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3 KINETIC MODELING OF MULTI-OMICS

DATA REVEALS MICRORNA-MEDIATED

TRANSLATIONAL REGULATION IN STEM

CELL DIFFERENTIATION

THIS CHAPTER IS BASED ON:

Patrick van den Berg, Noémie Bérenger-Currias, Marleen Feliksik,

Esmée Adegeest, Mazène Hochane, Maria Mircea, Bogdan Budnik,

Nikolai Slavov, Stefan Semrau. “Kinetic modeling of multi-omics data reveals

microRNA-mediated translational regulation in stem cell differentiation”. In:

Unpublished (2020)1

Abstract

Stem cell differentiation is a highly dynamical process involving intricate gene regulatory

mechanisms at multiple levels. A lack of detailed understanding of these mechanisms makes

it challenging to improve existing differentiation protocols, which are gleaned from in vivo

development and are typically slow and inefficient. The large majority of existing studies

on differentiation has focused on transcriptional regulation, while the extent and mecha-

nisms of translational regulation are much less explored. Here, we present a time-resolved,

multi-omics study of retinoic-acid driven differentiation of mouse embryonic stem cells,

comprising mass spectrometry, mRNA-sequencing of cytoplasmic and nuclear fractions, as

well as micro-RNA sequencing. We develop a hierarchical kinetic rate model that allows

us to integrate these datasets and explore the factors that determine protein levels. While

the cytoplasmic-to-nuclear ratio of mRNA only has a minor effect, our model reveals micro-

RNAs that have a significant influence on the translation of their putative targets. Multi-

omics factor analysis finally identifies the major biological factors involved in the differ-

entiation process. All in all, our study shows how a refined kinetic model, in conjunction

with stringent model selection, can be used to discover regulatory mechanisms in a high-

throughput manner, without the need for perturbations.

1 S.S. and N.S. conceived the project. S.S. acquired funding. N.S. and B.B. supervised and performed the pro-
teomics experiments. S.S., P.v.d.B, N.N. and M.F. performed all other experiments with support from E.A. and
M.H.. P.v.d.B. analyzed, interpreted and modeled the data with assistance from M.M.. P.v.d.B. and S.S. wrote the
manuscript.
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3.1 Introduction

Much of the medical potential of pluripotent stem cells is due to their ability to differenti-

ate into all tissue types of the adult body [2]. While tremendous progress has been made in

guiding cells through successive lineage decisions, the gene regulatory mechanisms under-

lying these decisions remain largely unknown. This gap in knowledge hampers the stream-

lining and acceleration of differentiation protocols. A large body of work has focused on tran-

scriptional regulation, charting transcriptome changes during differentiation, most recently

down to the single-cell level [3, 4, 5, 6, 7]. Gene regulation occurring at the level of trans-

lation is much less explored. Most transcriptomics studies make the implicit assumption

that mRNA levels are a good proxy for protein levels. It has been shown that in steady state,

roughly 40% of protein variability across the proteome, can be explained by differences in

mRNA abundance ([8]). Models of the steady-state protein to mRNA ratio (PTR) can explain

up to two-thirds of the variability when taking transcript sequence features -such as coding

sequence length or amino acid frequencies- into account [9]. In highly dynamical systems,

such as differentiating stem cells, protein abundance is typically modeled with differential

equations. These models are different from steady-state models in that they cannot explain

absolute protein levels, but they can be used to infer kinetic rates for protein synthesis and

degradation [10, 11, 12]. Here, we show that such models can also be used to reveal regulatory

mechanisms during stem cell differentiation in an unbiased, high-throughput manner. We

collected a multi-omics dataset of retinoic acid (RA) driven differentiation of mouse embry-

onic stem cells. Samples taken over a period of 96h were subjected to: mass spectrometry,

bulk RNA-sequencing of nuclear and cytoplasmic fractions, as well as small RNA sequenc-

ing to quantify micro-RNA (miR) abundance. To model protein dynamics we refined a birth-

death model by considering explicitly the cytoplasmic-to-nuclear ratio of mRNA abundance

and the influence of certain technical artifacts related to mass spectrometry. By modeling

the influence of miRs on protein synthesis, we identified several miR that likely have a signif-

icant influence on protein regulation. Finally, we used multi-omics factor analysis (MOFA)

to reveal the overall relevance of translational regulation for in vitro differentiation.

3.2 Results

3.2.1 Pervasive discordance between RNA and protein in retinoic acid

driven mESC differentiation

We used RA differentiation of mouse emrbyonic stem cells (ESCs) as a generic model for

in vitro differentiation. Previously, we characterized this differentiation assay in detail at

the transcriptional level by single-cell RNA-seq [3] In particular, we have shown that within

96 h of RA exposure, mouse ESCs bifurcate into an extraembryonic endoderm-like and an

ectoderm-like cell type (XEN and ECT respectively). Here we collected samples during an
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RA differentiation time course (Fig 1A). For each time point we quantified total poly(A) RNA

by RNA-seq and protein expression by tandem mass tag (TMT) labeling followed by tandem

mass spectrometry (MS/MS). In total, we obtained both RNA and protein expression of 6271

of genes (Fig S1A-E) for 8 time points in duplicate. After correction for batch effects due to

different runs and sequencing methods (Fig 1H), we achieved highly similar results for the

two biological replicates. To investigate, in how far protein expression can be predicted from

RNA expression, we started with the simplest conceivable model (termed naive here), which

assumes that protein expression is identical to RNA scaled with a constant factor. This model

is justified if RNA expression changes slowly on the time scale of protein degradation, result-

ing in a quasi-steady state. Consequently, the PTR would be approximately constant over the

time course. To test this model, we scaled both protein and RNA to their respective means,

which should result in a constant PTR of 1, if the naive model is valid. We observed that

for a large fraction of genes the naive model is inaccurate, resulting in a low coefficient of

determination (R2) and low correlation coefficient (Fig 1C, Fig 2A). For particular genes we

could even observe significant anti-correlation between RNA and protein (Fig 1B). This re-

sult shows that the assumptions of the naive model are likely wrong for the majority of genes

and a more sophisticated model is necessary to explain the relationship between RNA and

protein.

3.2.2 Protein turnover model explains RNA-protein discordance for most

genes

To relax the assumption that expression is in steady state, we next considered a kinetic model

that implements a birth-death process for protein turnover (Eq 3.1). Similar models have

been used previously to describe protein turnover during the stress response in yeast [10], as

well as embryonic development of Xenopus [11] and Drosophila [12]. The birth-death model

assumes constant rates for protein synthesis (ks) and degradation (kd). All processes related

to protein production (translation, initiation, elongation, etc) are lumped into ks, while kd

represents all processes leading to a reduction in protein levels (dilution due to cell division,

active degradation, etc.). We do not consider simpler, degenerate models (without ks and/or

Figure 1 (following page). Protein turnover models outperform the naive model in pre-
dicting protein temporal profiles. (A) Schematic overview of RA differentiation time course
and subsequent omics measurements. (B) Example fit of the naive model. The naive model
is a smoothing spline fit of RNA scaled to match the mean protein expression. (C) R2 distri-
bution of the naive model. (D) Example fit of the totRNA model. (E) R2 distribution of the
totRNA model model. (F) Example fit of the totRNA and fullRNA model, replicate 1. (G) R2

distribution of the cyRNA model. (H) Example fit of the ci model, replicate 1. The height
of the grey bar indicates the fitted ci parameter. (I) R2 distributions of the ci model. Only
genes that are improved by the ci model are shown. The full distribution of genes is shown
in Fig S2E. Some genes with extremely low R2 values are set to the minimum value of the plot
for clarity. Corresponding Pearson’s r distributions are plotted in Fig S2.
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kd [11]), because these models are not biologically meaningful in our opinion. It seems rea-

sonable to assume that synthesis and degradation always occur to some degree. To reduce

the influence of uninformative small fluctuations, we applied a smoothing spline to the ex-

pression data prior to inferring model parameters by non-linear least-squares fitting. Com-

pared to the naive model R2 and correlation improved markedly (Fig 1DE, Fig 2B), which

might be expected given the increase in model flexibility. To correct for a difference in the

number of fit parameters and thus compare model performance fairly, we used the Bayesian

information criterion (BIC) (see Methods). According to the BIC, 3551 out of 4580 genes were

better fit by the kinetic model. These genes are thus likely out of steady state for the duration

of the experiment as a result of the differentiation cue.

Pg(t)= k
g
s ·Rg(t) – k

g
d ·P

g(t)

k
g
s ≥ 0, k

g
d ≥ 0

(3.1)

In summary, these results showed that a simple birth-death model outperforms the naive

model of protein turnover.

Despite the overall improvement observed with the kinetic model, many genes were still

not properly fit. We would like to interpret the remaining discrepancies as signs of biologi-

cally interesting, dynamic regulation. To be able to do so, we had to exclude technical lim-

itations of our measurements as possible explanations. We first considered the subcellular

localization of mRNA. In our first experiment we measured total RNA, whereas only cyto-

plasmic mRNA is available for translation. Nuclear retention of mRNA was found to reduce

variability in cytoplasmic mRNA concentration and thereby protein synthesis. Moreover,

specific genes are retained in the nucleus as a form of translational regulation [13, 14, 15].
To measure the cytoplasmic mRNA fraction of each gene, we repeated the differentiation

experiment in triplicate and separated cell lysates into a nuclear and cytoplasmic fraction

before performing RNA-seq. To obtain a global scaling factor between cytoplasmic and nu-

clear expression, we regressed totRNA reads, measured previously, on nuclear RNA (nuRNA)

and cyRNA reads across all genes (see methods) . Then the cytoplasmic fraction C was cal-

culated for each gene and each time point. To our surprise, C did not vary substantially be-

tween genes (Mean= 0.817, Std=0.0161, subset of 3,563 genes without any missing values)

(Fig S1F). In addition, C also did not fluctuate much in time for individual genes (Fig S1G).

Despite the low variability of C, we incorporated this parameter into our model (Eq 3.2). As

expected, adding C brought overall only a very subtle improvement (Fig 1G), although for

individual cases, the improvement can be quite significant (Fig 1F). We opted to fit further

models including the cytoplasmic fraction due to the overall slightly better performance.

Pg(t)= k
g
s ·Cg(t) ·Rg(t) – k

g
d ·P

g(t)

0≤Cg(t)≤ 1
(3.2)
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Another important technical limitation was inherent to the proteomics method we em-

ployed. TMT-based proteomics suffers from coisolation interference, a process in which two

peptides are co-isolated in the second MS step. The contaminating peptide interferes with

the quantification of the peptide of interest. To model this contamination, we added an addi-

tional parameter (ci) to the model (Eq 3.3), which we assume to be constant for all TMT tags

(i.e. time points). Effectively, including this parameter allows protein expression to have a

bigger dynamic range, which can improve the fit for certain genes significantly (Fig 1H-I,

Fig 1DE). Judged by the BIC, 598 genes were fit better including ci. All in all, this result shows

that it is very important to consider co-isolation interference.

Pg(t)+ cig = k
g
s ·Cg(t) ·Rg(t) – k

g
d · (Pg(t)+ cig)

0≤ cig ≤min{Pg(t)}
(3.3)

3.2.3 Including miRs improves model performance and identifies miR-

gene interactions

Having ruled out major systematic errors, we were in a position to explore biological expla-

nations for the remaining discordance between RNA and protein. We chose to explore miRs

since they are known to play an important role in gene regulation during differentiation.

Specifically, we wanted to study the influence of miRNAs on protein translation initiation. In

order to study the role of miRs in our system we repeated the differentiation assay and mea-

sured the miRnome by small RNA-seq in quadruplicate. We quantified around 1000 mature

miRs per time point (Fig 1ACE). To identify possible miR interactions, we used the list of pre-

dicted targets provided by TargetScanMouse [16]. We further limited the number of miRs per

mRNA by filtering the miR-gene interactions leniently using the context score (Fig 1D). In the

end we retained 4527 genes with 560 unique mature miRs and 45,882 potential interactions

Figure 2 (following page). The addition of miRs further improves the protein turnover
model for a subset of genes and reveals novel candidate miR-gene interactions. (A) Ex-
pression profiles of 560 miRs in six clusters. (B) Example fit of miR model for the gene Rab8a,
replicate 1. First panel: expression of the assigned miRs of a single cluster. Colored lines
are individual smoothing spline fits. Second panel: Cytoplasmic RNA expression and the ef-
fective RNA concentration available for translation (see Materials and methods). Solid lines
represent smoothing splines. Third/fourth panel: cyRNA and miR model fits. (C) Distri-
bution of inferred α for genes that benefit from miR model. (D) R2 distribution of the miR
model and the next best model (either naive, totRNA, cyRNA or ci). Only genes that bene-
fit from the miR model are shown. Some genes with extremely low R2 values are set to the
minimum value of the plot for clarity. Corresponding Pearson’s r distributions are shown in
Fig S2F. (E) R2 distributions of (D) compared in a scatter plot. Colored dots are defined by the
cutoffs indicated in red and represent a subset of genes with a miR-gene interaction of higher
confidence. Some genes with extremely low R2 values are set to the minimum value of the
plot for clarity. (F) miR model fits of two genes (Cdk7, Pccb) from the subset highlighted in
(E).
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(Fig 1DE).

If multiple miRs with similar temporal profiles target the same gene, we considered them

to be indistinguishable. Therefore we globally clustered miRs into six clusters with similar

temporal profiles (Fig 2A) and averaged miRs targeting the same gene per cluster (Fig 2B). To

keep the model simple we assumed that the inhibitory effect of miRs on protein translation

grows linearly with miR abundance (Eq 3.4). We fit one of the six miR clusters at a time and

identified the improvement in model performance for each cluster and each gene.

P
g
m(t)= k

g
s · (1 –α

g
m ·M

g
m) ·Cg(t) ·Rg(t) – k

g
d ·P

g(t)

0< αg
m ≤ 1

(3.4)

Including miRs greatly improved the fits for some genes, especially when there is a tran-

sient discordance between RNA and protein expression (Fig 2B). Typically, the "effective"

mRNA abundance (cytoplasmic mRNA corrected for miR effects) was more dynamic than

nominal mRNA abundance. For many of the genes that benefit from the addition of miRs,

their influence is typically large. For these genes, 50% of translation is blocked on average at

peak miR expression (Fig 2C). Overall, the addition of miRs significantly improved the coef-

ficient of determination for a quarter of the genes (Fig 2D).

To use the model for identifying novel miR-gene interactions, we ranked the genes by

the quality of the model fit and model performance improvement compared to the simpler

models without miRs (Fig 2E, Suppl Table 2). Among this list of candidate genes we selected

seven genes and their putative miRs (Fig 2BF, Fig S3), whose interaction we intend to validate

in a follow-up study. (Rab8a, Cdk7, Pccb, Acad8, Mfge8, Eif4h and Srgap2).

3.2.4 The best protein turnover model explains 45% of total protein vari-

ance

While each model refinement introduced above improved model performance overall, each

discussed model was optimal for a subset of genes, judged by the BIC (Fig 3A). In about 16% of

cases the naive mode was optimal, meaning that for these genes none of the protein turnover

models improve prediction by a significant amount. 25% and 26% of genes are best predicted

with the kinetic model without or with considering mRNA localization, respectively. So for

51% of genes, protein expression is out of steady state, but explainable by a simple model

with fixed synthesis and degradation rates. For 8% of genes the model including co-isolation

interference was optimal. The increased relative dynamic range due to subtracting a con-

stant increased the fit for these genes significantly. Finally, 25% of genes were fit optimally

with one of the miR clusters, meaning that translational regulation plays a significant role for

these genes. All things considered, 84% of genes were insufficiently described by RNA alone,

leading to a very significant lack of variance explained (Fig 3BC). Therefore, it seems in gen-

eral not advisable to consider mRNA abundance a good proxy for protein levels in a highly

dynamical setting.
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Figure 3. Selecting the optimal model on a gene-by-gene basis increases the total ex-
plained variance of protein expression from 30% to 50%. (A) Assignment of the optimal
model for each gene based on BIC. The number next to the miR bar indicates the miR clus-
ter giving the best fit. (B) R2 distribution of the optimal fits from (A) and their naive model
counterpart. Some genes with extremely low R2 values are set to the minimum value of the
plot for clarity. (C) Median percentage of protein variance explained by each model, picking
among the best models progressively. Fits with negative R2 were ignored.

3.2.5 Multi-omics factor analysis reveals global factors driving transla-

tional regulation in mESC differentiation

The above analyses focused on how individual protein turnover is regulated. In order to de-

scribe translational regulation in our system in a more comprehensive manner we performed

MOFA. MOFA is an extension of factor analysis which integrates omics data from different

sources, like the genome, transcriptome or metabolome. MOFA extracts low dimensional,

latent factors that represent the biological processes underlying the variation observed in

the data. In order to identify factors involved in translation only, we used two datasets: PTR

and miR abundance (Fig 4A). MOFA is typically run directly on gene expression, but here

we used the PTR, because we were most interested in explaining how post-transcriptional
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regulation can drive fluctuations away from steady state. From this analysis we obtained six

driving factors of translational regulation (Fig 4B).

The six factors had distinct temporal trends (Fig 4C), which we used to interpret their bio-

logical identity. Since MOFA sorts the factors in order of variance explained and the first three

factors had the simplest trends we restricted our interpretation to these three factors (Fig 4D).

The genes contributing most to factor 1 are enriched for gene ontology (GO) terms related to

development, differentiation, cell cycle and nucleotide synthesis (Fig 4E). Thus, we interpret

this factor as the main differentiation program which includes changes in metabolism. This

interpretation is supported by the miR that contribute most to factor 1 (Table 3.1): Several

of these miRs are known to be involved in differentiation. The let-7 family in particular is

known to play an important role in embryonic stem cell pluripotency and self-renewal. Fac-

tor 2 is enriched for GO terms in morphogenesis, cell adhesion and signaling. It appears to

be the factor driving the specification of the cell type as a response to the external signals.

Top miRs of this factor are involved in multiple differentiation paths (osteocytes, adipocytes,

trophectoderm, neurons, see Table 3.1). Finally, Factor 3 appears to be related to epithelial-

mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) as many of the

top miRs are involved in EMT various types of cancers. Moreover, one of the few enriched

GO terms is "epithelial tube morphogenesis". All in all, this analysis shows that meaningful

biological factors can be revealed by considering protein synthesis and its regulation.

Factor Rank miR symbol Short description

1 5 1 miR-1843a-5p Differentially expressed in traumatic brain injury [17].

1 5 2 miR-27b-5p Clustered with miR-23b. Upregulated in Smad4 knockout

cardiomyocytes, involved in cardiac hypertrophy [18]. Induces EMT

in gastric cancer [19].

1 5 3 miR-23b-5p Clustered with 27b. Regulates osteoclast differentiation [20].
Attenuates glucose-mediated EMT in diabetic nephropathy [21].

1 5 4 let-7d-3p let-7 family is involved in pluripotency and self-renewal, and is

differentially expressed between different ESC states [22]. 7d:

inhibitions of leads to EMT in idiopathic pulmonary fibrosis [23].1 5 5 let-7f-5p

1 4 1 miR-34c-5p
Downregulation of this miR promotes EMT in breast cancer.[24]

1 4 2 miR-34c-3p

1 4 3 miR-10a-5p Critical for smooth muscle cell differentiation from mESC [25].

1 4 4 miR-9-3p Involved in neurogenesis [26]. Suppressor of EMT in nasopharyngeal

carcinoma. [27]

1 4 5 miR-34b-5p See miR-34c.

2 5 1 miR-7b-5p Represses self-renewal [28]. Reverses EMT in breast cancer through

STAT3 [29].

Continued on next page
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Continued from previous page

Factor Rank miR symbol Short description

2 5 2 miR-3058-3p

2 5 3 miR-195a-3p Inhibits adipocyte differentiation [30]. Inhibits EMT in Prostate

cancer through FGF2 [31]. Inhibits EMT in colorectal cancer through

NOTCH2 [32].

2 5 4 miR-3095-5p

2 5 5 miR-187-3p Inhibits osteogenic differentiation [33]. Inhibits EMT in

hepatocellular carcinoma [34].

2 4 1 miR-297c-3p

Involved in trophectoderm specification in mouse [35].2 4 2 miR-297a-3p

2 4 3 miR-297b-3p

2 4 4 miR-466f-3p In cluster with each other. Inhibits NeuroD1, which is required for

neuron differentiation [36].2 4 5 miR-669f-3p

3 5 1 miR-770-3p Inhibits EMT in non-small cell lung cancer [37].

3 5 2 miR-760-3p Inhibits EMT in breast cancer [38].

3 5 3 miR-1306-5p Involved in hepatocellular carcinoma, regulates Snail-mediated

metastasis [39].

3 5 4 miR-301b-5p Promotes proliferation, mobility and EMT in bladder cancer by

targeting EGR1 [40].

3 5 5 miR-369-5p The -3p variant targets Sox4 [41].

3 4 1 miR-452-3p Inhibits EMT in hepatocellular carcinoma through TGF-β1 [42].

3 4 2 miR-340-5p Targets Bcl-w and Sox2 and inhibitions of miR promotes cancer

progression [43].

3 4 3 miR-186-3p Affects EMT through Cdc42 in lung cancer [44].

3 4 4 miR-700-5p

3 4 5 miR-106a-5p Downregulates Twist1 which causes EMT [45].

Table 3.1. Top 5 negative and positive miRs for the first three MOFA factors.

3.3 Discussion

Widespread discordance between steady-state protein and mRNA levels has been observed

in several mammalian systems [46, 47, 48]. Importantly, low correlation does not immedi-

ately imply a significant role of gene-specific regulation, as technical noise tends to reduce

the observed correlation and conventional correction schemes typically ignore the effect of

systematic, correlated errors [49] Edfors et al. [48] showed recently that the PTR for a specific

gene is constant across several tissues [48]. While the PTR might allow the prediction of ab-

solute protein levels, it is unable to capture relative changes over time or relative differences
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Figure 4. Multi-omics factor analysis uncovers underlying factors that drive translational
regulation in mESC differentiation. (Continued on next page)
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Figure 4. Multi-omics factor analysis uncovers underlying factors that drive translational
regulation in mESC differentiation. (Continued from last page) (A) Schematic of the ma-
trices used in MOFA analysis. (B) Variance explained (R2) by each of the six factors. (C) Tem-
poral profile of each factor. (D) Distributions of the factor weights for the first three factors.
(E) GO term over and under representation by the top (+) and bottom (-) 120 genes of the
first three factors. The top 10 enriched GO terms (with p<0.1) is shown for each factor and
direction. Test performed is elim with KS statistic, see Materials and methods).
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between tissues [50].

To identify dynamic translational regulation during stem cell differentiation, we therefore

collected a time-resolved gene expression dataset and found overall low correlation between

mRNA and protein abundance across time. Such low correlation has been observed recently

in several other systems, in particular: Xenopus development [11], C. elegans development

[51], macrophage differentiation [52] and mouse ESC differentiation [53]. While the lack of

strong correlation is typically interpreted as a sign of (post) translational regulation [51, 53],
theoretical work showed that a simple delay between mRNA and protein production can lead

to a reduction in gene-wise correlation [54, 55] A simple model with constant kinetic rates

explained the protein dynamics of a third of all genes during stress response in yeast [10] and

of 75% of all genes in Xenopus development [11]. In our system, 3551 out of 4580 genes were

explained better by this model, compared to a naive model which assumes a constant PTR.

To explain the remaining discordance we explored the cytoplasmic-to-nuclear ratio of

mRNA abundance, but did not find a strong effect. On the other hand, including a parame-

ter modeling co-isolation interference markedly improved the fit for some genes. We there-

fore posit that co-isolation interference should be included in any kinetic model when TMT

labeling is used for multiplexing the mass spectrometry measurements.

miRs have been identified as a key regulator of stem cell pluripotency and differentia-

tion [56]. For example, members of the the let-7 and miR-290 families have been implied

as drivers for differentiation of ESCs as well as in the maintenance of pluripotency [57, 22,

56, 58] To find putative targets of miRs, various computational methods, typically based

on sequence complementarity and conservation, have been developed [16, 59, 60]. These

methods predict hundreds of thousands of interactions, among which are likely many false

positives. The gold standard for validation, the luciferase assay, is time consuming, which

means that the majority of potential interactions have not been verified. To our knowledge,

there is currently no high-throughput experimental method to identify miR-mediated trans-

lational regulation in a genome- and miRnome-wide manner. We believe that our modeling

approach is able to reduce the number of potential interactions to a much smaller set, which

can be easily validated by conventional methods.

In addition to the possibility to infer regulatory interactions between different molec-

ular players, multi-omics data sets are also useful to identify major driving factors of bio-

logical processes in development and disease. A living cell is typically considered to be a

highly complex dynamical system that defies many traditional modeling approaches due to

the large amount of unobserved or indeterminable parameters. There is, however, the hope

that many biological processes in fact occur on low-dimensional manifolds within the high-

dimensional space needed to describe the state of a cell. Multi-omics measurements will

allow us to ascertain if there are in fact such manifolds, which would significantly simplify a

complete quantitative understanding of biological dynamics. Our study indicates the pres-

ence of at least 3 factors that co-regulate miR and protein abundance during differentiation.

To unravel how co-regulation is achieved molecularly and how the factors can be perturbed
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to in vitro differentiation are fascinating challenges for the future.

3.4 Materials and methods

3.4.1 Cell culture

E14 mouse embryonic stem cells were cultured as previously described [3]. Briefly, cells were

grown in modified 2i medium [61]: DMEM/F12 (Life technologies) supplemented with 0.5x

N2 supplement, 0.5x B27 supplement, 4mM L- glutamine (Gibco), 20 μg/ml human insulin

(Sigma-Aldrich), 1x 100U/ml penicillin/streptomycin (Gibco), 1x MEM Non-Essential Amino

Acids (Gibco), 7 μl 2-Mercaptoethanol (Sigma-Aldrich), 1 μM MEK inhibitor (PD0325901,

Stemgent), 3 μM GSK3 inhibitor (CHIR99021, Stemgent), 1000 U/ml mouse LIF (ESGRO).

Cells were passaged every other day with Accutase (Life technologies) and replated on gelatin

coated tissue culture plates (Cellstar, Greiner bio-one).

3.4.2 Retinoic acid differentiation and sample collection

Retinoic acid induced differentiation was carried out exactly as described before [3]. Prior

to differentiation cells were grown in 2i medium for at least 2 passages. Cells were seeded

at 2.5e5 per 10 cm dish and grown over night (12 h). Cells were then washed twice with PBS

and differentiated in basal N2B27 medium (2i medium without the inhibitors, LIF and the

additional insulin) supplemented with 0.25 μM all-trans retinoic acid (RA, Sigma-Aldrich).

Spent medium was exchanged with fresh medium after 48 h. To collect samples, cells were

dissociated with Accutase and spun down. Full RNA and cytoplastmic/nuclear RNA were

always immediately extracted (RNeasy, Qiagen and SurePrep, Fisher Scientific, resp.) and the

purified RNA was stored at -80C until RNA-sequencing was performed. For proteomics and

miR-sequencing, pellets were flash frozen in liquid nitrogen and stored at -80C until further

processing.

3.4.3 RNA and miR sequencing

The libraries for RNA sequencing were prepared under standard conditions using Illumina’s

TruSeq stranded mRNA sample preparation kit. The stranded single end libraries were se-

quenced using Illumina HiSeq at 40bp with an average read depth of 40 million reads per

sample. Paired-end libraries for RNA sequencing were sequenced on an Illumina NextSeq

500 at 150bp per strand at a read depth of 10 million reads per sample. miRs were extracted

from frozen pellets using miRNeasy (Qiagen) kit. Libraries for small RNA sequencing (miR

sequencing) were prepared using NEBNext Small RNA Library Prep Set for Illumina (New

England Biolabs) and were sequenced on an Illumina NovaSeq 600 at 150bp paired-end with

a range of 4 to 15 million samples. Specification table for the sequencing strategy is available

upon request. All sequencing data is available through GEO.
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3.4.4 Mass spectrometry

Pelleted cells were lysed in 400 μl RIPA buffer, except for the sorted cells. Volumes of cell

lysate corresponding to 100 μg protein per sample were digested with trypsin using a mod-

ified FASP protocol [62]. Subsequently each sample was labeled with TMT 10-plex, 6-plex

or 11-plex reagent (Thermo Fisher)) according to the manufacturer’s protocol. All labeled

samples were combined into a set-sample. Which labels were assigned to each sample is

specified in the specification table, which is available upon request. The labeled set-sample

was fractionated by electrostatic repulsion-hydrophilic interaction chromatography (ERLIC)

run on an HPLC 1200 Agilent system using PolyWAX LP column (200x2.1 mm, 5 μM, 30nm,

PolyLC Inc, Columbia, MD) and a fraction collector (Agilent Technologies, Santa Clara, CA).

Set-samples were fractionated into a total of 40 ERLIC fractions. Each ERLIC fraction was

subsequently further separated by online nano-LC and submitted for tandem mass spec-

trometry analysis to both LTQ OrbitrapElite or Q exactive high field (HF). One third of each

fraction was injected from an auto-sampler into the trapping column (75 um column ID, 5

cm length packed with 5 um beads with 20 nm pores, from Michrom Bioresources, Inc.) and

washed for 15 min;; the sample was eluted to analytic column with a gradient from 2 to 32 %

of buffer B (0.1% formic acid in ACN) over 180 min gradient and fed into LTQ OrbitrapElite

or Q exactive HF. The instruments were set to run in TOP 20 MS/MS mode method with

dynamic exclusion. After MS1 scan in Orbitrap with 60K resolving power, each ion was sub-

mitted to an HCD MS/MS with 60K resolving power and to CID MS/MS scan subsequently.

All quantification data were derived from HCD spectra.

3.4.5 RNA-seq processing

We used genome assembly mm10 release 93 from Ensembl. First an RSEM (v1.3.1) reference

was created with default settings. Next we performed adapter and quality trimming with

Trimmomatic (v0.38). Finally all reads were aligned with RSEM with STAR (v2.6.1a) with the

option enabled for stranded libraries. Expected counts from RSEM were used as input for

DESeq2 (v1.26) to obtain regularized log2 counts with stabilized variance to make compar-

isons between samples more reliable. From these values we obtained regularized counts and

used these for all further analyses and as input for batch correction.

3.4.6 Proteomics processing

Peptide search was performed on peptides identified in full RNA seq data to increase speci-

ficity of the protein quantification with MaxQuant. Proteins were quantified from the pep-

tide measurements in the evidence.txtoutputs. Reversed peptides and contaminants were

removed. Each column in the file was then normalized to the mean. Some peptides for some

samples were quantified multiple times, due to multiple mass-spectrometry runs or multiple

tmt tags in the same sample mix. These values were averaged. Multiple peptides assigned
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to a single ensembl gene ID were also averaged to obtain normalized protein expression that

we used for batch correction.

3.4.7 Batch correction

We observed global expression differences in protein and rna expression depending on the

seeding day which we decided to correct using the RemoveBatchEffect function from limma

(v3.42.2). We applied it on the protein and totalRNA datasets separately with three different

levels of batches, one each for the first replicate, the second replicate and for two samples

we used to replace failed samples of the first replicate (Specification table available upon

request). The resulting batch-corrected values were used as input for most further analysis

(Fig S1H).

3.4.8 miR-seq processing

For alignment of miR-seq data we used the same genome release as above with miRnome

release 22.1 from miRBase using the mature miR sequences. To prepare the reads we per-

formed adapter and quality trimming with Trimmomatic and obtained a consensus forward

sequence using both the forward and reverse read and PEAR (v0.9.6). We next ran bowtie-

prepare from bowtie (v1.0.0-1). Finally we quantified each sample with the mapper.pl and

quantifier.pl scripts from mirdeep2 (v2.0.1.2). The obtained counts were processed the same

way as the RNA-seq data, but separately.

3.4.9 miR-gene interactions

We looked for putative miR-gene interaction using TargetScanMouse release 7.1. We filtered

the "miR family" table for expressed miRs and expressed RNAs. We next did a lenient filter

on the miR-gene interactions; we filtered out all interactions with a cumweightscore lower

than -0.3. Finally, we wanted to keep only miRs with high dynamics over the time course and

high reproducibility. To achieve this we calculated for each miR the Coefficient of variation

(CV) across the mean miR expression of each time point and the mean of the CV’s across the

biological replicates. We fit a gaussian mixture model to these to values using mclust (v5.4.6)

where each distribution has an equal diagonal shape, but with varying volumes ("VEE" mod-

elNames option). We filtered the miR-gene interactions list for miRs from cluster 1 because

they fit our high variance and high reproducibility criteria (Fig S1I). The final putative list of

miR-gene interactions comprised 560 miRs and was used in the miR clustering and model fit

(see below).

3.4.10 miR clustering

To cluster miRs into sets of similar temporal profiles, miR expression of the miRs in the inter-

action table was first averaged per time point. A miR to miR distance matrix was created with
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1–Pearson correlation on log2-transformed values. This matrix was then used to perform hi-

erarchical clustering with complete linkage (base R) and the resulting dendrogram was cut

into 6 clusters.

3.4.11 C-fraction calculation

To obtain a per gene C-fraction we needed to map how cytoplasmic and nuclear sequencing

reads relate to each other. We took total, cytoplasmic and nuclear RNA and removed genes

that had any raw count lower than 10. We then took the top 500 genes with the lowest vari-

ance and, under the assumption that for these genes that C-fraction was the most stable, fit

the following linear model: Rtot = βc · Rc + βn · Rn, where Rtot is total RNA, Rc is cytoplas-

mic RNA and Rn is nuclear RNA. T For each we applied the regularized log2 counts. The fit

beta parameters map cytoplasmic and nuclear values to total RNA values and were 0.815 and

0.183 respectively. Then for each gene g we calculated the C-fraction: Cg =
βc ·R

g
c

βc ·R
g
c +βn ·R

g
n

3.4.12 Rate model fitting

We fit several rate models for every gene in our clean set of genes (Fig S1E). We first scaled

totRNA and protein expression by dividing each by its replicate mean. We next with a

smoothing spline (smooth.spline function, base R) to the totRNA data for each replicate

with 7 degrees of freedom (DF). We opted for manually setting the DF over letting the

function determine it because we observed that what seems like noise at the RNA level is

sometimes replicated at the protein level. smooth.spline would sometimes oversimplify

the dynamics of RNA and this would lead to bad fits at the protein level if the protein has

more dynamics than the resulting spline. Perhaps counterintuitively, we deemed the fit

more conservative if we forced high dynamics at the RNA level at the cost of introducing

some noise. We let smooth.spline determine the DF for all other smoothing spline fits using

leave-one-out-cross-validation. We fit smoothing splines to the C-fraction and multiplied

this with the smooth totRNA to get smooth cyRNA. miRs that were assigned to each gene

were first averaged over replicates and then divided by the miRs maximum value. Smooth

splines were fit to each miR and then the smooth miRs for each miR cluster were averaged.

We solved the differential equation using deSolve (v1.28), given a rate model, parameters,

totRNA or cyRNA and a miR cluster. Parameters put into the solvers were log2(kprod),

log2(kdiv), P0, ci and α, depending on the differential equation being solved. kprod = ks · kd

and kdiv = ks/kd, which are perpendicular to the original values on purpose because the

optimization algorithms sometimes had difficulty finding an optimal fit, because covarying

ks and kd may result in a very similar fit. We log2 transformed these values to give the

optimization function more control over fitting it. P0 is the protein concentration at t=0h,

we opted for adding this as a model parameter instead of setting it to the observed concen-

tration at t=0h and losing that value for fitting. ci is set to be between 0 and the minimum
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observed protein expression, because the consolation interference cannot exceed what

was actually observed. α is between 0 and 1 and describes the miR clusters’ influence on

translation rate. Since both α and the miR clusters’ expression cannot exceed 1, only at peak

miR cluster expression can translation be completely turned off in the model. To find the

optimal parameters we fit using the optim function (base R). Sum of squared residuals (SSR)

were minimized using the "L-BFGS-B" method of the optim function. However for both Eq

3.2 and 3.3 we first minimized: SSR+10 · log2(kdiv) ·2. Due to our scaling of RNA and protein

log2(kdiv) is expected to be close to 0 so we penalized divergence first to get a decent estimate

for log2(kprod) first, since we observed that otherwise the fits sometimes had extreme values.

The resulting parameters were used as starting values for the unpenalized fits. We used BIC

to compare models with different numbers of parameters: BIC= k · ln(n) – 2 ·SLL, where k is

the number of parameters, n is the number of samples, and SLL the sum of log-likelihood.

k is 0 for the naive model, 3 for Eq 3.1 and 4 for Eq 3.2,3.3. n=8, the number of time points.

The error of the fits was assumed to be normally distributed in order to calculate the LSL.

When comparing models, the model with the lower BIC was considered superior.

3.4.13 MOFA analysis

We performed MOFA analysis to identify factors that drive translation. In contrast to what

MOFA is intended for we applied it on the PTR ratios, to only look at the shifts out of steady

state and not the actual values. Since we did not have matching protein-rna-miR samples

we averaged ratios and miR to each time point. We filtered miRs for a minimum raw count

of 10 and obtained 976 miRs. We then selected the top 1200 genes with the highest PTR ratio

CV to obtain a similar number as recommended by the authors. MOFA was run in R with the

default settings (MOFA2, v1.0).

3.4.14 GO term enrichment

We performed GO term enrichment analysis on the genes with extreme weights in the MOFA

analysis. The top 120 positive and negative genes of each factor were used as ordered in-

put for the topGO package (v2.38.1) We used a minimum term size of 20, the "ks" statistic

and the "elim" algorithm. The elim algorithm takes the neighboring GO terms into account

when calculating p-values. As a result, these p-values are not independent and therefore the

authors do not recommend correcting for multiple hypotheses [63].
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3.5 Supplementary information

Figure S1. Quality control of full, cytoplasmic, nuclear RNA-seq, miRNA sequencing and
proteomics. (Continued on next page)



3.5 Supplementary information 125

Figure S1. Quality control of full, cytoplasmic, nuclear RNA-seq, miRNA sequencing and
proteomics. (Continued from last page) (A) Total number of reads for all sequencing sam-
ples. (B) Distribution of the number of peptides used for the quantification of each pro-
tein. (C) Number of detected genes or miRs in each sample. Individual replicates are plot-
ted as separate bars in (A, C). (D) Distribution of miR-gene interactions per gene. (E) Euler
diagram of all gene sets. The "miRNA" set indicates genes with predicted miR interaction
and the "clean" set is a subset of genes without missing values in either RNA or protein. 53
genes are in the set: RNA&Protein&Clean (no miR-gene interactions), 13 genes are in the set:
RNA&Protein (no miR-gene interactions, and some genes have missing values). (F) Distri-
bution of the mean cytoplasmic fraction (C-fraction) per gene. (G) Coefficient of variation of
C-fraction per gene. (H) Distribution of RNA-RNA and protein-protein Pearson’s r with and
without batch correction. (I) Gaussian mixture model based clustering of miRs to select a
cluster with low noise and high variance (cluster 1), see Materials and methods.
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Figure S2. Model performance comparison with Pearson’s r. (A-D) Pearson’s r distribution
of various protein models. Corresponding R2 distributions are shown in Fig 1. (E) R2 distri-
bution of cyRNA and ci model for all genes. The R2 distribution of the subset of genes that
are best fit by the ci model is shown in Fig 1I. (F) Pearson’s r distribution of the miR model
and the next best model (either naive, totRNA, cyRNA or ci). Only genes that are best fit by
the miR model are shown. Corresponding R2 distributions are plotted in Fig 2D.

Figure S3 (following page). Six candidate miR-gene interactions. Example fit of the miR
model for genes Cdk7, Pccb, Acad8, Mfge8, Eif4h and Srgap2 (rows). First column: expression
of the assigned miRs of a single cluster. Colored lines are individual smoothing spline fits.
Second column: Cytoplasmic RNA expression and the effective RNA concentration avail-
able for translation (see Materials and methods). Solid lines represent smoothing splines.
Third/fourth column: cyRNA and miR model fits.
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Acronyms

BIC Bayesian information criterion

CV Coefficient of variation

DF degrees of freedom

EMT epithelial-mesenchymal transition

ERLIC electrostatic repulsion-hydrophilic interaction

chromatography

ESC emrbyonic stem cell

GO gene ontology

HF high field

MET mesenchymal-epithelial transition

miR micro-RNA

MOFA multi-omics factor analysis

MS/MS tandem mass spectrometry

nuRNA nuclear RNA

PTR protein to mRNA ratio

RA retinoic acid

TMT tandem mass tag
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