.

One can define the usual “slow-roll” parameters of inflation by

ϵ ≡ − Ḣ

H2
=

3

2
(1 + w) , η ≡ ϵ̇

Hϵ
, (6.4)
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where a dot denotes a derivative with respect to physical time, and w ≡ p/ρ
is the equation of state parameter with p and ρ denoting pressure and
energy density, respectively. In the case of the matter bounce, the matter
contracting phase implies that pressure vanishes, which is to say that

w = 0 , ϵ =
3

2
, η = 0 . (6.5)

If the pressure does not vanish exactly but is still very small, i.e. |p/ρ| ≪ 1,
then the values for w, ϵ, and η in equation (6.5) are only valid as leading or-
der approximations, and they will be time dependent rather than constant.
In this paper, we will work in the limit where equation (6.5) is valid.

In the usual matter bounce scenario, one would introduce a canonical
scalar field to drive the matter-dominated contracting phase and describe
the cosmological fluctuations. In this paper, we aim for more generality and
assume that the perturbations are introduced by a k-essence scale field ϕ
with Lagrangian density of the form5

Lϕ = P (X,ϕ) , (6.6)

where X ≡ −∂µϕ∂
µϕ/2, and we assume that the scalar field is minimally

coupled to gravity. The energy density and pressure of this scalar field are
then given by

ρ = 2XP,X − P , p = P , (6.7)

where a comma denotes a partial derivative, e.g. P,X ≡ ∂P/∂X. Thus, the
Friedmann equations read

3M2
plH

2 = 2XP,X − P , M2
plḢ = −XP,X . (6.8)

Since we want a matter-dominated contracting phase, the pressure of the
scalar field should vanish (at least in average), and ρ = 2XP,X ∝ a−3.

It is helpful to have one specific example where a k-essence field drives
the matter contraction. Let us consider the following Lagrangian density:

Lϕ = K(X) =
1

8
(X − c2)2 . (6.9)

This type of Lagrangian belongs to a subclass of k-essence models P (X,ϕ)
where the kinetic terms K(X) are separate from the potential terms V (ϕ),

5For an introduction to such a Lagrangian in early universe cosmology with the deriva-
tion of the background equations of motion and the definition of the different parameters,
see, e.g., [192, 193, 216, 217].
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i.e. P (X,ϕ) = K(X)−V (ϕ). Moreover, the above Lagrangian has vanishing
potential. Then, the ghost condensate solution is given by X = c2 and
ϕ(t) = ct + π(t), with π̇(t) ≪ c. In this case, the background equations
yield p ≃ 0 and ρ ∼ π̇ ∝ a−3, which exactly corresponds to a matter-
dominated universe. More details about this model can be found in [235].
We note that there should be also other forms of P (X,ϕ) that can drive a
matter contraction, and remarkably, the analysis that follows in this paper
is done in a model-independent way and does not rely on the specific model
of equation (6.9).

The sound speed and another “slow-roll” parameter are defined by6

c2s ≡
∂p

∂ρ
=

P,X

P,X + 2XP,XX
, s ≡ ċs

csH
. (6.10)

Calculations will be done for a general sound speed, but as we will argue,
we will be interested in the small sound speed limit, which can be realized
with the appropriate form for P (X,ϕ). For instance, the explicit example
given by equation (6.9) yields ≃ π̇/c ≪ 1. Furthermore, we will generally
assume later that the sound speed remains nearly constant, which is to say
that |s| ≪ 1. We also define two other variables for later convenience,

Σ ≡ XP,X + 2X2P,XX =
M2

plH
2ϵ

2
, (6.11)

and
λ ≡ X2P,XX +

2

3
X3P,XXX =

X

3
Σ,X − 1

3
Σ . (6.12)

The ratio λ/Σ will be of particular interest in the following sections. For
inflation, it depends on the specific realization of the general single field,
such as DBI and k-inflation models. For the matter bounce scenario, it
can be obtained in an approximately model-independent way. The detailed
calculation is in Appendix 6.A, where we find that the ratio λ/Σ can be
expressed in terms of the sound speed, as shown by equation (6.81).

6.3 Mode functions and two-point correlation functions

We begin with an action of the form

S =

∫
d4x

√
−g

(
1

2
M2

plR+ Lϕ

)
, (6.13)

6We assume that the cosmological perturbations will remain adiabatic throughout the
matter-dominated contracting phase.
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where g is the determinant of the metric tensor and R is the Ricci scalar.
Importantly, we assume that the matter Lagrangian Lϕ has the general
form of equation (6.6), but we do not restrict our attention to any specific
model. By perturbing up to second order the above action, one finds7

S2 =

∫
dτd3x z2

[
ζ ′2 − c2s(∇ζ)2

]
, (6.14)

where ζ(τ, x) denotes the curvature perturbation in the comoving gauge,
i.e. on slices where fluctuations of the scalar field vanish (δϕ = 0). Also, a
prime represents a derivative with respect to conformal time, ∇ = ∂i is the
spatial gradient, and we define z2 ≡ 2ϵa2M2

pl/c
2
s. Transforming to Fourier

space, the second-order perturbed action becomes

S2 =

∫
dτ

∫
d3k

(2π)3
z2
[
ζ ′(k)ζ ′(−k)− c2sk

2ζ(k)ζ(−k)
]
, (6.15)

where k2 ≡ k · k = |k|2. Upon quantization of the curvature perturbation,
one has

ζ̂(τ,k) = â†kuk(τ) + â−ku
∗
k(τ) , (6.16)

where the annihilation and creation operators satisfy the usual commuta-
tion relation [âk, â

†
k′ ] = (2π)3δ(3)(k − k′). The equation of motion of the

mode function is then given by

v′′k +

(
c2sk

2 − z′′

z

)
vk = 0 , (6.17)

where the mode function is rescaled as vk = zuk (vk is called the Mukhanov-
Sasaki variable). Together with the commutation relation [ζ̂(k1), ζ̂

′(k2)] =
(2π)3δ(3)(k1 + k2), one finds (see, e.g., [186])

uk(τ) =
iA[1− icsk(τ − τ̃B)]

2
√
ϵcsk3(τ − τ̃B)3

eicsk(τ−τ̃B) (6.18)

u′k(τ) =
iA

2
√
ϵcsk3

(
−3[1− icsk(τ − τ̃B)]

(τ − τ̃B)4
+

c2sk
2

(τ − τ̃B)2

)
eicsk(τ−τ̃B) (6.19)

to be the solution to the equation of motion (6.17) in the context of a
matter-dominated contracting universe as described in the previous section.
Here, A is a normalization constant that is determined by the quantum

7Again, see, e.g., [37, 192, 193, 217] for a derivation of the perturbation equations in
k-essence early universe cosmology.
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vacuum condition at Hubble radius crossing in the contracting phase, which
is given by A = (τB − τ̃B)

2/Mpl.
The general two-point correlation functions are given by

⟨ζ̂(τ1,k1)ζ̂(τ2,k2)⟩ = (2π)3δ(k1 + k2)u
∗
k1(τ1)uk1(τ2) , (6.20)

⟨ζ̂(τ1,k1)ζ̂
′(τ2,k2)⟩ = (2π)3δ(k1 + k2)u

∗
k1(τ1)u

′
k1(τ2) , (6.21)

and in particular, the power spectrum, evaluated at the bounce point τB
(well after Hubble radius exit), is given by

⟨ζ̂(τB,k)ζ̂(τB,k′)⟩ = (2π)3δ(3)(k + k′)
2π2

k3
Pζ(τB, k) , (6.22)

where

Pζ(τB, k) =
A2

8π2ϵcs(τB − τ̃B)6
=

1

12π2csM2
pl(τB − τ̃B)2

. (6.23)

The scale invariance of the power spectrum in matter bounce cosmology is
thus explicit from the above.

The above focused only on the scalar perturbations, but as mentioned in
the introduction, the matter bounce scenario also generates a scale-invariant
power spectrum of tensor perturbations. Considering the transverse and
traceless perturbations to the spatial metric, δgij = a2hij , which can be
decomposed as

hij(τ, x) = h+(τ, x)e
+
ij + h×(τ, x)e

×
ij (6.24)

with two fixed polarization tensors e+ij and e×ij , the second-order perturbed
action has contributions of the form

S2 ⊃
M2

pl
4

∫
dτd3x a2

[
h′2 − (∇h)2

]
(6.25)

for each polarization state h+ and h×. By normalizing each state as µ =
aMplh/2, the second-order perturbed action is of canonical form (µ is the
Mukhanov-Sasaki variable), and the resulting equation of motion for each
state is

µ′′
k +

(
k2 − a′′

a

)
µk = 0 , (6.26)

where the equation is written in Fourier space. Since a ∼ τ2 in a matter-
dominated contracting phase, one has a′′/a = 2/τ2, and so, one expects a
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scale-invariant power spectrum just as in de Sitter space. The tensor power
spectrum is given by

Pt = 2Ph = 2

(
2

aMpl

)2 k3

2π2
|µk|2 , (6.27)

where the first factor of 2 accounts for the two polarizations + and ×, and
the factor [2/(aMpl)]

2 comes from the normalization of µ. Upon matching
with quantum vacuum initial conditions at Hubble radius crossing similar
to the above treatment for scalar modes, one finds the power spectrum of
tensor modes at the bounce point to be given by

Pt(τB, k) =
2

π2M2
pl(τB − τ̃B)2

, (6.28)

which is indeed independent of scale.
The tensor-to-scalar ratio is then defined to be

r ≡ Pt
Pζ

. (6.29)

It follows from equations (6.23) and (6.28) that

r = 24cs (6.30)

in the context of matter bounce cosmology with a general k-essence scalar
field8. On one hand, this highlights the problem of standard matter bounce
cosmology, which is driven by a canonical scalar field with cs = 1, in which
case r = 24. On the other hand, the above result provides a natural mech-
anism to suppress the tensor-to-scalar ratio provided the k-essence scalar
field has an appropriately small sound speed. For example, satisfying the
observational bound [228] r < 0.07 at 95% confidence imposes a bound on
the sound speed of the order of

cs ≲ 0.0029 . (6.31)

6.4 Non-Gaussianity

The previous section showed that a k-essence scalar field could yield a small
tensor-to-scalar ratio in the context of the matter bounce scenario. This is

8Of course, this assumes that the perturbations remain constant on super-Hubble
scales after the matter contraction phase, in particular through the bounce and until the
beginning of the radiation-dominated expanding phase of standard Big Bang cosmology.
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done at the expense of having a small sound speed. In what follows, the
goal is to compute the bispectrum and see how a small sound speed affects
the results.

6.4.1 Cubic action

To evaluate the three-point correlation function, we must expand the action
(6.13) up to third order. Let us recall the result of [193], the third-order
interaction action of a general single scalar field9,

S3 =

∫
dtd3x

{
− a3

[
Σ
(
1− 1

c2s

)
+ 2λ

] ζ̇3
H3

+
a3ϵ

c4s
(ϵ− 3 + 3c2s)ζζ̇

2

+
aϵ

c2s
(ϵ− 2s+ 1− c2s)ζ(∂ζ)

2 − 2a
ϵ

c2s
ζ̇(∂ζ)(∂χ) +

a3ϵ

2c2s

d

dt

(
η

c2s

)
ζ2ζ̇

+
ϵ

2a
(∂ζ)(∂χ)∂2χ+

ϵ

4a
(∂2ζ)(∂χ)2 + 2f(ζ)

δL

δζ

∣∣∣∣
1

}
, (6.32)

where it is understood that (∂ζ)2 = ∂iζ∂
iζ, (∂ζ)(∂χ) = ∂iζ∂

iχ, ∂2ζ =
∂i∂

iζ, and where we define χ such that ∂2χ = a2ϵζ̇. Also, we have

δL

δζ

∣∣∣∣
1

= a

(
d∂2χ

dt
+H∂2χ− ϵ∂2ζ

)
, (6.33)

f(ζ) =
η

4c2s
ζ2 +

1

c2sH
ζζ̇ +

1

4a2H2
{−(∂ζ)(∂ζ) + ∂−2[∂i∂j(∂

iζ∂jζ)]}

+
1

2a2H
{(∂ζ)(∂χ)− ∂−2[∂i∂j(∂

iζ∂jχ)]} , (6.34)

where ∂−2 is the inverse Laplacian.
The first and second terms in the last line of equation (6.32) can be

reexpressed as

ϵ

2a
(∂ζ)(∂χ)∂2χ+

ϵ

4a
(∂2ζ)(∂χ)2 = −a3ϵ3

2
ζζ̇2 +

ϵ

2a
ζ(∂i∂jχ)(∂

i∂jχ) +K , (6.35)

where the boundary term is given by

K = ∂i

[
ζ(∂iχ)(∂2χ) +

1

2
(∂iζ)(∂χ)2 − ζ(∂i∂jχ)(∂jχ)

]
. (6.36)

9From here on, we take Mpl = 1 for convenience.
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Since the ∂i[...] term above does not contribute to the three-point function,
the third-order action, equation (6.32), is equivalent to

S3 =

∫
dtd3x

{
− a3

[
Σ
(
1− 1

c2s

)
+ 2λ

] ζ̇3
H3

+
a3ϵ

c4s
(ϵ− 3 + 3c2s)ζζ̇

2

+
aϵ

c2s
(ϵ− 2s+ 1− c2s)ζ(∂ζ)

2 − 2a
ϵ

c2s
ζ̇(∂ζ)(∂χ) +

a3ϵ

2c2s

d

dt

(
η

c2s

)
ζ2ζ̇

− a3ϵ3

2
ζζ̇2 +

ϵ

2a
ζ(∂i∂jχ)(∂

i∂jχ) + 2f(ζ)
δL

δζ

∣∣∣∣
1

}
. (6.37)

In the case of a canonical field with cs = 1, this action returns to equation
(15) of [186]. Meanwhile, as usual the last term in this action is removed
by performing the field redefinition

ζ → ζ̃ + f(ζ̃) , (6.38)

where ζ̃ denotes the field after redefinition.

6.4.2 Contributions to the shape function

In this section, we calculate the three-point correlation function using the
in-in formalism (to leading order in perturbation theory; see, e.g., [37–39]
for the methodology),

⟨O(t)⟩ = −2 ℑ
∫ t

−∞
dt̄ ⟨0|O(t)Lint(t̄)|0⟩ , (6.39)

where O represents a set of operators of the form ζ̂3 in our case of interest.
Then, the shape function, A, is defined such that10

⟨ζk1ζk2ζk3⟩ = (2π)7δ(3) (k1 + k2 + k3)
P2
ζ∏
i k

3
i

A(k1,k2,k3) . (6.40)

In what follows, we list all the contributions to the shape function coming
from the field redefinition and the interaction action (6.37). It is easy to
check that, when taking the limit cs = 1, one recovers the results of [186]
for the matter bounce with a canonical scalar field as expected.

• Contribution from the field redefinition
10We use ζk

i

to refer to ζ̂(τ,ki) to simplify the notation from here on.
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In momentum space, the field redefinition can be written as

ζk → ζ̃k +

∫
d3k1
(2π)3

[
− 3

2c2s
− 3ϵ

4

(
k1 · (k − k1)

k21

−(k · k1)[k · (k − k1)]

k2k21

)]
ζ̃k1 ζ̃k−k1 . (6.41)

This redefinition has the following contribution to the three-point
correlation function,

⟨ζk1ζk2ζk3⟩redef =

∫
d3k′

(2π)3

[
− 3

2c2s
− 3ϵ

4

(
k′ · (k3 − k′)

k′2

−(k3 · k′)(k3 · [k3 − k′)]

k23k
′2

)]
× (ζk1ζk2ζk′ζk3−k′) + perms. , (6.42)

and accordingly, the contribution to the shape function is

Aredef =
( 3ϵ
16

− 3

4c2s

)∑
i

k3i +
3ϵ

64

∑
i ̸=j

kik
2
j

− 3ϵ

64
∏

i k
2
i

(∑
i ̸=j

k7i k
2
j +

∑
i ̸=j

k6i k
3
j − 2

∑
i ̸=j

k5i k
4
j

)
.(6.43)

When c2s ≪ 1, this contribution is enhanced compared to the canoni-
cal case.

• Contribution from the ζζ̇2 term
The term ζζ̇2 in equation (6.37) yields the following contribution to
the bispectrum

⟨ζk1ζk2ζk3⟩ζζ̇2 = −4(2π)3δ
(

k1 + k2 + k3

)
ℑ
∫ τB

−∞
dτ̄

a2
[ ϵ
c4s
(ϵ− 3 + 3c2s)−

ϵ3

2

]
u∗k1(τB)u

∗
k2(τB)u

∗
k3(τB)

×uk1(τ̄)u
′
k2(τ̄)u

′
k3(τ̄) + perm. . (6.44)

To leading order in cski(τB − τ̃B) ≪ 1, i.e. on scales larger than
the sound Hubble radius11, and recalling the solutions for uk and u′k

11This is also called the Jeans radius; see [230, 236] for an explicit definition of this
scale and its role in matter bounce cosmology when cs ̸= 1.
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[equations (6.18) and (6.19)], we get the following contribution to the
shape function,

Aζζ̇2 = −c2s
8

[
1

c4s
(ϵ− 3 + 3c2s)−

ϵ2

2

]∑
i

k3i . (6.45)

Again, when c2s ≪ 1, this contribution is enhanced compared to the
canonical case.

• Contribution from the ζ̇∂ζ∂χ term
A similar computation for this term yields the following contribution
to the shape function

Aζ̇∂ζ∂χ = − ϵ

8

∑
i

k3i +
ϵ

8
∏

i k
2
i

(∑
i ̸=j

k7i k
2
j −

∑
i ̸=j

k4i k
5
j

)
. (6.46)

We note that this contribution is independent of cs.

6.4.2.1 Contribution from the ζ(∂i∂jχ)2 term

For this term, the contribution to the shape function is given by

Aζ(∂i∂jχ)2 =− c2sϵ
2

32

∑
i

k3i +
c2sϵ

2

64

∑
i ̸=j

k2i kj +
c2sϵ

2

64
∏

i k
2
i

×
(∑

i

k9i −
∑
i ̸=j

k6i k
3
j + 3

∑
i ̸=j

k5i k
4
j − 3

∑
i ̸=j

k7i k
2
j

)
.

(6.47)

When c2s ≪ 1, this contribution is suppressed compared to the canon-
ical case.

• Contribution from the ζ̇3 term
The ζ̇3 term is a new element in the Lagrangian caused by the non-
trivial sound speed, which does not show up in the cubic action of
canonical fields. Its contribution to the bispectrum is

⟨ζk1ζk2ζk3⟩ζ̇3 =− 12(2π)3δ(3) (k1 + k2 + k3) Im
∫ τB

−∞
dτ̄

(
−

aM2
plϵ

Hc2s

)(
1− 1

c2s
+ 2

λ

Σ

)
u∗k1(τB)u

∗
k2(τB)u

∗
k3(τB)

× u′k1(τ̄)u
′
k2(τ̄)u

′
k3(τ̄) , (6.48)
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where we have used the expression for Σ, equation (6.11). Then the
contribution to the shape function is expressed as

Aζ̇3 = −9

2

(
1− 1

c2s
+ 2

λ

Σ

)∑
i

k3i . (6.49)

Since this is a new contribution compared to the canonical case, it
vanishes for c2s = 1. Indeed, when c2s = 1, λ/Σ ≃ (1 − c2s)/(6c

2
s) = 0

(see equation (6.81) in Appendix 6.A) and 1 − 1/c2s = 0. We note
though that when c2s ≪ 1, this contribution is large.

• Secondary contributions

The contribution from the term

a3ϵ

2c2s

d

dt

( η

c2s

)
ζ2ζ̇

in equation (6.37) is exactly zero since η = 0 during the matter con-
traction. We can also neglect the contribution from the term

aϵ

c2s
(ϵ− 2s+ 1− c2s)ζ(∂ζ)

2

since the leading order term of the resulting bispectrum is propor-
tional to c2sk

2
i (τB − τ̃B)

2, which means that it is suppressed outside
the sound Hubble radius.

The above results differ from the ones of general single field inflation.
As pointed out in [186], two main reasons account for the different non-
Gaussianities between matter bounce cosmology and inflation. First, here
the “slow-roll” parameter ϵ is of order one rather than being close to zero, so
the amplitudes are larger and the higher-order terms in ϵ are not suppressed.
Second, curvature perturbations grow on super-Hubble scales in a matter-
dominated contracting universe, and this behaviour manifests itself in the
integral of equation (6.39), while for inflation, ζ usually remains constant
after horizon-exit, so there is no such contribution.

In what follows, we summarize the above results and give a detailed
analysis of the bispectrum. In particular, the differences with the canonical
single field matter bounce scenario are discussed.
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6.4.3 Summary of results

One can gather all the contributions above and get the total shape function,

Atot =

(
−105

32
+

39

16c2s
+

9c2s
128

)∑
i

k3i +
3

256
(3c2s + 6)

∑
i ̸=j

k2i kj

+
3

256
∏

i k
2
i

3c2s∑
i

k9i + (10− 9c2s)
∑
i ̸=j

k7i k
2
j

−(3c2s + 6)
∑
i ̸=j

k6i k
3
j + (9c2s − 4)

∑
i ̸=j

k5i k
4
j

 , (6.50)

where we have used ϵ = 3/2 and λ/Σ = (1−c2s)/6c
2
s for the matter contrac-

tion stage. Now the only free parameter in the total shape function is the
sound speed cs. In what follows, we shall discuss several interesting aspects
of this result.

6.4.3.1 Amplitude

The size of non-Gaussianity is depicted by the dimensionless amplitude
parameter

fNL(k1,k2,k3) =
10

3

Atot(k1,k2,k3)∑
i k

3
i

. (6.51)

As one can see in equation (6.50), for most values of cs ∈ (0, 1], the first
term dominates the total shape function, and roughly, fNL becomes

fNL ≃ −175

16
+

65

8c2s
+

15c2s
64

, (6.52)

which yields fNL < 0 for 0.87 ≲ cs ⩽ 1 and fNL > 0 for cs ≲ 0.87. Thus,
besides the negative amplitude in the canonical case [186], a small sound
speed in matter bounce cosmology can produce a positive fNL. In the next
section, we shall further discuss its behaviour in different limits to confront
observations.

6.4.3.2 Shape

The shape of non-Gaussianity is described by the dimensionless shape func-
tion

F(k1/k3, k2/k3) =
Atot

k1k2k3
. (6.53)
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Then, the first term in equation (6.50) gives exactly the form of the local
shape. Thus, when the prefactor of the first term is nonvanishing (cs ̸≈
0.87), the shape function is dominated by the local form, while the remain-
ing terms just give some corrections. The total shape of non-Gaussianity is
shown in the left panel of Figure 6.1, which looks very similar to the plots
in [186] for the canonical matter bounce except that the amplitude is much
larger here with cs small.

Figure 6.1: The shape of F(k1/k3, k2/k3) for cs = 0.2 (left panel) and cs = 0.87 (right
panel).

At the same time, this result differs from the one of general single
field inflation, where the equilateral form dominates the shape of non-
Gaussianity for cs ≪ 1 [193]. This is mainly caused by the different genera-
tion mechanisms of non-Gaussianity in these two scenarios. For the matter
bounce scenario, the growth of curvature perturbations after Hubble radius
exit makes a significant contribution to the final bispectrum. Meanwhile,
the local form is usually thought to be generated on super-Hubble scales
since “local” means that the non-Gaussianity at one place is disconnected
with the one at other places. For general single field inflation, the dominant
contribution is due to the enhanced interaction at horizon-crossing. Thus,
these two scenarios behave quite differently with a small sound speed.

It is also interesting to note that for cs ≈ 0.87, the first term in equation
(6.50) vanishes, so the shape function is dominated by the remaining terms.
The shape of non-Gaussianity is plotted in the right panel of Figure 6.1 for
this case, which is a new form different from the local one. To the best of
our knowledge, no other scenario can give rise to such a kind of shape, thus
it can be seen as a distinguishable signature of matter bounce cosmology
for probes of non-Gaussianity.
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6.4.3.3 The squeezed limit

Usually people are interested in the squeezed limit of the bispectrum (k1 ≪
k2 = k3 = k), since its scaling behaviour is helpful for clarifying the shapes
of non-Gaussianity analytically. Here in the squeezed limit (k1/k → 0), the
dimensionless shape function can be expanded as

F(k1/k3, k2/k3) ≃
3

8

(
−33

2
+

13

c2s

)
k

k1
+

3

64

(
1 + 6c2s

) k1
k

+O

((
k1
k

)2
)

. (6.54)

The leading order term gives the scaling F ∼ k/k1 and

⟨ζk1ζk2ζk3⟩squeezed ∼ 1

k31
, (6.55)

which is consistent with the dominant local form. The only exception is
when the coefficient of the first term vanishes (cs =

√
26/33) and another

scaling, F ∼ k1/k, follows from the next-to-leading order term.

6.5 Amplitude parameter of non-Gaussianities and implication for
the no-go theorem

There are three forms of the amplitude parameter fNL that are of particular
interest for cosmological observations. They are called the “local form”, the
“equilateral form”, and the “folded form”. The local form requires that one
of the three momentum modes exits the Hubble radius much earlier than
the other two, e.g., k1 ≪ k2 = k3. In this limit, one can simplify the total
shape function, equation (6.50), to find

f local
NL ≃ −165

16
+

65

8c2s
. (6.56)

The equilateral form requires that the three momenta form an equilateral
triangle, i.e. k1 = k2 = k3. In this case, we obtain

f equil
NL ≃ −335

32
+

65

8c2s
+

45c2s
128

. (6.57)

The folded form has k1 = 2k2 = 2k3, hence

f folded
NL ≃ −37

4
+

65

8c2s
. (6.58)
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As a result, in the limit where c2s ≪ 1, we find that

f local
NL ≈ f equil

NL ≈ f folded
NL ≈ 65

8c2s
≫ 1 . (6.59)

Let us recall from section 6.3 that in order to satisfy the observational
bound on the tensor-to-scalar ratio, we must impose cs ≲ 0.0029. This
immediately implies

f local
NL ≈ f equil

NL ≈ f folded
NL ≳ 9.55× 105 ≫ 1 . (6.60)

This amplitude of primordial non-Gaussianity is clearly ruled out according
to the observations [109],

f local
NL = 0.8± 5.0 , f equil

NL = −4± 43 , fortho
NL = −26± 21 , (6.61)

thus ruling out the viability of the class of models studied here.
Alternatively, if one requires that, e.g., −9.2 ≲ f local

NL ≲ 10.8 (i.e., impos-
ing f local

NL to be within the measured 2σ error bars), then one would need12

cs ≳ 0.62. However, this lower bound on the sound speed yields a tensor-
to-scalar ratio r ≳ 14.88, which is again clearly ruled out by observations
[228].

In summary, there is no region of parameter space where cs can give a
good, small tensor-to-scalar ratio (i.e., of order 0.1 at most) and good, small
non-Gaussianities (i.e., of order 10 at most). Therefore, independent of what
happens during the bounce, we extend the no-go theorem conjectured in
[227] to the following one:
No-Go Theorem. For quantum fluctuations generated during a matter-
dominated contracting phase, an upper bound on the tensor-to-scalar ra-
tio (r) is equivalent to a lower bound on the amount of primordial non-
Gaussianities (fNL). Furthermore, if

• the matter contraction phase is due to a single (not necessarily canon-
ical) scalar field,

• the same single scalar field allows for the violation of the NEC to
produce a nonsingular bounce,

• and General Relativity holds at all energy scales,
then satisfying the current observational upper bound on the tensor-to-scalar
ratio cannot be done without contradicting the current observational upper
bounds on fNL (and vice versa).

12Note that this constraint does not exclude cs ≈ 0.87, for which the new shape of
non-Gaussianity in the right panel of Figure 6.1 emerges.
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6.6 Conclusions and discussion

In this paper, we computed the two- and three-point correlation functions
produced by a generic k-essence scalar field in a matter-dominated contract-
ing universe. Comparing the power spectra of scalar and tensor modes, we
found that the tensor-to-scalar ratio can be appropriately suppressed if the
sound speed associated with the k-essence scalar field is sufficiently small.
In turn, we showed that the amplitude of the bispectrum is amplified by the
smallness of the sound speed13. As a result, it seems incompatible to sup-
press the tensor-to-scalar ratio below current observational bounds without
producing excessive non-Gaussianities. This leads us to extend the con-
jecture of the no-go theorem, which effectively rules out a large class of
nonsingular matter bounce models.

Although this seriously constrains nonsingular matter bounce cosmol-
ogy as a viable alternative scenario to inflation, there remain several classes
of models that are not affected by this no-go theorem. Indeed, one could
still evade the no-go theorem assuming certain modified gravity models as
stated in [227] (see references therein) or with the introduction of one or
several new fields. For example, in the matter bounce curvaton scenario
[239] (see also [202, 240, 241] for other nonsingular bouncing models us-
ing the curvaton mechanism) and in the two-field matter bounce scenario
[242], entropy modes are generated by the presence of an additional scalar
field, which are then converted to curvature perturbations. In both mod-
els near the bounce, the kinetic term of the entropy field varies rapidly,
which acts as a tachyonic-like mass that amplifies (in a controlled way)
the entropy fluctuations while not affecting the tensor modes. As a result,
the tensor-to-scalar ratio is suppressed (see [28, 226] for reviews of this
process). Furthermore, the production of non-Gaussianities in the matter
bounce curvaton scenario has been estimated in [239], and it indicated that
sizable, negative non-Gaussianities appeared, yet still in agreement with
current observations. Accordingly, such a curvaton scenario does not ap-
pear to suffer from a no-go theorem. However, there still remains to do an
appropriate extensive analysis of the production of non-Gaussianities when
general multifields are included in the matter bounce scenario.

13With a small sound speed, one may also reach the strong coupling regime where
the perturbative analysis breaks down. This is known as the strong coupling problem
[237, 238], which affects many non-inflationary scenarios (see in particular Appendix
C of [237], which focuses on non-attractor models). It represents a general independent
theoretical constraint, but in the context of the matter bounce scenario, our no-go theorem
is more constraining due to current observational bounds.
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A similar curvaton mechanism is used in the new Ekpyrotic model [243,
244] (extended in [245–248]), which generates a nearly scale-invariant power
spectrum of curvature perturbations. In this case, however, the smallness of
the observed tensor-to-scalar ratio must be attributed to the fact that the
tensor modes have a blue power spectrum when they exit the Hubble radius
in a contracting phase with w ≫ 1. The new Ekpyrotic model originally
predicted large non-Gaussianities [249–253] (see also the reviews [254, 255]),
but some more recent extensions can resolve this issue [256–260]. Thus, here
as well, it appears that these types of models do not suffer from a similar
no-go theorem14.

We note that one might be able to prove the no-go conjecture of this
paper borrowing similar techniques to the effective field theory of inflation
[94], i.e. by constructing an effective field theory of nonsingular bouncing
cosmology (e.g., see the recent work of [212, 213]). In complete generality,
this could allow us to find the exact and explicit relation between the tensor-
to-scalar ratio (which involves the power spectra of curvature and tensor
modes) and the bispectrum. In fact, the goal would be to find a consistency
relation for the three-point function in single field nonsingular bouncing
cosmology similar to what has been done in inflation [39, 40, 262]. This will
be explored in a follow-up study.

Finally, we would like to emphasize that, for matter bounce cosmology,
although the simplest k-essence model is ruled out by the no-go theorem,
the bispectrum with cs ̸= 1 (as an independent result of this paper) re-
mains to be a probable target for future probes of non-Gaussianity. This
possibility relies on the aforementioned bouncing models that can evade the
no-go theorem with other mechanisms. In those cases, a nontrivial sound
speed may still lead to the same behaviour of non-Gaussianities found in
this paper, which potentially can be detected by future observations. Par-
ticularly, we predict a new shape with an amplitude still consistent with
current observational limits, which can serve as the distinctive signature of
matter bounce cosmology and help us distinguish it from other very early
universe theories.

14Furthermore, Ekpyrotic models are robust against the growth of anisotropies in a
contracting universe. This is another challenge with the matter bounce scenario (see
[205, 261]) that will have to be overcome to have a viable theory.
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Appendix

6.A The ratio λ/Σ

Let us recall the definition of Σ and λ in equations (6.11) and (6.12). Their
ratio is thus given by

λ

Σ
=

1

3

(
X

Σ,X

Σ
− 1

)
. (6.62)

Recalling the definition of c2s in equation (6.10), we note that

Σ = X(P,X + 2XP,XX) = X
P,X

c2s
. (6.63)

Also, recalling the expression for ρ and p in equation (6.7), we find that
2XP,X = ρ+ p, and so, the above expression for Σ becomes

Σ =
ρ+ p

2c2s
. (6.64)

Consequently,
X

Σ,X

Σ
= X

ρ,X + p,X
ρ+ p

− 2X
cs, X

cs
. (6.65)

Working in the limit where p = 0, we note that ρ = 2XP,X , and so,
p,X = P,X = ρ/(2X), which implies that p,X/ρ = 1/(2X). Also, ρ,X =
p,X/c2s from the definition of the sound speed, and thus,

ρ,X
ρ

=
p,X
ρc2s

=
1

2c2sX
. (6.66)

Therefore, equation (6.65) in the limit where p = 0 becomes

X
Σ,X

Σ
=

1

2c2s
+

1

2
− 2X

cs, X

cs
. (6.67)

Alternatively, one can evaluate the ratio λ/Σ as

λ

Σ
=

1

3

(
Σ,X

Σ
X − 1

)
=

1

3

(
Σ̇

Σ

X

Ẋ
− 1

)
. (6.68)

Since we can write Σ = H2M2
plϵ/c

2
s and recalling the definition of the slow-

roll parameters in section 6.2, we get

Σ̇

HΣ
= −2ϵ+ η − 2s . (6.69)



6.A The ratio λ/Σ 155

Now, we note that we can write

η =
ϵ̇

Hϵ
=

Ḧ

HḢ
− 2

Ḣ

H2
=

Ḧ

HḢ
+ 2ϵ . (6.70)

Also, the Friedmann equation M2
plḢ = −XP,X implies that

Ḧ

HḢ
=

1

H

(
Ẋ

X
+

Ṗ,X

P,X

)
, (6.71)

and so,
Ẋ

HX
= η − 2ϵ−

Ṗ,X

P,X
. (6.72)

Therefore, combining equation (6.69) and the above yields

Σ̇

Σ

X

Ẋ
=

−2ϵ+ η − 2s

−2ϵ+ η − Ṗ,X

P,X

. (6.73)

In the limit where p = 0, we recall that ϵ = 3/2 and η = 0, and as a result,

Σ̇

Σ

X

Ẋ
=

3 + 2s

3 +
Ṗ,X

P,X

. (6.74)

Comparing the above with equation (6.67), since (Σ̇/Σ)(X/Ẋ) = XΣ,X/Σ,
we find

3 + 2s

3 +
Ṗ,X

P,X

=
1

2c2s
+

1

2
− 2X

cs, X

cs
, (6.75)

but
− 2X

cs, X

cs
= −2

X

Ẋ

ċs
cs

= −2s
HX

Ẋ
=

−2s

η − 2ϵ− Ṗ,X

P,X

, (6.76)

where the last equality follows from equation (6.72). Thus, equation (6.75),
with ϵ = 3/2 and η = 0, leaves us with

3

3 +
Ṗ,X

P,X

=
1

2c2s
+

1

2
, (6.77)

and consequently,
Ṗ,X

P,X
= −3

(
1− c2s
1 + c2s

)
. (6.78)
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As a result, equation (6.74) becomes

Σ̇

Σ

X

Ẋ
= X

Σ,X

Σ
=

1

2c2s

(
1 +

2

3
s

)
(1 + c2s) , (6.79)

and in the end, (6.68) is equivalent to

λ

Σ
=

1

3

[
1

2c2s

(
1 +

2

3
s

)
(1 + c2s)− 1

]
. (6.80)

In the limit where |s| ≪ 1, this reduces to

λ

Σ
≃ 1

3

[
1 + c2s
2c2s

− 1

]
=

1− c2s
6c2s

. (6.81)

In comparison, DBI inflation has λ/Σ = (1− c2s)/(2c
2
s) (see [193]).
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Summary

Where do we come from?
The quest for the origin of everything has puzzled all the curious minds

since our ancestors looked up the starry sky in wonder.

What is the fundamental law of nature?
To get a complete answer, from philosophers in ancient Greece to the-

oretical physicists today, numerous brilliant thinkers have stepped on “the
greatest adventure that the human mind has ever begun”1.

Excitingly, the modern advances of primordial cosmology are building
the link between these two most fascinating questions in the history of
human civilization. In the current understanding, our Universe originated
from a small patch with a hot and dense state 13.8 billion years ago. From
the recent developments of fundamental physics, we further speculate that
the cosmic expansion was exponentially rapid within the first fraction of a
second after the Big Bang. This theoretical proposal, called cosmic infla-
tion, provides a successful description for the earliest stage of the Universe.
Meanwhile, during this inflation stage quantum fluctuations can become
the initial seeds of cosmic inhomogeneities, which later evolve into galax-
ies, clusters and large scale structures. Thus it is remarkable that through
today’s astronomical observations, we can trace the imprints in primor-
dial inhomogeneities left by physics processes during inflation. As a result,
primordial cosmology has become an exciting research area for theoretical
physicists, where one can hunt for the fundamental laws of physics that
govern the earliest moment in our Universe.

Motivated by the big picture above, this thesis is dedicated to exploring
the theories of the primordial Universe and their connections with astro-

1Quoted from Richard Feynman, The Feynman Lectures on Physics, Volume III.



nomical observations.

The first part of the thesis focuses on so-called inflationary curved field
spaces. To understand how inflation happens, typically we require a driver
called the inflaton field, and it may move in a multi-dimensional field space
which in general is curved. Thus the geometry of this internal space can be
seen as one particular example of new physics effects during inflation.

In Chapter 2, we investigate a class of inflation models called α-attractors.
Here the magic of the hyperbolic field space is demonstrated explicitly in
the two-field extension of these models. With its effects, the model pre-
dictions of single field α-attractors are almost unaffected, even when the
multi-field effects become significant. This work complements the previous
single-field analysis of α-attractor models, and also highlights the role of
the hyperbolic geometry of the field space.

Chapter 3 proposes another class of cosmological models called “shift-
symmetric orbital inflation”, where the inflaton circles along an “angular”
direction in a general field space. Again the multi-field effects are significant
in these models, but in the end we still find single-field like predictions. This
work corresponds to a less explored regime in multi-field inflation where the
extra field is light but significantly coupled to the inflaton.

While most of the previous analysis of the internal spaces are relying on
specific models, Chapter 4 is dedicated to a more general question: what are
the model-independent observational signatures of these inflationary curved
field spaces? Here I try to answer this question using the non-Gaussian
phenomenology of massive fields during inflation, and find the fingerprints
of these internal spaces which can be tested in future observations.

The second part of the thesis studies the phenomenology of one very
important observable – primordial non-Gaussianity, which captures the de-
viation from the Gaussian statistics of primordial inhomogeneities. These
signals are worth searching for, as a wealth of early-time information is
believed to be encoded in the cosmological triangle patterns.

Chapter 5 revisits the non-Gaussianities generated in non-attractor in-
flation. This class of models are well known to violate Maldacena’s consis-
tency relation in the framework of single-field inflation, which has received
much attention and investigation. Through careful calculation, we explic-
itly show what happens to this famous counter-example when realistic and
complete models of non-attractor inflation are considered.

Chapter 6 studies the non-Gaussian phenomenology of an alternative to



inflation – matter bounce cosmology. We begin with a generalized single-
field setup. The non-Gaussian signals generated here can be used to dis-
tinguish this alternative scenario from inflation. Moreover, we propose a
no-go theorem which rules out many alternative models with the current
observational constraints.

What’s next? This thesis aims to push the frontier of the primordial
cosmology. Needless to say, this is a research area under fast development:
many interesting theoretical ideas are emerging; and upcoming observa-
tional experiments may tell us more about the earliest stage of the Uni-
verse. To further explore the new physics effects in the primordial era, the
following topics are worthy of deep consideration in the coming years.

• Internal symmetries usually play an important role in the fundamen-
tal realizations of inflation, and they may also be closely related to
the effective field theory, the geometry of the field space and new phe-
nomenology. To hunt for signatures of underlying symmetries during
inflation, it is interesting to perform more systematic investigations.

• Scattering amplitudes research provides new perspectives and power-
ful tools in the modern study of quantum field theory. One may won-
der whether similar approaches can be applied for bootstrapping cor-
relators in cosmology. While some pioneering studies have appeared
recently, this is a brand new area with many open opportunities.

• Large scale structure surveys are expected to produce massive amounts
of data for cosmology in the near future. Theorists are needed to
gain better understanding of the new observational windows for non-
Gaussianities and other primordial signals, and also get prepared for
possible new discoveries.

Just as it goes2:

The way ahead is a long, long one, oh!
I will seek the Truth high and low.

2Qu Yuan (c. 340–278 BC), The Lament.





Samenvatting

Waar komen we vandaan?
De zoektocht naar de oorsprong van alles heeft generaties van nieuws-

gierige mensen aan het denken gezet, al sinds onze voorouders verwonderd
de sterrenhemel bestudeerden.

Wat zijn de fundamentele natuurwetten?
Om hier een volledig antwoord op te krijgen zijn tal van briljante den-

kers, van filosofen in het oude Griekenland tot aan theoretische natuur-
kundigen vandaag, ‘het grootste avontuur dat de menselijke geest ooit is
begonnen’1 aangegaan.

Het is intrigerend dat de moderne kosmologie gedreven wordt door deze
twee fascinerende vragen.De huidige wetenschappelijke opvatting is dat ons
universum 13,8 miljard jaar geleden is ontstaan uit een piepklein volume dat
zich in een zeer hete en dichte toestand bevond. Daarbij volgt uit bepaalde
theoretische overwegingen dat het heelal de eerste fractie van een seconde
na de oerknal exponentieel uitdijt. Dit theoretische model, kosmische in-
flatie genaamd, geeft een succesvolle beschrijving voor het vroege heelal.
Tegelijkertijd vormen kwantumfluctuaties, die tijdens de periode van infla-
tie ontstaan, de zaadjes van kosmische inhomogeniteiten, die later evolueren
tot sterrenstelsels, clusters en grootschalige structuren. Het is dus opmerke-
lijk dat we met behulp van astronomische observaties de fysische processen
kunnen achterhalen die tijdens inflatie hebben plaatsgevonden. Als gevolg
hiervan is de kosmologie een spannend onderzoeksgebied geworden voor
theoretische natuurkundigen, waar men kan jagen op de fundamentele na-
tuurkundige wetten die het vroege universum beheersten.

Met dit als motivatie, is dit proefschrift gewijd aan het onderzoeken voor
theorieën van het vroege universum en hun verbinding met astronomische
waarnemingen.

1Aangehaald door Richard Feynman, The Feynman Lectures on Physics, Volume III.



Het eerste deel van het proefschrift richt zich op inflatie in gekromde
veldruimtes. Om te begrijpen hoe inflatie plaatsvindt, hebben we meestal
een veld nodig dat de inflatie aandrijft. Dit veld wordt het inflatonveld ge-
noemd en het kan in een multi-dimensionale veldruimte bewegen, die over
het algemeen gekromd is. De geometrie van deze interne ruimte kan wor-
den gezien als een bijzonder voorbeeld van nieuwe fysische effecten tijdens
inflatie.

In Hoofdstuk 2 onderzoeken we een klasse van inflatiemodellen genaamd
α-attractors. Hier wordt de magie van de hyperbolische veldruimte expliciet
gedemonstreerd in de twee-velduitbreiding van deze modellen. Door de hy-
perbolische kromming blijven de voorspellingen van single-field α-attractors
vrijwel onveranderd, zelfs wanneer de multi-field effecten significant ster-
ker worden. Mijn werk vormt een aanvulling op de eerdere analyse van
single-field α-attractor-modellen en benadrukt de rol van de hyperbolische
geometrie van de veldruimte.

Hoofdstuk 3 introduceert een nieuwe klasse van kosmologische model-
len, genaamd ‘shift-symmetric orbital inflation’, waarbij het inflaton in een
algemene veldruimte in de ‘hoek richting’ beweegt. Wederom zijn de multi-
field effecten significant in deze modellen, maar uiteindelijk vinden we nog
steeds single-field-achtige voorspellingen. Mijn onderzoek focust op een min-
der bestudeerd regime in inflatie met meerdere velden, waarbij het extra
veld licht is, maar tegelijkertijd aanzienlijk gekoppeld aan het inflaton.

Terwijl de meeste eerdere studies van de interne veldruimtes gebaseerd
zijn op specifieke modellen, is Hoofdstuk 4 daarentegen gewijd aan een meer
algemene vraag: wat zijn de model-onafhankelijke signalen van deze gekrom-
de veldruimtes in inflatie? Hier probeer ik deze vraag te beantwoorden met
behulp van de niet-Gaussische signalen gecreëerd door de aanwezige velden
tijdens inflatie, en vind dat de vingerafdrukken van deze interne ruimtes
kunnen worden getest in toekomstige waarnemingen.

Het tweede deel van het proefschrift bestudeert de fenomenologie van
een zeer belangrijke observable - ‘primordial non-Gaussianities’, die de af-
wijking van de Gaussische verdeling van de vroege inhomogeniteiten meet.
Deze signalen zijn het zoeken waard, omdat wordt aangenomen dat een
schat aan informatie uit het vroege universum in de kosmologische drie-
hoekspatronen is bevat.

Hoofdstuk 5 gaat opnieuw in op de non-Gaussianities die worden gege-
nereerd bij ‘non-attractor-inflation’. Van deze klasse modellen is bekend dat



ze de ‘single field consistency relation’ van Maldacena schenden, en hebben
daardoor veel bekendheid gekregen. Door een zorgvuldige berekening laten
we expliciet zien wat er met dit beroemde tegenvoorbeeld gebeurt wan-
neer realistische en volledige modellen van non-attractor-inflation worden
doorgerekend.

Hoofdstuk 6 bestudeert de niet-Gaussische fenomenologie van een al-
ternatief voor inflatie - ‘matter-bounce cosmology’. We beginnen met een
algemene theorie met één veld. De hier geproduceerde niet-Gaussische sig-
nalen kunnen worden gebruikt om dit alternatieve scenario van inflatie te
onderscheiden. Bovendien komen we tot een no-go-stelling die veel alterna-
tieve modellen met de huidige staat van waarnemingen uitsluit.

Wat komt hierna? Dit proefschrift heeft tot doel de grens van de oerkos-
mologie te verleggen. Dit is een onderzoeksgebied dat zich snel ontwikkelt:
er ontstaan veel interessante theoretische ideeën; en aankomende experi-
menten kunnen ons meer vertellen over de vroegste fase van het heelal. Om
de nieuwe fysische effecten in het oertijdperk verder te verkennen, zijn de
volgende onderwerpen de komende jaren de aandacht waard.

• Interne symmetrieën spelen gewoonlijk een belangrijke rol bij de fun-
damentele realisaties van inflatie, en ze kunnen ook nauw in verband
staan met een effectieve veldentheorie, de geometrie van de veldruimte
en nieuwe fenomenologie. Om te zoeken naar waarneembare effecten
van onderliggende symmetrieën tijdens inflatie, is het interessant om
meer systematisch onderzoek te doen.

• Het scattering amplitudes programma biedt nieuwe perspectieven en
krachtige hulpmiddelen in de moderne kwantumveldentheorie. Men
kan zich afvragen of vergelijkbare methodes kunnen worden toegepast
voor ‘bootstrapping-correlators’ in de kosmologie. Hoewel er onlangs
enkele baanbrekende werken zijn verschenen, is dit een gloednieuw
gebied met veel open vragen.

• Large scale structure onderzoeken zullen naar verwachting in de nabije
toekomst enorme hoeveelheden gegevens voor kosmologie opleveren.
Theoretici zijn nodig om de nieuwe waarnemingsmogelijkheden voor
non-Gaussianities en andere oersignalen beter te begrijpen en zich
ook voor te bereiden op mogelijke nieuwe ontdekkingen.



Net zoals het gaat2:

De weg voor ons is een lange, lange, oh!
Ik zal de waarheid hoog en laag zoeken.

2Qu Yuan (c. 340–278 BC), The Lament.
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