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INTRODUCTION

Our bodies are unbelievably complex systems. An important contributor to this complexity

is the enormous diversity of cell types. Each cell type has its own properties and functions,

such as the transfer of information in the brain or the transport of oxygen in the bloodstream.

Despite all this diversity, each cell in our body has the same origin: a single fertilized egg cell.

Developmental biology is the science of life’s journey from this single cell, to trillions of cells

with hundreds of different cell types.

But what even defines a cell type? The exact answer to this is not trivial and can be ap-

proached at different levels. Functional specialization or location in the body can both be

used to define a cell type. What a cell can do (which is largely determined by its protein com-

position) and where a cell is located (when and where it was formed during development) is

all determined by the genome of that single fertilized egg cell.

To discover what parts of the genome, i.e. which genes, are active when and where in a

developing embryo, is thus an important task of developmental biology. Various biochemical

processes, collectively termed gene regulatory mechanisms, determine the amount of tran-

scription, translation and protein degradation, resulting in precisely tuned protein abun-

dances. These processes are at the center of defining a cell type, since they ultimately deter-

mine its protein composition. In this thesis we will study embryonic development with gene

regulation as a common thread. Here we will introduce the different types of gene regulatory

mechanisms discussed in this thesis, as well as some of the state-of-the-art experimental

techniques we employ to study these mechanisms.

DNA methylation

The human genome comprises 46 DNA molecules, totaling two meters in length, which

are packaged inside the cell’s nucleus. How tightly different parts of the DNA are packed

determines, at least in part, which genes are active. In turn, the gene activity profile is

strongly correlated with the cell’s type. Which parts of the DNA are accessible or inaccessible

is not encoded in the DNA sequence itself but determined by chemical modifications of

the DNA or proteins that are associated with it. The field of epigenetics studies how this

meta-information is modified by the cell and how it determines when a gene is active.

One layer of this meta-information is stored in the modifications of a specific DNA base. A

methyl-group can be added and removed from cytosine and this triggers a whole cascade of

other processes influencing DNA packing. Knowing where throughout the genome the DNA

is methylated, its methylome, thus reveals vital information about how genes are regulated.
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Transcriptional and translational regulation

The instructions on how to build proteins are stored in the genome, but these instructions

are not read out directly. In between DNA and protein, messenger RNA (mRNA) acts as a

carrier of these instructions. The process of copying DNA into mRNA is called transcription

and reading mRNA’s instructions for protein is called translation. Both of these are heavily

regulated processes.

Transcription is the process of copying DNA sequences to the equivalent of mRNA. In

contrast to DNA there can be thousands of copies of mRNA in the cell simultaneously. The

amount of mRNA in the cell will largely determine the amount of the corresponding protein

in the cell so controlling transcription is vitally important. There are many actors that bind

DNA that are responsible for either promoting or repressing transcription. These molecules

are called transcription factors and at any given transcription site there is typically a complex

set of these present that fine-tune transcription levels. Conversely, each transcription factor

can bind multiple locations in the genome. In a famous example, there is a set of transcrip-

tion factors that, when introduced into the cell, can reprogram a mature cell type back into a

progenitor cell. Another important role in transcriptional regulation is that of the enhancer.

These regions of DNA are typically positioned far away from the transcription site but can

nonetheless control the transcription level.

Translation is the process of converting genes encoded in mRNA into proteins. Akin

to transcriptional regulation, translation can be regulated in multiple ways. Most regula-

tory mechanisms involve the binding of proteins or other RNAs to specific sequences in the

mRNA. One mechanism studied in this thesis involves micro-RNAs (miRs). miRs are short

pieces of RNA that bind to complementary sequences in their target mRNAs. They are known

to either signal slicer proteins to degrade the mRNA or to simply block the translation ma-

chinery. When it comes to important cellular processes like differentiation, big changes in

translational regulation is much less prevalent than in transcriptional regulation. However,

in particular cases translational regulation plays a decisive role and should not be overlooked.

Omics

To measure is to know, therefore science is forever pushing the limits of measurements. This

thesis makes use of several high-throughput methods to measure the molecular profiles of

cells. In order to discern what is being measured we use a set of suffixes. For instance we

measure the genome with genomics and the proteome with proteomics. -ome relates to all

the information the type of molecule holds while -omics describes the measurement of this

information. In this thesis we will deal with the genome (the DNA sequence), the methy-

lome (where the DNA is methylated), the transcriptome (the composition of mRNAs), the

mirnome (the composition of miRs) and the proteome (the composition of proteins). All of

these measurements have been made possible by recent scientific and commercial advances.
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In particular DNA sequencing methods have recently driven transcriptomics and genomics.

Mass spectrometry is one of the main tools to measure the proteome. Most of these -omics

tools measure many cells to get accurate averages, but a recent trend is to measure single

cells. Single cell -omics allows us to study cell populations without averaging out important

variability between cells.

Thesis outline

In this thesis we explore the ways cells exert control over their states, particularly in the con-

text of development. We mirror the central dogma of molecular biology in the order of the

chapters: from DNA to RNA to protein.

In Chapter 1 we look at the dynamics of DNA methylation in mouse embryonic stem

cells (ESCs). It has been previously found that there are regions in the genome that are dif-

ferentially methylated depending on the cell type. Bulk DNA sequencing based methods can

only provide a static snapshot of average methylation levels. In particular, bulk methods ob-

scure heterogeneity within the cell population, which might have important functional con-

sequences. Here we used a locus-specific fluorescent reporter for DNA methylation to study

two super enhancers sites. Our study reveals that their methylation level is highly dynamic

and correlated with gene expression. Moreover, methylation changes occur independently

on the two alleles (i.e. the mother’s and father’s copy of the super enhancers). In summary,

Chapter 1 demonstrates a new and unique tool for studying enhancer DNA methylation in

heterogeneous populations of cells.

In Chapter 2 we look at how the human kidney develops. Most research on kidney de-

velopment has been done in mice, even though there are many crucial differences between

the species. We were one of the first to measure human fetal kidneys with a new state-of-the-

art technique: single-cell RNA-sequencing. In this dataset we identified 22 distinct kidney

cell types at five developmental ages. One of our key findings is that there are several sub-

classes of nephron progenitors, which give rise to the basic functional unit of the kidney. In

summary, Chapter 2 creates a better picture of how the human kidney develops and how it

compares to the mouse kidney.

In Chapter 3 we look at the discordance between mRNA and protein abundance to dis-

cover mechanisms of translational regulation. mRNA changes are often used as surrogate

for protein changes in the cell. However, protein expression over time does not directly cor-

respond to mRNA expression due to finite rates of protein synthesis and degradation and a

resulting delay. For example, mRNA expression may spike upwards in a matter of minutes,

but protein expression may take a day to catch up, owing to a slow protein synthesis rate.

To better understand these differences we measured both mRNA and protein in a mouse

ESCs differentiation experiment. By modeling protein expression as a birth-death process

we discern which gene is entirely determined by mRNA abundance and which is the target

of post-transcriptional regulation. We further integrate a small RNA-sequencing dataset into
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our model to identify miRs that may be responsible for some of this regulation. In summary,

Chapter 3 determines the important differences between mRNA and protein dynamics and

uses these differences to identify cases of post-transcriptional regulation.

In Chapter 4 follows up on some of the results of the preceding chapter. The regulation

that miRs exert on mRNAs adds a layer of complexity to gene regulation that is often ignored.

This is in part due to the enormous number of possible miR-gene interactions and the am-

biguity of the binding sites. In the previous chapter we used our birth-death model to pre-

dict several miR-gene interactions in mouse ESC differentiation. Here, we set out to validate

some of these interactions by introducing mimics and inhibitors of these miRs into ESCs. We

created reporter cell lines of miR activity to accurately select the timing and dosage of those

reagents. We found that four out of six candidate miRs down-regulated their predicted tar-

get. In summary, Chapter 4 validates the birth-death model as a tool for finding miR-gene

interactions.



1 DYNAMIC ENHANCER DNA METHYLA-
TION AS BASIS FOR TRANSCRIPTIONAL

AND CELLULAR HETEROGENEITY OF

ESCS

THIS CHAPTER IS BASED ON:

Yuelin Song, Patrick R van den Berg, Styliani Markoulaki, Frank Soldner,

Alessandra Dall’Agnese, Jonathan E Henninger, Jesse Drotar,

Nicholas Rosenau, Malkiel A Cohen, Richard A Young, Stefan Semrau,

Yonatan Stelzer, Rudolf Jaenisch. “Dynamic Enhancer DNA Methylation as

Basis for Transcriptional and Cellular Heterogeneity of ESCs”. In: Molecular

cell 0.0 (2019), 905–920.e6. DOI: 10.1016/j.molcel.2019.06.045

Chapter preface

The following chapter is a near verbatim reproduction of Song et al. [1] (supplementary fig-

ures, however, are not reproduced and for these I refer to in the original article). This chapter

demonstrates that DNA methylation is a highly dynamic process in steady-state mouse emr-

byonic stem cells (ESCs). Furthermore, is it shown that DNA methylation of super-enhancer

loci correlates strongly with gene expression, which makes the observed fluctuations highly

relevant for ESC biology. I contributed significantly to making the connection between DNA

methylation and gene expression.

To measure DNA methylation of specific loci in live cells, fluorescent reporter lines were cre-

ated. By using F1 hybrid cell lines, it was possible to create independent reporters (with dis-

tinguishable fluorophores) for the paternal and maternal allele, respectively. After careful

characterization of the methylation dynamics, we set out to study the effect on gene express-

ion. To that end, cell populations sorted on the reporter signals were profiled by RNA-seq.

My task was to analyze the RNA-seq data. The specific challenge was to design an analy-

sis pipeline that distinguishes reads from the two maternal and paternal allele, which differ

in only a few nucleotides. Moreover I assisted by reanalysing single cell WGBS (scWGBS)

data and validating the expression levels of Sox2 in these sorted populations using single-

molecule FISH (smFISH).

Patrick van den Berg

https://doi.org/10.1016/j.molcel.2019.06.045


6 Dynamic enhancer DNA methylation in ESCs

Abstract

Variable levels of DNA methylation have been reported at tissue-specific differential methy-

lation regions (DMRs) overlapping enhancers, including super-enhancers (SEs) associated

with key cell identity genes, but the mechanisms responsible for this intriguing behavior are

not well understood. We used allele-specific reporters at the endogenous Sox2 and Mir290

SEs in embryonic stem cells and found that the allelic DNA methylation state is dynamically

switching, resulting in cell-to-cell heterogeneity. Dynamic DNA methylation is driven by the

balance between DNA methyltransferase and transcription factor binding on one side and

co-regulated with the Mediator complex recruitment and H3K27ac level changes at regu-

latory elements on the other side. DNA methylation at the Sox2 and the Mir290 SEs is in-

dependently regulated and has distinct consequences on the cellular differentiation state.

Dynamic allele-specific DNA methylation at the two SEs was also seen at different stages in

preimplantation embryos, revealing that methylation heterogeneity occurs in vivo.

1.1 Introduction

Tissue-specific differential methylation regions (T-DMRs) have been found to strongly asso-

ciate with low CpG density and inter-genic enhancers [2, 3, 4, 5, 6], and the vast majority of

cell-type specific DNA methylation changes occur at distal regulatory elements [7, 8]. whole-

genome bisulfite sequencing (WGBS) data indicate a low but detectable level of DNA methy-

lation at T-DMRs overlapping active enhancers [9, 10, 11, 12, 13, 14, 8]. Recent single cell

WGBS (scWGBS) data from mouse emrbyonic stem cells (ESCs) and the early mouse embryo

suggest that the variable low-to-intermediate DNA methylation levels found at enhancer re-

gions in bulk-cell measurements are largely due to averaging signals across cells with het-

erogeneous methylation states [15, 16, 17, 18, 19, 20]. However, due to the static snapshot

view of sequencing-based methods, it has been difficult to define the basis, regulation, and

functional impact of DNA methylation heterogeneity on gene expression and cellular states.

The hierarchy and casual relationship between the regulation of enhancer DNA methy-

lation, active enhancer histone marks, transcription factor (TF) binding, and cis-regulated

transcription has been challenging to define due to the epigenetic heterogeneity among cells

[21, 13, 22]. While genome-wide epigenetic profiling provided insights into the relationship

between DNA methylation, histone marks, and TFs and coactivators binding [13, 23, 24],
these approaches, even at the single-cell level, did not allow resolving fast dynamics of indi-

vidual epigenetic processes in heterogeneous tissues and cell populations. Thus, currently

there is no clear understanding of the basis, regulation, and functional consequences of DNA

methylation heterogeneity.

Our recently developed Reporter of Genome Methylation (RGM) allows tracing of locus-

specific DNA methylation based on the on-and-off of a fluorescent signal in single cells in

real time, and has been shown to faithfully reflect the endogenous DNA methylation states

at multiple genomic loci [25, 26]. This system allows for robustly tracking locus-specific DNA



1.2 Results 7

methylation at enhancer regions and for functionally dissecting the hierarchy of epigenetic

events that regulate enhancer activity and cellular states, overcoming the challenges faced by

bulk measurements or sequence-based methods. We utilized this system at two pluripotency

SEs, Sox2 and Mir290 SE, in ESCs. Both SEs overlap with ESC-specific DMRs, which display

consistently low levels of methylation, indicating potential heterogeneity [27, 28, 19, 29, 8].
We targeted RGMs to both alleles of the two SEs in F1 129xCasteneous (129xCAST) hybrid

ESCs allowing to visualize allele-specific DNA methylation changes. We observed highly dy-

namic switching between different methylation states on individual alleles resulting in cell-

to-cell heterogeneity and were able to distinguish the DNA methylation pathways driving

these changes. The RGM system enables isolation of rare and transient populations exclu-

sively based on their locus-specific methylation states, which allowed defining the relation-

ship between dynamic SE DNA methylation changes, the Mediator complex condensation,

histone H3K27 acetylation, TF binding, cis-regulated target gene expression, and changes in

cellular states. Finally, transgenic methylation reporter mice for both SEs revealed the pre-

viously underappreciated epigenetic heterogeneity and dynamics of the pluripotent cells in

cleavage embryos, recapitulating and extending the observations in ESCs.

1.2 Results

1.2.1 DNA Methylation at the Sox2 and Mir290 SEs Is Heterogeneous at

the Allelic Level

Sox2 and Mir290 SEs reside on chromosome 3 and 7, respectively. Both SEs overlap with

T-DMRs, which are hypo-methylated in ESCs but become de novo methylated upon dif-

ferentiation [25]. The T-DMR of the Sox2 SE is located about 100 kb upstream of the Sox2

gene, whereas the Mir290 SE, consisting of hypo-methylated DMR constituents interspersed

by small hyper-methylated regions, is proximal to the Mir290-295 cluster (Song et al. [1]
Figure S1A). WGBS of ESCs indicates that the Sox2 and Mir290 SE DMRs have overall DNA

methylation levels higher than that of hypo-methylated promoters of highly expressed

genes in ESCs, such as Gapdh and Oct4, but lower than that of imprinting control regions

or retroelements, which are monoallelically and hyper-methylated, respectively (Song et al.

[1] Figure S1B) [27, 28, 29, 8]. This low-to-intermediate level of methylation at both SEs

in bulk cell WGBS suggests that they are hypermethylated in a small population of cells.

Re-analysis of published scWGBS data [20] revealed that the T-DMRs of both SEs belong to

the 5% regions with the most variable DNA methylation level compared to other regions

of chromosome 7 or chromosome 3 (Song et al. [1] Figure S1C), further supporting the

presence of rare cells with hypermethylated SE DMRs.

Consistent with published scWGBS studies reporting heterogeneity in the wild-type

genome [16, 17, 18, 30, 31, 20], we previously observed methylation heterogeneity in ESCs

with the endogenous Nanog tagged with eGFP and RGM-tdTomato reporter inserted mono-
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allelically into the Sox2 or Mir290 SE DMRs [25]. The heterogeneity at these two specific loci

was manifested by the bi-modal distribution of RGM activity in Nanog positive (Nanog+)

pluripotent cells as seen in FACS (Figure 1A). Sorting cells based on florescence intensity,

followed by bisulfate PCR (BS-PCR) and sequencing, validated that RGM methylation strictly

correlates with the endogenous methylation in both regions (Figure 1A). Analyzing the Sox2

SE revealed that hyper-methylation occurred on both the targeted and the untargeted alleles

in the pluripotent ESC population (Nanog+), indicating that rare allelic methylation exists

among cells (Song et al. [1] Figure S1D). The rare methylated alleles were also detected at

the Mir290 SE by high-throughput sequencing of BS-PCR amplicons from the wild-type

allele. Figure 1B shows that, comparing to Dnmt3a/b double-knockout cells (described later

in Song et al. [1] Figure S3A), we found methylation at the Mir290 SE in non-manipulated

wild-type ESCs as well as on the untargeted allele in the Nanog+RGM+ ESCs. These results

indicate that SE DNA methylation heterogeneity is created by allele-specific hypermethy-

lation in rare ESC populations independent of RGM targeting. To track DNA methylation

heterogeneity on each allele, we targeted the Mir290 and the Sox2 SE independently in

129xCastaneus F1 hybrid ESCs with allele-specific RGM reporters and generated two cell

lines, Sox2-129SE-RGM-tdTomato/Sox2-CASTSE-RGM-eGFP (abbreviated below as SOX2-SE-TG)

and Mir290-129SE-RGM-tdTomato/Mir290-CASTSE-RGM-eGFP (abbreviated below as MIR290-

SE-TG) (Figure 1C and Song et al. [1] Figure S1E) allowing to visualize the SE locus-specific

DNA methylation state at allelic and single-cell resolution. These cell lines also enabled dis-

section of allelic functional output of SE methylation states by distinguishing the two alleles

based on the abundance of 129 or CAST allele-specific single nucleotide polymorphisms

(SNPs) at both the DNA and the mRNA level.

The initial FACS analysis detected a small fraction of single-positive (T+G–, T–G+) as well

Figure 1 (following page). DNA Methylation at the Sox2 and Mir290 SEs Is Heterogeneous
at the Allelic Level. (A) Left, DNA methylation heterogeneity at both the Sox2 and the Mir290
SE in v6.5-Nanog-eGFP ESC where the RGM-tdTomato reporter was mono-allelically tar-
geted. Right, BS-PCR followed by sequencing of the Sox2 SE in different populations of the bi-
modal distribution. (B) Average methylation percentage and standard errors were quantified
from high-throughput sequencing of BS-PCR amplicons of the Mir290 SE wild-type alleles in
Dnmt3a/b double-knockout ESCs, in Nanog+RGM+ESCs and in untargeted wild-type ESCs.
BS-PCRs were amplified allele-specifically as illustrated from potential epigenetic states indi-
cated above. Standard error was estimated assuming number of methylated counts as a bino-
mial random variable. (C) Targeting strategy for generating SOX2-SE-TG and Mir290-SE-TG
ESCs using CRISPR/Cas9 and targeting vectors. Methylation tracks from (Stadler et al., 2011)
were used as the genome reference with blue bars highlighting the DMRs of the two SEs. Red
tracks, 129 allele; green tracks, CAST allele. (D) FACS analysis of CASTx129 F1 ESC clones tar-
geted with allele-specific RGMs at either the Mir290 or the Sox2 SE. (E) Allele-specific BS-PCR
of the SEs with RGM (Snprn-tdTomato or Snprn-eGFP) in single PCR amplicons followed by
Sanger sequencing in sorted cells from both SOX2-SE-TG and Mir290-SE-TG See also Song
et al. [1] Figure S1.
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as double-negative (T–G–) cells in both cell lines, though the majority of cells were double-

positive (T+G+) (Figure 1D), consistent with the heterogeneity reported in scWGBS data by

others (Song et al. [1] Figure S1C) and in our BS-PCR analysis on both targeted and wild-type

alleles (Figure 1A, 1B, and Song et al. [1] Figure S1D). To confirm that the RGM reporter activ-

ity faithfully reflected the allele-specific endogenous DNA methylation state, we sorted the

four populations and performed allele-specific BS-PCR followed by Sanger sequencing of the

DMRs upstream of the reporters. Figure 1E shows that the reporter activities on both alleles

were consistent with the DNA methylation levels of the genomic SE regions and the inserted

RGMs in all sorted populations. Quantitative pyro-sequencing further confirmed that T+G+

and T–G– populations represent two extreme methylation states of the intrinsic epigenetic

heterogeneity at both SEs (Song et al. [1] Figure S1F). As expected, both unmethylated alle-

les in sorted T+G+ cells from both cell lines gained methylation synchronously upon retinoic

acid (RA)-induced differentiation. This confirms that the RGM-targeted SEs undergo the pre-

dicted methylation changes when exiting pluripotency (Song et al. [1] Figure S1G).

1.2.2 Dynamic Allele-Specific SE DNA Methylation Is Regulated by De

Novo Methylation and Passive Demethylation during Cell Prolifer-

ation

To gain insights into the origin of DNA methylation heterogeneity, we FACS sorted equal

numbers of the four populations from both reporter cell lines and monitored the RGM activ-

ity upon passaging in serum + LIF medium (Figure 2A). Figure 2B (serum + LIF) and Song et

al. [1]Figure S2A show that the SE DNA methylation states in the four sorted populations were

not stable but highly dynamic with each allele independently switching the RGM on-and-off

over the course of only a few days. This indicates that the observed SE DNA methylation

heterogeneity is a result of fast dynamic and reversible switching of allelic DNA methylation

states. When sorted cells were passaged and cultured in “2i” (GSKi and MAPKi) medium, the

kinetics of the transitions between different methylation states was significantly altered with

slowed de novo methylation for both SEs and an initial acceleration of demethylation at the

Mir290 SE (Figure 2B and 2C; Song et al. [1] Figure S2B). Demethylation of T–G– population

of SOX2-SE-TG in “2i”, however, is slower over the long term than that in serum + LIF, possi-

bly due to impaired cell division as shown in the later part of this article. The observed DNA

methylation difference between “2i” and serum + LIF is consistent with the extensive global

demethylation induced in “2i” by downregulation of de novo and maintenance methyltrans-

ferases [32, 33, 34, 35, 36].

Demethylation in “2i” suggests that changes in DNA methyltransferase (DNMT) activities

modulate the observed dynamics. To determine the main de novo methyltransferase driver

for SE methylation, we compared RGM activities in Dnmt3a or Dnmt3b single-knockout and

Dnmt3a/3b double-knockout (DKO) cells (Song et al. [1] Figure S3A). Although the number

of RGM negative cells was reduced in Dnmt3a or Dnmt3b single-knockout cells, cells with
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methylated SEs were eliminated only in the absence of both de novo methyltransferases in

DKO cells preventing any de novo methylation (Figure 3A and Song et al. [1] Figure S3B). The

hypomethylation of both SEs was further confirmed by pyro-sequencing in DKO ESCs as well

as in cells induced to differentiate by RA (Song et al. [1] Figure S3C). These results suggest that

both DNMT3A and DNMT3B have redundant functions and independently contribute to de

novo methylation of SE DMRs.

DNA demethylation can occur either passively in rapidly dividing cells, caused by inhibi-

tion of DNMT1 or by active removal of the methyl group mediated by Tet enzymes and base

excision repair (BER) pathways [37]. To assess whether demethylation of the SEs involved

active or passive mechanisms, we analyzed whether DNA demethylation would be affected

in cells upon delaying cell-cycle progression using thymidine block. In all three populations

carrying at least one methylated allele, the kinetics of demethylation upon thymidine block

was significantly decreased upon 3 days in culture (Figure 3B and 3C). This suggests that cell

proliferation-driven passive demethylation is responsible for SE demethylation. To confirm

this observation genetically, we transfected 129SE-RGM-tdTomato T–G+ cells with Cas9 and sgR-

NAs against genes encoding the maintenance enzymes DNMT1/UHRF1, which upon down-

regulation would lead to genome-wide passive dilution of methylation. In addition, we used

sgRNAs against enzymes implicated in mediating active demethylation (Tets/Tdg/Aid). Fig-

ure 3D shows the predicted outcomes of 129SE-RGM-tdTomato allele demethylation (changes

of the fraction of T+G+ cells) after disruption of these genes. When Dnmt1 or Uhrf1 were

disrupted, the 129SE-RGM-tdTomato allele became demethylated in a substantial fraction of

cells (Figure 3E). In contrast, transduction of sgRNAs against Tet enzymes, Aid, or Tdg had

no substantial effect indicating that active demethylation is not significantly involved in SE

demethylation. To confirm that the lack of methylation changes upon disruption of Tets,

Aid, or Tdg was not due to inefficient Cas9-sgRNA transfection, we further compared the

demethylation kinetics of the 129SE-RGM-tdTomato allele in single clones harboring homozy-

gous Tdg and Aid frameshift mutations (Song et al. [1] Figure S3D) with that of wild-type

cells and observed no difference (Song et al. [1] Figure S3E). In addition, DNA methylation

levels, as quantified by pyro-sequencing, did not reveal a significant difference among Tet1,

2, and 3 single-knockout, Tet1, 2 double-knockout, Tet1, 2, 3 triple-knockout ESCs, and the

isogenic wild-type cells [38, 39, 40] (Song et al. [1] Figure S3C). Given the rapid proliferation

of ESCs, our data are consistent with the notion that locus-specific DNA methylation at both

SEs is subjected to intrinsically dynamic changes at the allelic level in each cell due to un-

Figure 2 (following page). SE DNA Methylation Heterogeneity Is Created by Dynamic
Switching of Methylation States. (A) Experiment setup for monitoring SE DNA methylation
dynamics. Yellow cells: T+G+; gray cells: T-G-; red cells: T+G-; green cells: T-G+. (B) FACS
analyses on the dynamics of T+G-, T-G+, T+G+, and T-G- populations 4 days post-sorting
for both MIR290-SE-TG in serum + LIF or "2i" medium. (C) Quantifications of the dynamics
of 4 sorted populations from MIR290-SE-TG in percentages change over time when cultured
in the serum + LIF or the "2i" medium after sorting. See also Song et al. [1] Figure S2.
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synchronized cell division and passive DNA demethylation, which leads to heterogeneous

SE methylation at a snapshot sampling time (t1, . . . , t4, Figure 3F, top). The steady-state of

such dynamic heterogeneity reflects a balance between de novo methylation dependent on

both DNMT3A and DNMT3B and passive demethylation during rapid cell proliferation (Fig-

ure 3F, bottom).

1.2.3 TF Binding at SE Promotes Demethylation and Inhibits De Novo

Methylation

To explore additional regulators of SE DNA methylation dynamics besides DNMTs activities

and cell division, we investigated the impact of TF binding on the transition between DNA

methylation states. Some TFs can serve as readers of DNA methylation or inducing changes

to DNA methylation states upon binding to target sequences [41, 42, 43, 22]. The Sox2 SE har-

bors multiple enrichment sites for the master TFs OCT4 and NANOG in ESCs [44] (Figure 4A,

top). We deleted enrichment sites for the two TFs (peak 1 for NANOG and 2 for both NANOG

and OCT4) at the Sox2 SE DMR on either the 129SE-RGM-tdTomato or the CASTSE-RGM-eGFP al-

lele using sgRNAs against allele-specific SNPs (Figure 4A, bottom) and generated ESC clones

harboring allele-specific peak deletions (ΔPeak 1-CAST, ΔPeak 2-CAST, and ΔPeak 2-129

clones; Song et al. [1] Figure S4A). We sorted the T–G– and T+G+ populations from these

clones and monitored the re-establishment of allelic heterogeneity across deletion geno-

types (Figure 4B). The fraction of T+G– or T–G+ cells transitioning from T+G+ or T–G– cells

were quantified as allelic de novo methylation rates or demethylation rates, respectively (Fig-

ure 4C). We found that both the 129SE-RGM-tdTomato and the CASTSE-RGM-eGFP allele exhibited

a faster de novo methylation rate after deletion of its TF enrichment sites as compared to the

intact wild-type allele (Figure 4D, top), indicating higher susceptibility to de novo methyla-

tion upon loss of TF binding. Similarly, the allele that had its TF enrichment site deleted

showed a slower demethylation rate than the wild-type allele, indicating less resistance to

maintenance methylation upon loss of TF binding (Figure 4D, bottom). To confirm that the

observed RGM activity changes correspond to changes in DNA methylation, we performed

Figure 3 (following page). The Dynamics of SE DNA Methylation Is Driven by De Novo
Methylation and Passive Demethylation during Cell Proliferation. (A) Elimination of the
population with methylated SEs in Dnmt3a and Dnmt3b DKO v6.5-Nanog-eGFP ESCs with
the RGM-tdTomato reporter targeted mono-allelically at either the Sox2 or the Mir290 SE.
(B and C) Demethylation of sorted T+G-, T-G+, and T-G- cells from (B) SOX2-SE-TG and (C)
MIR290-SE-TG cells with and without thymidine block. (D) Expected changes in the T+G+
cell percentage for each demethylation mechanism upon CRISPR/Cas9-mediated gene dis-
ruptions. Changes in the percentage of T+G+ cells indicate the rate of demethylation on the
129SE-RGM-tdTomato allele. (E) Relative changes in the T+G+percentage upon transfecting
sgRNAs against enzymes involved in DNA demethylation, as compared to cells transfected
with the same vector without sgRNA (sgControl). (F) A model for the origin of locus-specific
DNA methylation heterogeneity. See also Song et al. [1] Figure S3.
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BS-PCR followed by Sanger sequencing on sorted cells fromΔPeak 1-CAST andΔPeak 2-129

clones. This analysis confirmed that the methylation status of the endogenous SE region was

consistent with that of the Snrpn promoter as well as RGM activities at allelic resolution af-

ter genetic manipulation (Song et al. [1] Figure S4B). The TF binding effect on methylation

dynamics was seen not only in cloned cells but also in sorted T+G+ cell population trans-

fected with allele-specific sgRNAs against TF enrichment sites (Figure 4E). Consistent with

the single-cell clone analyses, the allele with TF enrichment site deletion showed a faster de

novo methylation rates than the wild-type allele that was not targeted by the sgRNAs (Fig-

ure 4F).

1.2.4 DNA Methylation Decreases MED1 Association with SE, Enhancer-

Promoter H3K27ac, and in cis Transcription of the Target Genes

We investigated whether the rapid changes in SE DNA methylation would dynamically affect

target gene transcription. Promoter DNA methylation has long been associated with stable

silencing of gene expression [45, 46, 47, 48]; in comparison, enhancer methylation’s role in

transcription is less well characterized. The Mediator complex has been shown to be dynam-

ically involved in phase-separated condensates concentrating at SEs for transcription of key

cell-identity genes [49]. Since SE DNA methylation is dynamically changing, we investigated

whether different allelic methylation states affect association of MED1 condensates with the

Mir290 SE. We performed DNA FISH at the Mir290 SE locus and MED1 immunostaining on

sorted cell populations. Figure 5A and Song et al. [1] Figure S5A show that MED1 was not en-

riched at the methylated Mir290 SE as T–G– cell populations did not have DNA FISH foci that

overlapped with MED1 enrichment as compared to cells in which at least one Mir290 SE was

Figure 4 (following page). TF Binding at SEs Promotes Demethylation and Inhibits De
Novo Methylation. (A) Top, schematic representation of TF enrichment sites (based on the
ChIP-seq data of NANOG [pink track, peak 1 and 2] and OCT4 [blue track, peak 2]. EN-
CODE: ENCSR779CZG and ENCSR392DGA) relative to the RGM targeted site (orange). Bot-
tom, allele-specific deletions of individual peaks after overlapping NANOG (N) and OCT4 (O)
ChIP tracks. Red: 129SE-RGM-tdTomato allele, green: CASTSE-RGM-eGFP allele. Scissors illustrate
sgRNA targeting sites. ChIP-seq value is presented as fold-change-over-control. (B) Experi-
mental setup using cells with different allelic TF enrichment site deletions in assessing the
impacts of TF binding on SE methylation dynamics. (C) Top, T+G+ cells were sorted from
the genotyped single-cell clones with allelic TF enrichment site deletions. Bottom, T-G0 cells
were sorted from the same clones. (D) Quantification of allele-specific de novo methylation
rates (top panels, T+G- or T-G+ cells derived from T+G+ cells) and demethylation rates (bot-
tom panels, T+G- or T-G+ cells derived from T-G- cells) of the respective ESC clones com-
pared to that of an unmodified parental wild-type clone (dotted line level). (E) Bulk T+G+
cells were sorted from the SOX2-SE-TG cell line and transfected with allele-specific sgRNA
pairs to delete TF enrichment sites or with empty vectors. (F) Quantification of allele-specific
de novo methylation rates of the bulk cells transfected with different sgRNAs. See also Song
et al. [1] Figure S4.
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unmethylated. Since the Mediator complex interacts with both the SE and the promoter [50],
a loss of MED1 enrichment upon SE DNA methylation may affect promoter activity as well.

We therefore performed H3K27ac chromatin immunoprecipitation sequencing (ChIP-seq)

as a proxy epigenetic mark defining active enhancers and promoters on four sorted popula-

tions from both reporter cell lines. H3K27ac was significantly reduced at both methylated SE

regions, as measured by total (Figure 5B and 5C, Sox2 SE and Mir290 SE boxes; Song et al. [1]
Figure S5B, enhancer panels) as well as allele-specific H3K27ac enrichment (Song et al. [1]
Figure S5C, enhancer panels). As expected, a decrease in H3K27ac was also observed at pro-

moters residing on the same chromosome with the methylated SE (Figure 5B and 5C, Sox2

and Mir290 boxes, and Song et al. [1] Figures S5B and S5C, promoter panels) but not at adja-

cent regions (Song et al. [1] Figure S5B, adjacent regions panels). This demonstrates that SE

methylation affects the promoter H3K27ac level, likely through a loss of enhancer-promoter

communication.

To test whether synchronized H3K27ac changes upon transient DNA methylation at en-

hancers and promoters affects in cis target gene expression, we performed allele-specific

qRT-PCR on the four sorted cell populations from both reporter cell lines. As shown in Fig-

ure 5D, methylation of either allele of the SEs resulted in decreased target gene expression on

the same chromosome. However, the Sox2 SE and the Mir290 SE have different effects on the

total expression level of their respective target genes. The suppressive effect of transient DNA

methylation was independent and additive when either Mir290 SE allele was methylated

(Figure 5E, left). In contrast, total Sox2 expression only significantly decreased when both

Sox2 SE alleles were methylated (Figure 5E, right), and in single-positive cells only single-

Figure 5 (following page). DNA Methylation Decreases MED1 Association at SE, Enhancer-
Promoter H3K27ac and in cis Transcription of the Target Genes. (A) Averaged DNA FISH
(Magenta, Mir290 SE) and co-immunofluorescence staining (Green, MED1) signal in the nu-
clei of MIR290-SE-TG cells sorted based on allelic methylation states. Random spots were
selected in the same image away from the DNA FISH spots. (B) Peak calling from H3K27ac
ChIP-seq of 4 sorted populations from MIR290-SE-TG. Mir290 SE and Mir290-295 cluster
are boxed in blue. Peak values are normalized using RPKM (reads per million) with a 10-bp
bin size. (C) Peak calling from H3K27ac ChIP-seq of 4 sorted populations from SOX2-SE-TG.
Sox2 SE and Sox2 gene are boxed in blue. Peak values are normalized using RPKM (reads
per million) with a 10-bp bin size. (D) Allele-specific expression of Mir290-295 pri-miRNA
(top) and Sox2 mRNA (bottom) in 3 sorted populations, with VIC-TaqMan probe detecting
the 129SE-RGM-tdTomato allele, and FAM-TaqMan probe detecting the CASTSE-RGM-eGFP

allele in both SE cases. Independently targeted clones for each SE were used as biological
replica. Data are represented as mean ± SD. (E) Fold change of total Mir290-295 pri-miRNA
(left) and total Sox2 mRNA (right) from the 4 sorted populations normalized to that of the
T+G- population. Independently targeted clones for each SE were used as biological replica.
Data are represented as mean ± SD. (F) Quantification of Mir290-295 expression on sorted
SOX2-SE-TG cells compare to Sox2 expression (left) and quantification of Sox2 expression on
sorted MIR290-SE-TG cells compare to Mir290-295 expression (right). Data are represented
as mean ± SD. See also Song et al. [1] Figure S5.
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molecule RNA FISH (smFISH) could detect a slight decrease of Sox2 transcripts (Song et al. [1]
Figures S5D and S5E), indicating a compensating mechanism on total Sox2 transcripts when

one SE allele is methylated. Notably, DNA methylation at two SEs exclusively anti-correlated

with their respective in cis target genes, and little difference is seen in Mir290-295 expression

if cells were sorted based on the methylation state at the Sox2 SE locus and vice versa (Fig-

ure 5F). This indicates that the DNA methylation state of the two SEs switches independently

of each other.

To determine whether SE methylation has a causal role in suppressing enhancer-

promoter H3K27ac and transcription, we transfected Cas9-sgRNAs targeting Dnmt1 and

Uhrf1 and removed DNA methylation in sorted T–G– MIR290-SE-TG cells to induce rapid

passive demethylation (Figure 6A). Figure 6B shows that cells deficient for Dnmt1 or Uhrf1

displayed significantly faster demethylation resulting in a higher proportion of T+G+ cells

as compared to the control. Both acetylation of H3K27 at the SE (Figure 6C) and Mir290-295

expression (Figure 6D) were significantly increased upon Dnmt1/Uhrf1 disruptions, as

measured by ChIP-qPCR and qRT-PCR from the same cultures, respectively. This suggests

that change in DNA methylation directly regulates SE function and transcription in cis.

Since correlating abundance in RNA allele-specific SNPs with allele-specific RGM activ-

ities allows distinguishing direct targets regulated in cis by the SE methylation status versus

expression changes caused by secondary effects, we searched additional genomic targets on

the same chromosomes that are directly regulated by SE methylation by allele-specific RNA

sequencing (RNA-seq) analysis on sorted populations. We quantified allele-specific express-

ion of genes on chromosome 3 (for MIR290-SE-TG) and chromosome 7 (for SOX2-SE-TG) in

single positive cells and calculated the ratio between expressions from the allele with an un-

methylated SE over that of the other allele with a methylated SE. We plotted this ratio of each

gene calculated in T–G+ cells as the x-axis value and the ratio calculated in T+G– cells as the y-

axis value (Song et al. [1] Figure S6A). As expected, Mir290-295 and Sox2 both appeared in the

Figure 6 (following page). DNA Methylation Directly Suppresses SE Activity and Affects
ESC State. (A) Experimental setup for assessing the causal role of SE DNA methylation
suppresses H3K27ac. FACS (DNA methylation), RT-qPCR (Mir290-295), and ChIP-qPCR
(H3K27ac) were co-assessed from the same pool of cells from each sample. (B) Loss of DNA
methylation in MIR290-SE-TG T-G- cells 8 days post-Dnmt1 and Uhrf1 sgRNA transfection
as compared to controls. (C) H3K27ac ChIP-qPCR at the Mir290 SE from the experimental
groups in (B), respectively. Data are represented as mean ± SD. (D) Mir290-295 pri-miRNA
level from the experimental groups in (B). Data are represented as mean ± SD. (E) Summary
of the dynamic regulation and functional impact of allelic SE methylation. (F) Colony for-
mation assays in "2i" starting from 100 sorted cells. Data are represented as mean ± SD.
(G) Growth curves measured by AlamarBlue Cell Viability Reagent. Data are represented as
mean ± SD. (H) Principal-component analysis of the top 5% highly variable genes from dif-
ferent populations of SOX2-SE-TG (Labeled as S. red: T+G-, green, T-G+, black: T-G-, yellow:
T+G+) and MIR290-SE-TG (labeled as M; color code same as S). See also Song et al. [1]Figures
S5-S7.
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upper right corner as they were in cis directly suppressed by allelic SE methylation. Surpris-

ingly, two antisense transcripts relative to Sox2 and Mir290-295, Ecm1 and AU018091, respec-

tively, were oppositely regulated by allele-specific Sox2 or Mir290 SE methylation: SE hyper-

methylation strongly correlated with upregulations of both anti-sense transcripts, whereas

SE hypo-methylation correlated with inhibition (Song et al. [1] Figures S6B and S6C). This

result shows that direct transcriptional targets of SE methylation are highly specific with pos-

sibly opposite effects on some cis-regulated genes. Though the detailed mechanism of such

regulation remains to be elucidated, Ecm1 was upregulated in Sox2 SE deletion cells [51].
Our results suggest that DNA methylation at both SEs fluctuates independently and

dynamically, altering Mediator complex condensates at the SE and allelic H3K27ac at en-

hancers and promoters in cis and ultimately leading to heterogeneous allelic transcription

of the target genes (Figure 6E).

1.2.5 Sox2 and Mir290 SE Methylation Heterogeneities Have Different Bi-

ological Impacts on ESC State

Culture in “2i” medium has been shown to only allow naïve pluripotent cells to proliferate

[52]. Long-term culture of MIR290-SE-TG and SOX2-SE-TG cells in “2i” after passaging from

serum+ LIF media, though favoring T+G+ population decreased but did not abolish hetero-

geneity completely (Song et al. [1]Figure S6D). The persistence of all four populations in both

reporter cell lines indicates that DNA methylation at both SEs have different degrees of het-

erogeneity in different culture conditions. Both Sox2 and Mir290-295 are highly expressed in

ESCs [53, 44, 54, 55], raising the possibility that allelic transcriptional heterogeneity caused by

SE methylation heterogeneity may lead to co-existing heterogeneous cellular states of ESCs.

In “2i” media, SOX2-SE-TG T–G– cells exhibited significantly impaired colony-forming ability

and proliferation (Figure 6F and 6G). However, under the same condition, the heterogeneous

DNA methylation at the Mir290 SE did not lead to any obvious changes of ESCs, despite the

slight colony formation disadvantage of MIR290-SE-TG T–G– cells (Figure 6F and 6G). We

further explored the functional differences among populations in vivo by injecting sorted

cells to form teratomas. Surprisingly, despite the significant growth disadvantage of SOX2-

SE-TG T–G– population, they were able to contribute to all three germ layers in teratoma

formation assays with no obvious contribution bias towards any germ layer compared to

SOX2-SE-TG T+G+, MIR290-SE-TG T+G+, and T–G– cells (Song et al. [1] Figure S6E). This

indicates that ESCs with biallelic methylation at the Sox2 SE are still pluripotent. However,

when examined at the molecular level, these cells were distinct from other populations in

principal-component analysis on difference in the 5% most highly variably expressed genes

(Figure 6H) and 17,000 uniquely distinct H3K27ac enrichment peaks in ChIP-seq (Song et al.

[1] Figure S6F). GO analysis on RNA-seq revealed that the SOX2-SE-TG T–G– population pref-

erentially expressed genes in differentiation-related pathways as compared to the MIR290-

SE-TG T–G– population (Song et al. [1] Figure S7A). The epigenetic and transcriptional differ-

ences of SOX2-SE-TG T–G– cells indicate that these cells downregulate Sox2 expression and
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are prone to differentiate but not as yet committed to a certain fate. Our results are consistent

with the notion that pluripotent ESC are heterogeneous as reflected by the dynamic allelic

DNA methylation of key pluripotency SE.

1.2.6 DNA Methylation Is Dynamic at Both SEs in Blastocysts while

Exhibiting Spatial-Temporal Differences in Pre-implantation

Embryos

In vivo, both Sox2 and Mir290-295 are expressed in preimplantation embryos. As reported

previously Sox2 expression increases between the morula and the blastocyst stage [56]
and Mir290-295 expression significantly upregulates at the 4-cell stage [57]. To investigate

changes in DNA methylation of the two SEs at single-cell and allelic resolution, we gener-

ated transgenic mice homozygous for the 129SE-RGM-tdTomato allele or the CASTSE-RGM-eGFP

allele and obtained 2–4 cell embryos carrying one 129SE-RGM-tdTomato allele and one

CASTSE-RGM-eGFP allele by mating animals homozygous for RGM-eGFP or RGM-tdTomato

(Figure 7A). The two SEs gained allelic DNA methylation heterogeneity at different times:

reporter activity became apparent as early as the 4-cell stage for the Mir290 SE but only at

the morula stage for the Sox2 SE (Figure 7B). At the blastocyst stage, Sox expression was

restricted to the inner cell mass (ICM), whereas the Mir290-295 displayed broad expression

in both ICM and trophectoderm (TE) [52, 58, 59]. Heterogeneous SE DNA methylation was

consistent with the established spatial expression pattern of the two genes in blastocysts

(Figure 7C). We further investigated whether the observed methylation heterogeneity was

due to dynamic allelic methylation state switching in vivo. We sorted the four populations

from SOX2-SE-TG and MIR290-SE-TG ESCs, injected each population into 8-cell stage

wild-type CD1-IGS host embryos, and cultured embryos for 2 days to monitor de novo

methylation or demethylation at single-cell resolution (Song et al. [1] Figure S7B). A long-

term membrane bound dye (Cy5) was used to track the injected cells (Figure 7D; Song et al.

[1] Figure S7C). Figure 7D (SOX2-SE-TG cells) and Song et al. [1] Figure S7C (MIR290-SE-TG

cells) show that, at the blastocyst stage, injected T–G– cells demethylated the SE as they

turned on the RGMs on either or both alleles and became single positive or T+G+ cells

(T–G– columns, white arrows). Demethylation also was observed in injected single-positive

cells as the originally methylated allele at injection became unmethylated and cells became

T+G+ (T+G– and T–G+ columns, white arrows). Similarly, dynamic de novo methylation was

observed in vivo, as injected T+G+ cells shut down RGM activities on either or both alleles

(T+G+ columns, yellow arrows) and single-positive cells became T–G– cells (T–G+ and T–G+

columns, yellow arrows).

In summary, our data indicate that dynamic DNA methylation exists at active SEs in early

preimplantation embryos creating locus-specific epigenetic heterogeneity, recapitulating

and extending our observations in ESCs in vitro.
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1.3 Discussion

The importance of DNA methylation regulation at cis-regulatory elements is increasingly rec-

ognized as many developmental- and disease-associated DMRs overlap with these regions

[60, 61, 62]. Locus-specific DNA methylation heterogeneity across cells has been shown

by recent scWGBS as a potential explanation for the variable low-to-intermediate levels of

methylation at active enhancers in bulk measurements. The present work was based on an

experimental paradigm that overcomes some of the limitations of single-cell sequencing ap-

proaches using an allele-specific reporter system. This allowed us to address questions that

were not resolved by previously used sequencing-based methods. (1) Our study shows that

in ESCs the methylation state of the two alleles of the Sox2 and Mir290 SEs change dynam-

ically and independently of each other. (2) We demonstrate that the dynamic change of SE

DNA methylation is driven by the balance between three DNMTs and cell proliferation, with

TF binding promoting the hypomethylated state. (3) We show that DNA methylation dy-

namically regulates target genes in cis and inhibits formation of Mediator complex conden-

sates at the SE as well as enhancer-promoter H3K27 acetylation. (4) Allelic variation of SE

DNA methylation, reflecting the epigenetic heterogeneity of ESCs, can originate from cells

of different transcriptional landscapes and proliferative potentials as for the Sox2 SE or of de-

velopmentally identical states as for the Mir290 SE. (5) Finally, we show that dynamic DNA

methylation is not only seen in cultured ESCs but also in preimplantation embryos.

Allele-specific RGM reporters targeted to the endogenous Sox2 and the Mir290 SEs al-

lowed us to trace DNA methylation both in vitro and in vivo. Detailed analyses showed that

the low levels of DNA methylation of the Sox2 and the Mir290 SE are due to the presence

of a small fraction of cells with hypermethylated SE alleles. The methylation heterogene-

ity in these cells results from highly dynamic and reversible switching between allelic DNA

methylation states. Because the RGM reporter allowed isolation of cells with defined allele-

specific SE DNA methylation states, we were able to demonstrate that dynamic changes in SE

Figure 7 (following page). DNA Methylation Is Dynamic at Both SEs in Blastocysts
while Exhibiting Spatial-Temporal Differences in Pre-implantation Embryos. (A) Mat-
ing scheme for generating SOX2-SE-TG and MIR290-SE-TG mice and heterozygous pre-
implantation embryos genetically carry 129SE-RGM-tdTomato and CASTSE-RGM-eGFP at
the Sox2 or the Mir290 SE for imaging analyses. (B) Live 4-8 cell (MIR290-SE-TG) and morula
stage (SOX2-SE-TG) embryos. (C) Live E3.5-E4.5 blastocysts of SOX2-SE-TG and MIR290-SE-
TG in 10X low magnification, 40X high magnification, and 3D projections (left to right in each
group). Red: tdTomato, green: eGFP, blue: Hoechst 33342. (D) Tracking Sox2 SE DNA methy-
lation dynamics in vivo. Columns are sorted and injected populations and rows are different
imaging channels. Red: RGM-tdTomato; Green: RGM-eGFP; Cy5: Qtracker 705 was used to
label and track injected cells. White arrows indicate demethylation, and yellow arrows indi-
cate de novo methylation, at 2 days post-injection compare to 5 h post-injection. Channels
were adjusted for brightness and contrast for optimal visibility. See also Song et al. [1] Figure
S7.
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DNA methylation are tightly anti-correlated in cis with enhancer-promoter H3K27ac levels.

This is likely due to disruption of enhancer-promoter interactions consistent with the Me-

diator complex condensates showing decreased association at the methylated Mir290 SE.

The Mediator complex and its unit MED1 have been shown previously to form condensates

with liquid-like properties, which allows dynamic interactions with TFs and the transcription

apparatus [63, 49]. Our study shows that DNA methylation can affect these transcriptional

condensates. Given the dynamic state switching of allelic SE DNA methylation as well as the

dynamic nature of MED1 condensate formation, it is highly likely that one process mediates

the other. We also show that SE DNA methylation can have opposing effects on transcrip-

tion of different genes located on the same chromosome: the direct target genes Sox2 and

Mir290-295 were repressed, while the antisense genes Ecm1 and AU018091 were activated

by SE methylation. By removing DNA methylation at the Mir290 SE through Dnmt1/Uhrf1

deletion, we showed that changes in SE DNA methylation is a dynamic process actively reg-

ulating its transcriptional activity. By enabling sorting for a particular epigenetic state and

combined with allelic expression analyses, we demonstrate that dynamic DNA methylation

serves as an epigenetic basis for allelic heterogeneity in gene expression and that dynamic

DNA methylation at SEs is a likely mechanism for dynamic random monoallelic transcrip-

tion seen in mammalian cells [64, 65]. However, it warrants further exploration to establish

the causal link between allelic epigenetic and transcriptional heterogeneity in vivo.

While Sox2 and Mir290 SE methylation affect target gene expression similarly, we de-

tected some differences on cellular growth and differentiation. Cells with biallelically methy-

lated Sox2 SE revealed impaired growth and upregulation of differentiation-related pathways

(Figure 6F and 6G; Song et al. [1] Figure S7A). In contrast, Mir290 SE methylation had little

effects on cell state. We identified additional differences of how DNA methylation suppresses

activity of the two SE. Mir290-295 expression was independently suppressed by methylation

at either Mir290 SE DMR allele consistent with the observation that individual DMR con-

stituents have independent activities [66]. In contrast, monoallelic Sox2 SE methylation did

not significantly affect the overall Sox2 expression, suggesting additional regulatory mecha-

nisms.

The experimental platform described here allows rapid tracing and isolating rare cell pop-

ulations based on their transient methylation signatures at specific loci and thus can pro-

vide mechanistic insights into the nature of enhancer DNA methylation in heterogeneous

cell populations both in vivo and in vitro in real time, which is difficult in sequencing-based

approaches. Furthermore, this system enables manipulation of different molecular compo-

nents to define interactions and hierarchies between layers of epigenetic regulation in dy-

namic systems with rapid changes. Our study provides a path towards the mechanistic un-

derstanding of dynamic T-DMR regulation in heterogeneous tissues and complex biological

processes, such as development and diseases [67, 68].
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1.4 STAR Methods

1.4.1 Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit poly-clonal anti-H3K27ac Abcam Cat#ab4729; RRID:http:

//antibodyregistry.org/AB_2118291

Rabbit poly-clonal anti-MED1 Abcam Cat#ab64965; RRID:http:

//antibodyregistry.org/AB_1142301

Chemicals, Peptides, and Recombinant Proteins

Puromycin Sigma Aldrich Cat#P7255

Thymidine Sigma Aldrich Cat#T1895

Retinoic acid Sigma Aldrich Cat#R2625

LIF recombinant protein House-made N/A

MAPK inhibitor PD0325901 Stemgent Cat#04-0006-10

GSK-3β inhibitor CHIR99021 Stemgent Cat#04-0004-10

Critical Commercial Assays

Zymoclean Gel DNA Recovery Kit Zymo Research Cat#D4002

X-tremeGENE 9 DNA Transfection

Reagent

Sigma Aldrich Cat#6365809001

Xfect ESC Transfection Reagent Clontech Cat#631320

AlamarBlue Cell Viability Reagent Bio-Rad BUF012A

NEBNext®Ultra™DNA Library Prep Kit

for Illumina

NEB Cat#E7370S

NEBNext®Multiplex Oligos for

Illumina®

NEB Cat#E7335S

KAPA mRNA HyperPrep Kit Roche Cat# 08098115702

TrueSeq Stranded PolyA prep Illumina Cat# 20020595

Accel-NGS 2S PCR-Free Library Kit (96

rxns)

Swift

Biosciences

Cat#20096

Qtracker™705 Cell Labeling Kit Thermo Fisher Cat# Q25061MP

TaqMan Assay, primer information see

table S3

Sigma N/A

Direct-zol RNA Miniprep Zymo Research Cat#R2050

SuperScript III First-Strand Synthesis

SuperMix

Life

Technologies

Cat#18080400

Fast SYBR Green Master Mix Life

Technologies

Cat#4385618

ProlongGold Life Technologie Cat#P36930

Prime-It II Random Primer Labeling Kit Agilent

Technologies

Cat#300385

Continued on next page

http://antibodyregistry.org/AB_2118291
http://antibodyregistry.org/AB_2118291
http://antibodyregistry.org/AB_1142301
http://antibodyregistry.org/AB_1142301
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Continued from previous page

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and processed data This paper GEO: GSE132416 (subseries: GEO:

GSE132376, geo: GSE132404, and geo:

GSE132414)

Flowcytometry data, Sanger sequencing

trace files, raw images, gels, algorithm

scripts

This paper https://doi.org/10.17632/6vbc6htfnf.1

Experimental Models: Cell Lines

Mouse: SOX2-SE-TG ESCs This paper N/A

Mouse: MIR290-SE-TG ESCs This paper N/A

Mouse: Sox2-SE-NanogRGM ESCs [25] N/A

Mouse: miR290-SE-NanogRGM ESCs [25] N/A

Mouse: SOX2-SE-TGΔpeak 1-CAST

ESCs

This paper N/A

Mouse: SOX2-SE-TGΔpeak 2-CAST

ESCs

This paper N/A

Mouse: SOX2-SE-TGΔpeak 2-129 ESCs This paper N/A

Tet1-/- #19 [38] N/A

Tet1-/- #34 [38] N/A

Tet2 -/- KO [39] N/A

Tet1-/- Tet2-/- #26 [39] N/A

Tet1-/- Tet2-/- #51 [39] N/A

Tet1-/- Tet2-/- Tet3 -/- #26 [40] N/A

Tet1-/- Tet2-/- Tet3 -/- #29 [40] N/A

Experimental Models: Organisms/Strains

Mouse: SOX2-SE-TT: This paper N/A

Mouse: SOX2-SE-GG This paper N/A

Mouse: MIR290-SE-TT: CAST/EiJ

/129/BDF1/C57BL/6
This paper N/A

Mouse: MIR290-SE-GG: CAST/EiJ

/129/BDF1/C57BL/6
This paper N/A

Mouse: NSG NOD.Cg-

PrkdcscidIl2rgtm1Wjl/SzJ

Jackson

Laboratory

005557

Mouse: CD1®IGS Charles River 022

Oligonucleotides

sgRNA for targeting and knockout, see

table S1

This paper N/A

Primers for bisulfite PCR and

pyro-sequencing, see Table S2

This paper N/A

Primers for TaqMan Assay and

qRT-PCR, see table S3

This paper N/A

Primers for ChIP-qPCR, see table S4 N/A

Continued on next page

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132416
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132376
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132404
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132414
https://doi.org/10.17632/6vbc6htfnf.1
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Continued from previous page

REAGENT or RESOURCE SOURCE IDENTIFIER

Primers for reporter ESC line, KO cell

line, and mouse genotyping, see table

S5

This paper N/A

Stellaris®DesignReady FISH Probes,

Sox2

LGC Biosearch

Technologies

Cat# VSMF-3075-5-BS

DNA FISH probe for miR290 SE [49] N/A

Recombinant DNA

miR290-SE-RGM-tdTomato targeting

vector

[25] N/A

miR290-SE-RGM-eGFP targeting vector This paper N/A

Sox2-SE-RGM-tdTomato targeting

vector

[25] N/A

Sox2-SE-RGM-eGFP targeting vector This paper N/A

pTurbo-Cre GenBank AF334827

px330-BFP-sgRNA [25] N/A

Software and Algorithms

MACS2 (ChIP-seq algorithms) [69] https://github.com/taoliu/MACS/wiki

Samtools [70] http://samtools.sourceforge.net/

BWA [71] http://bio-bwa.sourceforge.net/

deepTools 3.0.2 [72] http://deeptools.readthedocs.io/en/

STAR (v.2.5.3.a) [73] https://github.com/alexdobin/STAR

DESeq2 (v1.18.1) [74] https://bioconductor.org/packages/release/
bioc/html/DESeq2.html

SNPsplit (v0.3.2) Babraham

Bioinformatics

https://www.bioinformatics.babraham.ac.u

k/projects/SNPsplit/

RSEM (v1.2.31) N/A https://deweylab.github.io/RSEM/

PANTHER [75, 76] http://pantherdb.org/

Image J [77]) https://imagej.net/

FlowJo N/A https://www.flowjo.com/

PyroMark Q48 Autoprep QIAGEN http://www.qiagen.com/us/

Python scripts This paper;

Mendeley Data

https://doi.org/10.17632/6vbc6htfnf.1

MATLAB scripts [78] N/A

IGV Broad Institute https:

//software.broadinstitute.org/software/igv

Bismark v0.21.0 Babraham

Bioinformatics

https://www.bioinformatics.babraham.ac.u

k/projects/bismark

1.4.2 Lead Contact and Materials Availability

Further information and requests for resources and reagents should be directed to and will

be fulfilled by the Lead Contact, Rudolf Jaenisch (jaenisch@wi.mit.edu).

https://github.com/taoliu/MACS/wiki
http://samtools.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://deeptools.readthedocs.io/en/
https://github.com/alexdobin/STAR
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.bioinformatics.babraham.ac.uk/projects/SNPsplit/
https://www.bioinformatics.babraham.ac.uk/projects/SNPsplit/
https://deweylab.github.io/RSEM/
http://pantherdb.org/
https://imagej.net/
https://www.flowjo.com/
http://www.qiagen.com/us/
https://doi.org/10.17632/6vbc6htfnf.1
https://software.broadinstitute.org/software/igv
https://software.broadinstitute.org/software/igv
https://www.bioinformatics.babraham.ac.uk/projects/bismark
https://www.bioinformatics.babraham.ac.uk/projects/bismark
mailto:jaenisch@wi.mit.edu
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1.4.3 Experimental Model and Subject Details

ESC cell lines

ESC cell culture and proliferation assays All cells were cultured at 37°C with 5% CO2.

129xCAST or v6.5 mouse male ESCs were cultured on irradiated mouse embryonic fibroblasts

(MEFs) with standard ESCs medium: (500 ml) DMEM supplemented with 10% FBS (Hy-

clone), 10 mg recombinant leukemia inhibitory factor (LIF), 0.1 mM beta-mercaptoethanol

(Sigma-Aldrich), penicillin/streptomycin, 1 mM L-glutamine, and 1% nonessential amino

acids (all from Invitrogen). For experiments in 2i culture conditions, ESCs were cultured

on gelatin-coated plates with N2B27 + 2i + LIF medium containing: (500 ml), 240 ml

DMEM/F12 (Invitrogen; 11320), 240 ml Neurobasal media (Invitrogen; 21103), 5 ml N2

supplement (Invitrogen; 17502048), 10 ml B27 supplement (Invitrogen; 17504044), 10 mg

recombinant LIF, 0.1 mM beta-mercaptoethanol (Sigma-Aldrich), penicillin/streptomycin,

1 mM L-glutamine, and 1% nonessential amino acids (all from Invitrogen), 50 mg/ml BSA

(Sigma), PD0325901 (Stemgent, 1 mM), and CHIR99021 (Stemgent, 3 mM). For measuring

cell proliferation, AlamarBlue Cell Viability Reagent (Bio-Rad, BUF012A) was added to cell

culture and incubated at 37°C with 5% CO2 and emission at 590nm was monitored every

50hrs. At each sampling time point, relative changes in cell numbers were compared to 0hr

after sorting.

Generating biallelically targeted reporter cell lines To generate SOX2-SE-TG and

MIR290-SE-TG reporter cell lines, targeting vectors (Mir290-SE-RGM-tdTomato, Mir290-

SE-RGM-eGFP, Sox2-SE-RGM-tdTomato, Sox2-SE-RGM-eGFP), and CRISPR/Cas9 were

transfected into ESCs using Xfect ESC Transfection Reagent (Clontech, Cat#631320), ac-

cording to the provider’s protocol. Forty-eight hours following transfection, cells were

selected for puromycin resistance (Sigma Aldrich, Cat#P7255) and plated on MEF feeder

plates. Single colonies were further analyzed for proper and single integration by Southern

blot and Junction PCR analysis. PGK-Puromycin resistance cassette were looped out by

overexpression of Cre recombinase (pTurbo-Cre, GenBank accession number AF334827)

and followed by Southern blot validation.

ESCs with CRISPR-Cas9-mediated deletions Tet-enzyme single-, double- and triple

knockouts were generated and described previously [38, 39, 40]. sgRNA sequences are

cloned into px330-BFP vector under U6 promoter. px330-BFP-sgRNA vectors were trans-

fected into pre-plated ESC cells using Xfect ESC Transfection Reagent, according to the

provider’s protocol. For analysis in populations, cells were sorted for BFP 48 hours post-

transfection and cultured on MEF feeder plates. For single clone analysis, cells were

genotyped using Southern blot or TA cloning of PCR products of CRISPR targeting site from

each allele followed by sequencing. For Dnmt3a and Dnmt3b, Aid and Tdg single knockouts,

single clones with frame-shifting indels were selected for further analysis; for TF binding

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&doptcmdl=genbank&term=AF334827
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site deletions, single clones have allele-specific entire peak site deletions were selected for

further analysis. For TF enrichment site deletion experiments, sgRNA pairs for generating

deletion are transfected as following: Δpeak 1-CAST: sgTFBS-Sox2-SE-1(CAST) and sgTFBS-

Sox2-SE-2(CAST); Δpeak 2-CAST: sgTFBS-Sox2-SE-2(CAST) and sgTFBS-Sox2-SE-3(CAST);

Δpeak 2-129: sgTFBS-Sox2-SE-2(129) and sgTFBS-Sox2-SE-3(Both); Δ Peak 1+2-CAST:

sgTFBS-Sox2-SE-1(CAST) and sgTFBS-Sox2-SE-3(CAST). All sgRNA sequences are listed in

Song et al. [1] Table S1.

Animals

Blastocyst injections and generation of reporter mice Blastocyst injections were per-

formed using (C57BL/6xDBA) B6D2F1 (Charles River) or CD1 (Charles River) host embryos.

In brief, 6-7-week old B6D2F1 females were hormone primed by an intraperitoneal (i.p.)

injection of pregnant mare serum gonadotropin (PMS, EMD Millipore) followed 46 hr later

by an injection of human chorionic gonadotropin (hCG, VWR). Embryos were harvested

at the morula stage and cultured in a CO2 incubator overnight. To obtain tetraploid (4n)

blastocysts, electrofusion was performed at approximately 44–47 h post hCG using a

BEX LF-301 cell fusion device (Protech International Inc., Boerne, TX). On the day of the

injection, groups of embryos were placed in drops of M2 medium using a 16-um diameter

injection pipet (CytoSpring). Approximately ten cells were injected into the blastocoel cavity

of each embryo using a Piezo micromanipulator (Prime Tech). Approximately 20 blastocysts

were subsequently transferred to each recipient female; the day of injection was considered

as 2.5 days postcoitum (DPC). Male chimera mice were mated to C57BL/6 females and the

ones that gave birth to agouti pups (F1) have germ-line transmitted CASTX129 ESC. Mice

were handled in accordance with institutional guidelines and approved by the Committee

on Animal Care (CAC) and Department of Comparative Medicine (DCM) of Massachusetts

Institute of Technology.

Mouse mating scheme and genotyping All mouse F1 mice heterozygous for either the SE-

RGM-tdTomato (abbreviated as SOX2-SE-T0 or MIR290-SE-T0) or the SE-RGM-eGFP allele

(abbreviated as SOX2-SE-G0 or MIR290-SE-G0) were obtained by mating germ-line trans-

mitted chimeras to C57BL/6 females. F2 mice homozygous for either SE-RGM-tdTomato

(abbreviated as SOX2-SE-TT or MIR290-SE-TT) or the SE-RGM-eGFP allele (abbreviated as

SOX2-SE-GG or MIR290-SE-GG) were generated by inbreeding (SOX2-SE-T0 x SOX2-SE-T0,

SOX2-SE-G0 x SOX2-SE-G0, MIR290-SE-T0 x MIR290-SE-T0, MIR290-SE-G0 x MIR290-SE-

G0). Mice are genotyped by PCR the 5’junction of the SE RGM: SOX2-SE-F (or MIR290-SE-F)

with tdTomato-R for the RGM-tdTomato allele, SOX2-SE-F(or SOX2-SE-F) with eGFP-R for

the RGM-eGFP allele, and SOX2-SE-F (or MIR290-SE-F) with SOX2-SE-R (or MIR290-SE-R)

for the wild-type allele (Song et al. [1] Table S5).
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Confocal imaging of live pre-implantation embryos 2-cell embryos were obtained from

mating SOX2-SE-TT or MIR290-SE-TT females hormone primed step-wise with PMS and

hCG to SOX2-SE-GG or MIR290-SE-GG males, respectively, or the opposite mating strat-

egy (SOX2-SE-GG or MIR290-SE-GG females to SOX2-SE-TT or MIR290-SE-TT males, re-

spectively). 2-cell embryos were flushed out from the oval-duct by M2 media with BSA (Cy-

toSpring # m2113) 48hrs post mating. The embryos were then cultured in 25-50μl KSOM

media droplets (CytoSpring # KO102) covered by mineral oil in a 37°C 5% CO2 incubator.

Embryos will become blastocysts at E3.5. For monitoring methylation dynamics in vivo ,

ESCs were cultured in serum + LIF, pre-plated and sorted based on RGM activity before in-

jection. 2-3 cells were injected into 8-cell stage CD1 host embryos and cultured in M2 media

with BSA at 37°C in 5% CO2. Images were taken by a Zeiss LSM 710

Laser Scanning Confocal microscope. Images were taken using either 10x or 40x water

lenses and saved in LSM format. Channels for eGFP (excitation 488nm), tdTomato (excitation

594nm), Cy5 (excitation 633nm), and Hoechst 33342 (excitation 405nm) were merged into

image composites.

Teratoma formation assays and H&E staining 0.5-1 million sorted ESCs in serum + LIF

media were 1:1 mixed with Matrigel and injected subcutaneously into the femur on both

sides of the NSG mice. Tumors were taken when reaching 1cm in diameter and mice eu-

thanized. Mice were handled in accordance with institutional guidelines and approved by

the Committee on Animal Care (CAC) and Department of Comparative Medicine (DCM) of

Massachusetts Institute of Technology. Tissues were dissected and fixed in 10% formalin

overnight. Tissues were embedded in paraffin, sectioned, and stained for H&E.

1.4.4 Method Details

Southern blots

Genomic DNA (10–15 mg) was digested with appropriate restriction enzymes overnight.

Subsequently, genomic DNA was separated on a 0.8% agarose gel, transferred to a nylon

membrane (Amersham) and hybridized with 32P probe labeled by Prime-It II Random

Primer Labeling Kit (Agilent Technologies, Cat#300385).

Flow cytometry

To assess the proportion of eGFP and tdTomato in the established reporter cell lines, a single-

cell suspension was filtered and assessed on the BD Aria or FACSCanto II. Compensation was

achieved by using cells with either tdTomato or eGFP fluorescence. Fsc files were analyzed

by FlowJo.
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Bisulfite conversion-PCR (BS-PCR) and pyro-sequencing

Bisulfite conversion of genomic DNA, nested PCR, and sequencing was established as de-

scribed previously [25]. Pyro-seq of all bisulfite converted genomic DNA samples were per-

formed with PyroMark Q48 Autoprep (QIAGEN) according to the manufacturer’s instruc-

tions. Primers used for BS-PCR and pyro-sequencing are listed in Song et al. [1] Table S2.

Retinoic acid differentiation

ESCs carrying the reporter for both Mir290 and Sox2 SE regions were sorted for Nanog-eGFP

positive and RGM-tdTomato positive and plated on gelatin-coated plates in ESC medium

(+LIF). The next day, cells were washed with PBS, re-suspended in basal N2B27 medium

(2i medium without LIF, insulin, and the two inhibitors), and supplemented with 0.25μM

retinoic acid (RA, Sigma Aldrich, Cat#R2625-50MG). Medium was replaced every other day.

Double thymidine block

10-20k cells/per well were plated onto 12-well plates after sorting with media containing

2.5mM thymidine for 12hrs. Blocking was released by washing twice with PBS and cultur-

ing in serum + LIF mouse ES media for 9hrs. Cells were then again blocked with 2.5mM

thymidine for 14hrs and FACS analyses were done 6hrs post release.

1.4.5 Quantification and Statistical Analysis

qRT-PCR and TaqMan assays

Total mRNA was extracted from ESCs using Direct-zol RNA Miniprep (Zymo Research,

Cat#R2050) after pre-plating for elimination of MEF feeders, treated with DNase A defined

amount of mRNA reverse-transcribed into cDNA using SuperScript III First-Strand Synthesis

SuperMix (Life Technologies, Cat#18080400) using random hexamers. Total expression of

transcripts were quantified by qRT-PCR using Fast SYBR Green Master Mix (Life Technolo-

gies), and allele-specific transcripts are quantified by TaqMan Assay customized probes

(Sigma, Song et al. [1] Table S3) targeting Sox2 and Mir290-295 pri-mRNA SNPs. Tukey’s

multiple comparison (****P<0.0001, **P<0.01, *P<0.05). Both qRT-PCR and TaqMan assays

used at least 2 independently targeted clones as biological replica. The probes and context

sequences are listed in Song et al. [1] Table S3.

ChIP-qPCR

ChIP was done on 2-5 million cells of each same-culture-sorted population from both re-

porter cell lines as described previously [79], 2μg of anti-H3K27ac antibody (abcam ab4729)

was used for precipitation. Eluted DNA was quantified using real-time qPCR with Fast SYBR
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Green Master Mix. Each ChIP-qPCR was repeated 3 times. Enrichment was calculated us-

ing as percentage of input. Statistical differences between samples are calculated with two-

way ANOVA (alpha=0.05), followed by Tukey’s multiple comparison (****P<0.0001, **P<0.01).

Primers used for detecting positive and negative control sequences, and SE targets are listed

in Song et al. [1] Table S4.

H3K27ac ChIP-Seq and analysis

ChIP samples of 4 same-culture-sorted populations from SOX2-SE-TG and MIR290-SE-TG,

respectively, were validated for positive and negative targets using qPCR. Libraries of

Input-ChIP pairs were prepared with Accel-NGS 2S PCR-Free Library Kit (Cat#20096) and se-

quenced using Illumina HiSeq 2500. Raw reads were aligned to the reference genome mm10

using BWA using default parameters. Peak calling was done using MACS2. Peak intensities

at SE, promoter and in-between regions are quantified and compared using bamCompare

– deepTools 3.0.2 with FPKM from 10bp genomic bins of each sample. SNPs specific to 129

or CAST genomes at SE and promoters were counted from mapped raw reads and SNPs

covered by more than 3 reads are accepted for quantification. Coordinates for analysis

(mm10): Mir290-SE: chr7:3198900-3202780, Mir290-promoter: chr7:3215340-3221110;

Sox2-SE: chr3:34752523-34766449, Sox2-promoter chr3:34649995-34652460.

RNA-Seq and analysis

For each reporter cell line, 2 independently targeted clones are independently sorted

twice, generating 2 biological replica x 2 experimental replica = 4 replica in total. Stranded

mRNA libraries were prepared using KAPA HyperPrep (SOX2-SE-TG) and TrueSeq Stranded

PolyA prep (MIR290-SE-TG). mRNA libraries were sequenced on Illumina HiSeq 2500.

Allele-specific RNA expression was quantified with a custom pipeline. In short, raw fastq

files are aligned to a consensus genome using STAR (v.2.5.3.a). The reference transcriptome

includes the Mir290-295 pri-miRNA or Sox2 and the RGMs on pseudo-chromosomes.

After alignment SNPsplit (v0.3.2) splits the reads into four files based on single nucleotide

variations (SNV). The reads were either allele specific (for CAST or S129), unassigned (if

there are no SNVs present) or conflicting (if the SNVs in the read are from both alleles). The

split read files were quantified using RSEM (v1.2.31) separately for each sample. Raw counts

were then normalized to library using DESeq2 (v1.18.1) for each split. To obtain sample-level

quantifications raw counts were summed over the splits before normalization. Differential

expression analysis (DEA) was performed using DESeq2 (v1.18.1) at the level of samples.

Samples were corrected for genetic clone and batch effect. GO analyses were performed

using PANTHER. All expressed genes in the respective cell lines were used as the reference

backgrounds. All P-values were controlled for false discovery rate (Benjamin-Hochberg

procedure).
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RNA smFISH and image analyses

Cells were fixed for 15 min with 4% PFA at room temperature and subsequently permeabi-

lized in 70% EtOH overnight. Custom designed smFISH probes for Sox2 labeled with Quasar

670 ( Stellaris®DesignReady FISH Probes, Cat# VSMF-3075-5-BS) were incubated with the

samples for 16 hours at 30°C in hybridization buffer (100 mg/mL dextran sulfate, 25% for-

mamide, 2X SSC, 1 mg/mL E.coli tRNA, 1 mM vanadyl ribonucleoside complex, 0.25 mg/mL

BSA). Samples were washed twice for 30 min at 30°C with wash buffer (25% formamide, 2X

SSC) containing DAPI (1 μg/mL, Sigma D9542). All solutions were prepared with RNAse-free

water. Finally, the sections were mounted using ProlongGold (Life Technologies, P36930)

and imaged two days later. Mounted samples were imaged on a Nikon Ti-Eclipse epifluo-

rescence microscope equipped with an Andor iXON Ultra 888 EMCCD camera, using a 100X

/1.45 Plan Apo Lambda oil objective (Nikon) and dedicated, custom-made fluorescence filter

sets (Nikon). z-stacks with a distance of 0.3 μm between planes were collected. The number

of Sox2 (mRNA) signals per cell was quantified using home-made MATLAB scripts.

DNA FISH, Med1 IF and average image analyses

DNA FISH of the Mir290 SE and IF of MED1 were done as previously described [49]. For

analysis of RNA/DNA FISH with immunofluorescence, custom Python scripts were written

to process and analyze 3D image data gathered in FISH and IF channels. Nuclear stains were

blurred with a Gaussian filter (sigma= 2.0), maximally projected in the z plane, and clustered

into 2 clusters (nuclei and background) by K-means. FISH foci were either manually called

with ImageJ or automatically called using the scipy ndimage package. For automatic detec-

tion, an intensity threshold (mean + 3*standard deviation) was applied to the FISH channel.

The ndimage find_objects function was then used to call contiguous FISH foci in 3D. These

FISH foci were then filtered by various criteria, including size (minimum 100 voxels), circular-

ity of a max z-projection (circularity= 4*areaperimeter2 ; 0.7), and being present in a nucleus

(determined by nuclear mask described above). For manual calling, FISH foci were identi-

fied in maximum z-projections of the FISH channel, and the x and y coordinates were used

as reference points to guide the automatic detection described above. The FISH foci were

then centered in a 3D-box (length size i = 3.0 μm). The IF signal centered at FISH foci for

each FISH and IF pair are then combined and an average intensity projection is calculated,

providing averaged data for IF signal intensity within a i x i square centered at FISH foci.

As a control, this same process was carried out for IF signal centered at an equal number

of randomly selected nuclear positions. These average intensity projections were then used

to generate 2D contour maps of the signal intensity. Contour plots are generated using the

matplotlib python package. For the contour plots, the intensity-color ranges presented were

customized across a linear range of colors (n! = 15). For the FISH channel, black to magenta

was used. For the IF channel, we used chroma.js (an online color generator) to generate col-

ors across 15 bins, with the key transition colors chosen as black, blueviolet, medium-blue,
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lime. This was done to ensure that the reader’s eye could more readily detect the contrast in

signal. The generated colormap was employed to 15 evenly spaced intensity bins for all IF

plots. The averaged IF centered at FISH or at randomly selected nuclear locations are plotted

using the same color scale, set to include the minimum and maximum signal from each plot.

High-throughput sequencing of bisulfite PCR

PCR amplicons were sonicated using Covarius into 150-200bp range. NEBNext®Ultra™DNA

Library Prep Kit for Illumina and NEBNext®Multiplex Oligos for Illumina®were used to

construct libraries according to manufacturer’s protocol. Single barcoded library was

prepared from sonicated bisulfite PCR amplicon fragments of the Mir290 SE wildtype-allele

using NEBNext®Ultra™DNA Library Prep Kit for Illumina (NEB #E7370S) and NEB-

Next®Multiplex Oligos for Illumina®(Index Primers Set 1, NEB #E7335S). Libraries were

sequenced with 40bp single reads, adapter trimmed, aligned and analyzed with Bismark

v0.21.0 (bismark -nondirectional). CpGs with >1000 coverage were counted to generate

average percentage of methylation. Methylation percentage and its standard error were

estimated as described in [20], and number of methylated counts was assumed to be a

binomial random variable.

1.4.6 Data and Code Availability

Description: https://doi.org/10.17632/6vbc6htfnf.1

The raw confocal, gel and film images and original fsc files have been deposited at Mende-

ley Data

Description: Raw and processed high-throughput sequencing data have been deposited

at NCBI Gene Expression Omnibus under ID code GEO: GSE132416 (subseries: GEO:

GSE132376 for H3K27ac ChIP-seq, GEO: GSE132404 for BS-seq, and GEO: GSE132414 for

RNA-seq).
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Acronyms

129xCAST 129xCasteneous

DKO double-knockout

DMR differential methylation region

DNMT DNA methyltransferase

ESC emrbyonic stem cell

PCR polymerase chain reaction

RGM Reporter of Genome Methylation

RNA-seq RNA sequencing

scWGBS single cell WGBS

SE super-enhancer

smFISH single-molecule RNA FISH

SNP single nucleotide polymorphism

T-DMR tissue-specific differential methylation region

TF transcription factor

WGBS whole-genome bisulfite sequencing
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Abstract

Regenerative medicine offers an exciting avenue to potential cures of kidney disease. How-

ever, a detailed knowledge of the structure and embryonic development of the kidney is cru-

cial, both for stimulating regeneration in the body and for growing healthy kidney tissue in a

dish. Most of such knowledge has been obtained from mice, whose development differs in

crucial ways from that of humans. We therefore studied the composition of human fetal kid-

ney tissue from five developmental ages, using a technique that can measure gene expression

in individual cells. Our measurements revealed 22 distinguishable cell types, some of which

we localized in the tissue by fluorescence microscopy. We found several subpopulations of

nephron progenitor-cells that give rise to the nephron, the functional unit of the kidney. Our

study also focused on the development of podocytes, a cell type that is crucial for the filtra-

tion function of the kidney, and our results might inform attempts to recreate these cells in

a dish. We hope that our dataset, made conveniently accessible through a web application,

will help scientists develop new regenerative medicine approaches to kidney disease.

https://doi.org/10.1371/journal.pbio.3000152
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2.1 Introduction

Mammalian kidney development initiates in the intermediate mesoderm through crosstalk

between the metanephric mesenchyme (MM) and the ureteric bud (UB). The UB originates

from the nephric duct, invades the MM, and starts to subdivide progressively into multi-

ple ramifications. The UB tip cells, which make the first contact with the MM, become en-

veloped by an assembly of mesenchymal cells, the cap mesenchyme (CM) (Fig 1A-B). The CM

contains nephron progenitor cells (NPCs), which give rise to the whole nephron epithelium

through tightly regulated morphogenic transformations [2]. Self-renewal of (mouse) NPCs is

governed by key transcription factors, such as Six2 and Meox1, which mark the nephrogenic

zone of the kidney [3]. Signaling between UB tip cells and NPCs regulates the balance be-

tween self-renewal and differentiation of the NPCs [4]. In humans, about 1 million nephrons

are produced before the NPC population is irrevocably exhausted a few weeks before birth

[5]. During nephrogenesis, NPCs undergo mesenchymal-epithelial transition and differenti-

ate into a succession of intermediate structures: the pretubular aggregate (PTA), renal vesicle

(RV), comma-shaped body (CSB) and s-shaped body (SSB). Then, via the capillary loop stage,

mature and functional glomerular and tubular structures are eventually formed. In contrast

to the nephron epithelium, the collecting duct system originates from the UB. GDNF/RET

signaling between the UB and CM critically regulates proliferation of UB tip cells and branch-

ing morphogenesis of the UB [6]. Stromal cells-such as interstitial cells (ICs), mesangial cells,

juxtaglomerular cells, smooth muscle cells, fibroblasts, and pericytes-derive from a com-

mon interstitial progenitor [7, 8]. Finally, vascular endothelial cells and the highly specified

glomerular endothelium originate from the MM [9], and leukocytes and erythrocytes enter

with the blood stream. The current understanding of mammalian kidney development is

largely based on mouse studies, although it is clear that human and mouse kidneys are mor-

phologically different. Three recent landmark studies have revealed, in great detail, a signif-

icant divergence between mouse and human renal embryogenesis in terms of morphology

as well as gene expression [10, 11, 12]. These studies underline that the prevailing lack of

data on human kidney development severely hinders the detailed understanding of human

kidney development and possible developmental origins of kidney disease.

In the study described here, we used scRNA-seq to study gene expression dynamics in

human fetal kidney development. Analysis of a fetal kidney from week 16 (w16) of gestation

revealed 22 cell types, which we identified by known marker genes. Pseudotime analysis clar-

ified their temporal relationship. We further defined specifically expressed cell type marker

genes of which many have not been implied in kidney development. Comparison to four ad-

ditional samples (from w9, w11, w13, and w18) suggested that most cell types have a constant

expression pattern, with the notable exception of podocytes. To highlight two ways in which

our dataset can be interrogated, we then explored the nephrogenic niche and the develop-

ment of podocytes. Gene expression differences between four NPC clusters were related to

spatial heterogeneity by immunostaining and single-molecule FISH (smFISH). Expression

of the disease-associated gene UNCX was localized to NPCs and their early derivatives. Fi-
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Figure 1. Overview of kidney development and the experimental design. (A) Schematic of
kidney epithelium development. (B) Several morphologically distinct stages of nephrogen-
esis are highlighted by colored lines in images of human fetal kidney sections stained with
HE. (C) Overview of the scRNA-seq experiment. Ureteric bud (UB), cap mesenchyme (CM),
pretubular aggregate (PTA), renal vesicle (RV) (Stage I), comma-shaped body (CSB) (Stage II),
s-shaped body (SSB) (Stage II), capillary-loop stage (CLS) (Stage III), glomerulus (GLO) (Stage
IV)

nally, we focused on podocyte development, which proceeds via a distinct precursor state.

By immunostaining and smFISH, we localized these precursors in situ and confirmed the

disease-associated gene OLFM3 as a marker.

2.2 Results

2.2.1 Clustering and identification of cell types

We performed single-cell transcriptomics on a human fetal kidney from w16 of gestation,

equivalent to 14 weeks of development (Fig 1C). After data pruning and stringent removal of



48 Single-cell transcriptomics of fetal kidney

cells affected by stress (Fig 2, Materials and methods), 6,602 cells were retained for further

analysis. Clusters of cells were identified by hierarchical clustering after k-nearest neighbors

(knn) smoothing [13]. We assigned cell types (see Cell types) to these clusters by expression of

marker genes from the literature on mouse kidney development. The studies that linked the

genes of this literature set to particular cell types are referenced in Table 2.1. After merging

similar clusters (Fig 4, Fig 5, Materials and methods), we obtained 22 cell types (Hochane et

al. [1] S4 Fig) and visualized the single-cell transcriptomes in a two-dimensional t-distributed

stochastic neighbor embedding (tSNE) map [14] (Fig 3).

Figure 2 (following page). Removing stressed cells did not bias the scRNA-seq results in
the w16 sample. (A) Number of detected genes and total number of transcripts per cell. tx=
transcript (B) Relative expression of mitochondrial and stress marker genes per cell. Red line
indicates the threshold used to define stressed cells. See Materials and methods for the list
of mitochondrial genes and Hochane et al. [1] S2 Table for the list of stress markers. (C and
D) log2 fold change (L2FC) and scatter plot of the literature set genes (Table 2.1). Red dashed
lines indicate fold-change of 0.5 and 2. (E) PCs one to eight of the top 5% most HVGs for all
cells. Blue and red points indicate stressed cells and red blood cells, respectively. Expression
values in C-E are normalized to library size and log-transformed with a pseudocount of 1. (F)
Fraction of stress markers in the 6,602 remaining cells. tSNE map corresponds to Fig 3.
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Figure 3. Single-cell transcriptomics identified 22 unique cell types in the human fetal
kidney. Top left: 2D tSNE map of 6,602 human fetal kidney cells. Colors and labels indi-
cate the assigned cell type. (Other panels) tSNE maps indicating expression of SIX2, LHX1,
CLDN2, CLIC5, DCN, PDGFRB, and AQP2. Expression is indicated by color; expression values
of 1 are plotted in gray.

Figure 4 (following page). Adjacent clusters were merged based on similarity in literature
set gene expression. Heat map of literature set gene expression. Expression was Freeman-
Tukey (FT) transformed, averaged over all cells in the 29 clusters found by hierarchical clus-
tering (indicated by the dendrogram on top of the heat map) and standardized gene-wise.
Cluster average cell cycle scores, calculated by Cyclone [15] as well as average expression of
proliferation markers [16], are indicated by colored circles below each cluster (Z-score of the
mean score or mean expression).
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Figure 5. Merged hierarchical clusters were similar on the tSNE map. tSNE maps high-
lighting the clusters that were merged to give the cell types indicated in the titles of each
map. (Inset right) Table listing the numbers of cells in each of the 29 original clusters. tSNE
map corresponds to Fig 3.

Figure 6 (following page). HVGs adequately described all cell clusters. Heat map of 2,034
randomly chosen cells (maximum 100 per cluster) and the five most HVGs with a minimum
mean expression of 0.01 excluding stress markers (Hochane et al. [1] S2 Table) and ribosomal
genes. Genes were assigned to clusters based on highest mean expression within that cluster.
Values shown are the ranks of nonzero cells (cells with no expression receive rank 0) divided
by the highest rank per gene.
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The mean expression levels of the literature set genes showed clear differences between

cell types (Fig 7). NPCs, which were distributed over four distinct clusters (NPCa-d), were

marked by the established markers SIX2 (Fig 3), CITED1, MEOX1, and EYA1. Expression of

these progenitor markers was highest in NPCa, which we hence considered bona fide self-

renewing NPCs. NPCb showed lower levels of CITED1 and SALL1 and higher levels of GDNF

and HES1 compared to the other NPC clusters. HES1, a transcription factor downstream of

Notch signaling, is important for further renal cell differentiation. Compared to the other

NPC clusters, NPCc showed higher expression of CRABP2, which is related to retinoic acid

(RA) signaling [17]. NPCd exhibited low OSR1, CITED1, and MEOX1 expression and increased

levels of LEF1, a known indicator of NPC induction towards differentiation. Compared to

the other NPC subtypes, NPCd was also marked by a larger fraction of cells in G2/M-phase

(Fig 8A-B) and a higher expression of proliferation markers (Fig 8C), which indicated faster

proliferation. We will discuss the relationship between the various NPC clusters in more de-

tail below (see Heterogeneity in the nephrogenic niche).

Nephrogenesis continues with the creation of PTA cells, which in turn develop into the RV

and CSB cells. In our data, PTA cells were identified based on high expression of LHX1 (Fig 3),

JAG1, WNT4, and CCND1. Because RV and CSB are mainly distinguishable by morphology,

cells belonging to these two structures were grouped in our analysis (RVCSB). RVCSBs were

marked by the same genes as PTA cells but they appeared to proliferate less (Fig 8). Further-

more, they expressed markers reflecting more advanced regional patterning, which allowed

us to discriminate between two subtypes (a and b). RVCSBa had a higher expression of genes

that were recently associated with the distal RV (SFRP2, DLL1, LHX1), whereas RVCSBb ex-

pressed genes that indicate the proximal RV (CDH6, FOXC2, MAFB, CLDN1, WT1).

The next step in development is the formation of the SSB. In our dataset, this structure

was represented by three clusters, named according to the part of tubule and glomerular ep-

ithelium they are known to give rise to SSBpr, proximal tubule; SSB medial/distal (SSBm/d);

SSB podocyte precursor cell (SSBpod), podocytes. SSBpr were identified in our data by mark-

ers of the early proximal tubule (ErPrT) (such as NF1A, CDH6, AMN), as well as low expression

of SLC3A1, LRP2, and SLC13A1, which are known to be found in more mature proximal tubule

cells. Therefore, SSBpr were likely precursors of the ErPrT cells, which expressed higher levels

of early proximal markers together with CLDN2 (Fig 3), ANPEP, and SLC34A1. Another clus-

ter accounted for the precursor cells of the loop of Henle (LOH) and the distal tubule in the

SSB (SSBm/d). This cluster could be identified by the presence of IRX1, IRX2, SIM2, SOX9,

POU3F3, and HNF1B, together with low expression of PAPPA2 and MAL and the absence of

CDH6 and HNF1A. Cell types that are known to develop from the SSBm/d were found to-

gether in one cluster (DTLH). This cluster showed high expression of the distal markers MAL,

CLCN5, SLC12A3, and POU3F3, which are specific to the distal tubule, as well as SLC12A1,

PAPPA2, and UMOD, which are found in the LOH. Finally, cells that likely gave rise to podo-

cytes, SSBpod, clustered separately. These cells showed high expression of MAFB and FOXC2,

both transcription factors necessary for the development of podocyte identity, and low lev-
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Figure 7. Known markers elucidated the cell types corresponding to each cluster.
Heatmap of literature set gene expression in the 22 identified cell types. Expression was FT
transformed, averaged over all cells in a cluster and standardized gene-wise.
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Figure 8. Proliferation states varied per cell type. (A) tSNE map of all cells with color indi-
cating the G2/M score (calculated by the Cyclone tool [15]. This score reflects the likelihood
that a cell is in G2/M phase. (B) G2/M scores from panel A averaged over the cells in each
cell type. (C) Mean expression of proliferation markers [16] (Z-scores) per cell type.

els of the mature podocytes markers CLIC5 (Fig 3), PTPRO, NPHS1, and NPHS2. This cluster

also showed the highest expression of OLFM3, previously identified as a specific marker of

podocyte precursors residing in the visceral part of the proximal segment of the SSB. In con-

trast to SSBpod, podocytes showed higher expression of mature podocyte markers and lower

levels of MAFB. Differences between SSBpod and podocytes will be studied in more detail be-

low (see Podocyte development). Because of the high similarity in gene expression between

SSB and capillary loop stage, we could not exclude that the SSB clusters also contained cells

from the capillary loop stage.

Cells of the connecting tubule (CnT), which connects the distal tubule to the collect-

ing duct, could also be identified in the data. They shared markers with the collecting duct

(such as ALDH1A1, TACSTD2, and CDH1), distal tubule (SOX9, POU3F3), and UB (RET, KRT8,

KRT18, MMP7). Cells of the ureteric bud/collecting duct (UBCD) were strongly marked by

well-known genes like AQP2 (Fig 3), CALB1, KRT8, KRT18, RET, and GATA2, found in the col-

lecting duct as well as the stalk and tip of the UB.

The developing nephrons are surrounded by interstitial tissue, a separate lineage that

originates in interstitial progenitor cells (IPCs). We identified IPCs by coexpression of FOXD1
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and GDNF. These cells also expressed lower levels of markers known to be found in more ma-

ture cells like PDGFRA for ICs or PDGFRB (Fig 3) and ACTA2 for mesangial cells. We identified

two subtypes of IC (a and b), which were similar in their marker gene profile. Compared to

IPCs, they lacked FOXD1 and expressed less (ICa) or no (ICb) GDNF. ICa showed high levels of

FGF7, which has been localized to the renal fibroblasts or stroma surrounding the ureter and

the collecting system. ICa also showed high levels of TPM2 and ACTA2, markers of smooth

muscle-like cells. ICb, on the other hand, expressed genes like DCN (Fig 3), DES, SERPINE2,

and COL3A1, which are known to mark cortical stromal cells. Endothelial cells were iden-

tified by markers such as KDR and TEK, whereas leukocytes showed many specifically ex-

pressed genes, such as CD37 or CD48. Finally, one cluster of cells (proliferating cells) had

a higher expression of proliferation markers compared to most other cell types (Fig 8C) but

lacked discernible cell type markers.

2.2.2 Developmental flow

The literature-based analysis of the found clusters seemed to suggest that cells cluster by

developmental progression (e.g., NPCs versus PTA cells), as well as location (e.g., RVCSBa,

distal, versus RVCSBb, proximal) Because the interpretation of clusters is sometimes based

on genes that are expressed in multiple developmental stages, we wanted to retrieve the de-

velopmental flow with an independent method We used Monocle 2 [18] to learn a graph that

represents the developmental hierarchy of the cell types from the PTA on (Fig 9A) Subse-

quently, cells were placed on a pseudotime scale rooted in the PTA (Fig 9B-C) This analysis

showed that PTA cells were followed by RVCSBa and RVCSBb, the SSB clusters, and finally the

clusters identified as more mature types (DTLH, ErPrT, podocytes) Therefore, the clustering

was strongly driven by developmental progression RVCSBa cells were distributed over a fairly

broad period of pseudotime and already occurred before branch point 1, which separates

proximal from distal cell fates (Fig 9A) This might indicate that some of these cells preceded

the RVCSBb, whereas others were primed to develop into distal fates RVCSBb cells, how-

ever, only appeared after branch point 1, which confirmed that they were likely progenitors

of proximal cell fates On three separate branches, SSBm/d preceded DTLH, SSBpr preceded

ErPrT, and SSBpod preceded podocytes, which confirmed the identity of the SSB clusters The

temporal relationship of the NPC subtypes will be discussed in detail below (see Heterogene-

ity in the nephrogenic niche)

2.2.3 Comparison with existing single-cell transcriptomics data

To further confirm the interpretation of the cell clusters, we wanted to compare our data

with an existing single-cell transcriptomics study of a w17 fetal kidney by Lindström et al.

[20]. To that end, we first corrected for batch effects, using a method based on matching mu-

tual nearest neighbors in the two datasets [21]. After correction, the two datasets showed a

large degree of overlap (Fig 10, Fig 11). This allowed us to use the cell types found by Lind-
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Figure 9. Pseudotime analysis clarified the developmental relationship of the cell clusters.
(A) Two-dimensional embedding (with the DDRTree algorithm [19] of all w16 kidney cells,
calculated by Monocle 2 [18]. The graph learned by the algorithm is shown as a black line.
Colors and labels indicate cell types. (B) Same embedding as in panel A. Color indicates
pseudotime calculated by Monocle 2. (C) Box plots of cell type distribution over pseudotime.

ström et al. [20] to classify the cell clusters found here, using a knn approach (see Materials

and methods). NPCa-c were also classified as NPC by Lindström et al. [20], whereas NPCb

were considered primed NPC, which supports the notion that NPCb were primed to differen-

tiate. The NPCd cluster was classified as proliferating cells This classification is in agreement

with our observation that NPCd seemed to proliferate more than other NPC subtypes (Fig 8).

Because NPCd cells expressed low levels of NPC markers (such as SIX2 and CITED1), these

cells were likely in a transition state between NPCs and PTA cells. Although the majority of

PTA cells identified here were considered PTA/RV I by Lindström et al. [20], RVCSBa cells

were spread over multiple cell types. This spread was likely due to the fact that transitory cell

types are transcriptionally similar, and their clustering is therefore less robust. Nevertheless,

the PTA/RV II cluster received most of the RVCSBa cells. RVCSBb cells were called podocyte
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precursors in the Lindström et al. [20], whereas SSBpod as well as podocytes were classified

as podocytes. In our dataset, RVCSBb directly preceded SSBpod (Fig 9A), so they could in-

deed be considered podocyte progenitors. Below, we will show that SSBpod did form a cell

state separate from podocytes and should not be grouped with them (see Podocyte devel-

opment). In agreement with our analysis, the majority of SSBpr were classified as proximal

precursor or proximal tubule, and all ErPrT were considered proximal tubule by Lindström

et al. [20]. CnT and DTLH were both classified as distal/LOH precursor. The fact that two cell

types in the study by Lindström et al. [20] (podocytes and distal/LOH precursor) were split in

multiple subclusters in our study likely reflects differences in sample preparation. Whereas

Lindström et al. [20] preferentially released single cells from the nephrogenic niche, here, the

whole kidney was used. Consequently, the Lindström et al. [20] dataset has a finer resolution

of NPCs and early, proliferating cell types, whereas our dataset allowed us to resolve more

mature cell types. The two datasets therefore complement each other.

2.2.4 Marker identification

To confirm the inferred cell types and also identify novel markers, we pursued two comple-

mentary strategies. First, we determined a set of marker genes based on their usefulness

as classifiers for individual cell types: for each gene, the performance of a binary classifier

was evaluated by the area under the ROC (AUROC) and combined with expression level fil-

tering (see Materials and methods). This resulted in 88 marker genes (See Fig 12, marker

set, Hochane et al. [1] S3 Table). Only 11 of these markers overlapped with the 89 genes in

the literature set (See Fig 13C). To our knowledge, many of the remaining markers had not

been associated with kidney development in previous studies. As an independent approach,

we used the KeyGenes algorithm [22] to identify classifier genes among the 500 most HVGs,

using two-thirds of all cells as a training set. Based on the classifier genes determined by Key-

Genes, we next predicted the cell types of the remaining one-third of the cells (test set). Cell

types could be predicted with an average certainty (id score) of 0.59; 24% of the cells in the

test set obtained an id score higher than 0.8. Of the 95 classifier genes (See Fig 12A, KeyGenes

set, Hochane et al. [1] S3 Table), 24 were the same as in the marker set, and 14 were common

with the literature set (See Fig 13B).
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Figure 10. Comparison with an existing single-cell transcriptomics dataset showed con-
gruent expression profiles. Two-dimensional tSNE maps comparing the data presented
here with the data from Lindström et al. [20] both restricted to the nephrogenic niche by
their own classification. The map was calculated using both data sets after batch correction
[21]. (A) Only cells measured in this study are shown. Color and labels indicate the classifica-
tion developed in this study. (B) Same tSNE map as above. Color indicates the data set. (C)
Same tSNE map as (B). Only cells measured by Lindström et al. are shown. Color and labels
indicate the classification by Lindström et al. See Fig 11.
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Figure 11. Comparison with an existing single-cell transcriptomics dataset showed differ-
ences in cell type distribution. Confusion matrix relating the cells measured in this study to
the classification by Lindström et al. [20]. After batch correction, cells measured here were
mapped on the cells in the Lindström et al. data set using a nearest neighbors-based ap-
proach (see Materials and methods). See Fig 10.



62 Single-cell transcriptomics of fetal kidney

Figure 12. An ROC-based method identified novel marker genes. Expression heat map
of the 88 genes identified by a method that evaluates the ROC for each gene (marker set,
Hochane et al. [1] S3 Table). Expression was FT transformed, averaged over all cells in a clus-
ter, and standardized gene-wise. See Fig 13.
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Figure 13. The KeyGenes method identified novel marker genes. (A) Expression heat map
of the 95 genes identified by the KeyGenes algorithm (KeyGenes set, Hochane et al. [1] S3
Table). Expression was FT transformed, averaged over all cells in a cluster, and standardized
gene-wise. (B) Euler diagram of the literature set, marker set, and KeyGenes set (Hochane
et al. [1] S3 Table). See Fig 12.
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Because the interpretation of the found cell clusters was largely based on markers iden-

tified in mouse development, we were wondering whether the new markers identified here

were informative for the classification of cell types in the mouse kidney. Using a scRNA-

seq measurement of cells from a whole P1 mouse kidney [23], we plotted the expression of

the newly identified marker genes in single cells (Hochane et al. [1] S7 Fig). In many cases,

markers that were found to label a particular cell type in the human fetal kidney were coex-

pressed in the same subset of mouse cells. A few markers, however, were either ubiquitously

expressed or almost completely absent. This might be due to interspecies differences.

2.2.5 Comparison of different developmental ages

By establishing the identity of cell clusters at w16, we obtained a snapshot of cell type diver-

sity in the fetal kidney. To explore whether the identified expression patterns change dynam-

ically throughout development, we analyzed four additional samples from different develop-

mental ages (w9, w11, w13, and w18), which together contained 11,359 usable cells. Using,

again, batch correction based on mutual nearest neighbors [21], we visualized all samples in

a common tSNE map (Fig 15, Fig 14). Overall, gene expression in the different samples was

largely overlapping for the majority of cell types. For example, proximal tubules cells (Er-

PrT) appeared at the same positions in the tSNE map in all samples (Fig 15B). The position

of podocytes shifted systematically across different ages, which corresponds to a continu-

ing change in expression pattern (Fig 15C). This observation might suggest that podocytes

further matured in terms of their expression pattern after being specified.

Differential expression analysis of podocytes of different ages revealed 109 differentially

expressed genes (fold change > 2 in any comparison, FDR < 0.05, Hochane et al. [1] S4 Ta-

ble). Functional annotation analysis of these genes showed significant enrichment of two

gene ontology (GO) terms: proteinaceous extracellular matrix (adjusted p-value = 1.9 · 10–3,

including SPON2, BGN, COL1A2, and CTGF) and extracellular exosomes (adjusted p-value

= 1.4 · 10–3, including NPNT, S100A10, ANXA1, and EPCAM). Some of the differentially ex-

pressed genes have been shown to be important for kidney development. For example, NPNT

and DCN showed increasing expression from w11 to w18. Knockout of the extracellular ma-

trix protein NPNT in mice decreases the invasion of the UB and causes agenesis or hypoplasia

[24]. NPNT was further shown to be expressed in the glomerular basement membrane and

to be necessary for podocyte adhesion in mice [25]. Ablation of this gene in mice causes

podocyte effacement. As in the case of NPNT, DCN has been reported to be part of the

glomerular basement membrane proteins [26]. This gene appeared strongly up-regulated in

podocytes between w11 and w13 or w18 (fold changes of 3.25 and 4.6, respectively). The in-

crease of NPNT and DCN expression over time in our data set could reflect an increase in ad-

hesion between podocytes and glomerular basement membrane. Podocytes further showed

significant differential expressions of genes related to stress, like HSPA1A and HSPA1B or

NFKB genes (NFKB2, NFKBIA, and REL), with the highest levels at w18. This might suggest

that dissociation-related stress increases with age for podocytes, maybe related to stronger
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Figure 14. Samples of different developmental ages had a similar cell type diversity. tSNE
map calculated for all five samples (w9, w11, w13, w16, w18) combined after batch correction
[21]. Developmental age is indicated by color.

adhesion of the cells, or that stress-related genes have another, physiological role in devel-

opment.

We would like to emphasize that the observed gene expression changes with age should

be considered with caution because they might be related to the differences in genotype be-

tween the samples. A much larger number of samples would be necessary to rule out such

interindividual differences as a cause.

Having established the identity of the cell clusters, we next wanted to demonstrate how

the dataset can be used to explore different aspects of kidney development. We specifically

focused on the nephrogenic niche, which showed pronounced heterogeneity, and the devel-

opment of podocytes, which progressed via a distinct, intermediate cell state (SSBpod).
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Figure 15. Comparison of different developmental ages suggested continued expression
changes in podocytes. (A) tSNE map combining all five samples (w9, w11, w13, w16, w18).
Samples were corrected for batch effects by matching mutual nearest neighbors [21]. Cells
in the w9, w11, w13, and w18 samples were classified by comparing to the w16 sample using
a knn-based approach (see Materials and methods). (B) tSNE map of all ages restricted to
ErPrT. Labels and colors indicate ages. Six outlier cells were omitted from this plot to improve
visualization. (C) tSNE map of all ages restricted to podocytes. Labels and colors indicate
ages.
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2.2.6 Heterogeneity in the nephrogenic niche

The formation of the nephron epithelium starts with the NPCs that differentiate and form the

PTA, RV, and CSB. Studies in the mouse suggest that cells in the NPC compartment are not

biased towards a particular lineage and patterning is first detectable in the PTA [27]. Never-

theless, the w16 scRNA-seq indicated the presence of several nephron progenitor subpopu-

lations, NPCa-d. To clarify the temporal relationship of these clusters, we employed Monocle

2 again to arrange them together with the PTA cells on a pseudotime scale (Fig 16A). NPCa

clearly preceded NPCb and c, which seemed to appear around the same pseudotime. NPCd

cells followed NPCb and c and preceded PTA. This analysis suggested that NPCa are the bona

fide NPCs and give rise to NPCb and c. NPCd, which were likely more proliferative than the

other NPCs (Fig 8), seemed to be an intermediate state between (slowly cycling) NPCa-c and

the PTA.

To localize the NPC clusters in the tissue, we made use of the fact that they expressed

various levels of CITED1 and SIX2 (Fig 7): although NPCa and NPCc exhibited roughly sim-

ilar levels of these markers, NPCb and NPCd had lost CITED1 almost completely, while re-

taining some SIX2 expression. In an immunostaining of a w15 kidney, CITED1 and SIX2 ap-

peared overlapping in a subset of cells (Fig 16C). Quantification of the fluorescence signal

(see Materials and methods) revealed clear differences between their expression patterns.

Although SIX2 expression was approximately constant throughout the CM, CITED1 express-

ion decreased, relative to SIX2, with increasing (radial) distance from the UB (Fig 16D-E). A

marked drop of CITED1 was visible between 10 and 20 μm from the UB, which approximately

corresponds to the first layer of cells. To exclude that the observed difference between SIX2

and CITED1 expression was due to the different fluorophores on the secondary antibodies,

we repeated the experiment with swapped fluorophores. This measurement produced a very

similar expression gradient (Fig 16F). To exclude that the observed effect was influenced by

PTA found in the CM towards the stalk of the UB, the analysis was repeated, taking only the

20% of CM cells closest to the edge of the cortex into account. A similar expression gradient

was observed (Fig 16H). This result implies the existence of a CITED1 low/SIX2 high sub-

population of cells, which are not in contact with the UB. Secondly, we observed that CITED1

decreased relative to SIX2 towards the interface with the PTA and the stalk of the UB (Fig 16D-

E). A similar observation was made when the experiment was repeated with swapped fluo-

rophores (Fig 16G). Taken together, these results suggested that NPCa and NPCc were located

closer to the surface of the UB and closer to the tip of the UB compared to the other NPC

subtypes. Additionally, we also observed differences in subcellular localization of CITED1

protein within the CITED1 high compartment. Although for the majority of cells CITED1

was found in the cytoplasm, in several cells it was concentrated in the nucleus (right inset in

Fig 16C). In contrast, SIX2 was always found restricted to the nucleus (left inset in Fig 16C).

This observation might indicate that CITED1 was only active in a small population of cells,

which would constitute another layer of cell-cell heterogeneity.

In addition to the observed heterogeneity in CITED1 and SIX2, differences between the
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Figure 16. The nephrogenic niche exhibited a complex spatial organization. (A) Pseudo-
time analysis of the nephrogenic niche and the PTA. Two-dimensional DDRTree [19] embed-
ding and the learned graph (shown as a black line) were calculated with Monocle 2 [18]. Labels
and colors indicate cell types. (B) Schematic sketch of the CM indicating the distance d from
the UB to the edge of the CM (solid arrow) and the relative distance s along the UB (dashed
arrow), in which 0 and 1 represent the top and bottom of the CM, respectively. (C) Repre-
sentative image of SIX2 and CITED1 immunostaining in a w15 human fetal kidney. Dashed
lines in the insets indicate the outline of the nuclei, based on DAPI signal. Arrows in the inset
point to cells in which CITED1 is concentrated in the nucleus. Scale bar = 50μm. (D and E)
Quantification of SIX2 and CITED1 immunostaining with respect to the distance d from UB
or distance s along the UB; see panel A. Error bars indicate the SEM calculated over all eval-
uated profiles (n = 24). (F and G) Same as D and E, but the fluorophores on the secondary
antibodies were swapped. (n= 19). (H) Quantification of SIX2 and CITED1 immunostaining
with respect to the distance d from UB in which only cells with a relative distance s (along the
UB) < 0.2 were taken into account. Error bars indicate the SEM calculated over all evaluated
profiles (n = 19).
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NPC clusters could also be gleaned from the set of novel markers (marker set, Hochane et al.

[1] S3 Table).

TMEM100 and RSPO3 specifically marked NPCa. RSPO3 is an activator of the canon-

ical WNT signaling pathway [28], suggesting a role of WNT either in NPC self-renewal or

UB branching morphogenesis. Notably, all markers of NPCb (CACYBP, MRPL18, ZFAND2A,

DNAJB1) were related to the stress response in some form. The markers of NPCc (CRABP2,

HAS2, MDK, HOXC6), which were also expressed in the other NPC types, are all either targets

of RA or binding it [17, 29, 30]. MDK has been shown to be expressed in the CM of the de-

veloping rat kidney, and its neutralization reduced the number of formed nephrons in vitro

[31, 32]. Finally, the NPCd markers CENPF, HMGB2, CCNB2, and NUSAP1 all have a role in

cell cycle regulation or proliferation [16]. HMGB2 was recently implied in the activation of

quiescent adult neural stem cells [33].

The observation that markers of NPCb were related to the stress response seemed to sug-

gest that this cluster was created as an artifact of cell dissociation [34], despite our best efforts

to remove stressed cells (see Materials and methods). On the other hand, the vast majority

of NPCb cells were classified as primed NPC II in the Lindström et al. [20] dataset (Fig 10,

Fig 11). The fact that NPCb cells were only detected in the w16 and w18 kidneys is consistent

with single-cell dissociation becoming increasingly difficult with fetal age, or alternatively,

with a progenitor cell aging phenomenon. To explore the differences between NPCb and

the other NPC clusters further, we immunostained HSPA1A and NR4A1, both known stress-

response genes, in w15 kidney sections (Fig 17). HSPA1A was identified as a marker of NPCb

(Fig 18A, Hochane et al. [1] S3 Table), whereas NR4A1 was expressed in multiple NPC clus-

ters but highest in NPCb (Fig 18A). Furthermore, NR4A1 was also identified in the study by

Adam et al. [23] to be up-regulated in response to elevated temperatures during enzymatic

dissociation. HSPA1A and NR4A1 were both observable in the nephrogenic niche at the level

of the stalk of the UB and at the transition to the PTA or RV. Additionally, we studied the

expression of EGR1, another stress-related gene that marked NPCb, with smFISH (Fig 18B).

EGR1 was mainly found toward the stalk of the UB and in a few cells around the tip of the

UB, whereas SIX2 and CITED1 transcripts were visible throughout the CM (Fig 19A). Because

results obtained in fixed tissue sections are not confounded by dissociation-related artifacts,

these immunostainings and smFISH measurements supported the existence of NPCb cells

in the fetal kidney.

The fourth NPC cluster, NPCd, was clearly distinguished by proliferation markers (Fig 8).

To locate NPCd in the tissue, we immunostained the cell cycle regulator and NPCd marker

CKS2 (Fig 18C). CKS2 signal could be observed around the stalk of the UB and in RV (Fig 17).

This result supported the interpretation that NPCd were a proliferating transitory state be-

tween NPCa-c and PTA.

Given the crucial role of the nephrogenic niche in the development of nephrons, it is likely

that misexpression or mutation of genes that are specifically expressed in NPC affect kidney

function. Mining a database of genome-wide association studies (GWAS) revealed that genes
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Figure 17. Expression variability in the nephrogenic niche. (Representative image of
HSPA1A, NR4A1, and CKS2 immunostaining in a w15 human fetal kidney. Scale bar= 20μm.

that were differentially expressed in NPCs were significantly enriched for association with

kidney disease (p-value = 1.7 ·10–3, one-sided Fisher’s exact test). No enrichment was found

for lung diseases (p-value = 0.21), one-sided Fisher’s exact test) (see Materials and methods,

Fig 20A, Hochane et al. [1] S4 Table). Unsurprisingly, several of the disease-associated genes

are known regulators of kidney development, such as SALL1, SOX11, and HAS2 [35, 36, 37,

38]. The other identified genes had not been previously associated with kidney development.

For example, DDX1, which was differentially expressed in NPCs as well as SSBpod, is an RNA

helicase that promotes microRNA maturation [39]. UNCX, which was broadly expressed in

all NPC clusters, is a homeobox transcription factor involved in somitogenesis and neuro-

genesis [40] and has also been found to be up-regulated in the induced mouse nephrogenic

mesenchyme in culture [41]. It was recently associated with renal-function-related traits [42]
as well as glomerular filtration rate [43, 44, 45]. In our data, the expression profile of UNCX

was similar to that of CITED1 (Fig 18D). Immunostaining of UNCX confirmed the scRNA-

seq results and showed expression of UNCX in the nephrogenic zone, as marked by CITED1

(Fig 19C-D). These findings suggested UNCX as a novel potential regulator of early nephro-

genesis.
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Figure 18. Markers of heterogeneity in the nephrogenic niche. (A [top], A [bottom], B,
C, D [top] and D [bottom]) tSNE maps showing expression of HSPA1A, NR4A1, EGR1, CKS2,
CITED1 and UNCX respectively. Expression is indicated by color; expression values of 1 are
plotted in gray.

2.2.7 Podocyte development

Another cell type of high relevance for kidney function is the podocyte. This cell type is criti-

cal for filtration and is implied in several forms of kidney disease [25]. podocyte (Pod)ocytes

wrap around the glomerular basement membrane (capillary bed) inside Bowman’s capsule

(Fig 21A). Clustering (Fig 3) and pseudotime analysis (Fig 9) of the w16 kidney dataset had

indicated that development into podocytes occurs via a distinct intermediate state that we

dubbed SSBpod here. This cell state was likely related or even identical to previously dis-

covered podocyte precursors [20, 46]. In the Lindström et al. [20] dataset, SSBpod and podo-

cytes were both classified as podocytes, and the RVCSB were considered podocyte precursors

(Fig 11). To show that SSBpod cells were indeed a localizable cell state distinct from podo-

cytes, we further investigated their expression pattern (Fig 21B), focusing on known litera-

ture markers (literature set) and the marker set (Hochane et al. [1] S3 Table). Compared to

RVCSB, SSBpod showed higher expression of MAFB and FOXC2, which are necessary for the

determination of podocyte identity [47, 48]. On the other hand, compared to podocyte cells,

they exhibited lower expression of genes typically associated with more mature podocytes,

like CLIC5, PODXL, and PTPRO. Filtration function-related genes like NPHS1, NPHS2, and

PTPRO were expressed at intermediate levels in SSBpod compared to RVCSBb, where they

were absent, and podocytes, where they are highly expressed. A similar pattern could be
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Figure 19. In situ expression of NPC markers. (A)) smFISH of SIX2, CITED1, and EGR1. The
three insets at the bottom correspond to the three areas marked by solid boxes in the main
image. Scale bar = 25μm. (B) Representative image of UNCX and CITED1 immunostain-
ing. Arrowheads indicate the presence of immunostaining signal. Scale bar = 100μm. (C)
Immunostaining of CITED1 and UNCX. Scale bar = 10μm.

observed for genes associated with podocyte polarization or structural organization as well

as pedicel growth and patterning. Finally, podocytes showed the expression of genes that

negatively regulate the cell cycle and support long term survival, consistent with their post-

mitotic nature [49]. In contrast, SSBpod specifically expressed ORC4, which has a function in

DNA replication. However, proliferation markers were lowly expressed in both SSBpod and

podocytes (Fig 8C), which suggested low proliferative potential in both cell types. In con-

trast to NPCs, association with kidney disease was not significantly enriched among genes

differentially expressed in SSBpod (p-value = 0.1, one-sided Fisher’s exact test). One of the

disease-associated genes was OLFM3, which has been associated with glomerular filtration

rate (Fig 20B) [50]. OLFM3, a secreted glycoprotein, has a known function in brain and retina

development [51] and has been identified as a marker for podocyte precursors in two inde-

pendent studies [20, 46]. In our dataset, it was specifically expressed in SSBpod (Fig 21C)
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Figure 20. Disease-associated genes were specifically expressed in transient cell types. Ex-
pression of genes from GWAS traits related to kidney disease. Disease phenotypes associated
with these genes are indicated by color; genes were filtered for high expression in cluster(s) of
interest relative to all other cell types. Expression was FT transformed, averaged over all cells
in a cluster, and standardized gene-wise. (A) Disease-associated genes expressed in early
nephron progenitor states (NPC to PTA). (B) Disease-associated genes expressed in SSBpod.
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and was a marker for this cell type in the marker set and KeyGenes set (Hochane et al. [1] S3

Table).

In order to localize SSBpod, podocytes and mesangial cells in situ, we immunostained

w15 kidney sections with antibodies for MAFB, PODXL, and ACTA2 (Fig 21D). As expected,

PODXL and MAFB were found in podocytes at the capillary loop stage and in more mature

glomeruli. MAFB staining extended to the proximal segment of the SSB, which indicated

that SSBpod may be part of this structure. To locate the SSBpod cells more precisely, we per-

formed smFISH on CLIC5 and MAFB, expressed both in podocytes and SSBpod (Fig 22A). We

observed a subpopulation of MAFB+/CLIC5- cells outside the glomeruli, which we identified

as the SSBpod. These cells could be found predominantly in the visceral part of the proximal

segment of the SSB but also at the capillary loop stage. This result supported the notion that

SSBpod were transient cells that preceded (mature) podocytes. Having localized the SSBpod,

we next wanted to confirm OLFM3 as a marker of this cell type. smFISH of OLFM3, MAFB,

and CLIC5 showed OLFM3 to be coexpressed with MAFB but absent in cells that were positive

for CLIC5 (Fig 22A), a marker that persists in podocytes in the adult kidney. Quantification

of the density of smFISH signals (Fig 22B) showed that OLFM3 was absent in glomeruli but

could be detected in the subpopulation we identified as SSBpod (MAFB+/CLIC5-). In sum-

mary, these results supported OLFM3 as a robust marker of podocyte precursors.

Finally, we were wondering whether our dataset would also allow us to identify candi-

date mechanisms that drive development from SSBpod to podocytes. Differential express-

ion analysis revealed 228 genes that had a significant, bigger than 2-fold changes between

SSBpod and podocytes (Fig 23, Hochane et al. [1] S4 Table). Among these we found factors

belonging to multiple signaling pathways, such as FGF1, VEGFA, HES1, and EGF1. Vegfa and

Fgf1 are known to have a homeostatic function in podocytes [52, 53, 54], whereas Hes1, a

target of the Notch signaling pathway, seems to be necessary for the synthesis of extracel-

lular matrix proteins in these cells [55]. Binding sites for the transcription factor AP-1 were

strongly enriched in this set of genes (145 out of 228 genes, adjusted p-value= 1.3·10–5). AP-1

would therefore be an interesting target for perturbation studies in mouse models.

All in all, the results presented here complement other, recent, single-cell transcriptomics

studies of the fetal kidney. We demonstrated how the data can be interrogated to find ex-

pression patterns that will improve our understanding of human kidney development.

2.3 Discussion

2.3.1 The nephrogenic niche is heterogeneous

Building an organ during development requires the careful balance between two fundamen-

tal processes—growth and the creation of structure. In many organs, these two functions are

reconciled by self-renewing progenitor cells that can be induced to differentiate. In kidney

development, NPCs give rise to the epithelium of the nephron, the functional unit of the kid-
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Figure 21. Pod develop via a precursor state. (A) Schematic of development from the SSB
to the glomerulus. Regional patterning is shown in color—proximal (purple), medial (green),
distal (orange). (B) Expression heat map of the subset of marker set genes that are markers
for SSBpod and Pod. Expression was FT transformed, averaged over all cells in a cluster and
standardized gene-wise. (C) Two-dimensional tSNE map showing the expression of OLFM3.
Expression is indicated by color; expression values of 1 are plotted in gray. (D) Typical images
of MAFB, PODXL, and ACTA2 immunostaining in SSB and glomeruli. Scale bar = 50μm.
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Figure 22. SSBpod is localized in the visceral proximal SSB. (A) Representative images of
smFISH of OLFM3, MAFB, and CLIC5 in SSBpod and Pod. w15 female kidney. Scale bar =
10μm. (B) Box plots of smFISH signal densities in SSB (n = 10), capillary loop (n = 4), and
glomeruli (n = 8), for OLFM3, MAFB and CLIC5 (* adjusted p < 0.05, ** adjusted p < 0.0005).

ney. To balance growth with patterning, self-renewal and differentiation of NPCs have to be

tightly controlled. It is well established that the niche of the NPC plays an important role in

this control, but the precise mechanisms are not well understood. In particular, it is not clear

how the position and movement of NPCs in the niche might impact the induction towards

differentiation.

Heterogeneity in the nephrogenic niche was brought to light first by Mugford et al. [27]
in 2009 and has been confirmed by multiple recent studies [11, 20, 46, 56, 57]. Mugford et al.

[27] used in situ hybridization to study the localization of transcriptional regulators in E15.5

mouse kidney. Three distinct compartments were defined in the CM—inner capping mes-

enchyme (which lies closest to the cleft of the UB), outer capping mesenchyme (at the tip of

the UB), and induced mesenchyme (at the level of the stalk of the UB). Although all compart-

ments express Six2, only inner and outer capping mesenchyme express Cited1. The induced

CM was distinguished by Wnt pathway activity, as evidenced by Wnt4 expression. Several

recent scRNA-seq studies confirmed heterogeneity in the nephrogenic niche. Brunskill et al.
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Figure 23. AP-1 targets are enriched in the DEG of Pod versus SSBpod. Volcano plot
of differential gene expression between SSBpod and Pod. L2FC Pod over SSBpod versus
–log10(adjusted p-value). Genes with an adjusted p < 0.05 and L2FC > 1 were considered
significant (colored data points). Genes with an AP-1 binding site are shown in red.

[56] studied an E12.5 mouse kidney and found two subpopulations in the CM, which they

classified as uninduced (Six2 positive, Cited1 positive) and induced (Six2 positive, Cited1

negative). Among the hundreds of genes that were differentially expressed between these two

populations, they found genes related to the Wnt signaling pathway as well as protein vesic-

ular trafficking and degradation. Wang et al. [57] also found two subclusters in the CM of the

human fetal kidney. They interpreted one subcluster as the self-renewing compartment due

to higher expression of markers for cell division. The other subcluster, which showed gene

expression related to Notch signaling (HES1, HEY1), was considered induced. Two studies

by [11, 20] also explored NPC heterogeneity. The first study [11] identified four NPC clusters

(self-renewing, primed, differentiating, and proliferating), whereas the second [20] revealed

four clusters of NPCs (I-IV), two clusters of primed NPCs (I-II), as well as several clusters of

proliferating cells.

In the dataset presented here, we identified four clusters of NPCs. Among these, NPCa

are most likely the self-renewing compartment. In agreement with the studies by Lindström

et al. [20] [11, 20], they expressed the highest levels of CITED1 and TMEM100 compared with

the other NPCs. Furthermore, they preceded all other NPC clusters in pseudotime analysis.

NPCb showed expression of several genes that modulate Notch, BMP, and TGF-β pathway

activity, as well as low levels of LEF1, which has been shown to indicate induction towards

differentiation [11, 20]. The classification of NPCb as primed NPC by comparison to the Lind-

ström et al. [20] dataset supported the interpretation of NPCb as a state distinct from NPCa

that is primed to differentiate. The fact that we detected NPCb only at w16 and w18 leads us

to speculate that NPCb could be the result of continuous changes in the nephrogenic niche

over the course of development. The third NPC cluster, NPCc, appeared together with NPCb
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in pseudotime and was distinguished from the other NPCs by higher expression of genes

involved in or regulated by RA signaling. The RA binding protein CRABP2 has been iden-

tified as an NPC marker in other reports [11, 57]. We speculate that NPCc are the result of

spatially varying concentrations of RA, which is produced in the cortical interstitium [58].
Finally, NPCd appeared between NPCb-c and PTA in pseudotime and were clearly distin-

guished from the other NPC clusters by increased proliferation, at least as far as that can be

inferred from gene expression data. In agreement with our analysis, NPCd were classified as

proliferating cells by comparison with the Lindström et al. [20] dataset. NPCd cells also lowly

expressed markers of induction towards differentiation (such as LEF1, LHX1, WNT4), which

indicates a transitory state between induced and/or primed NPCs and PTA. The suggested

developmental flow from NPCa via NPCb-c to NPCd was supported by a gradual decrease of

OSR1, which is a well-known marker of the early CM.

By in situ detection of CITED1, SIX2, and other genes, we also explored the spatial local-

ization of the different NPC clusters. NPCa seemed to reside closest to the tip of the UB, the

induced and/or primed NPCb and c were situated closer to the stalk, and NPCd were clos-

est to the PTA. This finding is consistent with the recent report of NPCs streaming from their

niche at the UB tip towards the UB branch point to form the PTA and RV [20]. On this path,

the cells gradually lose the NPC transcriptional program, and differentiation is induced. In

the mouse, trajectories of NPCs also seem to have a large stochastic component: NPCs re-

peatedly detach from the UB and attach again and also shuttle back and forth between the

uninduced region at the UB tip and the committed region around the stalk of the UB [59].
This observation could indicate that varying expression levels of genes such as CITED1 oc-

cur as a consequence of cell migration and are not necessarily functionally relevant. Indeed,

Cited1 knockout has no adverse effects on kidney development in the mouse [60]. Taken to-

gether, our results support a model in which (self-renewing) NPCa reside at the tip of the UB,

probably in close proximity or even in contact with the UB. Movement away from the UB tip,

toward the stalk, is accompanied by decreased CITED1 expression and transformation to the

(induced and/or primed) NPCb-c states. Arrival at the stalk of the UB is characterized by the

NPCd expression state, increased proliferation, and eventually transformation to the PTA.

It is conceivable that cells sometimes visit the different NPC states in reverse order, which

would reconcile this model with the observed high, multidirectional motility of NPCs [59].

2.3.2 Proximal-distal patterning

In the prevailing model of mammalian kidney development, self-renewing NPCs are not

prepatterned to develop into a certain lineage. When the developing nephron first displays

signs of proximal-distal patterning is an important, outstanding question. Mugford et al.

[27] have found evidence that the PTA, which succeeds the NPC, is already polarized. A re-

cent study by Lindström et al. [20] proposed an intriguing mechanism that couples temporal

and spatial cues: although NPCs that are recruited to the PTA early develop into distal cell

types, NPCs that are integrated later contribute to the proximal compartment. In our study,
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we identified the PTA by known marker genes (CCND1, LHX1, and WNT4) and high prolif-

eration. We were unable to detect any substructure within the PTA, which might be due to

the limited resolution of our scRNA-seq method. RV/CSB, the next developmental stage,

however, was split in two clusters (a and b). Pseudotime analysis suggested that RVCSBa

was a heterogeneous cluster comprising early RV cells (which appeared before RVCSBb) and

the distal segment of the RVCSB. This observation is consistent with the time-dependent re-

cruitment model by Lindström et al. [20] in the sense that in that model, distal specification

precedes proximal patterning.

2.3.3 Fetal podocytes may have varying degree of maturation

Single-cell transcriptomics studies of various organs have brought to light many new, in-

termediate cell states. This has provoked the question of whether we should consider gene

expression in complex tissues as a continuum rather than a collection of distinct express-

ion profiles. In developmental systems, it is certainly useful to think about gene expression

change as a continuous process. Nevertheless, there are clearly distinct intermediate cell

states even within linear developmental paths. In our study, we observed that RVCSBb gave

rise to podocytes via an intermediate state, the SSBpod, which directly preceded the podocy-

tes in pseudotime. Specific expression of OLFM3 made it likely that this cluster is identical to

previously identified podocyte precursors, which were marked by this gene [20, 46]. Menon

et al. [46] defined a cluster of immature or early podocytes, characterized by high OLFM3

and low MAFB expression. In that study, podocytes showed increased MAFB expression but

loss of OLFM3. Lindström et al. [20] located OLFM3 positive cells to the proximal part of

the SSB. In our study, we confirmed all of these observations: OLFM3 was localized to the

visceral part of the proximal segment of the SSB, and OLFM3 negative podocytes showed

higher expression of mature podocyte markers compared to the OLFM3 positive SSBpod.

Functional annotation analysis of genes that were differentially expressed between SSBpod

and podocytes revealed enrichment of a binding site for AP-1. This transcription factor has

been found to be important for the development of the skin [61], neural precursor cells [62],
and the heart valve [63] in mice. A role of AP-1 in kidney development has not been described

yet, and further research is needed to elucidate its potential function. The analysis of the kid-

neys from different gestational ages showed high similarity of cell types across different ages

with the exception of podocytes. These displayed a systematic change in expression pattern,

which might indicate the continued maturation of podocytes over time. This observation is

in agreement with a study by Brunskill et al. [64] in the mouse, which compared embryonic

(E13.5 and E15.5) with adult podocytes (defined as Mafb positive cells). That study found

hundreds of genes that were differentially expressed between embryonic and adult podocy-

tes. Furthermore, targeted experiments are needed to demonstrate the possible maturation

of podocytes in human kidney development.

In summary, we have leveraged a combination of single-cell transcriptomics and in situ

imaging to study the intricate structure of the developing human kidney. The transcrip-
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tomics data, accessible via a web application http://www.semraulab.com/kidney, will be a

valuable starting point for discovering gene regulatory mechanisms or finding new disease

mechanisms.

2.4 Materials and methods

2.4.1 Ethics statement

The collection and use of human material in this study was approved by the Medical Ethics

Committee from the Leiden University Medical Center (P08.087). The gestational age was

determined by ultrasonography, and the tissue was obtained by vacuum aspiration from

women undergoing elective abortion. The material from six embryos (w9, male; w11, male;

w13, female; w15, female; w16, male; and w18, female) was donated with written informed

consent. Questions about the human material should be directed to S. M. Chuva de Sousa

Lopes (Lopes@lumc.nl).

2.4.2 Experimental methods

Single-cell dissociation of human fetal kidney

One human embryo of w16 (male) was isolated and the kidney dissected in cold saline

solution (0.9% NaCl, Versylene Fresenius). For sex genotyping, polymerase chain reaction

(PCR) for AMELX/Y was used as previously described [65]. The obtained kidney was decap-

sulated and kept on ice in dissociation buffer (DPBS + Penicillin 100U/mL + Streptomycin

0.1mg/mL; all from Life Technologies) before cutting it into 1-2mm pieces. The pieces

were washed three times with washing solution (Advanced DMEM F12 supplemented

with ITS commercial solution (Insulin-Transferrin-Selenium; Thermofisher), Glutamax,

Penicillin 100U/mL, and Streptomycin 0.1mg/mL) with brief centrifugation (160g) in order

to remove as many red blood cells as possible. The washed kidney tissue was then incubated

with digestion solution (Trypsin/EDTA solution 0.25% and Collagenase-II 280U/ml) and

incubated overnight at 4°C. The next day, the digestion solution was removed, and the

kidney was rinsed with washing solution and incubated with washing solution for 30min at

37°C with agitation. Subsequently, the sample was sequentially passed through sterile cell

strainers of 100, 70, and 40μm pore size with the help of washing solution. The cells were

then centrifuged and counted, and viability was measured to be 78% (trypan blue assay)

before proceeding with scRNA-seq library preparation. Four additional human fetal kidneys

(w9, male; w11, male; w13, female; and w18, female) were dissected as described above, but,

additionally, live cells were purified by FACS before library preparation [66].

http://www.semraulab.com/kidney
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scRNA-seq library preparation and sequencing

scRNA-seq libraries were prepared using the Chromium Single Cell 3’ Reagent Kit, Version

2 Chemistry (10X Genomics) according to the manufacturer’s protocol. Libraries were se-

quenced on a NextSeq500 in Mid Output mode using a version 2, 150-cycle kit (Illumina).

Immunostaining

A paraffin-embedded w15 human kidney (female) was sectioned (5μm) using a RM2255 mi-

crotome (Leica Microsystems GmbH) and mounted on StarFrost slides (Waldemar Knittel).

For immunofluorescence, sections were deparaffinized and rehydrated by standard pro-

cedures, starting with xylene (twice for 20min), followed by ethanol with sequential dilu-

tion and ending with distilled water, all at room temperature (RT). Antigen retrieval was per-

formed by a double treatment of 10min in a microwave (97°C) with 0.01M sodium citrate

buffer (pH 6.0). The sample was then allowed to cool down, rinsed three times with PBS,

and blocked for 1h at RT in blocking buffer (1% BSA, 0.05% Tween-20 in PBS). Subsequently,

sections were incubated overnight with the following antibodies diluted in blocking buffer—

rabbit anti-SIX2 (1:100, 11562-1-AP;Proteintech), mouse anti-CITED1 (1:500, H00004435-

M03; Novus Biologicals), mouse anti-MAFB (1:200, LS-C336952; LifeSpan Biosciences), rab-

bit anti-ACTA2 (1:200, ab5694; Abcam), goat anti-PODXL (1:200, AF1658; R&D Systems), and

rabbit anti-UNCX (1:10, PA5-69485; Thermo Fisher Scientific), rabbit anti-CKS2 (HPA003424,

1:100; Sigma Aldrich), rabbit anti-NURR77 (NR4A1) (ab13851, 1:50; Abcam Biochemicals),

and mouse anti-HSP70 (HSPA1A) (ab2787, 1:50; Abcam Biochemicals). The secondary anti-

bodies were diluted in blocking buffer and applied at RT for 1h followed by nuclear counter-

staining with 4,́6-diamidino-2-phenylindole (DAPI; Life Technologies). The secondary an-

tibodies used were Alexa Fluor 647 donkey anti-rabbit (1:500, A-31573; Life Technologies),

Alexa Fluor 594 donkey anti-mouse (1:500, A-21203; Life Technologies), and Alexa Fluor 555

donkey anti-goat (1:500, A32727; Life Technologies). The sections were then mounted using

ProLong Gold (Life Technologies).

For immunohistochemistry, sections were deparaffinized and blocked as above. After

overnight incubation with primary antibodies rabbit anti-UNCX (1:10, PA5-69485; Thermo

Fisher Scientific) and mouse anti-CITED1 (1:500, H00004435-M03; Novus Biologicals) in

blocking buffer, 0.3% H2O2 was used to quench endogenous peroxidase activity for 20min.

Next, the sections were incubated with biotin-labeled goat anti-rabbit IgG (1:200, BA-1000;

Vector Laboratories) diluted in normal goat serum (1:66, S-1000; Vector Laboratories) or

biotin-labeled horse anti-mouse (1:200, BA-2000; Vector Laboratories) diluted in normal

horse serum (1:66, S-2000; Vector Laboratories) for 40min. Sections were then treated for

40min with avidin-biotin-peroxidase complex (VECTASTAIN Elite ABC HRP Kit, #PK-6100;

Vector Laboratories) following the manufacturer’s instructions, followed by DAB (D5637;

Sigma-Aldrich) and hematoxylin (1043020025; Merck) and were mounted with Entellan

(1079610100; Merck).
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Single-molecule FISH

Paraffin embedded sections from the w15 human fetal kidney (female) used for immunos-

taining were also used for smFISH experiments. Paraffin was removed by immersion in xy-

lene twice for 10min at RT. The sections were then rehydrated by sequential immersion in

ethanol solutions—100% (2x, 10min), 85% (2x, 5min), and 70% (2x, 3min). Subsequently, sec-

tions were permeabilized in 70% ethanol for 5h before incubation with proteinase-K (P4850;

Sigma Aldrich) for 15min at 37°C (23μg/mL in TE buffer at pH = 8) and a wash in RNAse-

free water (3x, 5min). smFISH was performed as described previously [67]. Briefly, custom

designed smFISH probes (BioCat,Hochane et al. [1] S5 Table), labeled with Quasar 570, CAL

FLuor Red 610, or Quasar 670, were incubated with the samples for 16h at 30°C in hybridiza-

tion buffer (100 mg/mL dextran sulfate, 25% formamide, 2X SSC, 1mg/mL E.coli tRNA, 1mM

vanadyl ribonucleoside complex, 0.25mg/mL BSA). Samples were washed twice for 30min at

30°C with wash buffer (25% formamide, 2x SSC) containing DAPI (1μg/mL, D9542; Sigma).

All solutions were prepared with RNAse-free water. Finally, the sections were mounted using

ProlongGold (P36930; Life Technologies) and imaged the next day.

Imaging

Immunostained and smFISH-treated kidney sections were imaged on a Nikon Ti-Eclipse epi-

fluorescence microscope equipped with an Andor iXON Ultra 888 EMCCD camera, using a

100x /1.45 Plan Apo Lambda oil objective (Nikon) and dedicated, custom-made fluorescence

filter sets (Nikon). To cover large areas of the sectioned kidney, images of multiple adjacent

areas were taken and combined using the tiling feature of the NIS Elements software (Nikon).

For imaging of smFISH signals, z-stacks were collected with distances of 0.3-0.5μm between

planes in four fluorescence channels (GFP, Quasar 570, CAL FLuor Red 610, Quasar 670).

2.4.3 Quantification and statistical analysis

scRNA-seq data pruning and normalization

Single-cell expression for the w16 sample was quantified using unique molecular identifiers

(UMIs) by 10X Genomics’ Cell Ranger software. After removing cells with less than 2,000 tran-

scripts per cell, 8,503 cells were retained for further analysis. On average, 1,789 genes were de-

tected per cell and a median of 4,805 transcripts per cell (Fig 2A). Given the recent report that

dissociation can have a significant influence on the single-cell transcriptome [34] and that

the kidney is notoriously difficult to dissociate, special attention was paid to dissociation-

related artifacts. The amount of 1,859 cells with signs of stress were removed from the dataset

(Fig 2B). These cells had more than 10% of their expression come from mitochondrial genes

(MT-ND1, MT-ND2, MT-CO1, MT-CO2, MT-ATP8, MT-ATP6, MT-CO3, MT-ND3, MT-ND4L,

MT-ND4, MT-ND5, MT-ND6, MT-CYB) or more than 5% from stress markers. Stress mark-

ers were defined as those genes that were significantly up-regulated upon prolonged enzy-
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matic incubation of mouse kidney tissue in the study by Adam et al. [23] (Hochane et al. [1]
S2 Table, Fig 2B). Mouse genes from this list were converted to human genes using biomart

[68]. Genes of the literature set (Table 2.1) only showed small differences between stressed

and nonstressed cells (Fig 2C-D), and stressed cells did not form a separate cluster (Fig 2E-

F). Therefore, removing stressed cells did not reduce the cell type diversity in the sample.

Additionally, 42 cells had more than 1% of their expression coming from HBB, HBA1, and

HBA2 and were therefore classified as red blood cells and discarded from any further anal-

ysis (Fig 2E). Sporadic expression of hemoglobin genes in other cells was likely due to red

blood cells that burst before isolation. The same filtering approach was applied to the sam-

ples from the other developmental ages as well as the data from Lindström et al. [20] [20].
Raw UMI counts were smoothened by k-nearest neighbors smoothing version 2.1 [13]. This

procedure reduces technical noise by sharing information between transcriptionally simi-

lar cells, which likely belong to the same cell type. Briefly, the expression profiles of each cell

and its knn were summed (k= 10; distance metric: Euclidean distance of the first 10 PCs with

a dither of 0.05). The resulting smoothened count matrix had a higher total count than the

original and was therefore scaled back to the original matrix by a global factor. Expression

was normalized by the method developed by Lun and colleages [69] (as implemented in the

scran (version 1.10.1)R package using the functions quickCluster and computeSumFactors).

Normalized gene expression was FT transformed in further analyses unless stated otherwise.

Reduction of dimensionality

Variability of gene expression was calculated using the improvedCV2-function from the scran

R package. Intercell distances were calculated using the 5% most HVGs excluding stress

markers [23] (Hochane et al. [1] S2 Table) and ribosomal genes (obtained from the HGNC

website) without any filter for minimum mean expression. For maps of individual samples,

we used (1–Pearson correlation) as distance measure. For maps of combined samples, we

used Euclidean distance in the MNN-corrected PC space. All tSNE maps used a perplexity

setting of 500. For the DDRTree embedding used with pseudotime analysis, see Pseudotime

analysis.

Clustering

Hierarchical cluster analysis was performed using Ward linkage and the same intercell dis-

tances as for the reduction of dimensionality. The dendrogram of this clustering was cut at

height 0.6 to yield 29 clusters of cells (Fig 4). The cut off was chosen such that the number

of resulting clusters was comparable to the number of cell types expected from the literature

on mouse development [70] and other scRNA-seq studies of the human fetal kidney [11, 20,

46, 56, 57]. We estimated the number of cell types to be around 20 but created slightly more

as a starting point to allow for the discovery of new cell types. On the other hand, we did not

want to use a much higher number to avoid overclustering (i.e., creating many clusters that



84 Single-cell transcriptomics of fetal kidney

are merely driven by noise, which would then have to be merged manually). The presence

of known markers of the different cell types in the kidney (literature set, Table 2.1) was then

used to identify cell types (Fig 4). Based on this analysis, some adjacent clusters (clusters 4

and 5, 11 and 12, 15 and 16, and 17 and 18) showed very similar expression of known marker

genes of podocytes, ICs, UB, and collecting duct and proximal tubule cells, respectively. In

addition, the aforementioned clusters were in close proximity, both in the clustering dendro-

gram as well as in tSNE space (Fig 4). Consequently, these clusters were merged. For example,

clusters 4 and 5 had similar expression of genes known to be expressed in mature podocy-

tes (NPHS2, PTPRO, PODXL) compared to cluster 6, which showed very weak expression of

these genes and had distinctive expression of OLFM3, which has been shown to be specifi-

cally expressed in podocytes precursors [20, 46]. Furthermore, we also merged clusters 7 and

25, which were more distant in the dendrogram of the hierarchical clustering but had very

similar literature marker profiles (e.g., LHX1, WNT4, CCND1, JAG1, PAX2, and PAX8) and ap-

peared in close proximity in tSNE space. Finally, clusters 26 and 29 were also merged. Cluster

26 was a heterogeneous cluster of only 56 cells that were spread in tSNE space between mul-

tiple other clusters. This cluster was closest to PTA (cluster 29) in terms of literature marker

expression (WNT4, LHX1, and CCND1) and differed from it with respect to proliferative state,

which may account for the heterogeneous distribution.

Combining different datasets

To compare cells from multiple scRNA-seq datasets, we used the fastMNN function [21] im-

plemented in scran (version 1.10.1) on the first 50 PCs of the 5% HVGs without stress markers

or ribosomal genes. We used a knn approach to infer the cell types of unclassified cells from

already classified cells. For each unclassified cell, the 20 nearest neighbors in batch-corrected

PC space (Euclidean distance) were determined. The most common cell type among these

neighbors was then assigned to the unclassified cell. For the comparison with the dataset

from Lindström et al. [20], we restricted our dataset to the nephrogenic niche. The cluster

identities for the Lindström et al. [20] dataset were kindly provided to us by the group of An-

drew D. Smith.

Cell cycle and proliferation

Cell cycle scores were calculated using the Cyclone tool [15] from the scran (version 1.10.1)

R package. A list of proliferation markers was adopted from a publication by Whitfield et al.

[16].

Pseudotime analysis

We used the Monocle 2 algorithm [18] to perform embedding and pseudotime analyses on the

2,594 cells of the nephron epithelium, starting from the PTA (cells classified as PTA, RVCSBa,

RVCSBb, SSBm/d, SSBpr, SSBpod, DTLH, ErPrT, or podocytes), and separately on the 2,153
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cells of the nephrogenic niche (NPC) and the PTA. The 5% HVGs (without stress or riboso-

mal genes) were used as input to the algorithm. We used the reduceDimension function

(max_components = 3 for Fig 9; max_components = 2 for Fig 16A) to run the DDRTree algo-

rithm [19]. The root of the graph learned by DDRTree was placed on the branch that starts

with the PTA to obtain the pseudotime shown in Fig 9B.

Marker genes and KeyGenes

For each gene, the cluster of interest (COI) was defined as the cluster that had the highest

mean expression of the gene. Then, a binary classifier based on an expression threshold was

defined: cells with expression above that threshold were considered to be part of the COI. We

systematically varied this threshold to create a ROC based on the cells’ true cluster identities.

The AUROC was then used to determine the usefulness of this gene as a marker (rather than

the specificity or sensitivity at a specific threshold). Genes that had an AUROC exceeding 0.8

were detected in at least 80% of the cells in the COI, had a minimum mean expression of 1.5

in the COI, and those for which maximally 25% of the cells outside the COI had significant

expression, were defined as marker set candidates (Hochane et al. [1] S3 Table). Significant

expression was defined here as an expression level higher than the 25th percentile of express-

ion in the COI. Subsequently, the top four candidate marker genes per cluster, as ranked by

the AUROC, resulted in a final set of 88 marker genes (marker set, Hochane et al. [1] S3 Table).

To apply the KeyGenes prediction algorithm [22], two-thirds of the cells were assigned to

the training set and one-third to the test set. A multinomial logistic regression model was

trained on the training set with LASSO shrinkage using the 500 most HVGs, filtered for stress

markers and ribosomal genes. The shrinkage parameter was determined by 20-fold cross

validation. To apply the KeyGenes method to single cells, each cell was treated as a sample,

and cross validation was used to control for overfitting. The model obtained a list of 95 clas-

sifier genes with nonzero weights (KeyGenes set, Hochane et al. [1] S3 Table). Thereafter, the

cells in the test set were assigned to the cell type with the highest identity (id) score; 84% of

the cells in the test set were classified correctly (16% test error). On average, the id score was

0.59, and 24% of the cells in the test set obtained an id score higher than 0.8.

Differential expression analysis

For all differential expression analyses, we used EdgeR (version 3.24.0) [71] on raw counts.

Normalization and dispersion estimates were calculated by calcNormFactors and estimate-

Disp, respectively. We modeled gene expression with a negative binomial generalized linear

model with glmQLFit. Besides the conditions to be compared, a detection rate for each gene

was added to the design matrix. The detection rate is defined as the fraction of cells with

nonzero expression. In the comparison of different ages, we excluded the w9 and w16 sam-

ples. The w9 sample contained only a few cells, which results in high uncertainty for aver-

age gene expression levels. The w16 sample was created separately from the other samples.
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Therefore, to avoid batch effects, which are not corrected for in the differential expression

analysis, we therefore also excluded the w16 sample.

GWAS analysis

The NHGRI-EBI GWAS catalog was used to retrieve genes associated with traits related to

kidney diseases. Specifically, we selected the following kidney traits: kidney stone, kidney

disease, rapid kidney function decline, chronic kidney disease, kidney amyloid deposition

measurement, acute kidney injury, type 1 diabetes nephropathy, nephrolithiasis, diabetic

nephropathy, proteinuria, GFR change measurement, renal cell carcinoma, serum creatinine

measurement, cystatin C measurement, type 2 diabetes nephropathy, immunosuppressive

agent, tacrolimus measurement, focal segmental glomerulosclerosis, nephrotic syndrome,

membranous glomerulonephritis, lupus nephritis, IgA glomerulonephritis, renal system

measurement, and Wegener’s granulomatosis. This selection resulted in a list of 560 genes

(Hochane et al. [1] S4 Table, Kidney GWAS genes). As a negative control, we also obtained a

list of 1,508 genes associated with traits related to lung diseases (Hochane et al. [1] S4 Table,

Lung GWAS genes) in which we selected the following traits: lung adenocarcinoma, lung

carcinoma, interstitial lung disease, squamous cell lung carcinoma, lung disease severity

measurement, family history of lung cancer, non-small cell lung carcinoma, diffusing

capacity of the lung for carbon monoxide, pulmonary function measurement, vital capacity,

emphysema, idiopathic pulmonary fibrosis, chronic bronchitis, chronic obstructive pul-

monary disease, pneumonia, and asthma. We performed a one-sided Fisher’s exact test to

determine whether the genes in the GWAS lists were significantly enriched in the genes that

were differentially expressed in our clusters of interest.

Multiple hypothesis testing

In all cases in which significance is reported, p-values were adjusted for multiple hypothesis

testing using the Benjamini-Hochberg method.

Functional annotation enrichment

To look for enrichment of gene ontology (GO) terms or transcription factor binding sites we

use the DAVID Functional Annotation tool [72], version 6.8 https://david.ncifcrf.gov/with all

genes in the human genome as background gene set. For enrichment of transcription factor

binding sites, we used the UCSC_TFBS category.

Image analysis

smFISH image stacks were processed with 3D deconvolution and background correction

(rolling ball, radius: 3 pixels = 0.39μm), using the NIS Elements software. Subsequently,

https://david.ncifcrf.gov/
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maximum projection was used to create a 2D representation of the image stack. The result-

ing smFISH images were analyzed with homemade MATLAB scripts. First, autofluorescent

background was removed by subtracting the appropriately scaled signal of the GFP channel

from each of the other channels. Then a region of interest (ROI) containing the structure of

interest was defined manually, and candidate smFISH signals were detected by binarizing

the image using a global threshold. Connected components were then counted as smFISH

signals if they fulfilled two criteria: their average intensity was bigger than the third quartile

of individual pixel intensities and they had an area of three pixels or bigger. The density of

smFISH signals in the ROI was calculated as the number of retained connected components

divided by the area of the ROI.

Images of immunostaining were pre-processed by background subtraction (rolling ball,

radius: 100 pixels = 13μm) using ImageJ [73]. Quantification of the immunostaining signal

was carried out using homemade MATLAB scripts. First, the CM region was segmented man-

ually. Then, cross-sections of the CM, roughly perpendicular to the outline of the UB, were

drawn by hand, approximately 30 pixels apart. For the starting point of each cross-section,

the contour length s along the UB starting from the top of the CM (close to the edge of the cor-

tex) was determined (see Fig 16B). The distance s was expressed relative to the total contour

length (from top to bottom of the UB). The distance from the UB along the cross-sections was

defined to be the distance d (see Fig 16B). Fluorescence intensities were then averaged over

lines of 30 pixels length perpendicular to the drawn cross-section. The resulting intensity

profiles (which depend on d and s) were then averaged over multiple images and either s or

d to get average intensity profiles depending only on d or s. Normalization to the maximum

intensity of each profile resulted in the intensity profiles reported in Fig 16D-E. Division of

the CITED1 intensity profile by the SIX2 intensity profile gave the ratio plotted in Fig 16D-

E. Accuracy, indicated by error bars in the plots, was quantified as the standard error of the

mean calculated over all evaluated profiles.

Data availability

The scRNA-seq data have been deposited in the GEO database under accession number

GSE114530. An interactive web application accompanying this paper, which provides con-

venient access to the data, can be found here: http://www.semraulab.com/kidney.
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2.5 Supplementary information

Abbreviation Cell type Gene Reference

NPCs nephron progenitor cells

OSR1 [35]
SIX1 [74]
SIX2 [75, 76]
CITED1 [77, 78]
EYA1 [79]
SALL1 [80, 60]
MEOX1 [3]
GDNF [81]
ETV4 [82]
COL2A1 [83]
HES1 [84, 78]
CRABP2 [20]
LEF1 [20]
ITGA8 [46]

PTA pretubular aggregate

LHX1 [20]
WNT4 [85]
CCND1 [86]

RVCSB a and b renal vesicle/comma-shaped body

LHX1 [87]
PAX8 [85]
JAG1 [88]
PAX2 [41]
WNT4 [89]
SFRP2 [90]
DLL1 [4]

SSBm/d SSB medial/distal

HNF1B [91]
POU3F3 [92]
SIM2 [93]
SOX9 [20]
IRX2 [46]
IRX3 [46]

SSBpr SSB proximal precursor cell

CDH6 [94, 95]
HNF1A [96, 97]
AMN [93]

SSBpod SSB podocyte precursor cell

FOXC2 [98]
MAFB [48]
OLFM3 [20]
WT1 [99]

Pod podocytes

PTPRO [100]
NPHS2 [101]
NPHS1 [102]
PODXL [103]
TGFBR3 [103]

Continued on next page
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Continued from previous page
Abbreviation Cell type Gene Reference

CLIC5 [104]
CITED2 [98]

DTLH distal tubule/loop of Henle

PAPPA2 [105]
MAL [106]
CLCN5 [107]
SLC12A3 [108]
UMOD [20]
SLC12A1 [109]

ErPrT early proximal tubule

LRP2 [110]
ANPEP [111]
SLC34A1 [112]
CLDN1 [113]
CLDN2 [114]
SLC13A1 [115]
CUBN [116]

CnT connecting tubule

ALDH1A1 [20]
TACSTD2 [20]
CDH1 [117]

IPC interstitial progenitor cell
GDNF [118]
FOXD1 [119]

ICs a and b interstitial cells a and b

DES [120]
COL3A1 [121]
COL1A1 [122]
SERPINE2 [123]
FGF7 [41, 124]
LEF1 [125]
DCN [126]

Mes mesangial cells

ACTA2 [123]
TPM2 [127]
PDGFRB [128]
MCAM [123]
CSPG4 [123]
CD248 [129]

UBCD ureteric bud/collecting duct

KRT18 [130]
KRT8 [130]
RET [131]
CLDN7 [132]
AQP2 [133]
GATA2 [133]
MMP7 [134]
CALB1 [117]

End endothelial cell

KDR [135]
TEK [136]
FLT1 [135]
CDH5 [137]

Continued on next page
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Continued from previous page
Abbreviation Cell type Gene Reference

PECAM1 [138]

Leu leukocytes

CD37 [139]
CD48 [140]
ITGB2 [141]
IFI30 [142]
IL1B [143]

Table 2.1. Literature marker set and references.
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Acronyms

AUROC area under the ROC

COI cluster of interest

FDR false discovery rate

FISH fluorescence in situ hybridization

GDNF glial cell-derived neurotrophic factor

GO gene ontology

GWAS genome-wide association studies

knn k-nearest neighbors

L2FC log2 fold change

PCR polymerase chain reaction

RA retinoic acid

RET ret proto-oncogene

ROC receiver operating characteristic

ROI region of interest

RT room temperature

smFISH single-molecule FISH

tSNE t-distributed stochastic neighbor embedding

UMI unique molecular identifier

w16 week 16

Cell types

CM cap mesenchyme

CnT connecting tubule

CSB comma-shaped body

DTLH distal tubule/loop of Henle

End endothelial cell

ErPrT early proximal tubule

IC interstitial cell

IPC interstitial progenitor cell

Leu leukocytes

LOH loop of Henle

Mes mesangial cells

MM metanephric mesenchyme

NPC nephron progenitor cell

Pod podocyte

PTA pretubular aggregate

RV renal vesicle

RVCSB renal vesicle/comma-shaped body

SSB s-shaped body

SSBm/d SSB medial/distal

SSBpod SSB podocyte precursor cell

SSBpr SSB proximal precursor cell

UB ureteric bud

UBCD ureteric bud/collecting duct
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Abstract

Stem cell differentiation is a highly dynamical process involving intricate gene regulatory

mechanisms at multiple levels. A lack of detailed understanding of these mechanisms makes

it challenging to improve existing differentiation protocols, which are gleaned from in vivo

development and are typically slow and inefficient. The large majority of existing studies

on differentiation has focused on transcriptional regulation, while the extent and mecha-

nisms of translational regulation are much less explored. Here, we present a time-resolved,

multi-omics study of retinoic-acid driven differentiation of mouse embryonic stem cells,

comprising mass spectrometry, mRNA-sequencing of cytoplasmic and nuclear fractions, as

well as micro-RNA sequencing. We develop a hierarchical kinetic rate model that allows

us to integrate these datasets and explore the factors that determine protein levels. While

the cytoplasmic-to-nuclear ratio of mRNA only has a minor effect, our model reveals micro-

RNAs that have a significant influence on the translation of their putative targets. Multi-

omics factor analysis finally identifies the major biological factors involved in the differ-

entiation process. All in all, our study shows how a refined kinetic model, in conjunction

with stringent model selection, can be used to discover regulatory mechanisms in a high-

throughput manner, without the need for perturbations.

1 S.S. and N.S. conceived the project. S.S. acquired funding. N.S. and B.B. supervised and performed the pro-
teomics experiments. S.S., P.v.d.B, N.N. and M.F. performed all other experiments with support from E.A. and
M.H.. P.v.d.B. analyzed, interpreted and modeled the data with assistance from M.M.. P.v.d.B. and S.S. wrote the
manuscript.
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3.1 Introduction

Much of the medical potential of pluripotent stem cells is due to their ability to differenti-

ate into all tissue types of the adult body [2]. While tremendous progress has been made in

guiding cells through successive lineage decisions, the gene regulatory mechanisms under-

lying these decisions remain largely unknown. This gap in knowledge hampers the stream-

lining and acceleration of differentiation protocols. A large body of work has focused on tran-

scriptional regulation, charting transcriptome changes during differentiation, most recently

down to the single-cell level [3, 4, 5, 6, 7]. Gene regulation occurring at the level of trans-

lation is much less explored. Most transcriptomics studies make the implicit assumption

that mRNA levels are a good proxy for protein levels. It has been shown that in steady state,

roughly 40% of protein variability across the proteome, can be explained by differences in

mRNA abundance ([8]). Models of the steady-state protein to mRNA ratio (PTR) can explain

up to two-thirds of the variability when taking transcript sequence features -such as coding

sequence length or amino acid frequencies- into account [9]. In highly dynamical systems,

such as differentiating stem cells, protein abundance is typically modeled with differential

equations. These models are different from steady-state models in that they cannot explain

absolute protein levels, but they can be used to infer kinetic rates for protein synthesis and

degradation [10, 11, 12]. Here, we show that such models can also be used to reveal regulatory

mechanisms during stem cell differentiation in an unbiased, high-throughput manner. We

collected a multi-omics dataset of retinoic acid (RA) driven differentiation of mouse embry-

onic stem cells. Samples taken over a period of 96h were subjected to: mass spectrometry,

bulk RNA-sequencing of nuclear and cytoplasmic fractions, as well as small RNA sequenc-

ing to quantify micro-RNA (miR) abundance. To model protein dynamics we refined a birth-

death model by considering explicitly the cytoplasmic-to-nuclear ratio of mRNA abundance

and the influence of certain technical artifacts related to mass spectrometry. By modeling

the influence of miRs on protein synthesis, we identified several miR that likely have a signif-

icant influence on protein regulation. Finally, we used multi-omics factor analysis (MOFA)

to reveal the overall relevance of translational regulation for in vitro differentiation.

3.2 Results

3.2.1 Pervasive discordance between RNA and protein in retinoic acid

driven mESC differentiation

We used RA differentiation of mouse emrbyonic stem cells (ESCs) as a generic model for

in vitro differentiation. Previously, we characterized this differentiation assay in detail at

the transcriptional level by single-cell RNA-seq [3] In particular, we have shown that within

96 h of RA exposure, mouse ESCs bifurcate into an extraembryonic endoderm-like and an

ectoderm-like cell type (XEN and ECT respectively). Here we collected samples during an
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RA differentiation time course (Fig 1A). For each time point we quantified total poly(A) RNA

by RNA-seq and protein expression by tandem mass tag (TMT) labeling followed by tandem

mass spectrometry (MS/MS). In total, we obtained both RNA and protein expression of 6271

of genes (Fig S1A-E) for 8 time points in duplicate. After correction for batch effects due to

different runs and sequencing methods (Fig 1H), we achieved highly similar results for the

two biological replicates. To investigate, in how far protein expression can be predicted from

RNA expression, we started with the simplest conceivable model (termed naive here), which

assumes that protein expression is identical to RNA scaled with a constant factor. This model

is justified if RNA expression changes slowly on the time scale of protein degradation, result-

ing in a quasi-steady state. Consequently, the PTR would be approximately constant over the

time course. To test this model, we scaled both protein and RNA to their respective means,

which should result in a constant PTR of 1, if the naive model is valid. We observed that

for a large fraction of genes the naive model is inaccurate, resulting in a low coefficient of

determination (R2) and low correlation coefficient (Fig 1C, Fig 2A). For particular genes we

could even observe significant anti-correlation between RNA and protein (Fig 1B). This re-

sult shows that the assumptions of the naive model are likely wrong for the majority of genes

and a more sophisticated model is necessary to explain the relationship between RNA and

protein.

3.2.2 Protein turnover model explains RNA-protein discordance for most

genes

To relax the assumption that expression is in steady state, we next considered a kinetic model

that implements a birth-death process for protein turnover (Eq 3.1). Similar models have

been used previously to describe protein turnover during the stress response in yeast [10], as

well as embryonic development of Xenopus [11] and Drosophila [12]. The birth-death model

assumes constant rates for protein synthesis (ks) and degradation (kd). All processes related

to protein production (translation, initiation, elongation, etc) are lumped into ks, while kd

represents all processes leading to a reduction in protein levels (dilution due to cell division,

active degradation, etc.). We do not consider simpler, degenerate models (without ks and/or

Figure 1 (following page). Protein turnover models outperform the naive model in pre-
dicting protein temporal profiles. (A) Schematic overview of RA differentiation time course
and subsequent omics measurements. (B) Example fit of the naive model. The naive model
is a smoothing spline fit of RNA scaled to match the mean protein expression. (C) R2 distri-
bution of the naive model. (D) Example fit of the totRNA model. (E) R2 distribution of the
totRNA model model. (F) Example fit of the totRNA and fullRNA model, replicate 1. (G) R2

distribution of the cyRNA model. (H) Example fit of the ci model, replicate 1. The height
of the grey bar indicates the fitted ci parameter. (I) R2 distributions of the ci model. Only
genes that are improved by the ci model are shown. The full distribution of genes is shown
in Fig S2E. Some genes with extremely low R2 values are set to the minimum value of the plot
for clarity. Corresponding Pearson’s r distributions are plotted in Fig S2.
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kd [11]), because these models are not biologically meaningful in our opinion. It seems rea-

sonable to assume that synthesis and degradation always occur to some degree. To reduce

the influence of uninformative small fluctuations, we applied a smoothing spline to the ex-

pression data prior to inferring model parameters by non-linear least-squares fitting. Com-

pared to the naive model R2 and correlation improved markedly (Fig 1DE, Fig 2B), which

might be expected given the increase in model flexibility. To correct for a difference in the

number of fit parameters and thus compare model performance fairly, we used the Bayesian

information criterion (BIC) (see Methods). According to the BIC, 3551 out of 4580 genes were

better fit by the kinetic model. These genes are thus likely out of steady state for the duration

of the experiment as a result of the differentiation cue.

Pg(t)= k
g
s ·Rg(t) – k

g
d ·P

g(t)

k
g
s ≥ 0, k

g
d ≥ 0

(3.1)

In summary, these results showed that a simple birth-death model outperforms the naive

model of protein turnover.

Despite the overall improvement observed with the kinetic model, many genes were still

not properly fit. We would like to interpret the remaining discrepancies as signs of biologi-

cally interesting, dynamic regulation. To be able to do so, we had to exclude technical lim-

itations of our measurements as possible explanations. We first considered the subcellular

localization of mRNA. In our first experiment we measured total RNA, whereas only cyto-

plasmic mRNA is available for translation. Nuclear retention of mRNA was found to reduce

variability in cytoplasmic mRNA concentration and thereby protein synthesis. Moreover,

specific genes are retained in the nucleus as a form of translational regulation [13, 14, 15].
To measure the cytoplasmic mRNA fraction of each gene, we repeated the differentiation

experiment in triplicate and separated cell lysates into a nuclear and cytoplasmic fraction

before performing RNA-seq. To obtain a global scaling factor between cytoplasmic and nu-

clear expression, we regressed totRNA reads, measured previously, on nuclear RNA (nuRNA)

and cyRNA reads across all genes (see methods) . Then the cytoplasmic fraction C was cal-

culated for each gene and each time point. To our surprise, C did not vary substantially be-

tween genes (Mean= 0.817, Std=0.0161, subset of 3,563 genes without any missing values)

(Fig S1F). In addition, C also did not fluctuate much in time for individual genes (Fig S1G).

Despite the low variability of C, we incorporated this parameter into our model (Eq 3.2). As

expected, adding C brought overall only a very subtle improvement (Fig 1G), although for

individual cases, the improvement can be quite significant (Fig 1F). We opted to fit further

models including the cytoplasmic fraction due to the overall slightly better performance.

Pg(t)= k
g
s ·Cg(t) ·Rg(t) – k

g
d ·P

g(t)

0≤Cg(t)≤ 1
(3.2)
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Another important technical limitation was inherent to the proteomics method we em-

ployed. TMT-based proteomics suffers from coisolation interference, a process in which two

peptides are co-isolated in the second MS step. The contaminating peptide interferes with

the quantification of the peptide of interest. To model this contamination, we added an addi-

tional parameter (ci) to the model (Eq 3.3), which we assume to be constant for all TMT tags

(i.e. time points). Effectively, including this parameter allows protein expression to have a

bigger dynamic range, which can improve the fit for certain genes significantly (Fig 1H-I,

Fig 1DE). Judged by the BIC, 598 genes were fit better including ci. All in all, this result shows

that it is very important to consider co-isolation interference.

Pg(t)+ cig = k
g
s ·Cg(t) ·Rg(t) – k

g
d · (Pg(t)+ cig)

0≤ cig ≤min{Pg(t)}
(3.3)

3.2.3 Including miRs improves model performance and identifies miR-

gene interactions

Having ruled out major systematic errors, we were in a position to explore biological expla-

nations for the remaining discordance between RNA and protein. We chose to explore miRs

since they are known to play an important role in gene regulation during differentiation.

Specifically, we wanted to study the influence of miRNAs on protein translation initiation. In

order to study the role of miRs in our system we repeated the differentiation assay and mea-

sured the miRnome by small RNA-seq in quadruplicate. We quantified around 1000 mature

miRs per time point (Fig 1ACE). To identify possible miR interactions, we used the list of pre-

dicted targets provided by TargetScanMouse [16]. We further limited the number of miRs per

mRNA by filtering the miR-gene interactions leniently using the context score (Fig 1D). In the

end we retained 4527 genes with 560 unique mature miRs and 45,882 potential interactions

Figure 2 (following page). The addition of miRs further improves the protein turnover
model for a subset of genes and reveals novel candidate miR-gene interactions. (A) Ex-
pression profiles of 560 miRs in six clusters. (B) Example fit of miR model for the gene Rab8a,
replicate 1. First panel: expression of the assigned miRs of a single cluster. Colored lines
are individual smoothing spline fits. Second panel: Cytoplasmic RNA expression and the ef-
fective RNA concentration available for translation (see Materials and methods). Solid lines
represent smoothing splines. Third/fourth panel: cyRNA and miR model fits. (C) Distri-
bution of inferred α for genes that benefit from miR model. (D) R2 distribution of the miR
model and the next best model (either naive, totRNA, cyRNA or ci). Only genes that bene-
fit from the miR model are shown. Some genes with extremely low R2 values are set to the
minimum value of the plot for clarity. Corresponding Pearson’s r distributions are shown in
Fig S2F. (E) R2 distributions of (D) compared in a scatter plot. Colored dots are defined by the
cutoffs indicated in red and represent a subset of genes with a miR-gene interaction of higher
confidence. Some genes with extremely low R2 values are set to the minimum value of the
plot for clarity. (F) miR model fits of two genes (Cdk7, Pccb) from the subset highlighted in
(E).
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(Fig 1DE).

If multiple miRs with similar temporal profiles target the same gene, we considered them

to be indistinguishable. Therefore we globally clustered miRs into six clusters with similar

temporal profiles (Fig 2A) and averaged miRs targeting the same gene per cluster (Fig 2B). To

keep the model simple we assumed that the inhibitory effect of miRs on protein translation

grows linearly with miR abundance (Eq 3.4). We fit one of the six miR clusters at a time and

identified the improvement in model performance for each cluster and each gene.

P
g
m(t)= k

g
s · (1 –α

g
m ·M

g
m) ·Cg(t) ·Rg(t) – k

g
d ·P

g(t)

0< αg
m ≤ 1

(3.4)

Including miRs greatly improved the fits for some genes, especially when there is a tran-

sient discordance between RNA and protein expression (Fig 2B). Typically, the "effective"

mRNA abundance (cytoplasmic mRNA corrected for miR effects) was more dynamic than

nominal mRNA abundance. For many of the genes that benefit from the addition of miRs,

their influence is typically large. For these genes, 50% of translation is blocked on average at

peak miR expression (Fig 2C). Overall, the addition of miRs significantly improved the coef-

ficient of determination for a quarter of the genes (Fig 2D).

To use the model for identifying novel miR-gene interactions, we ranked the genes by

the quality of the model fit and model performance improvement compared to the simpler

models without miRs (Fig 2E, Suppl Table 2). Among this list of candidate genes we selected

seven genes and their putative miRs (Fig 2BF, Fig S3), whose interaction we intend to validate

in a follow-up study. (Rab8a, Cdk7, Pccb, Acad8, Mfge8, Eif4h and Srgap2).

3.2.4 The best protein turnover model explains 45% of total protein vari-

ance

While each model refinement introduced above improved model performance overall, each

discussed model was optimal for a subset of genes, judged by the BIC (Fig 3A). In about 16% of

cases the naive mode was optimal, meaning that for these genes none of the protein turnover

models improve prediction by a significant amount. 25% and 26% of genes are best predicted

with the kinetic model without or with considering mRNA localization, respectively. So for

51% of genes, protein expression is out of steady state, but explainable by a simple model

with fixed synthesis and degradation rates. For 8% of genes the model including co-isolation

interference was optimal. The increased relative dynamic range due to subtracting a con-

stant increased the fit for these genes significantly. Finally, 25% of genes were fit optimally

with one of the miR clusters, meaning that translational regulation plays a significant role for

these genes. All things considered, 84% of genes were insufficiently described by RNA alone,

leading to a very significant lack of variance explained (Fig 3BC). Therefore, it seems in gen-

eral not advisable to consider mRNA abundance a good proxy for protein levels in a highly

dynamical setting.
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Figure 3. Selecting the optimal model on a gene-by-gene basis increases the total ex-
plained variance of protein expression from 30% to 50%. (A) Assignment of the optimal
model for each gene based on BIC. The number next to the miR bar indicates the miR clus-
ter giving the best fit. (B) R2 distribution of the optimal fits from (A) and their naive model
counterpart. Some genes with extremely low R2 values are set to the minimum value of the
plot for clarity. (C) Median percentage of protein variance explained by each model, picking
among the best models progressively. Fits with negative R2 were ignored.

3.2.5 Multi-omics factor analysis reveals global factors driving transla-

tional regulation in mESC differentiation

The above analyses focused on how individual protein turnover is regulated. In order to de-

scribe translational regulation in our system in a more comprehensive manner we performed

MOFA. MOFA is an extension of factor analysis which integrates omics data from different

sources, like the genome, transcriptome or metabolome. MOFA extracts low dimensional,

latent factors that represent the biological processes underlying the variation observed in

the data. In order to identify factors involved in translation only, we used two datasets: PTR

and miR abundance (Fig 4A). MOFA is typically run directly on gene expression, but here

we used the PTR, because we were most interested in explaining how post-transcriptional
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regulation can drive fluctuations away from steady state. From this analysis we obtained six

driving factors of translational regulation (Fig 4B).

The six factors had distinct temporal trends (Fig 4C), which we used to interpret their bio-

logical identity. Since MOFA sorts the factors in order of variance explained and the first three

factors had the simplest trends we restricted our interpretation to these three factors (Fig 4D).

The genes contributing most to factor 1 are enriched for gene ontology (GO) terms related to

development, differentiation, cell cycle and nucleotide synthesis (Fig 4E). Thus, we interpret

this factor as the main differentiation program which includes changes in metabolism. This

interpretation is supported by the miR that contribute most to factor 1 (Table 3.1): Several

of these miRs are known to be involved in differentiation. The let-7 family in particular is

known to play an important role in embryonic stem cell pluripotency and self-renewal. Fac-

tor 2 is enriched for GO terms in morphogenesis, cell adhesion and signaling. It appears to

be the factor driving the specification of the cell type as a response to the external signals.

Top miRs of this factor are involved in multiple differentiation paths (osteocytes, adipocytes,

trophectoderm, neurons, see Table 3.1). Finally, Factor 3 appears to be related to epithelial-

mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) as many of the

top miRs are involved in EMT various types of cancers. Moreover, one of the few enriched

GO terms is "epithelial tube morphogenesis". All in all, this analysis shows that meaningful

biological factors can be revealed by considering protein synthesis and its regulation.

Factor Rank miR symbol Short description

1 5 1 miR-1843a-5p Differentially expressed in traumatic brain injury [17].

1 5 2 miR-27b-5p Clustered with miR-23b. Upregulated in Smad4 knockout

cardiomyocytes, involved in cardiac hypertrophy [18]. Induces EMT

in gastric cancer [19].

1 5 3 miR-23b-5p Clustered with 27b. Regulates osteoclast differentiation [20].
Attenuates glucose-mediated EMT in diabetic nephropathy [21].

1 5 4 let-7d-3p let-7 family is involved in pluripotency and self-renewal, and is

differentially expressed between different ESC states [22]. 7d:

inhibitions of leads to EMT in idiopathic pulmonary fibrosis [23].1 5 5 let-7f-5p

1 4 1 miR-34c-5p
Downregulation of this miR promotes EMT in breast cancer.[24]

1 4 2 miR-34c-3p

1 4 3 miR-10a-5p Critical for smooth muscle cell differentiation from mESC [25].

1 4 4 miR-9-3p Involved in neurogenesis [26]. Suppressor of EMT in nasopharyngeal

carcinoma. [27]

1 4 5 miR-34b-5p See miR-34c.

2 5 1 miR-7b-5p Represses self-renewal [28]. Reverses EMT in breast cancer through

STAT3 [29].

Continued on next page
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Continued from previous page

Factor Rank miR symbol Short description

2 5 2 miR-3058-3p

2 5 3 miR-195a-3p Inhibits adipocyte differentiation [30]. Inhibits EMT in Prostate

cancer through FGF2 [31]. Inhibits EMT in colorectal cancer through

NOTCH2 [32].

2 5 4 miR-3095-5p

2 5 5 miR-187-3p Inhibits osteogenic differentiation [33]. Inhibits EMT in

hepatocellular carcinoma [34].

2 4 1 miR-297c-3p

Involved in trophectoderm specification in mouse [35].2 4 2 miR-297a-3p

2 4 3 miR-297b-3p

2 4 4 miR-466f-3p In cluster with each other. Inhibits NeuroD1, which is required for

neuron differentiation [36].2 4 5 miR-669f-3p

3 5 1 miR-770-3p Inhibits EMT in non-small cell lung cancer [37].

3 5 2 miR-760-3p Inhibits EMT in breast cancer [38].

3 5 3 miR-1306-5p Involved in hepatocellular carcinoma, regulates Snail-mediated

metastasis [39].

3 5 4 miR-301b-5p Promotes proliferation, mobility and EMT in bladder cancer by

targeting EGR1 [40].

3 5 5 miR-369-5p The -3p variant targets Sox4 [41].

3 4 1 miR-452-3p Inhibits EMT in hepatocellular carcinoma through TGF-β1 [42].

3 4 2 miR-340-5p Targets Bcl-w and Sox2 and inhibitions of miR promotes cancer

progression [43].

3 4 3 miR-186-3p Affects EMT through Cdc42 in lung cancer [44].

3 4 4 miR-700-5p

3 4 5 miR-106a-5p Downregulates Twist1 which causes EMT [45].

Table 3.1. Top 5 negative and positive miRs for the first three MOFA factors.

3.3 Discussion

Widespread discordance between steady-state protein and mRNA levels has been observed

in several mammalian systems [46, 47, 48]. Importantly, low correlation does not immedi-

ately imply a significant role of gene-specific regulation, as technical noise tends to reduce

the observed correlation and conventional correction schemes typically ignore the effect of

systematic, correlated errors [49] Edfors et al. [48] showed recently that the PTR for a specific

gene is constant across several tissues [48]. While the PTR might allow the prediction of ab-

solute protein levels, it is unable to capture relative changes over time or relative differences
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Figure 4. Multi-omics factor analysis uncovers underlying factors that drive translational
regulation in mESC differentiation. (Continued on next page)
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Figure 4. Multi-omics factor analysis uncovers underlying factors that drive translational
regulation in mESC differentiation. (Continued from last page) (A) Schematic of the ma-
trices used in MOFA analysis. (B) Variance explained (R2) by each of the six factors. (C) Tem-
poral profile of each factor. (D) Distributions of the factor weights for the first three factors.
(E) GO term over and under representation by the top (+) and bottom (-) 120 genes of the
first three factors. The top 10 enriched GO terms (with p<0.1) is shown for each factor and
direction. Test performed is elim with KS statistic, see Materials and methods).
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between tissues [50].

To identify dynamic translational regulation during stem cell differentiation, we therefore

collected a time-resolved gene expression dataset and found overall low correlation between

mRNA and protein abundance across time. Such low correlation has been observed recently

in several other systems, in particular: Xenopus development [11], C. elegans development

[51], macrophage differentiation [52] and mouse ESC differentiation [53]. While the lack of

strong correlation is typically interpreted as a sign of (post) translational regulation [51, 53],
theoretical work showed that a simple delay between mRNA and protein production can lead

to a reduction in gene-wise correlation [54, 55] A simple model with constant kinetic rates

explained the protein dynamics of a third of all genes during stress response in yeast [10] and

of 75% of all genes in Xenopus development [11]. In our system, 3551 out of 4580 genes were

explained better by this model, compared to a naive model which assumes a constant PTR.

To explain the remaining discordance we explored the cytoplasmic-to-nuclear ratio of

mRNA abundance, but did not find a strong effect. On the other hand, including a parame-

ter modeling co-isolation interference markedly improved the fit for some genes. We there-

fore posit that co-isolation interference should be included in any kinetic model when TMT

labeling is used for multiplexing the mass spectrometry measurements.

miRs have been identified as a key regulator of stem cell pluripotency and differentia-

tion [56]. For example, members of the the let-7 and miR-290 families have been implied

as drivers for differentiation of ESCs as well as in the maintenance of pluripotency [57, 22,

56, 58] To find putative targets of miRs, various computational methods, typically based

on sequence complementarity and conservation, have been developed [16, 59, 60]. These

methods predict hundreds of thousands of interactions, among which are likely many false

positives. The gold standard for validation, the luciferase assay, is time consuming, which

means that the majority of potential interactions have not been verified. To our knowledge,

there is currently no high-throughput experimental method to identify miR-mediated trans-

lational regulation in a genome- and miRnome-wide manner. We believe that our modeling

approach is able to reduce the number of potential interactions to a much smaller set, which

can be easily validated by conventional methods.

In addition to the possibility to infer regulatory interactions between different molec-

ular players, multi-omics data sets are also useful to identify major driving factors of bio-

logical processes in development and disease. A living cell is typically considered to be a

highly complex dynamical system that defies many traditional modeling approaches due to

the large amount of unobserved or indeterminable parameters. There is, however, the hope

that many biological processes in fact occur on low-dimensional manifolds within the high-

dimensional space needed to describe the state of a cell. Multi-omics measurements will

allow us to ascertain if there are in fact such manifolds, which would significantly simplify a

complete quantitative understanding of biological dynamics. Our study indicates the pres-

ence of at least 3 factors that co-regulate miR and protein abundance during differentiation.

To unravel how co-regulation is achieved molecularly and how the factors can be perturbed
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to in vitro differentiation are fascinating challenges for the future.

3.4 Materials and methods

3.4.1 Cell culture

E14 mouse embryonic stem cells were cultured as previously described [3]. Briefly, cells were

grown in modified 2i medium [61]: DMEM/F12 (Life technologies) supplemented with 0.5x

N2 supplement, 0.5x B27 supplement, 4mM L- glutamine (Gibco), 20 μg/ml human insulin

(Sigma-Aldrich), 1x 100U/ml penicillin/streptomycin (Gibco), 1x MEM Non-Essential Amino

Acids (Gibco), 7 μl 2-Mercaptoethanol (Sigma-Aldrich), 1 μM MEK inhibitor (PD0325901,

Stemgent), 3 μM GSK3 inhibitor (CHIR99021, Stemgent), 1000 U/ml mouse LIF (ESGRO).

Cells were passaged every other day with Accutase (Life technologies) and replated on gelatin

coated tissue culture plates (Cellstar, Greiner bio-one).

3.4.2 Retinoic acid differentiation and sample collection

Retinoic acid induced differentiation was carried out exactly as described before [3]. Prior

to differentiation cells were grown in 2i medium for at least 2 passages. Cells were seeded

at 2.5e5 per 10 cm dish and grown over night (12 h). Cells were then washed twice with PBS

and differentiated in basal N2B27 medium (2i medium without the inhibitors, LIF and the

additional insulin) supplemented with 0.25 μM all-trans retinoic acid (RA, Sigma-Aldrich).

Spent medium was exchanged with fresh medium after 48 h. To collect samples, cells were

dissociated with Accutase and spun down. Full RNA and cytoplastmic/nuclear RNA were

always immediately extracted (RNeasy, Qiagen and SurePrep, Fisher Scientific, resp.) and the

purified RNA was stored at -80C until RNA-sequencing was performed. For proteomics and

miR-sequencing, pellets were flash frozen in liquid nitrogen and stored at -80C until further

processing.

3.4.3 RNA and miR sequencing

The libraries for RNA sequencing were prepared under standard conditions using Illumina’s

TruSeq stranded mRNA sample preparation kit. The stranded single end libraries were se-

quenced using Illumina HiSeq at 40bp with an average read depth of 40 million reads per

sample. Paired-end libraries for RNA sequencing were sequenced on an Illumina NextSeq

500 at 150bp per strand at a read depth of 10 million reads per sample. miRs were extracted

from frozen pellets using miRNeasy (Qiagen) kit. Libraries for small RNA sequencing (miR

sequencing) were prepared using NEBNext Small RNA Library Prep Set for Illumina (New

England Biolabs) and were sequenced on an Illumina NovaSeq 600 at 150bp paired-end with

a range of 4 to 15 million samples. Specification table for the sequencing strategy is available

upon request. All sequencing data is available through GEO.



120 Kinetic modeling of multi-omics data in stem cell differentiation

3.4.4 Mass spectrometry

Pelleted cells were lysed in 400 μl RIPA buffer, except for the sorted cells. Volumes of cell

lysate corresponding to 100 μg protein per sample were digested with trypsin using a mod-

ified FASP protocol [62]. Subsequently each sample was labeled with TMT 10-plex, 6-plex

or 11-plex reagent (Thermo Fisher)) according to the manufacturer’s protocol. All labeled

samples were combined into a set-sample. Which labels were assigned to each sample is

specified in the specification table, which is available upon request. The labeled set-sample

was fractionated by electrostatic repulsion-hydrophilic interaction chromatography (ERLIC)

run on an HPLC 1200 Agilent system using PolyWAX LP column (200x2.1 mm, 5 μM, 30nm,

PolyLC Inc, Columbia, MD) and a fraction collector (Agilent Technologies, Santa Clara, CA).

Set-samples were fractionated into a total of 40 ERLIC fractions. Each ERLIC fraction was

subsequently further separated by online nano-LC and submitted for tandem mass spec-

trometry analysis to both LTQ OrbitrapElite or Q exactive high field (HF). One third of each

fraction was injected from an auto-sampler into the trapping column (75 um column ID, 5

cm length packed with 5 um beads with 20 nm pores, from Michrom Bioresources, Inc.) and

washed for 15 min;; the sample was eluted to analytic column with a gradient from 2 to 32 %

of buffer B (0.1% formic acid in ACN) over 180 min gradient and fed into LTQ OrbitrapElite

or Q exactive HF. The instruments were set to run in TOP 20 MS/MS mode method with

dynamic exclusion. After MS1 scan in Orbitrap with 60K resolving power, each ion was sub-

mitted to an HCD MS/MS with 60K resolving power and to CID MS/MS scan subsequently.

All quantification data were derived from HCD spectra.

3.4.5 RNA-seq processing

We used genome assembly mm10 release 93 from Ensembl. First an RSEM (v1.3.1) reference

was created with default settings. Next we performed adapter and quality trimming with

Trimmomatic (v0.38). Finally all reads were aligned with RSEM with STAR (v2.6.1a) with the

option enabled for stranded libraries. Expected counts from RSEM were used as input for

DESeq2 (v1.26) to obtain regularized log2 counts with stabilized variance to make compar-

isons between samples more reliable. From these values we obtained regularized counts and

used these for all further analyses and as input for batch correction.

3.4.6 Proteomics processing

Peptide search was performed on peptides identified in full RNA seq data to increase speci-

ficity of the protein quantification with MaxQuant. Proteins were quantified from the pep-

tide measurements in the evidence.txtoutputs. Reversed peptides and contaminants were

removed. Each column in the file was then normalized to the mean. Some peptides for some

samples were quantified multiple times, due to multiple mass-spectrometry runs or multiple

tmt tags in the same sample mix. These values were averaged. Multiple peptides assigned
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to a single ensembl gene ID were also averaged to obtain normalized protein expression that

we used for batch correction.

3.4.7 Batch correction

We observed global expression differences in protein and rna expression depending on the

seeding day which we decided to correct using the RemoveBatchEffect function from limma

(v3.42.2). We applied it on the protein and totalRNA datasets separately with three different

levels of batches, one each for the first replicate, the second replicate and for two samples

we used to replace failed samples of the first replicate (Specification table available upon

request). The resulting batch-corrected values were used as input for most further analysis

(Fig S1H).

3.4.8 miR-seq processing

For alignment of miR-seq data we used the same genome release as above with miRnome

release 22.1 from miRBase using the mature miR sequences. To prepare the reads we per-

formed adapter and quality trimming with Trimmomatic and obtained a consensus forward

sequence using both the forward and reverse read and PEAR (v0.9.6). We next ran bowtie-

prepare from bowtie (v1.0.0-1). Finally we quantified each sample with the mapper.pl and

quantifier.pl scripts from mirdeep2 (v2.0.1.2). The obtained counts were processed the same

way as the RNA-seq data, but separately.

3.4.9 miR-gene interactions

We looked for putative miR-gene interaction using TargetScanMouse release 7.1. We filtered

the "miR family" table for expressed miRs and expressed RNAs. We next did a lenient filter

on the miR-gene interactions; we filtered out all interactions with a cumweightscore lower

than -0.3. Finally, we wanted to keep only miRs with high dynamics over the time course and

high reproducibility. To achieve this we calculated for each miR the Coefficient of variation

(CV) across the mean miR expression of each time point and the mean of the CV’s across the

biological replicates. We fit a gaussian mixture model to these to values using mclust (v5.4.6)

where each distribution has an equal diagonal shape, but with varying volumes ("VEE" mod-

elNames option). We filtered the miR-gene interactions list for miRs from cluster 1 because

they fit our high variance and high reproducibility criteria (Fig S1I). The final putative list of

miR-gene interactions comprised 560 miRs and was used in the miR clustering and model fit

(see below).

3.4.10 miR clustering

To cluster miRs into sets of similar temporal profiles, miR expression of the miRs in the inter-

action table was first averaged per time point. A miR to miR distance matrix was created with
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1–Pearson correlation on log2-transformed values. This matrix was then used to perform hi-

erarchical clustering with complete linkage (base R) and the resulting dendrogram was cut

into 6 clusters.

3.4.11 C-fraction calculation

To obtain a per gene C-fraction we needed to map how cytoplasmic and nuclear sequencing

reads relate to each other. We took total, cytoplasmic and nuclear RNA and removed genes

that had any raw count lower than 10. We then took the top 500 genes with the lowest vari-

ance and, under the assumption that for these genes that C-fraction was the most stable, fit

the following linear model: Rtot = βc · Rc + βn · Rn, where Rtot is total RNA, Rc is cytoplas-

mic RNA and Rn is nuclear RNA. T For each we applied the regularized log2 counts. The fit

beta parameters map cytoplasmic and nuclear values to total RNA values and were 0.815 and

0.183 respectively. Then for each gene g we calculated the C-fraction: Cg =
βc ·R

g
c

βc ·R
g
c +βn ·R

g
n

3.4.12 Rate model fitting

We fit several rate models for every gene in our clean set of genes (Fig S1E). We first scaled

totRNA and protein expression by dividing each by its replicate mean. We next with a

smoothing spline (smooth.spline function, base R) to the totRNA data for each replicate

with 7 degrees of freedom (DF). We opted for manually setting the DF over letting the

function determine it because we observed that what seems like noise at the RNA level is

sometimes replicated at the protein level. smooth.spline would sometimes oversimplify

the dynamics of RNA and this would lead to bad fits at the protein level if the protein has

more dynamics than the resulting spline. Perhaps counterintuitively, we deemed the fit

more conservative if we forced high dynamics at the RNA level at the cost of introducing

some noise. We let smooth.spline determine the DF for all other smoothing spline fits using

leave-one-out-cross-validation. We fit smoothing splines to the C-fraction and multiplied

this with the smooth totRNA to get smooth cyRNA. miRs that were assigned to each gene

were first averaged over replicates and then divided by the miRs maximum value. Smooth

splines were fit to each miR and then the smooth miRs for each miR cluster were averaged.

We solved the differential equation using deSolve (v1.28), given a rate model, parameters,

totRNA or cyRNA and a miR cluster. Parameters put into the solvers were log2(kprod),

log2(kdiv), P0, ci and α, depending on the differential equation being solved. kprod = ks · kd

and kdiv = ks/kd, which are perpendicular to the original values on purpose because the

optimization algorithms sometimes had difficulty finding an optimal fit, because covarying

ks and kd may result in a very similar fit. We log2 transformed these values to give the

optimization function more control over fitting it. P0 is the protein concentration at t=0h,

we opted for adding this as a model parameter instead of setting it to the observed concen-

tration at t=0h and losing that value for fitting. ci is set to be between 0 and the minimum
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observed protein expression, because the consolation interference cannot exceed what

was actually observed. α is between 0 and 1 and describes the miR clusters’ influence on

translation rate. Since both α and the miR clusters’ expression cannot exceed 1, only at peak

miR cluster expression can translation be completely turned off in the model. To find the

optimal parameters we fit using the optim function (base R). Sum of squared residuals (SSR)

were minimized using the "L-BFGS-B" method of the optim function. However for both Eq

3.2 and 3.3 we first minimized: SSR+10 · log2(kdiv) ·2. Due to our scaling of RNA and protein

log2(kdiv) is expected to be close to 0 so we penalized divergence first to get a decent estimate

for log2(kprod) first, since we observed that otherwise the fits sometimes had extreme values.

The resulting parameters were used as starting values for the unpenalized fits. We used BIC

to compare models with different numbers of parameters: BIC= k · ln(n) – 2 ·SLL, where k is

the number of parameters, n is the number of samples, and SLL the sum of log-likelihood.

k is 0 for the naive model, 3 for Eq 3.1 and 4 for Eq 3.2,3.3. n=8, the number of time points.

The error of the fits was assumed to be normally distributed in order to calculate the LSL.

When comparing models, the model with the lower BIC was considered superior.

3.4.13 MOFA analysis

We performed MOFA analysis to identify factors that drive translation. In contrast to what

MOFA is intended for we applied it on the PTR ratios, to only look at the shifts out of steady

state and not the actual values. Since we did not have matching protein-rna-miR samples

we averaged ratios and miR to each time point. We filtered miRs for a minimum raw count

of 10 and obtained 976 miRs. We then selected the top 1200 genes with the highest PTR ratio

CV to obtain a similar number as recommended by the authors. MOFA was run in R with the

default settings (MOFA2, v1.0).

3.4.14 GO term enrichment

We performed GO term enrichment analysis on the genes with extreme weights in the MOFA

analysis. The top 120 positive and negative genes of each factor were used as ordered in-

put for the topGO package (v2.38.1) We used a minimum term size of 20, the "ks" statistic

and the "elim" algorithm. The elim algorithm takes the neighboring GO terms into account

when calculating p-values. As a result, these p-values are not independent and therefore the

authors do not recommend correcting for multiple hypotheses [63].
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3.5 Supplementary information

Figure S1. Quality control of full, cytoplasmic, nuclear RNA-seq, miRNA sequencing and
proteomics. (Continued on next page)
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Figure S1. Quality control of full, cytoplasmic, nuclear RNA-seq, miRNA sequencing and
proteomics. (Continued from last page) (A) Total number of reads for all sequencing sam-
ples. (B) Distribution of the number of peptides used for the quantification of each pro-
tein. (C) Number of detected genes or miRs in each sample. Individual replicates are plot-
ted as separate bars in (A, C). (D) Distribution of miR-gene interactions per gene. (E) Euler
diagram of all gene sets. The "miRNA" set indicates genes with predicted miR interaction
and the "clean" set is a subset of genes without missing values in either RNA or protein. 53
genes are in the set: RNA&Protein&Clean (no miR-gene interactions), 13 genes are in the set:
RNA&Protein (no miR-gene interactions, and some genes have missing values). (F) Distri-
bution of the mean cytoplasmic fraction (C-fraction) per gene. (G) Coefficient of variation of
C-fraction per gene. (H) Distribution of RNA-RNA and protein-protein Pearson’s r with and
without batch correction. (I) Gaussian mixture model based clustering of miRs to select a
cluster with low noise and high variance (cluster 1), see Materials and methods.



126 Kinetic modeling of multi-omics data in stem cell differentiation

Figure S2. Model performance comparison with Pearson’s r. (A-D) Pearson’s r distribution
of various protein models. Corresponding R2 distributions are shown in Fig 1. (E) R2 distri-
bution of cyRNA and ci model for all genes. The R2 distribution of the subset of genes that
are best fit by the ci model is shown in Fig 1I. (F) Pearson’s r distribution of the miR model
and the next best model (either naive, totRNA, cyRNA or ci). Only genes that are best fit by
the miR model are shown. Corresponding R2 distributions are plotted in Fig 2D.

Figure S3 (following page). Six candidate miR-gene interactions. Example fit of the miR
model for genes Cdk7, Pccb, Acad8, Mfge8, Eif4h and Srgap2 (rows). First column: expression
of the assigned miRs of a single cluster. Colored lines are individual smoothing spline fits.
Second column: Cytoplasmic RNA expression and the effective RNA concentration avail-
able for translation (see Materials and methods). Solid lines represent smoothing splines.
Third/fourth column: cyRNA and miR model fits.
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Acronyms

BIC Bayesian information criterion

CV Coefficient of variation

DF degrees of freedom

EMT epithelial-mesenchymal transition

ERLIC electrostatic repulsion-hydrophilic interaction

chromatography

ESC emrbyonic stem cell

GO gene ontology

HF high field

MET mesenchymal-epithelial transition

miR micro-RNA

MOFA multi-omics factor analysis

MS/MS tandem mass spectrometry

nuRNA nuclear RNA

PTR protein to mRNA ratio

RA retinoic acid

TMT tandem mass tag
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4 RNA-SEQUENCING VALIDATES

MICRORNA-GENE PREDICTIONS FROM

TRANSLATION MODEL

Abstract

Micro-RNAs (miRs) are post-transcriptional regulators of gene expression, which play im-

portant roles in development and cancer. Current methods to discover the effects of miRs

on particular genes are either purely computational, and prone to produce many false posi-

tive, or cumbersome and low-throughput biochemical assays. In Chapter 3 we modeled the

kinetics of protein. In this way we reduced the large number of sequence-based predictions

to a few highly likely candidates that can be validated experimentally. Here, we validate the

effect of six miRs on their predicted three target genes. We optimize assays for introducing

miRs mimics or miR inhibitors in mouse embryonic stem cells using two fluorescent reporter

cell lines that indicate the activity of specific miR . We performed RNA-sequencing on mouse

emrbyonic stem cells (ESCs) transfected with mimics of six miRs and found in four cases that

the predicted target gene is differentially expressed to a comparable extent as known targets

of the respective miRs. These results corroborate the use of the kinetic model from Chapter 3

as a tool to identify novel miR-gene interactions.
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4.1 Introduction

Mature miRs are single-stranded RNAs of circa 22 nucleotides that mediate RNA interference

in eukaryotes. miRs typically pair to the 3’ untranslated region (3’-UTR) of an mRNA and

silence gene expression either through RNA-induced silencing complex (RISC)-mediated

cleavage, destabilization of the poly-A tail, or blocking the translational machinery. In

animals, the binding region in miRs is short and mostly not 100% complementary to the

mRNA binding site. This, combined with the fact that there are around 24,000 predicted

miRs and 140,000 predicted mRNA transcripts makes predicting miR-gene a difficult task.

One popular database of predicted miR-gene interactions is TargetScan [1]. TargetScan

reports a score which reflects the likelihood of miR binding, however neither its accuracy

nor its precision is well characterized. One obvious reason an interaction might not exist

is the lack of co-occurrence in cells. In Chapter 3 of this thesis we pre-selected dozens of

mir-gene interactions using a very lenient TargetScan score threshold and whittled down

this selection using our protein turnover rate model. By definition of our model, these miRs

and genes are expressed simultaneously. In this chapter we will investigate three genes for

which we predicted interactions: Acad8, Cdk7 and Eif4h.

Acad8 is part of the acyl-CoA dehydrogenase family of enzymes and is not known to

play a significant role in embryonic development or differentiation. However, mutations in

Acad8 are known to cause the rare genetic disease Isobutyryl-CoA dehydrogenase deficiency.

Acad8’s predicted regulator miR-433-3p, on the other hand, is known to target genes involved

in development: the transcription factor CREB [2], the WNT regulator DKK1 [3] and the Egfr

binding adaptor protein GRB2 [4]. The second predicted regulator of Acad8 is miR-23b-5p,

which is known for its role in cancer via targets like EBF3 [5], FOXC1 [6] and Hmgb2 [7]. We

decided not to investigate the third miR, miR-5615-3p, due to its low expression levels.

The second gene is the cell cycle gene Cdk7 which is part of the cyclin-dependent pro-

tein kinase family. Cdk7 is essential during the very early stages of development [8, 9]. The

two miRs that are predicted to regulate Cdk7 are mir-99a-3p and mir-100-3p, which are very

similar in sequence. Both are known to regulate MTOR/Mtor [10, 11], a serine-threonine ki-

nase that is essential for growth and proliferation [12]. Other targets of mir-99a-3p and mir-

100-3p include NOX4 [13], CDC25A [14] and Hoxa1 [15], and RASGRP3 [16] and IGF1R [17]
respectively.

The third gene with candidate interactions is Eif4h, a translation initiation factor. This

gene is part of the machinery that recruits ribosomes to mRNA. Williams-Beuren syndrome

is a rare genetic defect that results from a deletion of Eif4h [18]. We predicted regulation of

the miRs miR-152-3p and miR-467e-3p, where, to the best of our knowledge, the latter has

no experimentally validated targets. Some of miR-152-3p’s known targets are the two cell

cycle genes CDKN1B [19] and CDK8 [20], the pluripotency inducing KLF4 [21], and the DNA

methyltransferase Dnmt1 [22].
In this chapter we will demonstrate an miR mimic and inhibitor assay, which we opti-

mized using two fluorescent reporter cell lines for miR activity [23]. By RNA-sequencing of
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mouse ESCs transfected with miR mimics we validate four out of six predicted miR-gene in-

teractions.

4.2 Results

In Chapter 3 we identified Acad8, Cdk7 and Eif4h to be translationally regulated by miRs

Fig 1a. TargetScan predicts one or two binding sites per miR of which only one is conserved

between species Fig 1b. Based on the cumulative weighted context++ score (CWC++S) for

these genes alone, these interactions do not stand out among the hundreds of predicted in-

teraction each of these genes have with the exception for Acad8 with miR-433-3p [1].

In order to investigate the effect of these miRs on mouse ESCs we set up a transfection as-

say with miR mimics and inhibitors Fig 2A. miR mimics (Pre-miR miRNA Precursors, Thermo

Fisher Scientific) are double stranded RNAs designed to be processed by the cell into mature

miRs that are identical to a mature miR. Their small size facilitates transfection, making them

a potent tool to simulate miR overexpression in the cell. In contrast, miR inhibitors (miR-

CURY LNA miRNA Power Inhibitor, Qiagen) block miRs by complementary binding to the

mature miR. The modified LNA bases have a higher binding affinity compared to RNA and

therefore inhibit and degrade endogenous miR effectively. In order to evaluate the effective-

ness of the transfections we created two fluorescent reporter cell lines Fig 2B. These cell lines

have bi-directional CAG promoters with highly correlated transcription of two fluorescent

proteins: mCherry and citrine. The citrine transcript has additionally been cloned with miR

binding sites at its 3’-end, resulting in reduced expression of citrine relative to mCherry if the

respective miR is present. We created reporter cell lines for a miR that is undetected in our

system (mir-590-3p) and one that is highly expressed (miR292a-5p) in order to evaluate the

mimic and inhibitors respectively. Flow cytometry measurements of the mimic transfection

revealed a high percentage of positively transfected and regulated cells after 24h Fig 2C. Al-

though the effect increased slightly over time, we picked 24h as the ideal time point in order

to limit the amount of secondary effects of the mimic Fig 2D. Transfection of the inhibitor

was slightly less effective even at higher doses Fig 2E. For the miR inhibitor transfection we

selected 48h transfection with 2X the suggested dose to be ideal Fig 2F.

Having set up effective dose and timings for our transfection assays, we next set out to

validate the predicted miR targets. Although our kinetic model was set up to predict reg-

ulation at the level of translation, we used mRNA abundance as a readout, reasoning that

mRNA levels are likely affected as well. After 24h of exposure to the miR mimics, cell samples

were collected and purified mRNA was subjected to RNA-seq Fig 3A. Differential expression

analysis revealed significant downregulation of all three predicted target genes by at least

one of the proposed miRs Fig 3B. Acad8 is downregulated by miR-433-3p (P=1.7e–3), Cdk7

is downregulated by miR-99a-5p (P=0.014) and Eif4h is downregulated by both miR-152-3p

(P=0.015) and miR-467e-3p (P=1.21e–19). The observed downregulation supported the hy-

pothesis that miR-gene binding takes place in these four cases.
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Figure 1. Proposed miR-gene interactions from chapter 3 are not scored highly by Tar-
getScan. (A) Cartoon of miR-mediated translational regulation, miR-mediated mRNA degra-
dation is not shown. (B) miR-gene interaction predictions from TargetScan 7.2 with their
CWC++S [1]. Only one of eight predicted binding sites is preserved across species. Vertical
lines indicate binding bases.

In order to assess the level of downregulation of our target genes, we compared these

genes to some known targets in the context of the full transcriptome Fig 3C. The genes Dkk1,

Ebf3, Foxc1, Nox4, Hoxa1 and Rasgrp3 were undetected in our system. Of the rest of the genes

with known interactions most appear to be downregulated. Fixing the false discovery rate

(FDR) at 0.1% only miR-100-5p–Cdk7, miR-152-3p–Dnm1 and our own proposed miR–3p–

Eif4h, are identified as interactions. Importantly, the lack of measured differential mRNA

expression does not exclude binding of the mIRs and regulation of translation. These data

show that our proposed significant miR-gene interactions, miR-433-3p–Acad8, miR-99a-5p–

Cdk7, miR-152-3p–Eif4h and miR-467e-3p–Eif4h, lead to a similar extent of downregulation
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as found in known targets.

4.3 Discussion

Due to an enormous amount of possible combinations of miRs and genes it is a formidable

challenge to identify true interactions. The kinetic model discussed in Chapter 3 whittles

down potential interactions to a much smaller set of interactions that may have impact on

translational regulation. We created reporter cell lines for activity of a lowly expressed and

a highly expressed miR. Using these cell lines, we set up transfection assays for miR mimics

and miR inhibitors that can enhance or annul a miRs effect on protein expression. We per-

formed transcriptomic measurements of the mimic assay for six proposed miRs. These data

showed that at least four out of six miRs bind and downregulate their predicted target mRNA,

a surprisingly high fraction considering the search space. Moreover, Eif4h is, to the best of

our knowledge, the first confirmed target for miR-467e-3p.

In this study we decided not to investigate the miRs using the dual luciferase assay. Al-

though this is considered the gold standard of validating miR-gene interactions it only re-

ports on the interaction between a specific miR-gene pair and does therefore not scale well

to many possible pairs. By RNA-seq we can simultaneously observe the effects on the whole

transcriptome. This can potentially reveal biological relevance of miRs in addition to pro-

viding controls in the form of known targets. On the other hand, some of the observed dif-

ferential expression might be a secondary effect of direct miR targets. However, we start out

with a clear hypothesis about the interaction from a very different source. In a follow up

study we will complement the mimic experiments with the corresponding inhibitor assays.

We hypothesize that quenching the miRs of miR-433-3p–Acad8, miR-99a-5p–Cdk7, miR-152-

3p–Eif4h and miR-467e-3p–Eif4h, will result in higher expression of the respective mRNAs.

miR-433-3p is downregulated upon retinoic acid (RA) differentiation meaning any tar-

Figure 2 (following page). Dose and timing for miR mimic and inhibitors transfection ex-
periments can be obtained using fluorescent reporters of miR activity. (A) Cartoon of miR
mimic and miR inhibitor translational regulation. (B) miReporter plasmid, inserts and di-
gestion sites (BamHI and NheI). The insert overhangs are compatible with BamHI and NheI,
but block redigestion. See Methods for full cloning strategy. (C) Inhibition of the miR-590-
3p reporter transcript by the miR-590-3p mimic for seven time points as measured by flow
cytometry. The asterisk indicates the optimal transfection timing shown in D (1d). (D) Flu-
orescence signal of miR-590-3p reporter for miR-590-3p mimic or scrambled control at op-
timal transfection conditions. Blue line indicates 1st percentile of reporter/normalizer ratio
of the scrambled control. (E) Relief of inhibition on the miR-292a-5p reporter transcript by
the miR-292a-5p inhibitor for three time points at three transfection concentrations as mea-
sured by flow cytometry. The asterisk indicates the optimal transfection timing shown in
F (2days, 2X). (F) Fluorescence signal of miR-292a-5p reporter for miR-292a-5p inhibitor or
scrambled control at optimal transfection conditions. Blue line indicates 99th percentile of
reporter/normalizer ratio of the scrambled control.
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get’s translational efficiency increases. Two of its known targets were present in our mouse

ESCs, Grb2 (downregulated FDR = 0.10%) and Creb1 (downregulated FDR = 5.8%). Grb2 is

a known suppressor of Nanog so it may aid the exit of pluripotency [24]. Furthermore, Creb

may be involved with the differentiation towards ectoderm or primitive endoderm, as it is in-

volved in the differentiation towards many cell types like endothelial cells, brown adipocytes

and osteoclasts [25, 26, 27]. Co-regulation of our discovered gene Acad8 could suggest that

miR-433-3p increases mitochondrial activity and simultaneously, reinforces the exit from

pluripotency and differentiation.

In Chapter 3 we have observed that miR-99-5p expression increases in RA differentiation.

Therefore we expect an increase in downregulation of Ckd7 and Mtor as the cells differenti-

ate. By targeting both of these genes miR-99-5p may simultaneously regulate the cell cycle,

proliferation and cell growth. Mtor-/- mice embryos have shown to be embryonic lethal with

a disorganized visceral endoderm at E5.5 [28]. Visceral endoderm is a derivative of primi-

tive endoderm, which is one of the two cell types emerging in RA differentiation. Perhaps

Mtor, and by extension Ckd7, are involved with the specification of the cell types induced

by RA. Ckd7, despite being a cell cycle gene, is known to be involved in many differentiation

processes.

The observation that the translational regulator Eif4h is itself translationally regulated

demonstrates the complexity of translation regulation. One notable, known target of miR-

152-3p is Klf4, which is part of the pluripotency gene regulatory network [29] and one of the

four factors that were originally used to induce pluripotency in adult fibroblast cells [30]. In

chapter 3 we observed that miR-152-3p, as well miR-467e-5p, increase over time around the

exit from pluripotency during RA differentiation (Chapter 3 Fig S3). Perhaps miR-152-3p co-

regulates the exit from pluripotency (by down-regulating Klf4, while simultaneously tweak-

ing translation by downregulating Eif4h. Interestingly, according to our data, miR-467e-5p is

more likely to downregulate Klf4 expression than miR-152-3p (FDR = 1.4% vs 3.2%), but the

validity of this interaction would require further investigation.

Using miRs the cell has many possible ways to subtly change its state. Unfortunately,

many of the interactions between miRs and their target genes remain unconfirmed. The

methods presented here, will serve as tools to discover bona fide interactions in a more scal-

able way than before. Future studies will have to reveal the functional relevance of these miRs

for embryonic stem cell differentiation.

Figure 3 (following page). Four out of six miR mimic transfections downregulate their
proposed mRNA targets. (A) Schematic of the transfection protocol. (B) Expression levels
(regularized counts scaled to scrambled control) of the proposed targets Acad8, Cdk7 and
Eif4h after miR mimic transfection and scrambled control. P-value shown is for an uncor-
rected one-sided test (see Methods). (C) Expression fold changes relative to scrambled con-
trol of six miR mimic transfections. Text annotations are known or proposed targets. The
boxed genes are our proposed targets. Red lines indicate significantly downregulated genes.
Padj = Benjamini-Hochberg corrected p-value.
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4.4 Materials and Methods

4.4.1 Cell culture

E14 mouse embryonic stem cells were maintained as described in Chapter 3 of this thesis.

During transfections, cells were temporarily cultured in serum+LIF medium (10% ES cer-

tified FBS, 1X non-essential amino acids, 0.1mM β-mercaptoethanol, 1X pen/strep, 2mM

L-glutamine, 10,000U/ml mLIF, mLIF from Merck, rest from Thermo Fisher Scientific). Fur-

thermore, miR reporter cell line clone selection took place on homegrown mouse embryonic

fibroblast feeders.

4.4.2 Cloning

The miReporter backbone (AddGene, Plasmid #82478) was transformed into DH5a com-

petent cells (Cat. 18265017, Thermo Fisher Scientific) as per manufacturer’s instructions.

Then, transformed cells were expanded and harvested for miReporter backbone by miniprep

(Qiaprep, Qiagen). A set of two oligos were synthesized for each of the two reporter cell

lines: miR-590-3p-fwd: 5’-GATCG TAATTTTATGTATAAGCTAGT AAGCTTC-3’, miR-590-3p-

rev: 5’-CTAGGAAGCTT ACTAGCTTATACATAAAATTA C-3’, miR-292a-5p-fwd: 5’-GATCG

ACTCAAACTGGGGGCTCTTTTG AAGCTTC-3’, miR-292a-5p-rev: 5’-CTAGGAAGCTT

CAAAAGAGCCCCCAGTTTGAGT C-3’ (Integrated DNA Technologies, see Fig 2b). Pairs of

oligos were annealed and phosphorylated in a thermocycler: 30m at 37°C, 5m at 95°C,

for 12 cycles (1μM fwd oligo, 1μM rev oligo, 1X T4 buffer, 1U/μl T4 Polynucleotide Kinase;

buffer and enzyme from New England Biolabs). Next, backbone digestion and ligation

was performed in one step in a thermocycler, which was facilitated by the ligated inserts

destroying the restriction sites for the enzymes (See Fig 2b): 5m at 37°C, 5m at 23°C, for 12

cycles (1:2500 dilution of phosphorylated oligo duplex, 2.5ng/μl backbone, 5% v/v DTT,

0.15U/μl BamHI, 0.5U/μl NheI, 1U/μl T4 ligase, 1X restriction buffer; T4 from New England

Biolabs, rest from Thermo Fisher Scientific). Plasmids were then amplified in the same

manner as the backbone: Plasmids were transformed into DH5a cells, which were then

expanded and used for midiprep extraction (Plasmid Midi, Qiagen).

4.4.3 miReporter cell lines creation

miReporter-590-3p and miReporter-292a-5p plasmids were transfected into ESCs with lipo-

fectamine 3000 (Thermo Fisher Scientific) as per manufacturer’s instruction. Briefly, 125μl

DMEM (Sigma-Aldrich) was mixed with 5μl lipofectamine 3000 and briefly vortexed. Sepa-

rately 125μl was mixed with 5μl p3000 reagent and 5μg of plasmid and also briefly vortexed.

Both mixtures were combined and incubated at room temperature for 5 minutes to create

DNA-lipid complexes. 2i medium was removed from pre-seeded ESCs at a confluency of

about 70-90% and replaced with serum+LIF medium. DNA-lipid complexes were added to

the medium for 24 h. Medium was then aspirated, cells washed twice with PBS, and cells were
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left to grow for two days in 2i. Transfected cells were selected for by hygromycin (100 μg/ml

in 2i) for three days. Single clones were selected differently for the two miReporter cell lines.

Double-positive, single cells of the miReporter-590-3p cell line were sorted by Fluorescence-

activated cell sorting in 96-well feeder-coated plates and expanded thereafter. miReporter-

292a-5p cells however, were strongly diluted upon passage and single colonies with double-

positive cells were picked by hand using a benchtop microscope and a 200μl pipette. Double

positive colonies were left to expand on feeders in 48-well plates. Clones were grown for

at least two passages to ascertain the stability of the transfection. The reporter activity was

confirmed by flow cytometry.

4.4.4 Mimic and inhibitor transfection

ESCs and both miReporter cell lines were transfected with miR mimic and inhibitors in an

identical fashion. Cells were seeded 48 h prior to transfection in 12-well plates. DNA-lipid

complexes (Lipofectamine RNAiMax, Thermo Fisher Scientific) were prepared at the ratios

recommended by the manufacturer but siRNA was replaced with either miR mimic or miR

inhibitor (see Table 4.1). We considered 1X concentration of mimic/inhibitor to be 100nM in

the DNA-lipid mixture. We used 37.5μl of DNA-lipid mixture per well. After 24h transfection

cells were either harvested or washed with PBS and left to grow in 2i.

miR-target Our name Company name Company Catalog number

None mimic

scrambled

Pre-miR™miRNA Precursor

Negative Control #1

Thermo Fisher

Scientific

AM17110

miR-590-3p miR-590-3p

mimic

Pre-miR miRNA Precursor Thermo Fisher

Scientific

AM17100-PM20392

miR-23b-5p miR-23b-5p

mimic

Pre-miR miRNA Precursor Thermo Fisher

Scientific

AM17100-PM15655

miR-433-3p miR-433-3p

mimic

Pre-miR miRNA Precursor Thermo Fisher

Scientific

AM17100-PM10774

miR-99a-5p miR-99a-5p

mimic

Pre-miR miRNA Precursor Thermo Fisher

Scientific

AM17100-PM10719

miR-100-5p miR-100-5p

mimic

Pre-miR miRNA Precursor Thermo Fisher

Scientific

AM17100-PM10188

miR-152-3p miR-152-3p

mimic

Pre-miR miRNA Precursor Thermo Fisher

Scientific

AM17100-PM12269

miR-467e-5p miR-467e-5p

mimic

Pre-miR miRNA Precursor Thermo Fisher

Scientific

AM17100-PM12611

None scrambled

inhibitor

miRCURY LNA miRNA

Inhibitor Control: Negative

control A

Qiagen YI00199006-DDA

Continued on next page
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Continued from previous page

miR-target Our name Company name Company Catalog number

miR-292a-5p miR-292a-5p

inhibitor

miRCURY LNA miRNA

Power Inhibitors

Qiagen YI04101165-DDA

Table 4.1. Overview of miR mimic and inhibitors.

4.4.5 Flow cytometry

Transfected cells were harvested for flow cytometry by washing with PBS and detachment us-

ing Accutase (Sigma-Aldrich). Detached cells were washed and resuspended in 2i. Cells were

fixed in 4%Formaldehyde in medium (Cat. 43368, Alfa Aesar) for 15 min at room tempera-

ture. Cells were then centrifuged and the supernatant was removed. Cells were resuspended

in 1% BSA (Cat. A2153, Sigma-Aldrich) in PBS and stored at 4°C until the measurement.

Fixed cells were measured on a BD LSRFortessa X-20. Forward and side scatter was mea-

sured as well as Citrine fluorescence (488nm laser, 530/30nm emission filter) and mCherry

fluorescence (561nm laser, 610/20 emission filter). Live cell gating and Citrine/mCherry pos-

itive selection was achieved using custom R scripts (FlowCore v1.52.1 [31]). To determine

relative down- or upregulation of citrine expression we calculated the ratio mCherry/citrine

for each cell in the mimic/inhibitor assays and scrambled controls. Mimic cells with a ra-

tio lower than the 1st percentile of scrambled control ratios were deemed transfected with

successful citrine inhibition. Inhibitor cells with a ratio higher than the 99th percentile of

scrambled control ratios were deemed transfected with successful miR inhibition.

4.4.6 RNA-sequencing

RNA-sequencing was performed as described in Chapter 3 of this thesis with a minimum of

10 million raw reads per sample.

4.4.7 RNA-sequencing analysis

RNA-sequencing data was preprocessed as described in Chapter 3 of this thesis. Sample 3

of the miR-100p-5p mimic was excluded due to low complexity. Only genes with expression

counts larger than 20 were kept and were subsequently processed using DEseq2 (v1.26.0,

[32]). Regularized counts are defined as the 2-base exponent of the rlog-values. DESeq2 was

also used to identify differentially expressed genes and obtain log2 fold-changes. 14 genes

were differentially expressed between the scrambled control and no treatment control: Tjp2,

Serp1, Rap1b, Cdk2ap1, Ssr2, B230219d22rik, Cyld, Fam98b, Tpm3, Uggt1, Snx6, Rfc4, Tcf7l1

and Adam10. This list of genes was excluded in other comparisons.
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CWC++S cumulative weighted context++ score
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FDR false discovery rate
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SUMMARY

The cells in our body are entrusted with countless different tasks. For instance, some spe-

cialized cells form a physical barrier to the outside, some generate the hormone insulin and

some produce acid in our stomachs. To achieve these diverse tasks we carry a diverse set of

genes, i.e. the functional units of information we inherited from our ancestors. Genes are

stored in the DNA molecules in our cells’ nucleus, which is collectively called our genome.

However, just storing this information is not enough; it needs to be converted into different

types of molecules that can perform the cell’s tasks. The central dogma of molecular biology

describes the flow of genetic information into these other molecules:

1. Genes in the genome can be replicated, creating an exact replica of the genome. This

happens when cells divide into two cells, that each have to contain the genome.

2. Genes in the genome can be transcribed, creating transcripts (RNA molecules). This

happens when certain proteins are needed in the cell. All transcripts of the cell are,

collectively, called the transcriptome.

3. Genes in the transcriptome can be translated, creating proteins. These molecules are

responsible for most of the work in the cell. All proteins of the cell are, collectively,

called the proteome.

The central dogma of molecular biology is an excellent model to keep in mind when

thinking about how genetic information flows from DNA to RNA to protein. However, it fails

to describe which information flows at a given time and at which rates. That is where gene

regulation comes into play. Gene regulation is a set of biochemical processes the cell em-

ploys that ensures a finely tuned proteome, which is crucial for its function. Gene regulation

is also one of the common threads among the chapters of this thesis along with mammalian

development. Each chapter of this thesis covers a different type of gene regulation (at the

different levels of the central dogma, if you will).

In the Introduction we introduce the important concept of cell types, and how this sub-

ject closely ties into gene regulation and development (another common thread of this the-

sis). We then give a layman’s explanation of several concepts that are needed to understand

the remainder of the thesis. We introduce DNA methylation as a form of epigenetic regu-

lation (epigenetics: inheritable alterations of the genome that do not change its DNA se-

quence). We next explain transcriptional regulation, the control mechanisms that decide

which genes are transcribed at which levels, and translational regulation, which controls the

rate at which translation take place. And finally we discuss omics, a relatively recent collec-

tion of techniques that are vital for measuring the above phenomena and are heavily featured

in this thesis.
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In Chapter 1 we look at how epigenetics influences cell identity and transcription in

mouse embryonic stem cells (mESCs). We investigate a set of super-enhancers (sets of

closely-clustered enhancers, which are regions of the genome that do not code for genes

but can promote transcription elsewhere). Super-enhancers are often associated with cell

identity and therefore highly relevant in developmental systems. Moreover, it was found

that in some cell types the DNA of super-enhancers is methylated at varying levels between

individual cells. However, the mechanisms causing this heterogeneous methylation were

not well understood. We created methylation reporter cell lines for the Sox2 and miR-290

super-enhancers to uncover these mechanisms. These cell lines have fluorescent proteins

of two distinct colors that are turned on and off depending on the methylation state of

each of the alleles (the maternal and paternal copies of the super-enhancers). We show

that the methylation states at these super-enhancers are not only heterogeneous but also

highly dynamic, because they switch from on to off and vice versa over a matter of days. We

also show that the methylation state of the super-enhancers influences the transcription of

genes in cis (meaning the methylation state has a local effect on the same chromosome).

Finally, we observe that this dynamic methylation is not an in vitro artifact but also occurs

in pre-implantation embryos.

In Chapter 2 we use the transcriptomes of cells as key indicators of their cell type. We

performed single-cell transcriptomics on human fetal kidneys at different stages in devel-

opment. Kidneys consist out of about 1 million nephrons, functional units that operate in-

dependently. The development of these nephrons is asynchronous, meaning that we can

observe multiple stages of nephron development simultaneously in the fetal kidney. In the

transcriptomics dataset we identify 22 different cell types, ranging from precursor cells to

fully differentiated cells. Some of these cell types were novel and more nuanced subclas-

sifications of previously known cell types like the nephron progenitor cells. We also observe

that for the podocyte the transcriptome continues to change over the course of development,

even though the cell type is already established. This kind of more detailed information on

the kidney cell types can potentially open up avenues for the development of cures for kidney

diseases in the form of regenerative medicine.

In Chapter 3 we investigate translation and degradation rates in mESCs. Measuring RNA

concentrations is often more convenient than measuring protein concentrations and be-

cause of the hierarchical relationship between the two, changes in RNA are often assumed

to occur in protein as well. If there is a sudden change in RNA concentration of a gene then

the protein concentration should reflect this. How responsive a gene’s protein concentration

is to its RNA concentration differs per gene and changes dynamically. Therefore, in a sys-

tem undergoing pervasive changes, e.g. during differentiation, one cannot simply measure

RNA concentrations and assume that the corresponding proteins follow a similar pattern.

In this chapter we model protein synthesis and degradation rates using RNA and protein

data of differentiating mESCs. This allows us to measure the extent of discordance between

RNA and protein. More interestingly, the models were useful for identifying when our prior
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assumption of constant turnover rates does not hold, hinting that these genes may be post-

transcriptionally regulated (i.e. regulated at the protein synthesis or degradation steps). Us-

ing these models we identify new cases of translational regulation by microRNA (miR), small

RNA molecules that block gene-encoding RNAs. Interactions between mRNA and miRs are

notoriously hard to identify.

In Chapter 4 we put the models of the previous chapter to the test. We set out to verify

some of the miR-gene interactions we had identified. To probe the interactions we trans-

fected the cells with miR mimics and miR inhibitors (to transfect: to introduce nucleic acid

molecules or proteins into a cell). To optimize the timings and concentrations of these trans-

fections we first created cell lines that report when these transfections take place by means

of fluorescent proteins. We then transfected six different miR mimics, performed transcrip-

tomics and show that these miRs negatively influence the predicted genes’ concentrations.

These results reinforce the use of the models from Chapter 3 as a means of identifying cases

of translational regulation by miR.
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We vertrouwen er op dat de cellen in ons lichaam talloze taken verrichten. Zo zijn er bij-

voorbeeld cellen die een fysieke barrière vormen met de buiten wereld, cellen die insuline

produceren, en cellen die het zuur in onze maag uitscheiden. Om aan deze taken te voldoen

heeft de evolutie ervoor gezorgd dat wij veel verschillende genen hebben, de functionele een-

heden van informatie die we hebben geërfd van ons voorouders. Genen zijn opgeslagen in

de DNA moleculen in de kern van onze cellen, en samen worden ze ons genoom genoemd.

Echter, het louter opslaan van informatie is niet voldoende, het dient ook vertaald te worden

naar verschillende soorten moleculen die de taken van de cel daadwerkelijk kunnen uitvoe-

ren. De overdracht van genetisch informatie van het DNA naar deze moleculen vormt het

centrale dogma van de moleculaire biologie:

1. Genen in het genoom kunnen worden gerepliceerd, waarmee een identieke kopie wordt

gemaakt. Dit gebeurt als cellen zich delen en elke cel een kopie van het genoom nodig

heeft.

2. Genen in het genoom kunnen worden getranscribeerd, wat transcripten produceert

(RNA moleculen). Dit gebeurt wanneer bepaalde eiwitten nodig zijn in de cel. Alle

transcripten in de cel worden samen het transcriptoom genoemd.

3. Genen in het transcriptoom kunnen worden getransleerd, wat eiwitten produceert.

Deze moleculen zijn verantwoordelijk voor het merendeel van de arbeid die de cel

verricht. Alle eiwitten in de cel worden samen het proteoom genoemd.

Het centrale dogma van de moleculaire biologie is een uitstekend model dat in staat is om

te beschrijven hoe genetische informatie wordt overgedragen van DNA naar eiwit. Echter,

het omschrijft niet welke informatie wordt overgedragen en hoe snel. Dat is waar gen regu-

latie een rol speelt. Gen regulatie is een verzameling biochemische processen die de cel inzet

om er voor te zorgen dat het fijn afgesteld proteoom heeft, wat cruciaal is voor het func-

tioneren van de cel. Gen regulatie is ook een van de rode draden tussen de hoofdstukken

van dit proefschrift. Elke hoofdstuk in dit proefschrift betreft een ander type gen regulatie

(grofweg langs de lijnen van het centrale dogma).

In de Introductie introduceren we het concept cell type en beschrijven we hoe nauw ver-

want dit onderwerp is aan gen regulatie en ontwikkeling (nog een rode draad van dit proef-

schrift). We beschrijven dan in lekentaal een aantal concepten die nodig zijn om de rest van

het proefschrift te begrijpen. We beschrijven DNA methylatie als form van epigenetische reg-

ulatie (epigenetica: overdraagbare veranderingen in het genoom die de sequentie zelf niet

aantasten). Daarna duiken we kort in de transcriptie regulatie, de controle mechanismen



Samenvatting 155

die beslissen welke genen op welk moment worden getranscribeerd, en translatie regulatie,

wat bepaalt met welke snelheid translatie plaatsvindt. Tot slot beschrijven we omics, een

verzameling van relatief nieuwe technieken die cruciaal zijn voor het meten van de eerder

genoemde processen en die veel worden toegepast in dit proefschrift.

In Hoofdstuk 1 bekijken we hoe epigenetica de cel identiteit en transcriptie van mouse

embryonic stem cells (mESCs) beïnvloedt. We onderzoeken een verzameling van super-

enhancers (groepen van nabijgelegen enhancers, wat regio’s zijn in het genoom die niet

coderen voor genen maar betrokken zijn bij de transcriptie van genen elders). Super-

enhancers worden vaak geassocieerd met cell identiteit en zijn daarom zeer relevant voor

ontwikkelingssystemen. Daarnaast blijkt uit recente studies dat de mate van DNA methy-

latie varieert van cel tot cel. De mechanismen die zorgen voor deze heterogene methylatie

zijn echter nog niet goed onderzocht. Om deze mechanismen te achterhalen creëerden we

methylatie reporter cellijnen voor de Sox2 and miR-290 super-enhancers. Deze cellijnen

hebben twee kleuren fluorescente eiwitten, die aan of uit zijn afhankelijk van de methylatie-

graad van elk van de twee allelen (de kopieën van de super-enhancers van moeders- dan

wel vaderszijde). We tonen aan dat de methylatie-graad van de super-enhancers niet alleen

heterogeen is maar ook zeer dynamisch, omdat ze schakelen tussen aan en uit, en vice

versa, in een tijdsbestek van enkele dagen. We tonen ook aan dat de methylatie-graad de

transcriptie beïnvloed van de genen in cis (wat betekent dat de methylatie-graad een lokaal

effect heeft op hetzelfde chromosoom). Tot slot nemen we waar dat deze dynamische

methylatie niet slechts een in vitro artefact is omdat het ook plaatsvindt in pre-implantatie

embryo’s.

In Hoofdstuk 2 gebruiken we de transcriptomen van cellen als indicator van celtype. We

deden single-cell transcriptomics op menselijke foetale nieren in verschillende stadia van

ontwikkeling. Nieren bestaan uit ongeveer 1 miljoen nefronen, de functionele eenheden

die onafhankelijk kunnen opereren. De ontwikkeling van deze nefronen is asynchroon, wat

betekent dat meerdere stadia van nefron-ontwikkeling tegelijk zichtbaar zijn in de foetale

nier. In de transcriptomics dataset identificeren wij 22 verschillende celtypes, variërend

van voorloper cellen tot volledig gedifferentieerde cellen. Sommige van deze cellen waren

nieuwe, meer genuanceerde, subclassificaties van vooraf bekende cellen zoals de nephron

progenitor cells. We zien ook dat voor de podocyte het transcriptoom verder blijft veranderen

gedurende ontwikkeling, ondanks dat het celtype wel al vast staat. Dit soort gedetailleerde

informatie over nier celtypes kan mogelijk het pad effenen naar de ontwikkeling van

medicijnen voor nierziektes in de vorm van regeneratieve therapieën.

In Hoofdstuk 3 onderzoeken we de translatie en degradatie snelheden in mESCs. Het

meten van RNA is dikwijls gemakkelijker dan het meten van eiwit, en vanwege de hiërar-

chische relatie tussen de twee wordt er vaak van uit gegaan dat veranderingen in RNA ook

plaatsvinden in het eiwit. Een plotselinge verandering van RNA concentratie zou zich dan

ook moeten uiten in het bijbehorende eiwit. Hoe snel een gen’s eiwit concentratie reageert

op de RNA concentratie verschilt per gen en verandert dynamisch. Zodoende kan men in een
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systeem dat veel veranderingen doorgaat, bijvoorbeeld gedurende differentiatie, niet simpel-

weg RNA meten en aannemen dat de bijpassende eiwitten gelijke patronen vertonen. In dit

hoofdstuk modelleren we eiwit synthese en degradatie snelheden aan de hand van RNA en

eiwit data van differentiërende mESCs. Dit stelt ons in staat om de verschillen tussen RNA

en eiwit in kaart te brengen. Nog interessanter aan de modellen is dat ze de gevallen identi-

ficeren waarbij onze aanname van constante omzetsnelheden niet kloppen, wat suggereert

dat deze genen post-transcriptioneel worden gereguleerd (gereguleerd in de eiwit synthese

of degradatie stappen). Met deze modellen identificeren we nieuwe gevallen van translatie

regulatie via microRNA (miR), kleine RNA moleculen die gen-coderende RNAs blokkeren.

Interacties tussen mRNAs en miRs zijn doorgaans zeer moeilijk te identificeren.

In Hoofdstuk 4 worden de modellen van het voorgaande hoofdstuk op de proef gesteld.

We wilden enkele van de gevonden miR-gen interacties verifiëren. Om de interacties te testen

transfecteerden we de cellen met miR mimics en miR inhibitors (transfecteren: het introduc-

eren van nucleïnezuren of eiwitten in de cel). Om de timing en concentraties van de transfec-

ties te optimaliseren creëerden we cellijnen die transfectie kunnen rapporteren middels flu-

orescerende eiwitten. Vervolgens transfecteerden we zes verschillende miR mimics, deden

we transcriptomics en tonen we aan dat de miRs de concentratie van de voorspelde genen

negatief beïnvloeden. Deze resultaten ondersteunen de toepassing van modellen als middel

voor het ontdekken van translatie regulatie via een miR.
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