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DEEP IMAGE RETRIEVAL: A SURVEY

Deep Image Retrieval: A Survey

Wei Chen, Yu Liu, Weiping Wang, Erwin M. Bakker, Theodoros Georgiou,
Paul Fieguth, Li Liu, Senior Member, IEEE, and Michael S. Lew

Abstract—In recent years a vast amount of visual content has been generated and shared from various fields, such as social media
platforms, medical images, and robotics. This abundance of content creation and sharing has introduced new challenges. In particular,
searching databases for similar content, i.e., content based image retrieval (CBIR), is a long-established research area, and more efficient
and accurate methods are needed for real time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the
process of intelligent search. In this survey we organize and review recent CBIR works that are developed based on deep learning algorithms
and techniques, including insights and techniques from recent papers. We identify and present the commonly-used benchmarks and
evaluation methods used in the field. We collect common challenges and propose promising future directions. More specifically, we focus on
image retrieval with deep learning and organize the state of the art methods according to the types of deep network structure, deep features,

a global view of the field of instance-based CBIR.

feature enhancement methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, aiming to promote

Index Terms—Content based image retrieval, Deep learning, Convolutional neural networks, Literature survey

1 INTRODUCTION

ONTENT based image retrieval (CBIR) is the problem of
C searching for semantically matched or similar images in a
large image gallery by analyzing their visual content, given a
query image that describes the user’s needs. CBIR has been a
longstanding research topic in the computer vision and multi-
— media community [1], [2]. With the present, exponentially in-
creasing, amount of image and video data, the development of
appropriate information systems that efficiently manage such
large image collections is of utmost importance, with image
searching being one of the most indispensable techniques. Thus
there is nearly endless potential for applications of CBIR, such
« as person re-identification [3], remote sensing [4], medical im-
«] age search [5], and shopping recommendation in online mar-

1 kets [6], among many others.

A broad categorization of CBIR methodologies depends on
o] the level of retrieval, i.e., instance level and category level. In
(\l instance level image retrieval, a query image of a particular
~. object or scene (e.g., the Eiffel Tower) is given and the goal is
«— to find images containing the same object or scene that may be
captured under different conditions [7], [8]. In contrast, the goal
of category level retrieval is to find images of the same class as
the query (e.g., dogs, cars, etc.). Instance level retrieval is more
challenging and promising as it satisfies specific objectives for
many applications. Notice that we limit the focus of this survey
to instance-level image retrieval and in the following, if not
further specified, “image retrieval” and “instance retrieval” are

considered equivalent and will be used interchangeably.
Finding a desired image can require a search among thou-
sands, millions, or even billions of images. Hence, searching
efficiently is as critical as searching accurately, to which contin-
ued efforts have been devoted [7], [8], [9], [10], [11]. To enable
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accurate and efficient retrieval of massive image collections,
compact yet rich feature representations are at the core of CBIR.
In the past two decades, remarkable progress has been
made in image feature representations, which mainly
consist of two important periods: feature engineering and
feature learning (particularly deep learning). In the feature
engineering era (ie., pre-deep learning), the field was
dominated by milestone hand-engineered feature descriptors,
such as the Scale-Invariant Feature Transform (SIFT) [19].
The feature learning stage, the deep learning era since
2012, begins with artificial neural networks, particularly
the breakthrough ImageNet and the Deep Convolutional
Neural Network (DCNN) AlexNet [20]. Since then, deep
learning has impacted a broad range of research areas, since
DCNNs can learn powerful feature representations with
multiple levels of abstraction directly from data. Deep learning
techniques have attracted enormous attention and have
brought about considerable breakthroughs in many computer
vision tasks, including image classification [20], [21], [22],
object detection [23], and image retrieval [10], [13], [14].
Excellent surveys for traditional image retrieval can be
found in [1], [2], [8]. This paper, in contrast, focuses on deep
learning based methods. A comparison of our work with other
published surveys [8], [14], [15], [16] is shown in Table 1. Deep
learning for image retrieval is comprised of the essential stages
shown in Figure 1 and various methods, focusing on one or
more stages, have been proposed to improve retrieval accuracy
and efficiency. In this survey, we include comprehensive details
about these methods, including feature fusion methods and
network fine-tuning strategies efc. , motivated by the following
questions that have been driving research in this domain:

1) By using off-the-shelf models only, how do deep features out-
perform hand-crafted features?

2) In case of domain shifts across training datasets, how can
we adapt off-the-shelf models to maintain or even improve
retrieval performance?

3) Since deep features are generally high-dimensional, how
can we effectively utilize them to perform efficient image
retrieval, especially for large-scale datasets?
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TABLE 1: A summary and comparison of the primary surveys in the field of image retrieval.

Title Year Published in Main Content
Image Search from Thousands to Billions 2013 TOMM This paper gives a good presentation of image search achievements from
in 20 Years [12] 1970 to 2013, but the methods are not deep learning-based.
Deep Learning for Content-Based Image 2014 ACM MM This paper introduces supervised metric learning methods for fine-tuning
Retrieval: A Comprehensive Study [13] AlexNet. Details of instance-based image retrieval are limited.
Semantic Content-based Image Retrieval: 2015 VI This paper presents a comprehensive study about CBIR using traditional
A Comprehensive Study [14] methods; deep learning is introduced as a section with limited details.
Socializing the Semantic Gap: A Compa- A taxonomy is introduced to structure the growing literature of image
rative Survey on Image Tag Assignment, | 2016 CSUR retrieval. Deep learning methods for feature learning is introduced as
Refinement, and Retrieval [15] future work.

Recent Advance in Content-based Image 2017 arXiv This survey presents image retrieval from 2003 to 2016. Neural networks
Retrieval: A Literature Survey [16] are introduced in a section and mainly discussed as a future direction.
Information Fusion in Content-based Inf i This paper presents information fusion strategies in content-based image

Image Retrieval: A Comprehensive 2017 n ;)rn}a on retrieval. Deep convolutional networks for feature learning are introduced
; usion .
Overview [17] briefly but not covered thoroughly.
A Survey on Learning to Hash [18] 2018 T-PAMI This paper focuses on hash learning al.gorithms ar}d intr(.)duce.s the
similarity-preserving methods and discusses their relationships.
SIFT Meets CNN: A Decade Survey of 2018 T-PAMI This paper presents a comprehensive review of instance retrieval based on
Instance Retrieval [8] SIFT and CNN methods.
Our survey focuses on deep learning methods. We expand the review with
Deep Image Retrieval: A Survey 2021 Ours in-depth details on CBIR, including structures of deep networks, types of
deep features, feature enhancement strategies, and network fine-tuning.
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Fig. 1: In deep image retrieval, feature embedding and aggregation methods are used to enhance the discrimination of deep
features. Similarity is measured on these enhanced features using Euclidean or Hamming distances.

1.1 Summary of Progress since 2012

After a highly successful image classification implementation
based on AlexNet [20], significant exploration of DCNNs for
retrieval tasks has been undertaken, broadly along the lines of
the preceding three questions just identified, above. That is, the
DCNN methods are divided into (1) off-the-shelf and (2) fine-
tuned models, as shown in Figure 2, with parallel work on (3)
effective features. Whether a DCNN is considered off-the-shelf
or fine-tuned depends on whether the DCNN parameters are
updated [24] or are based on DCNNs with fixed parameters
[24], [25], [26]. Regarding how to use the features effectively,
researchers have proposed encoding and aggregation methods,
such as R-MAC [27], CroW [10], and SPoC [7].

Recent progress for improving image retrieval can be
categorized into network-level and feature-level perspectives,
for which a detailed sub-categorization is shown in Figure 3.
The network-level perspective includes network architecture
improvement and network fine-tuning strategies. The feature-
level perspective includes feature extraction and feature
enhancement methods. Broadly this survey will examine the
four areas outlined as follows:

(1) Improvements in Network Architectures (Section 2)

Using stacked linear filters (e.g. convolution) and non-linear
activation functions (ReLU, etc.), deep networks with different
depths obtain features at different levels. Deeper networks
with more layers provide a more powerful learning capacity
so as to extract high-level abstract and semantic-aware
features [21], [45]. It is also possible to concatenate multi-
scale features in parallel, such as the Inception module in
GoogLeNet [46], which we refer to as widening.

(2) Deep Feature Extraction (Section 3.1)

Neurons of FC layers and convolutional layers have different
receptive fields, thus providing three ways to extract features:
local features from convolutional layers [7], [27], global fea-
tures from FC layers [31], [58] and fusions of two kinds of
features [59], [60]; the fusion scheme includes layer-level and
model-level methods. Deep features can be extracted from the
whole image or from image patches, which corresponds to sin-
gle pass and multiple pass feedforward schemes, respectively.

(3) Deep Feature Enhancement (Section 3.2)
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Fig. 2: Representative methods in deep image retrieval, which are most fundamentally categorized according to whether the
DCNN parameters are updated [24]. Off-the-shelf models (left) have model parameters which are not further updated or tuned
when extracting features for image retrieval. The relevant methods focus on improving representations quality either by feature

enhancement [10], [28

1, [29], [30] when using single pass schemes or by extracting representations for image patches [31] when

using multiple pass schemes. In contrast, in fine-tuned models (right) the model parameters are updated for the features to be
fine-tuned towards the retrieval task and addresses the issue of domain shifts. The fine-tuning may be supervised [32], [33], [34],
[35], [36], [37], [38] or unsupervised [39], [40], [41], [42], [43], [44]. See Sections 3 and 4 for details.

Deep Learning for Image Retrieval
— Improvement in Deep Network Architectures (Section 2)
Deepen Networks: AlexNet [20], VGG [45], ResNet [21], etc.
Widen Networks: GoogLeNet [46], DenseNet [22], etc.
— Retrieval with Off-the-Shelf DCNN Models (Section 3)
— Deep Feature Extraction (Section 3.1)
— Network Feedforward Scheme (Section 3.1.1)
Single Feedforward Pass: MAC [47], R-MAC [27]
Multiple Feedforward Pass: SPM [31], RPNs [37]
— Deep Feature Selection (Section 3.1.2)
Fully-connected Layer: Layer Concatenation [48]
Convolutional Layer: SPoC [7], CroW [10]
L— Feature Fusion Strategy (Section 3.1.3)
I: Layer-level Fusion: MoF [49], MOP [25]
Model-level Fusion: ConvNet fusion [45]
L— Deep Feature Enhancement (Section 3.2)

Feature Aggregation (Section 3.2.1)

Feature Embedding (Section 3.2.2)

Attention Mechanism (Section 3.2.3)
Non-parameteric: SPoC [7], TSWVEF [50]
Parameteric: DeepFixNet+SAM [51], [52]

Deep Hash Embedding (Section 3.2.4)
Supervised Hashing: Metric Learning [34], [53]
Unsupervised Hashing: KNN [54], k-means [55]

L— Retrieval via Learning DCNN Representations (Section 4)

— Supervised Fine-tuning (Section 4.1)
Classification-based Fine-tuning (Section 4.1.1 )
Verification-based Fine-tuning (Section 4.1.2)

|E Transformation Matrix: Non-metric [35]
Siamese Networks: [36], [56]
Triplet Networks: [36], [56]
L— Unsupervised Fine-tuning (Section 4.2 )

Manifold Learning Sample Mining: Diffusion Net [42]
AutoEncoder-based Fine-tuning: KNN [57], GANs [44]

Fig. 3: This survey is organized around four key aspects in
deep image retrieval, shown in boldface.

Feature enhancement is used to improve the discriminative
ability of deep features. Directly, aggregate features can be
trained simultaneously with deep networks [17]; alternatively,
feature embedding methods including BoW [61], VLAD [62],
and FV [63] embed local features into global ones. These
methods are trained with deep networks separately (codebook-
based) or jointly (codebook-free). Further, hashing methods
[18] encode the real-valued features into binary codes to
improve retrieval efficiency. The feature enhancement strategy
can significantly influence the efficiency of image retrieval.

(4) Network Fine-tuning for Learning Representations (Section 4)

Deep networks pre-trained on source datasets for image clas-
sification are transferred to new datasets for retrieval tasks.
However, the retrieval performance is influenced by the do-
main shifts between the datasets. Therefore, it is necessary to
fine-tune the deep networks to the specific domain [33], [55],
[64], which can be realized by using supervised fine-tuning
methods. However in most cases image labeling or annotation
is time-consuming and difficult, so it is necessary to develop
unsupervised methods for network fine-tuning.

1.2 Key Challenges

Deep learning has been successful in learning very powerful
features. Nevertheless, several significant challenges remain
with regards to

1)  reducing the semantic gap,
2) improving retrieval scalability, and
3) balancing retrieval accuracy and efficiency.

We finish the introduction to this survey with a brief overview
of each of these challenges:

1. Reducing the semantic gap: The semantic gap characterizes
the difference, in any application, between the high-level con-
cepts of humans and the low-level features typically derived
from images [15]. There is significant interest in learning deep
features which are higher-level and semantic-aware, to better
preserve the similarities of images [15]. In the past few years,
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various learning strategies, including feature fusion [25], [49]
and feature enhancement methods [7], [27], [50] have been in-
troduced into image retrieval. However, this area remains a
major challenge and continues to require significant effort.

2. Improving retrieval scalability: The tremendous numbers
and diversity of datasets lead to domain shifts for which ex-
isting retrieval systems may not be suited [8]. Currently avail-
able deep networks are initially trained for image classifica-
tion tasks, which leads to a challenge in extracting features.
Since such features are less scalable and perform comparatively
poorly on the target retrieval datasets, so network fine-tuning
on retrieval datasets is crucial for mitigating this challenge.
The current dilemma is that the increase in retrieval datasets
raises the difficulty of annotation, making the development of
unsupervised fine-tuning methods a priority.

3. Balancing retrieval accuracy and efficiency: Deep features
are usually high dimensional and contain more semantic-aware
information to support higher accuracy, yet this higher accu-
racy is often at the expense of efficiency. Feature enhancement
methods, like hash learning, are one approach to tackling this
issue [18], [33], however hashing learning needs to carefully
consider the loss function design, such as quantization loss [9],
[11], to obtain optimal codes for high retrieval accuracy.

2 PoPULAR BACKBONE DCNN ARCHITECTURES

The hierarchical structure and extensive parameterization of
DCNNSs has led to their success in a remarkable diversity of
computer vision tasks. For image retrieval, there are four mod-
els which predominantly serve as the networks for feature ex-
traction, including AlexNet [20], VGG [45], GoogLeNet [46],
and ResNet [21].

AlexNet is the first DCNN which improved ImageNet
classification accuracy by a significant margin compared
to conventional methods in ILSVRC 2012. It consists of 5
convolutional layers and 3 fully-connected layers. Input
images are usually resized to a fixed size during training and
testing stages.

Inspired by AlexNet, VGGNet has two widely used ver-
sions: VGG-16 and VGG-19, including 13 convolutional layers
and 16 convolutional layers respectively, but where all of the
convolutional filters are small (local), 3 x 3 in size. VGGNet
is trained in a multi-scale manner where training images are
cropped and re-scaled, which improves the feature invariance
for the retrieval task.

Compared to AlexNet and VGGNet, GoogLeNet is
deeper and wider but has fewer parameters within its 22
layers, leading to higher learning efficiency. GoogLeNet has
repeatedly-used inception modules, each of which consists
of four branches where 5x5, 3x3, and 1x1 filter sizes are
used. These branches are concatenated spatially to obtain the
final features for each module. It has been demonstrated that
deeper architectures are beneficial for learning higher-level
abstract features to mitigate the semantic gap [15].

Finally, ResNet is developed by adding more convolutional
layers to extract more abstract features. Skip connections are
added between convolutional layers to address the notorious
vanishing gradient problem when training this network.

DCNN architectures have developed significantly during
the past few years, for which we refer the reader to recent
surveys [65], [66]. This paper focuses on introducing relevant
techniques including feature fusion, feature enhancement, and
network fine-tuning, based on popular DCNN backbones for
performing image retrieval.

4

3 RETRIEVAL WITH OFF-THE-SHELF DCNN MobD-
ELS

Because of their size, deep CNNs need to be trained on excep-
tionally large-scale datasets, and the available datasets of such
size are those for image recognition and classification. One pos-
sible scheme then, is that deep models effectively trained for
recognition and classification directly serve as the off-the-shelf
feature detectors for the image retrieval task, the topic of inter-
est in this survey. That is, one can propose to undertake image
retrieval on the basis of DCNNS, trained for classification, and
with their pre-trained parameters frozen.

There are limitations with this approach, such that the deep
features may not outperform classical hand-crafted features.
Most fundamentally, there is a model-transfer or domain-shift
issue between tasks [8], [26], [67], meaning that models trained
for classification do not necessarily extract features well suited
to image retrieval. In particular, a classification decision can be
made as long as the features remain within the classification
boundaries, therefore the layers from such models may show
insufficient capacity for retrieval tasks where feature match-
ing is more important than the final classification probabili-
ties. This section will survey the strategies which have been
developed to improve the quality of feature representations,
particularly based on feature extraction / fusion (Section 3.1)
and feature enhancement (Section 3.2).

3.1 Deep Feature Extraction
3.1.1  Network Feedforward Scheme
a. Single Feedforward Pass Methods.

Single feedforward pass methods take the whole image and
feed it into an off-the-shelf model to extract features. The ap-
proach is relatively efficient since the input image is fed only
once. For these methods, both the fully-connected layer and
last convolutional layer can be used as feature extractors [68].

The fully-connected layer has a global receptive field. After
normalization and dimensionality reduction, these features are
used for direct similarity measurement without further pro-
cessing and admitting efficient search strategies [24], [25], [33].

Using the fully-connected layer lacks geometric invariance
and spatial information, and thus the last convolutional layer
can be examined instead. The research focus associated with
the use of convolutional features is to improve their discrimina-
tion, where representative strategies are shown in Figure 4. For
instance, one direction is to treat regions in feature maps as dif-
ferent sub-vectors, thus combinations of different sub-vectors
of all feature maps are used to represent the input image.

b. Multiple Feedforward Pass Methods.

Compared to single-pass schemes, multiple pass methods
are more time-consuming [8] because several patches are gen-
erated from an input image and are both fed into the network
before being encoded as a final global feature.

Multiple-pass strategies can lead to higher retrieval accu-
racy since representations are produced from two stages: patch
detection and patch description. Multi-scale image patches are
obtained using sliding windows [25], [69] or spatial pyramid
model [31], as illustrated in Figure 5. For example, Xu et al.
[70] randomly sample windows within an image at different
scales and positions, then “edgeness” scores are calculated to
represent the edge density within the windows.

These patch detection methods lack retrieval efficiency
for large-scale datasets since irrelevant patches are also fed
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into deep networks, therefore it is necessary to analyze
image patches [27]. As an example, Cao et al. [71] propose to
merge image patches into larger regions with different hyper-
parameters, then the hyper-parameter selection is viewed as
an optimization problem under the target of maximizing the
similarity between features of the query and the candidates.

Instead of generating multi-scale image patches randomly
or densely, region proposal methods introduce a degree of pur-
pose in processing image objects. Region proposals can be gen-
erated using object detectors, such as selective search [72] and
edge boxes [73]. Aside from using object detectors, Region pro-
posals can also be learned using deep networks, such as re-
gion proposal networks (RPNs) [23], [37] and convolutional
kernel networks (CKNs) [74], and then to apply these deep net-
works into end-to-end fine-tuning scenarios for learning simi-
larity [75], [76].

3.1.2 Deep Feature Selection
a. Extracted from Fully-connected Layers

(d)
Fig. 5: Image patch generation schemes: (a) Rigid grid; (b)
Spatial pyramid modeling (SPM); (c) Dense patch sampling;
(d) Region proposals (RPs) from region proposal networks.

It is straightforward to select a fully-connected layer as a
feature extractor [24], [25], [33], [48]. With PCA dimensional-
ity reduction and normalization [24], images’ similarity can be
measured. Only the fully-connected layer may limit the overall
retrieval accuracy, Jun et al. [48] concatenate features from mul-
tiple fully-connected layers, and Song et al. [75] indicate that
making a direct connection between the first fully-connected
layer and the last layer achieves coarse-to-fine improvements.

Asnoted, a fully-connected layer has a global receptive field
in which each neuron has connections to all neurons of the
previous layer. This property leads to two obvious limitations
for image retrieval: a lack of spatial information and a lack of
local geometric invariance [48].

For the first limitation, researchers focus on the inputs of
networks, i.e., using multiple feedforward passes [24]. Com-
pared to taking as input the whole image, discriminative fea-
tures from the image patches better retain spatial information.

For the second limitation, a lack of local geometric
invariance affects the robustness to image transformations
such as truncation and occlusion. For this, several works
introduce methods to leverage intermediate convolutional
layers [7], [25], [47], [77].

b. Extracted from Convolutional Layers

Features from convolutional layers (usually the last layer)
preserve more structural details which are especially beneficial
for instance-level retrieval [47]. The neurons in a convolutional
layer are connected only to a local region of the input fea-
ture maps. The smaller receptive field ensures that the pro-
duced features preserve more local structural information and
are more robust to image transformations like truncation and
occlusion [7]. Usually, the robustness of convolutional features
is improved after pooling.

A convolutional layer arranges the spatial information well
and produces location-adaptive features [78], [79]. Various im-
age retrieval methods use convolutional layers as local detec-
tors [7], [27], [28], [47], [77], [79]. For instance, Razavian et al.
[47] make the first attempt to perform spatial max pooling on
the feature maps of an off-the-shelf DCNN model; Babenko
et al. [7] propose sum-pooling convolutional features (SPoC)
to obtain compact descriptors pre-processed with a Gaussian
center prior (see Figure 4). Ng et al. [79] explore the correlations
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between activations at different locations on the feature maps,
thus improving the final feature descriptor. Kulkarni ef al. [80]
use the BoW model to embed convolutional features separately.
Yue et al. [77] replace BoW [61] with VLAD [62], and are the first
to encode local features into VLAD features. This idea inspired
another milestone work [38] where, for the first time, VLAD is
used as a layer plugged into the last convolutional layer. The
plugged-in layer is end-to-end trainable via back-propagation.

3.1.3 Feature Fusion Strategy
a. Layer-level Fusion

Fusing features from different layers aims at combining dif-
ferent feature properties within a feature extractor. It is possible
to fuse multiple fully-connected layers in a deep network [48]:
For instance, Yu et al. [81] explore different methods to fuse the
activations from different fully-connected layers and introduce
the best-performed P;-fusion strategy to aggregate the features
with different balancing weights, and Jun et al. [48] construct
multiple fully-connected layers in parallel on the top of ResNet
backbone, then concatenate the global features from these lay-
ers to obtain the combined global features.

Features from fully-connected layers (global features) and
features from convolutional layers (local features) can comple-
ment each other when measuring semantic similarity and can,
to some extent, guarantee retrieval performance [82].

Global features and local features can be concatenated di-
rectly [82], [83], [84]. Before concatenation, convolutional fea-
ture maps are filtered by sliding windows or region proposal
nets. Pooling-based methods can be applied for feature fusion
as well. For example, Li et al. [49] propose a Multi-layer Order-
less Fusion (MOF) approach, which is inspired by Multi-layer
Orderless Pooling (MOP) [25] for image retrieval. However lo-
cal features can not play a decisive role in distinguishing subtle
feature differences because global and local features are treated
identically. For this limitation, Yu et al. [82] propose using a
mapping function to take more advantage of local features in
which they are used to refine the return ranking lists. In their
work, the exponential mapping function is the key for tapping
the complementary strengths of the convolutional layers and
fully-connected layers. Similarly, Cao ef al. [84] unify the global
and local descriptors for two-stage image retrieval in which
attentively selected local features are employed to refine the
results obtained using global features.

It is worth introducing a fusion scheme to explore which
layer combination is better for fusion given their differences
of extracting features. For instance, Chatfield et al. [60] demon-
strate that fusing convolutional layers and fully-connected lay-
ers outperforms the methods that fuse only convolutional lay-
ers. In the end, fusing two convolutional layers with one fully-
connected layer achieves the best performance.

b. Model-level Fusion

It is possible to combine features on different models; such
fusion focuses on model complementarity to achieve improved
performance, categorized into intra-model and inter-model.

Generally, intra-model fusion suggests multiple deep mod-
els having similar or highly compatible structures, while inter-
model fusion involves models with more differing structures.
For instance, the widely-used dropout strategy in AlexNet [20]
can be regarded as intra-model fusion: with random connec-
tions of different neurons between two fully-connected layers,
each training epoch can be viewed as the combinations of dif-
ferent models. As a second example, Simonyan et al. [45] intro-

6

duce a ConvNet fusion strategy to improve the feature learning
capacity of VGG where VGG-16 and VGG-19 are fused. This
intra-model fusion strategy reduces the top-5 error by 2.7%
in image classification compared to a single counterpart net-
work. Similarly, Liu et al. [85] mix different VGG variants to
strengthen the learning for fine-grained vehicle retrieval. Ding
et al. [86] propose a selective deep ensemble framework to com-
bine ResNet-26 and ResNet-50 improve the accuracy of fine-
grained instance retrieval. To attend to different parts of the ob-
ject in an image, Kim et al. [87] train an ensemble of three atten-
tion modules to learn features with different diversities. Each
module is based on different Inception blocks in GoogLeNet.

Inter-model fusion is a way to bridge different features
given the fact that different deep networks have different
receptive fields [31], [52], [78], [88] [89], [90]. For instance, a
two-stream attention network [52] is introduced to implement
image retrieval where the mainstream network for semantic
prediction is VGG-16 while the auxiliary stream network
for predicting attention maps is DeepFixNet [91]. Similarly,
considering the importance and necessity of inter-model
fusion to bridge the gap between mid-level and high-level
features, Liu et al. [31] and Zheng et al. [78] combine VGG-19
and AlexNet to learn combined features, while Ozaki et al.
[89] make an ensemble to concatenate descriptors from six
different models to boost retrieval performance. To illustrate
the effect of different parameter choices within the model
ensemble, Xuan et al. [90] combine ResNet and Inception V1
[46] for retrieval, concentrating on the embedding size and
number of embedded features.

Inter-model and intra-model fusion are relevant to model
selection. There are some strategies to determine how to com-
bine the features from two models. It is straightforward to fuse
all types of features from the candidate models and then learn-
ing a metric based on the concatenated features [52], which is a
kind of “early fusion” strategy. Alternatively, it is also possible
to learn optimal metrics separately for the features from each
model, and then to uniformly combine these metrics for final
retrieval ranking [32], which is a kind of “late fusion” strategy.

Discussion. Layer-level fusion and model-level fusion are
conditioned on the fact that the involved components (layers or
whole networks) have different feature description capacities.
For these two fusion strategies, the key question is what features
are the best to be combined? Some explorations have been made
for answering this question based on off-the-shelf deep models.
For example, Xuan et al. [90] illustrate the effect of combining
different numbers of features and different sizes within the en-
semble. Chen et al. [92] analyze the performance of embedded
features from image classification and object detection models
with respect to image retrieval. They study the discrimination
of feature embeddings of different off-the-shelf models which,
to some extent, implicitly guides the model selection when con-
ducting the inter-model level fusion for feature learning.

3.2 Deep Feature Enhancement
3.2.1

Feature enhancement methods aggregate or embed features to
improve the discrimination of deep features. In terms of fea-
ture aggregation, sum/average pooling and max pooling are
two commonly used methods applied on convolutional feature
maps. In particular, sum/average pooling is less discrimina-
tive, because it takes into account all activated outputs from a
convolutional layer, as a result it weakens the effect of highly

Feature Aggregation
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activated features [29]. On the contrary, max pooling is particu-
larly well suited for sparse features that have a low probability
of being active. Max pooling may be inferior to sum/average
pooling if the output feature maps are no longer sparse [93].

Convolutional feature maps can be directly aggregated to
produce global features by spatial pooling. For example, Raza-
vian et al. [47], [69] apply max pooling on the convolutional
features for retrieval. Babenko ef al. [7] leverage sum pooling
with a Gaussian weighting scheme to aggregate convolutional
features (i.e. SPoC). Note that this operation usually is followed
by L2 normalization and PCA dimensionality reduction.

As an alternative to the holistic approach, it is also possible
to pool some regions in a feature map [7], [47], [78], such as
done by R-MAC [27]. Also, it is shown that the pooling strat-
egy used in the last convolutional layer usually yields superior
accuracy over other shallower convolutional layers and even
fully-connected layers [78].

3.2.2 Feature Embedding

Apart from direct pooling or regional pooling, it is possible to
embed the convolutional feature maps into a high dimensional
space to obtain compact features. The widely used embedding
methods include BoW, VLAD, and FV. The embedded features’
dimensionality can be reduced using PCA. Note that BoW and
VLAD can be extended by using other metrics, such as Ham-
ming distance [94]. Here we briefly describe the principle of the
embedding methods for the case of Euclidean distance metric.

BoW [61] is a widely adopted encoding method. BoW en-
coding leads to a sparse vector of occurrence. Specifically, let
X = {#1,Za,...,Z7} be a set of local features, each of which
has dimensionality D. BoW requires a pre-defined codebook
C = {¢1, Ca, ..., Cx } with K centroids to cluster these local de-
scriptors, and maps each descriptor #; to the nearest word ¢.
For each centroid ¢, one can count and normalize the number
of occurrences by

1 T
9(@) = = D> (i1, ) 1)

t=1

1 if ¢ is the closest codeword for T

0 otherwise 2

(T, Cr) = {
Thus BoW considers the number of descriptors belonging to
each codebook ¢, (i.e. 0-order feature statistics), then BoW rep-
resentation is the concatenation of all mapped vectors:

GBuw()?) = [ 9(81)7"' 7g(cK) ] 3)

BoW representation is the histogram of the number of local
descriptors assigned to each visual word, so that its dimension
is equal to the number of centroids. This method is simple to
implement to encode local descriptors, such as convolutional
feature maps [49], [68], [80]. However, the embedded vectors
are high dimensional and sparse, which are not well suited to
large-scale datasets in terms of efficiency.

VLAD [62] stores the sum of residuals for each visual word.
Specifically, similar to BoW, it generates K visual word cen-
troids, then each feature Z; is assigned to its nearest visual
centroid ¢j, and computes the difference (Z; — ¢i):

RO

19(C), -

$t7 Ck iCt - Ek) 4)
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where ¢(Z¢, Cj;) as defined in (2). Finally, the VLAD represen-
tation is stacked by the residuals for all centroids, with dimen-
sion (D x K), i.e.,

G X):[...7g(gk)T7...]T_ G)
VLAD captures first order feature statistics, i.e., (¥; — Cj). Sim-
ilar to BoW, the performance of VLAD is affected by the num-
ber of clusters, thereby larger centroids produce larger vectors
that are harder to index. For image retrieval, for the first time,
Ng et al. [77] embed the feature maps from the last convo-
lutional layer into VLAD representations, which is proved to
have higher effectiveness than BoW.

The FV method [63] extends BoW by encoding the first and
second order statistics continuously. FV clusters the set of lo-
cal descriptors by a Gaussian Mixture Model (GMM), with K
components, to generate a dictionary C = {uk;Zk;wk}le,
where wy, pr, Xi, denote the weight, mean vector, and covari-
ance matrix of the k-th Gaussian component, respectively [95].
The covariance can be simplified by keeping only its diagonal
elements, ie., o = \/diag(Xy). For each local feature z;, a
GMM is given by

VLAD (

K
Ve (Zy) = wi X pr(Ze) ngpg xy)) Zwk =1 (6)
=

where pi (%) = N (@, p, Jk) All local features are assigned
into each component & in the dictionary, which is computed as

Guw,, =
o = Vi (T4) i (ft - ,Uk) @)
U T\/UTt 1 Ok ’

gai—ij/ikZ[( o m) —1}

The FV representation is produced by concatenating vectors
from the K components:

T
G [gwn"' 7guKagofa"'7gaf< } ®)

The FV representation defines a kernel from a generative pro-
cess and captures more statistics than BoW and VLAD. FV vec-
tors do not increase computational costs significantly but re-
quire more memory. Applying FV without memory controls
may lead to suboptimal performance [96].

Discussion. Traditionally, sum pooling and max pooling
are directly plugged into deep networks and the whole model
is used in an end-to-end way, whereas the embedding meth-
ods, including BoW, VLAD, and FV, are initially trained sepa-
rately with pre-defined vocabularies [31], [100]. For these three
methods, one needs to pay attention to their properties before
choosing one of them to embed deep features. For instance,
BoW and VLAD are computed in the rigid Euclidean space
where the performance is closely related to the number of cen-
troids. The FV embedding method can capture higher order
statistics than BoW or VLAD, thus the FV embedding improves
the effectiveness of feature enhancement at the expense of a
higher memory cost. Further, when any one of these methods
is used, it is necessary to integrate them as a “layer” of deep
networks so as to guarantee training and testing efficiency. For
example, the VLAD method is integrated into deep networks
where each spatial column feature is used to construct clus-
ters via k-means [77]. This idea led to a follow-up approach,

FV(X): y G s Guys
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Fig. 6: Attention mechanisms are shown, divided into two
categories. (a)-(b) Non-parametric mechanisms: The attention
is based on convolutional feature maps x with size H x W x
C. Channel-wise attention in (a) produces a C-dimensional
importance vector «; [10], [30]. Spatial-wise attention in (b)
computes a 2-dimensional attention map ao [10], [28], [59],
[79]. (c)-(d) Parametric mechanisms: The attention weights 3
are provided by a sub-network with trainable parameters (e.g.
0 in (c)) [97], [98]. Likewise, some off-the-shelf models [91], [99]
can predict the attention maps from the input image directly.

NetVLAD [38], where deep networks are fine-tuned with the
VLAD vector. The FV embedding method is also explored and
combined with deep networks for retrieval tasks [36], [101].

3.2.3 Attention Mechanisms

The core idea of attention mechanisms is to highlight the most
relevant features and to avoid the influence of irrelevant acti-
vations, realized by computing an attention map. Approaches
to obtain attention maps can be categorized into two groups:
non-parametric and parametric-based, as shown in Figure 6,
where the main difference is whether the importance weights
in the attention map are learnable.

Non-parametric weighting is a straightforward method
to highlight feature importance. The corresponding attention
maps can be obtained by channel-wise or spatial sum-pooling,
as in Figure 6(a,b). For the spatial-wise pooling of Figure
6(b), Babenko et al. [7] apply a Gaussian center prior scheme
to spatially weight the activations of a convolutional layer
prior to aggregation. Kalantidis et al. [10] propose a more
effective CroW method to weight and pool feature maps.
These spatial-wise methods only concentrate on weighting
activations at different spatial locations, without considering
the relations between these activations. Instead, Ng et al. [79]
explore the correlations among activations at different spatial
locations on the convolutional feature maps. In addition to
spatial-wise attention mechanisms, channel-wise weighting
methods of Figure 6(a) are also popular non-parametric
attention mechanisms. Xu et al. [30] rank the weighted feature
maps to build the “probabilistic proposals” to further select
regional features. Similarly, Jimenez et al. [28] combine CroW
and R-MAC to propose Classes Activation Maps (CAM) to
weight feature maps for each class. Qi et al. [50] introduce
Truncated Spatial Weighted FV (TSWVF) to enhance the
representation of Fisher Vector.

Attention maps can be learned from deep networks, as
shown in Figure 6(c,d), where the input can be either image
patches or feature maps from the previous convolutional layer.
The parametric attention methods are more adaptive and are
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commonly used in supervised metric learning. For example,
Li et al. [97] propose stacked fully-connected layers to learn an
attention model for multi-scale image patches. Similarly, Noh
et al. [98] design a 2-layer CNN with a softplus output layer
to compute scores which indicate the importance of different
image regions. Inspired by R-MAC, Kim et al. [102] employ
a pre-trained ResNetl01 to train a context-aware attention
network using multi-scale feature maps.

Instead of using feature maps as inputs, a whole image can
be used to learn feature importance, for which specific net-
works are needed. For example, Mohedano [51] explore differ-
ent saliency models, including DeepFixNet [91] and Saliency
Attentive Model (SAM) [99], to learn salient regions for input
images. Similarly, Yang et al. [52] introduce a two-stream net-
work for image retrieval in which the auxiliary stream, Deep-
FixNet, is used specifically for predicting attention maps.

In a nutshell, attention mechanisms offer deep networks
the capacity to highlight the most important regions of a given
image, widely used in computer vision. For image retrieval
specifically, attention mechanisms can be combined with su-
pervised metric learning [79], [87], [103].

3.2.4 Deep Hash Embedding

Real-valued features extracted by deep networks are typically
high-dimensional, and therefore are not well-satisfied to re-
trieval efficiency. As a result, there is significant motivation
to transform deep features into more compact codes. Hashing
algorithms have been widely used for large-scale image search
due to their computational and storage efficiency [18], [104].

Hash functions can be plugged as a layer into deep net-
works, so that hash codes can be trained and optimized with
deep networks simultaneously. During hash function training,
the hash codes of originally similar images are embedded as
close as possible, and the hash codes of dissimilar images are
as separated as possible. A hash function h(-) for binarizing
features of an image = may be formulated as

be = h(z) = h(f(2;0)) k=1,....K )

then an image can be represented by the generated hash codes
be {+1, —1}%. Because hash codes are non-differentiable their
optimization is difficult, so h(-) can be relaxed to be differen-
tiable by using tanh or sigmoid functions [18].

When binarizing real-valued features, it is crucial (1) to pre-
serve image similarity and (2) to improve hash code quality
[18]. These two aspects are at the heart of hashing algorithms
to maximize retrieval accuracy.

a. Hash Functions to Preserve Image Similarity

Preserving similarity seeks to minimize the inconsistencies be-
tween the real-valued features and corresponding hash codes,
for which a variety of strategies have been adopted.

The design of loss function can significantly influence sim-
ilarity preservation, which includes both supervised and un-
supervised approaches. With the class label available, many
loss functions are designed to learn hash codes in a Hamming
space. As a straightforward method, one can optimize the dif-
ference between matrices computed from the binary codes and
their supervision labels [105]. Other studies regularize hash
codes with a center vector, for instance a class-specific center
loss is devised to encourage hash codes of images to be close
to the corresponding centers, reducing the intra-class varia-
tions [104]. Similarly, Kang et al. [106] introduce a max-margin
t-distribution loss which concentrates more similar data into
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a Hamming ball centered at the query term, such that a re-
duced penalization is applied to data points within the ball, a
method which improves the robustness of hash codes when the
supervision labels may be inaccurate. Moreover metric learn-
ing, including Siamese loss [53], triplet loss [34], [107], [108],
and adversarial learning [107], [109], is used to retain seman-
tic similarity where only dissimilar pairs keep their distance
within a margin. In terms of unsupervised hashing learning, it
is essential to capture some relevance among samples, which
has been accomplished by using Bayes classifiers [110], KNN
graphs [54], [57], k-means algorithms [55], and network struc-
tures such as AutoEncoders [111], [112], [113] and generative
adversarial networks [44], [54], [114], [115].

Separate from the loss function, it is also important to
design deep network frameworks for learning. For instance,
Long et al. [108] apply unshared-weight CNNs on two datasets
where a triplet loss and an adversarial loss are utilized to
address the domain shifts. Considering the lack of label
information, Cao et al. [109] present coined Pair Conditional
WGAN, a new extension of Wasserstein generative adversarial
networks (WGAN), to generate more samples conditioned on
the similarity information.

b. Improving Hash Function Quality

Improving hash function quality aims at making the binary
codes uniformly distributed, that is, maximally filling and us-
ing the hash code space, normally on the basis of bit uncorrela-
tion and bit balance [18]. Bit uncorrelation implies that different
bits are as independent as possible and have little redundancy
of information, so that a given set of bits can aggregate more
information within a given code length. In principle, bit un-
correlation can be formulated as bb' = I in which I is an
identity matrix of size K. For example, it can be encouraged
via regularization terms such as orthogonality [116] and mu-
tual information [117]. Bit balance means that each bit should
have a 50% chance of being +1 or -1, thereby maximizing code
variance and information [18]. Mathematically, this condition
is constrained by using this regularization term b-1 = 0 where
1 is a K-dimensional vector with all elements equal to 1.

4 RETRIEVAL VIA LEARNING DCNN REPRESENTA-
TIONS

In Section 3, we presented feature fusion and enhancement
strategies for which off-the-shelf DCNNs only serve as
extractors to obtain features. However, in most cases, deep
features may not be sufficient for high accuracy retrieval, even
with the strategies which were discussed. In order for models
to have higher scalability and to be more effective for retrieval,
a common practice is network fine-tuning, i.e., updating the
pre-stored parameters [26], [64]. However fine-tuning does not
contradict or render irrelevant feature processing methods of
Section 3; indeed, those strategies are complementary and can
be incorporated as part of network fine-tuning.

This section focuses on supervised and unsupervised fine-
tuning methods for the updating of network parameters.

4.1 Supervised Fine-tuning

4.1.1 Classification-based Fine-tuning

When class labels of a new dataset are available, it is preferable
to begin with a previously-trained DCNN, trained on a sepa-

rate dataset, with the backbone DCNN typically chosen from
one of AlexNet, VGG, GoogLeNet, or ResNet. The DCNN can
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then be subsequently fine-tuned, as shown in Figure 7(a), by
optimizing its parameters on the basis of a cross entropy loss
LC E-:

(&

Lew(Biyi) = —Y (v xlog(pi))

7

(10)

Here y; and p; are the ground-truth labels and the predicted
logits, respectively, and c is the total number of categories. The
milestone work in such fine-tuning is [33], in which AlexNet
is re-trained on the Landmarks dataset with 672 pre-defined
categories. The fine-tuned network produces superior features
on landmark-related datasets like Holidays [118], Oxford-5k,
and Oxford-105k [119]. The newly-updated layers are used as
global or local feature detectors for image retrieval.

A classification-based fine-tuning method improves the
model-level adaptability for new datasets, which, to some extent,
has mitigated the issue of model transfer for image retrieval.
However, there still exists room to improve in terms of
classification-based supervised learning. On the one hand, the
fine-tuned networks are quite robust to inter-class variability,
but may have some difficulties in learning discriminative
intra-class variability to distinguish particular objects. On
the other hand, class label annotation is time-consuming and
labor-intensive for some practical applications. To this end,
verification-based fine-tuning methods are combined with
classification methods to further improve network capacity.

4.1.2 \Verification-based Fine-tuning

With affinity information indicating similar and dissimilar
pairs, verification-based fine-tuning methods learn an optimal
metric which minimizes or maximizes the distance of
pairs to validate and maintain their similarity. Compared
to classification-based learning, verification-based learning
focuses on both inter-class and intra-class samples. Verification-
based learning involves two types of information [13]:

1) A pair-wise constraint, corresponding to a Siamese
network as in Figure 7(c), in which input images are
paired with either a positive or negative sample;

2) A triplet constraint, associated with triplet networks as
in Figure 7(e), in which anchor images are paired with
both similar and dissimilar samples [13].

These verification-based learning methods are categorized into
globally supervised approaches (Figure 7(c,d)) and locally su-
pervised approaches (Figure 7(g,h)), where the former learn a
metric on global features by satisfying all constraints, whereas
the latter focus on local areas by only satisfying the given local
constraints (e.g. region proposals).

To be specific, consider a triplet set X={(z4,zp,2,)} in a
mini-batch, where (x,, z,) indicates a similar pair and (z,, ,,)
a dissimilar pair. Features f(z; @) of one image are extracted by
a network f(-) with parameters 0, for which we can represent
the affinity information for each similar or dissimilar pair as

Dij = D(x;,z5) = ||f(2:;0) — f(z;;0)|[3

a. Refining with Transformation Matrix.

1)

Learning the similarity among the input samples can be
implemented by optimizing the weights of a linear transfor-
mation matrix [35]. It transforms the concatenated feature pairs
into a common latent space using a transformation matrix We
R24*1 where d is the feature dimension. The similarity score
of these pairs are predicted via a sub-network Sy (z;,z;) =
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Fig. 7: Schemes of supervised fine-tuning. Anchor, positive, and negative images are indicated by z,, x,, =,, respectively. (a)
classification-based; (b) using a transformation matrix for learning the similarity of image pairs; (c) Siamese networks; (d) triplet
loss for fine-tuning; (e) an attention block into DCNNS to highlight regions; (f) combining classification-based and verification-
based loss for fine-tuning; (g) region proposal networks (RPNs) to locate the Rol and highlight specific regions or instances; (h)
inserting the RPNs of (g) into DCNNSs, such that the RPNs extract regions or instances at the convolutional layer.

(¢) Double-margin
Siamese loss

(a) Single-margin

Siamese loss (b) Triplet loss
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Fig. 8: Illustrations of sample mining strategies in metric learning. Here, we illustrate three classes, where shapes indicate
different classes. Multiple pairs are considered in some loss terms and assigned with distinct weights during training, indicated
by different line width. (a)-(c) have been introduced in the text. (d) Quadruplet loss [120]: a sample similar to the anchor is used
to construct a double margin. (e) Angular loss [121]: the angle at the negative of triple triangles is computed to obtain higher
order geometric constraints. (f) N-pair loss [122]: a positive sample is identified from N — 1 negative samples of N-1 classes. (g)
Lifted structured loss [123]: the structure relationships of three positive and three negative samples are considered. (h) Ranked
list loss [124]: all samples to explore intrinsic structured information are considered. (i) Mixed loss [125]: three positive and three
negative samples are captured which are initially closely distributed, where another anchor-negative pair initially lies very close
to the anchor. (j) Proxy-NCA loss [126]: proxy positive and negative samples for each class are computed and trained with a
true anchor sample. (k) Proxy-anchor loss [127]: the anchor sample is represented by a proxy. (1) Hardness-aware loss [128]: the
synthetic negative is mapped from an existing hard negative, the hard levels manipulated adaptively within a certain range.
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fw (f(zi;0)U f(z;;0); W) [35], [129]. In other words, the sub-
network fy predicts how similar the feature pairs are. Given
the affinity information of feature pairs S;; = S(z;,z;) €{0,1},
the binary labels 0 and 1 indicate the similar (positive) or dis-
similar (negative) pairs, respectively. The training of function
fw can be achieved by using a regression loss:

LW(xi,xj) :\Sw(xi,xj) — Sij(sim(xi,xj) + m)—

(1= Siy)(sim(zs,25) — m)| 2

where sim(z;, ;) can be the cosine function for guiding train-
ing W and m is a margin. By optimizing the regression loss
and updating the transformation matrix W, deep networks
maximize the similarity of similar pairs and minimize that of
dissimilar pairs. It is worth noting that the pre-stored param-
eters in the deep models are frozen when optimizing W. The
pipeline of this approach is depicted in Figure 7(b) where the
weights of the two DCNNSs are not necessarily shared.

b. Fine-tuning with Siamese Networks.

Siamese networks represent important options in imple-
menting metric learning for fine-tuning, as shown in Figure
7(c). It is a structure composed of two branches that share the
same weights across the layers. Siamese networks are trained
on paired data, consisting of an image pair (z;,z;) such
that S(x;,z;) € {0,1}. A Siamese loss function, illustrated in
Figure 8(a), is formulated as

LSiam(xi» {,Cj) = %S(:E“ xj)D(xi, xj) +

| (13)
5(1 — S(z, zj)) max(0, m — D(x;, x;))
A standard Siamese network and Siamese loss are used to
learn the similarity between semantically relevant samples
under different scenarios. For example, Simo et al. [130]
introduce a Siamese network to learn the similarity between
paired image patches, which focuses more on the specific
regions within an image. Ong et al. [36] leverage the Siamese
network to learn image features which are then fed into the
Fisher Vector model for further encoding. In addition, Siamese
networks can also be applied to hashing learning in which the
Euclidean distance formulation D(-) in Eq. 13 is replaced by
the Hamming distance [53].

c. Fine-tuning with Triplet Networks.

Triplet networks [129] optimize similar and dissimilar pairs
simultaneously. As shown in Figure 7(d) and Figure 8(b), the
plain triplet networks adopt a ranking loss for training:

Litviptet (Tar @9, ) = max(0,m + D4, 2,) — D(wa, 7))
(14)
which indicates that the distance of an anchor-negative pair
D(zg,x,) should be larger than that of an anchor-positive pair
D(z4,2p) by a certain margin m. The triplet loss is used to
learn fine-grained image features [56], [88] and for constraining
hash code learning [34], [107], [108].

To focus on specific regions or objects, local supervised
metric learning has been explored [42], [76], [131], [132]. In
these methods, some regions or objects are extracted using
region proposal networks (RPNs) [23] which subsequently can
be plugged into deep networks and trained in an end-to-end
manner, such as shown in Figure 7(g), in which Faster R-CNN
[23] is fine-tuned for instance search [76]. RPNs yield the
regressed bounding box coordinates of objects and are trained
by the multi-class classification loss. The final networks extract
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better regional features by Rol pooling and perform spatial
ranking for instance retrieval.

RPNs [23] enable deep models to learn regional features
for particular instances or objects [37], [132]. RPNs used in the
triplet formulation are shown in Figure 7(h). For training, be-
sides the triplet loss, regression loss (PRNs loss) is used to min-
imize the regressed bounding box according to ground-truth
region of interest. In some cases, jointly training an RPN loss
and triplet loss leads to unstable results. This is addressed in
[37] by first training a CNN to produce R-MAC using a rigid
grid, after which the parameters in convolutional layers are
fixed and RPN are trained to replace the rigid grid.

Attention mechanisms can also be combined with metric
learning for fine-tuning [103], [131], as in Figure 7(e), where
the attention module is typically end-to-end trainable and takes
as input the convolutional feature maps. For instance, Song et
al. [131] introduce a convolutional attention layer to explore
spatial-semantic information, highlighting regions in images
to significantly improve the discrimination for inter-class and
intra-class features for image retrieval.

Recent studies [48], [83] have jointly optimized the triplet
loss and classification loss function, as shown in Figure 7(f).
Fine-tuned models that use only a triplet constraint may
possess inferior classification accuracy for similar instances
[83], since the classification loss does not predict the intra-class
similarity, rather locates the relevant images at different levels.
Given these considerations, it is natural to combine and
optimize triplet constraint and classification loss jointly [48].
The overall joint function is formulated as

L joint =0 Lripiet(Tia; Tip, Tin) +6-Loe(Pi, i) (15)

where the cross-entropy loss (CE loss) L¢g is defined in Eq.
(10) and the triplet loss Lryipier in Eq. (14). a and 3 are trade-
off hyper-parameters to tune the two loss functions.

An implicit drawback of the Siamese loss in Eq. 13 is that it
may penalize similar image pairs even if the margin between
these pairs is small or zero, which may degrade performance
[133], since the constraint is too strong and unbalanced. At the
same time, it is hard to map the features of similar pairs to the
same point when images contain complex contents or scenes.
To tackle this limitation, Cao et al. [134] adopt a double-margin
Siamese loss [133], illustrated in Figure 8(c), to relax the penalty
for similar pairs. Specifically, the threshold between the similar
pairs is set to a margin m; instead of being zero. In this case,
the original single-margin Siamese loss is re-formulated as

L(Qﬁi, a?]‘) =

5 (1= S(zs, ;) max(0, ms — D(ai, ;)

1S(sci7 xj) max (0, D(z;, ;) —mq)+
2 (16)

where m;>0 and my>0 are the margins affecting the similar
and dissimilar pairs, respectively. Therefore, the double margin
Siamese loss only applies a contrastive force when the distance
of a similar pair is larger than m;. The mAP metric of retrieval
is improved when using the double margin Siamese loss [133].

Discussion. Most verification-based supervised learning
methods rely on the basic Siamese or triplet networks. The
follow-up studies are focusing on exploring methods to
further improve their capacities for robust feature similarity
estimation. Generally, the network structure, loss function,
and sample selection are important factors for the success of
verification-based methods.

A variety of loss functions have been proposed recently
[120], [122], [123], [124], [126]. Some of these use more samples
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or additional constraints. For example, Chen et al. [120]
incorporate Quadruplet samples for constraining relationships
between anchor, positive, negative, and similar images. The
N-pair loss [122] and the lifted structured loss [123] even
define constraints on all images and employ the structural
information of samples in a mini-batch.

The sampling strategy can greatly affect the feature learning
and training convergence rate. To date, many sampling strate-
gies such as clustering have been introduced, of which 12 are il-
lustrated in Figure 8. Aside from sampling within a mini-batch,
other work explores mining samples outside a mini-batch even
from the whole dataset. This may be beneficial for stabilizing
optimization due to a larger data diversity and richer training
information. For example, Wang et al. [135] propose a cross-
batch memory (XBM) mechanism that memorizes the embed-
ding of past iterations, allowing the model to collect sufficient
hard negative pairs across multiple mini-batches. Harwood et
al. [136] provide a framework named smart mining to collect
hard samples from the entire training set. It is reasonable to
achieve better performance when more samples are used to
fine-tune a network. However, the possible additional compu-
tational cost during training is a core issue to be addressed.

Directly optimizing the average precision (AP) metric
using the listwise AP loss [137] is one way to consider a
large number of image simultaneously. Training with this
loss has been demonstrated to improve retrieval performance
[137], [138], [139], however average precision, as a metric,
is normally non-differentiable and non-smooth. To directly
optimize the AP loss, the AP metric needs to be relaxed by
using methods such as soft-binning approximation [137], [138]
or sigmoid function [139].

4.2 Unsupervised Fine-tuning

Supervised network fine-tuning becomes infeasible when there
is not enough supervisory information because such informa-
tion is costly to assemble or unavailable. Given these limita-
tions, unsupervised fine-tuning methods for image retrieval are
quite necessary but less studied [140].

For unsupervised fine-tuning, two broad directions are to
mine relevance among features via manifold learning to obtain
ranking information, and to devise novel unsupervised frame-
works (e.g. AutoEncoders), each discussed below.

4.2.1 Mining Samples with Manifold Learning

Manifold learning focuses on capturing intrinsic correlations
on the manifold structure to mine or deduce revelance, as
illsutrated in Figure 9. Initial similarities between the original
extracted features are used to construct an affinity matrix,
which is then re-evaluated and updated using manifold
learning [141]. According to the manifold similarity in the
updated affinity matrix, positive and hard negative samples
are selected for metric learning using verification-based loss
functions such as pair loss [42], [142], triplet loss [143], [144],
or N-pair loss [140], etc. Note that this is different from the
aforementioned methods for verification-based fine-tuning
methods, where the hard positive and negative samples are
explicitly selected from an ordered dataset according to the
given affinity information.

It is important to capture the geometry of the manifold of
deep features, generally involving two steps [141] known as a
diffusion process. First, the affinity matrix (Figure 9) is inter-
preted as a weighted kNN graph, where each vector is rep-
resented by a node, and edges are defined by the pairwise
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Fig. 9: Paradigm of manifold learning for unsupervised metric
learning, based on triplet loss.

affinities of two connected nodes. Then, the pairwise affinities
are re-evaluated in the context of all other elements by diffus-
ing the similarity values through the graph [43], [142], [143],
[144]. Some new similarity diffusion methods have recently
been proposed, like the regularized diffusion process (RDP)
[145] and the regional diffusion mechanism [142]. For more
details on diffusion methods we refer to the survey [141].

Most existing algorithms follow a similar principle (e.g. ran-
dom walk [141]). The differences among methods lie primarily
in three aspects:

1) Similarity initialization, which affects the subsequent
KNN graph construction in an affinity matrix. Usually,
an inner product [43], [140] or Euclidean distance [40]
is directly computed for the affinities. A Guassian ker-
nel function can be used for affinity initialization [141],
[144], or Iscen et al. [142] consider regional similarity
from image patches to build the affinity matrix.

2) Transition matrix definition, a row-stochastic matrix
[141], determines the probabilities of transiting from
one node to another in the graph. These probabilities
are proportional to the affinities between nodes, which
can be measured by Geodesic distance (e.g. the sum-
mation of weights of relevant edges).

3) Iteration scheme, to re-valuate and update the values
in affinity matrix by the manifold similarity until some
kind of convergence is achieved. Most algorithms are
iteration-based [141], [143], as illustrated in Figure 9.

Diffusion process algorithms are indispensable for unsuper-
vised fine-tuning. Better image similarity is guaranteed when
it is improved based on initialization (e.g. regional similarity
[142] or high order information [40]). However, the diffusion
process requires more computation and searching due to the
iteration scheme [144], a limitation which cannot meet the effi-
ciency requirements of image retrieval. To mitigate this, Nico-
las et al. [140] apply the closed-form convergence solution of
a random walk in each mini-batch to estimate the manifold
similarities instead of running many iterations. Some studies
replace the diffusion process on a kNN graph with a diffu-
sion network [42], which is derived from graph convolution
networks [146]. Their end-to-end framework allows efficient
computation during the training and testing stages.

Once the manifold space is learned, samples are mined by
computing geodesic distances based on the Floyd-Warshall al-
gorithm or by comparing the set difference [143]. The selected
samples are fed into deep networks to perform fine-tuning.

It is possible to explore proximity information, to cluster in
Euclidean space, splitting the training set into different groups.
For example, Tzelepi et al. [147] explore a fully unsupervised
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fine-tuning method by clustering, in which the kNN algorithm
is used to compute the k nearest features, then fine-tuned to
minimize the squared distance between each query feature and
its k nearest features. As a second example, Radenovic et al.
[39], [41] use Structure-from-Motion (SfM) for clustering to ex-
plore sample reconstructions to select images for triplet loss.
Clustering methods depend on the Euclidean distance, making
it difficult to reveal the intrinsic relationship between objects.

4.2.2 AutoEncoder-based Frameworks

An AutoEncoder is a kind of neural network that aims to recon-
struct its output as closely as possible to its input. In principle,
an input image is encoded as features into a latent space, and
these features are then reconstructed to the original input im-
age using a decoder. The encoder and decoder can be both be
convolutional neural networks.

In an AutoEncoder, there exist different levels (e.g. pixel-
level or instance-level) of reconstruction. These different recon-
structions affect the effectiveness of an AutoEncoder, in that
pixel-level reconstructions may degrade the learned features of
an encoder by focusing on trivial variations in a reconstructed
image, since natural images typically contains many detailed
factors of location, color, and pose.

An AutoEncoder is an optional framework for supporting
other methods, for example the implementation of unsuper-
vised hash learning [44], [111], [112], [113]. Except for the re-
construction loss [44], [113], it is highly necessary to mine fea-
ture relevance to explore other objective functions. This is usu-
ally realized by using clustering algorithms [113] since features
from an off-the-shelf network initially contain rich semantic
information to keep their semantic structure [54], [57], [110].
For example, Gu et al. [113] introduce a modified cross-entropy
based on the k-means clustering algorithm where a deep model
learns to cluster iteratively and yields binary codes while re-
taining the structures of the input data distributions. Zhou et
al. [57] and Deng et al. [54] propose a self-taught hashing al-
gorithm using a kNN graph construction to generate pseudo
labels that are used to analyze and guide network training.
Other techniques such as Bayes Nets are also used to predict
sample similarity, such as in the work of Yang et al. [110], which
adopts a Bayes optimal classifier to assign semantic similarity
labels to data pairs which have a higher similarity probability.

AutoEncoders can also be integrated into other frame-
works, such as graph convolutional networks [146] and object
detection models [148] to learn better binary latent variables.
For example, Shen et al. [44] combine graph convolutional
networks [146] to learn the hash codes from an AutoEncoder.
In this method, the similarity matrix for graph learning is
computed on the binary latent variables from the Encoder.
Generative adversarial networks (GANSs) are also explored
in the unsupervised hashing framework [44], [54], [114],
[115]. The adversarial loss in GANs is the classical objective
to use. By optimizing this loss, the synthesized images
generated from hash codes gradually keep semantic similarity
consistent for the original images. The pixel-level and feature-
level content loss are used to improve the generated image
quality [114]. Some other losses are employed in GANs to
enhance hash code learning. For instance, a distance matching
regularizer is utilized to propagate the correlations between
high-dimensional real-valued features and low-dimensional
hash codes [149], or two loss functions that aim at promoting
independence of binary codes [115]. In summary, using GANs
for unsupervised hash learning is promising, but there remains
much room for further exploration.

5 STATE OF THE ART PERFORMANCE
5.1 Datasets

To demonstrate the effectiveness of methods, we choose four
commonly-used datasets for performance comparison: Holi-
days, Oxford-5k (including the extended Oxford-105k), Paris-
6k (including the extended Paris-106k) and UKBench.

UKBench (UKB) [150] consists of 10,200 images of objects.
The whole dataset has 2,550 groups of images, each group hav-
ing four images of the same object from different viewpoints or
illumination conditions. Each image in the dataset can be used
as a query image.

Holidays [118] consists of 1,491 images collected from
personal holiday albums. Most images are scene-related. The
dataset comprises 500 groups of similar images with a query
image for each group. In each group, the first image is used as
a query image for performance evaluation.

Oxford-5k [119] consists of 5,062 images for 11 Oxford
buildings. Each image is represented by five queries by a
hand-drawn bounding box, thus there are 55 query Regions
of Interest (Rol) in total. An additional disjoint set of 100,000
distractor images is added to obtain Oxford-100k.

Paris-6k [151] includes 6,412 images collected from Flickr.
It is categorized into 12 groups about specific Paris architec-
tures. The dataset has 500 query images for evaluation, and 55
queries with bounding boxes. Images are annotated with the
same four types of labels as used in the Oxford-5k dataset.

Annotations and evaluation protocols in Oxford-5k and
Paris-6k are updated; additional queries and distractor images
are added into the two datasets, producing the Revisited Oxford
and Revisited Paris datasets [152]. Due to the popularity of
Oxford-5k and Paris-6k, we primarily undertake performance
evaluations on the original datasets.

5.2 Evaluation Metrics

Average precision (AP) refers to the coverage area under the
precision-recall curve. A larger AP implies a higher precision-
recall curve and better retrieval accuracy. AP can be calculated

»® Sl P(k) - rel(k)
R

where R denotes the number of relevant results for the query
image from the total number N of images. P(k) is the preci-
sion of the top k retrieved images, and rel(k) is an indicator
function equal to 1 if the item within rank £ is a relevant image
and 0 otherwise. Mean average precision (mAP) is adopted for
the evaluation over all query images,

1 Q
Q;AP(Q)

where () is the number of query images.

Additionally, N-S score is a metric used for UKBench [150].
In this dataset, there are four relevant images for each query.
The N-S score is the average, four times, for the top-four preci-
sion over the dataset.

AP =

17)

(18)

5.3 Performance Comparison and Analysis

Overview. We conclude with the performance over these 4
datasets from 2014 to 2020 in Figure 10(a). At early period,
DCNNs acted as powerful extractors and achieved good
results, e.g., mAP is 78.34% in [13] on Oxford-5k. Subsequently,
the results increased significantly when some crucial factors
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were adopted, including feature fusion [153], [154], [155],
feature aggregation [27], [47], and network fine-tuning [145],
[156]. For instance, the accuracy on UKBench reaches an mAP
of 98.8% in [155] when an undirected graph is defined to fuse
features and estimate their correlations. Network fine-tuning
improves performance greatly. The accuracy increases steadily
from 78.34% [13] to 96.2% [157] on the Oxford-5k dataset when
manifold learning is used to fine-tune deep networks.

We report the results of methods using off-the-shelf models
(Table 3) and fine-tuning networks (Table 4). In Table 3, single
pass and multiple pass are analyzed, while supervised fine-
tuning and unsupervised fine-tuning are compared in Table 4.

Evaluation for single feedforward pass. The common
practice using this scheme is to enhance feature discrimination.
In Table 3, we observe that fully-connected layers used as
feature extractors may reach a lower accuracy (e.g., 74.7% on
Holidays in [33]), compared to the counterpart convolutional
layers because the fully-connected layers lack structural
information. Layer-level feature fusion strategy improves
retrieval accuracy. For example, Yu ef al. [82] combined three
layers (Conv4, Convb, and FC6) (e.g., an mAP of 91.4% on
Holidays), outperforming the performance of non-fusion
method in [7] (e.g., mAP is 80.2%). Moreover, convolutional
features embedded by BoW model reach a competitive
performance on Oxford-5k and Paris-6k (73.9% and 82.0%,
respectively), while its codebook size is 25k, which may
affect the retrieval efficiency. For single pass scheme, methods
shown in Figure 4 improve the discrimination of convolutional
feature maps and perform differently in Table 3 (e.g., 66.9% of
R-MAC [151], 58.9% of SPoC [7] on Oxford-5k). We view this
as a critical factors and further analyze.

Evaluation for multiple feedforward pass. The methods
exemplified in Figure 5 are reported their results in multiple
pass scheme. Among them, extracting image patches densely
using Overfeat [158] can reach best results on the 4 datasets
[24]. Using rigid grid method reach competitive results (e.g., an
mAP of 87.2% on Paris-6k) [100]. These two methods consider
more patches, even background information when used for
feature extraction. Instead of generating patches densely,
region proposals and spatial pyramid modeling have a degree
of purpose in processing image objects. This may be more
efficient and less memory demanding. Using multiple-pass
scheme, spatial information is maintained better than the
case using the single-pass method. For example, a shallower
network (AlexNet) and region proposal networks are used
in [72], its result on UKBench is 3.81 (N-Score), higher than
the one using deeper networks, such as [7], [33], [82]. Besides
feeding image patches into the same network, model-level
fusion also exploit complementary spatial information to
improve the retrieval accuracy. For instance, as reported
in [31], which combines AlexNet and VGG, the results on
Holidays (81.74% of mAP) and UKBench (3.32 of N-Score) are
better than these in [49] (76.75% and 3.00, respectively).

Evaluation for supervised fine-tuning. Compared to
the off-the-shelf models, fine-tuning deep networks usually
improves accuracy, see Table 4. For instance, the result on
Oxford-5k [27] by using a pre-trained VGG is improved from
66.9% to 81.5% in [36] when a single-margin Siamese loss
is used. Similar trends can be also observed on the Paris-6k
dataset. Although classification-based fine-tuning method is
not excel at learning intra-class variability (e.g., an mAP of
55.7% on Oxford-5k in [33]), its performance may be improved
with powerful DCNNs and feature enhancement methods
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Fig. 10: (a) Performance improvement from 2014 to 2020. (b)
mAP comparison of the feature aggregation methods shown in
Figure 4.

such as the attention mechanism in [98], leading to an mAP
of 83.8% on Oxford-5k. As for verification-based fine-tuning
methods, in some cases, the loss used for fine-tuning is
essential for performance improvement. For example, RPN
is re-trained using regression loss on Oxford-5k and Paris-6k
(75.1% and 80.7%, respectively) [76]. Its results are lower than
the results from [35] (88.2% and 88.2%, respectively) where
a transformation matrix is used to learn visual similarity.
However, when RPN is trained by using triplet loss such as
[132], the effectiveness of retrieval is improved significantly
where the results are 86.1% (on Oxford-5k) and 94.5% (on
Paris-6k). Further, feature embedding methods are important
for retrieval accuracy. For example, Ong et al. [36] embedded
Convb feature maps by Fisher Vector and achieved an mAP of
81.5% on Oxford-5k, while embedding feature maps by using
VLAD achieves an mAP of 62.5% on this dataset [38], [39].

Evaluation for unsupervised fine-tuning. Compared to
supervised fine-tuning, unsupervised fine-tuning methods are
relatively less explored. The difficulty for unsupervised fine-
tuning is to mine relevance of samples without ground-truth
labels. In general, unsupervised fine-tuning methods produce
lower performance than the supervised fine-tuning methods.
For instance, supervised fine-tuning network by using
Siamese loss in [163] achieves an mAP 88.4% on Holidays,
while unsupervised fine-tuning network using the same loss
function in [39], [41], [143] achieve 82.5%, 83.1%, and 87.5%,
respectively. However, unsupervised fine-tuning methods can
achieve a similar accuracy even outperform the supervised
fine-tuning if a suited feature embedding method is used.
For instance, Zhao et al. [144] explore global feature structure
with modeling the manifold learning, producing an mAP of
85.4% (on Oxford-5k) and 96.3% (on Paris-6k). This is similar
to the supervised method [132], whose results are 86.1% (on
Oxford-5k) and 94.5% (on Paris-6k). As another example,
the precision of ResNet-101 fine-tuned by cross-entropy loss
achieves to 83.8% on Oxford-5k [98], while the precision is
further improved to 92.0% when IME layer is used to embed
features and fine-tuned in an unsupervised way [40]. Note
that fine-tuning strategies are related to the type of the target
retrieval datasets. As demonstrated in [101], fine-tuning on
different datasets may hurt the final performance.

Retrieval efficiency is also an important criterion in deep
image retrieval. Deep learning methods are usually based on
large-size datasets. The training and testing of retrieval meth-
ods are mostly done on GPUs. Most prior works focus more
on retrieval accuracy but less on efficiency. We report the re-
trieval accuracy and retrieval efficiency on the 4 datasets in
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TABLE 2: Evaluations of mAP (%), N-S score, and average
search time per image. “!” refers to the query time is evaluated
in a global diffusion manner, while “1” refers to the time is
evaluated in a regional diffusion way.

Oxford-5k (+100k)|Paris-6k (+100k)|  Holidays UKB
mAP Time |mAP| Time mAP [ Time |[N-S| Time
91.3 | 5.45ms
[145] (88.4) | (809 ms) - - 95.66 | 3.11 ms | 3.93 | 4.91 ms
92.6 2 ms
[157] (91.8) | (10 ms) ) ) ) ) ) )
85.7 20 ms 94.1 20 ms
142]f - - - -
R TR
14014 . ms . ms ] _ ] ]
[142] 01 o _lal o
. .81 ms
[164] (58.8) | (0.82 ms) ) ) ) } ) )
64.8 0.77 ms
[41] (57.9) | (0.73ms) | ~ ) ) ) ) )
[35] 55,5 | 0.35ms |71.0| 0.35ms B ~ ~ ~
() () () ()

Table 2. The recorded time (in ms) indicates the average time for
searching each query image. In Table 2, we observe some im-
portant trends. First, in general, the average retrieval time for
each query image is less than 1s. Concretely, the recorded time
is up to 809ms on Oxford-105k in [145], whose mAP is 88.4%.
The retrieval time is 600ms on Oxford-5k and 700ms on Paris-6k
in [142], whose time cost is caused by processing 21 regional
features on each query image. Second, we observe the retrieval
accuracy-efficiency balancing issue, which is significantly ob-
vious on the Oxford-5k dataset. The average retrieval time are
both less than 1ms in prior work [35], [41], [164], whose mAPs
are lower than 70% (i.e., 55.5%, 64.8%, and 64.9%, respectively).
In contrast, the prior approaches [145], [157], [142], reach rela-
tively higher mAPs (i.e., 91.3%, 92.6%, and 95.8%, respectively),
while this higher accuracy is at the expense of efficiency (more
than 2ms even up to 600ms). Therefore, the trade-off of accuracy
and efficiency is also an important factor to take into account
in deep image retrieval, especially for large-scale datasets.

In addition, we discuss other important factors which
are common for retrieval, including the depth of networks,
retrieval feature dimension, and feature aggregation methods.

Network depth. We compare the efficacy of DCNNs depth,
following the fine-tuning protocols ! in [41]. For fair compar-
isons, all convolutional features from these backbone DCNNs
are aggregated by MAC method [47], and fine-tuned by using
the same learning rate. That means, the adopted methods are
the same except the DCNNs have different depths. We use the
default feature dimension (i.e. AlexNet (256-d), VGG (512-d),
GoogLeNet (1024-d), ResNet-50/101 (2048-d)). The results are
reported in Figure 11(a). We observe that the deeper networks
is more beneficial for accuracy boosts, due to extracting more
discriminative features.

Feature dimension. We focus on varying the feature di-
mension of ResNet-50 from 32-d to 8192-d, by adding a fully-
connected layers on the top of pooled convolutional features.
The results are shown in Figure 11(b). It is expected that higher-
dimension features capture much more semantics and are help-
ful for retrieval. However, the performance tends to be stable
when the dimension is very large. For ResNet-50, we observe
that the 2048-d feature can already produce competitive results.

Feature aggregation methods. Here, we further discuss the
methods of embedding convolutional feature maps, as illus-
trated in Figure 4. We use the off-the-shelf VGG (without up-

1. https:/ / github.com/filipradenovic/cnnimageretrieval-pytorch
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Fig. 11: (a) The effectiveness of different DCNNSs on 4 datasets.
All models are fine-tuned by the same loss function. The
results are tested on the convolutional features with default
dimension; (b) The impact of feature dimension on retrieval
performance. These features are extracted by using ResNet-50.

dating parameters) on the Oxford and Paris datasets. The re-
sults are reported in Figure 10(b). We observe that different
ways to aggregate the same off-the-shelf DCNN make differ-
ences for retrieval performance. These reported results provide
a reference for feature aggregation when one uses convolu-
tional layers for performing retrieval tasks.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this survey, we reviewed deep learning methods for im-
age retrieval, and categorized it into deep image retrieval of
off-the-shelf models and fine-tuned models according to the
parameter updates of deep networks. Concretely, the off-the-
shelf group is concerned with obtaining high-quality features
by freezing the pre-stored parameters where network feedfor-
ward schemes, layer selection, and feature fusion methods are
presented. While fine-tuned based methods deal with updating
networks with optimal parameters for feature learning in both
supervised and unsupervised approaches. For each group, we
presented the corresponding methods and compared their dif-
ferences. The corresponding experimental results are collected
and analyzed for all the categorized works.

Deep learning has shown significant progress and
spotlighted its capacity for image retrieval. Despite the
great success, there are still many unsolved problems. Here,
we introduce some promising trends as future research
directions. We hope that this survey not only provides a better
understanding of image retrieval but also facilitates future
research activities and application developments in this field.

1. Zero-shot Learning for Image Retrieval. The popularity
of media platforms and the rapid development of novel
techniques makes it very convenient for people to share
their images. As a result, the number of images increases
immensely. In this case, there often exist “unseen” images
or categories. However, most datasets are static and offer a
limited amount of objects and categories for feature learning.
Thus, the retrieval algorithms or systems may suffer from
the scarcity of the appropriate training data for these unseen
images. Therefore, it is needed to extend conventional image
retrieval methods to a zero-shot learning scenario, where
we can retrieve both seen and unseen categories from the
system. Furthermore, combined with unsupervised methods,
the zero-shot learning algorithms can significantly improve
the flexibility and generalization of image retrieval systems.
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2. End-to-End Unsupervised Retrieval. Using supervisory
information, network training or fine-tuning is more likely
to mitigate the semantic gap. However, the sophisticated
supervised learning algorithms are in most cases not very
general because there is usually not enough supervisory
information available. Thereby, it is necessary to explore
unsupervised image retrieval, which has been studied less
[140]. Therefore, as a solution, the earlier noted manifold
learning is a way to mine the samples using relevance context
information. The self-supervision information is learned based
on graph discovery in the manifold space. However, the
whole training process is not end-to-end yet. Currently, graph
convolutional networks [146] have been used to replace the
diffusion process for end-to-end training [42].

3. Incremental Image Retrieval. Current image retrieval
focuses on static datasets and is not suited for incremental
scenarios [165], [166]. That is, most of these approaches assume
that images from all categories are available during training.
This assumption may be restrictive in real-world applications
as new categories are constantly emerging. Repetitive fine-
tuning on both old and new images is time-consuming and
inefficient, while fine-tuning only on the new images may
lead to catastrophic forgetting, thereby resulting in severe
degradation of the retrieval performance for the old categories.
Therefore, one practical direction would be to build an
up-to-date retrieval model to handle incremental streams of
new categories, while retaining its previous performance on
existing categories without forgetting.

4. Deploy Image Retrieval for Practical Applications. Ex-
isting image retrieval technologies are trained and evaluated
on standard benchmarks such as the Oxford and Paris datasets,
and various metric learning methods are explored for retrieval
on fine-grained datasets. However, these technologies are still
far from the real-world applications such as face search, fash-
ion search, person re-identification, shopping recommendation
system, or medical image retrieval. In these practical applica-
tions, the purpose of image retrieval, may not just be retriev-
ing images for general content on standard benchmarks, but
also for more refined information. It is challenging to deploy
image retrieval for specific scenario. For example, as a spe-
cific instance search topic, person re-identification systems may
encounter images with low-resolution or with inferior quality
due to inadequate illumination. Existing techniques such as
Attention mechanisms and the region proposal networks etc.
can be adopted to guarantee performance. On the other hand,
it is valuable to explore multi-modal retrieval in practical ap-
plications. That means, image retrieval can also be combined
with other auxiliary modalities such as words, phrases, and
sentences to meet different retrieval expectations of users.
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TABLE 3: Performance evaluation of off-the-shelf DCNN models. “o” indicates that the models or layers are combined to learn features; “PCA,,
indicates PCA with whitening on the extracted features to improve robustness; “MP” means Max Pooling; “SP” means Sum Pooling. The CNN-M
means that the results were not reported.

network with

u
*

has an architecture similar to that of AlexNet.

w“_n

Backbone | Output Feature Feature i Oxford5k| Paris6k ; ; ol
Type Method DCNN La}Eer Enhance. |Dimension Holidays | UKB (+100K) (+100K) Brief Conclusions and Highlights
Neural 3.42 43.3 Compressed neural codes of different layers are explored.
codes [33] AlexNet FCé PCA 128 4.7 (N-S) (38.6) - AlexNet is also fine-tuned for retrieval.
R-MAC VGG16 Convs R-MAC + 1 66.9 83.0 Adopting sliding windows with different 'scalles on thg
[27] onv PCA - - (61.6) (75.7) convolutional feature maps to preserve spatial information.
@ CroW + 68.4 76.5 The spatial- and channel-wise weighting mechanisms are
é CroW [10]| VGG16 Conv5 PCA4 256 85.1 - (63.7) (69.3)) utilized to highlight crucial convolutional features.
v
o BoW + 73.9 82.0 Both global features and Iocal features are explored,
é BLCF [68] | VGG16 Conv5 PCA,, 25k - - (59.3) (64.8) demonstrating that local features have higher accuracy.
SPoC + 3.65 58.9 Exploring Gassian weighting scheme i7.¢., the centering
SPoC [7] VGG16 Convs PCA,, 256 80.2 (N-S) (57.8) - prior, to improve the discrimination of features.
Multi-layer| FC6 o 3.68 61.5 Layer-level feature fusion and the complementary
CNN [?;2] VGG16 | convans sp 4096 91.4 (N-S) (_)d - properties of different layers are explored.
Deepindex | AlexNet FC6-7 o BoW + 3.32 75.4 Exploring layer-level and mod'el-level 'fusion m(?thodsA Irpage
[31] ° VGG19 FC17-18 PCA 512 8L7 (N-S) - ©) patches are extracted using spatial pyramid modeling.
CNN-M* FC7 o SP or MP 3.00 Exploring layer-level fusion scheme. Image patches are
MOF [49] [60] Conv + BoW 20k 76.8 (N-S) - - extracted using spatial pyramid modeling.
- SP or MP 95.1 84.3 87.9 Image patches are extracted in a dense manner. Geometric
Y Ngﬁﬁ\ff;? VGGl16 Conv5 +PCA, 32k 89.6 (m)AP) ©) ©) invariance is considered when aggregating patch features.
2 CNNaug-ss| Overfeat 91.1 68.0 79.5 Image patches are extracted densely. Image regions at
z [24? [158] FC PCAw 15k 84.3 (mAP) ) ©) different locations with different sizes are included.
o -
= g VLAD Image patches are extracted densely. Multi-scale patch
§ MOP[ZC;]\IN AlexNet FC7 + PCA, 2048 80.2 - - - features are further embedded into VLAD descriptors.
VLAD 3.81 64.8 76.8 Object proposals are extracted by RPNs. Object-level and
CCS [58] [GoogLeNet|  Conv + PCA, 128 84.1 (N-S) & O point-level feature concatenation schemes are explored.
OLDEP AlexN FC6 MP s12 885 3.81 60.7 66.2 Exploring the impact of proposal number. Ifatches are extracted
[72] exNet +PCA,, - (N-S) ©) ©) by RPNs and the features are encoded in an orderless way.
BoW 83.3 87.2 Image patches are obtained using a uniform square mesh.
LDD [100]] VGG19 Conv5 +PCA, 500k 84.6 - 0 &) Patch features are encoded into BoW descriptors.

TABLE 4: Performance evaluation of methods in which DCNN models are fine-tuned, in a supervised or an unsupervised manner. “CE Loss” means
the models are fine-tuned using the classification-based loss function in the form of Eq. 10. “Siamese Loss” is in the form of Eq. 13. “Regression Loss” is
in the form of Eq. 12. “Triplet Loss” is in the form of Eq. 14.

Backbone | Output Feature Loss Feature i OxfordSk | Parisbk i i iohli
Type Method | "enN La}II)er Enhance. | Function |Dimension| lolidays | UKB (+100K) (+100K) Brief Conclusions and Highlights
Conv4d Attention 83.8 85.0 Exploring the FCN to construct feature
DELF [98] |ResNet-101 Block +PCA,, CE Loss 2048 - - (82.6) (81.7) pyramids of different sizes.
The first work which fine-tunes deep networks
Neural AlexNet FC6 PCA CE Loss 128 78.9 g\?g) (23137) for image retrieval. Compressed neural codes
codes [33] ‘ - : ’ and different la lored
yers are explored.
Non-metrid Regression 88.9 88.2 Visual similarity learning of similar and
135] VGG16 Conv5 PCA., L 512 - - ®2.1) (82.9) dissimilar pairs is performed by a neural
50 0SS network, optimized using regression loss.
E Faster R i 75.1 80.7 RPN is fine-tuned, based on bounding box
2 R-CNN VGG16 Conv5 MP / Sp | egression 512 - - (_j (_j coordinates and class scores for specific region
) [76] Loss query which is region-targeted.
g
) SIAM-FV FV + . 81.5 89.4 Fisher Vector is integrated on top of VGG and
2 [36] VGGle Convs PCA. Sl]ajgnszse 512 - - (76.6) © is trained with VGG simultaneously.
a
E SIFT-CNN Siamese 3.01 iy SIFT 'featfures are used as supervisory
& [163] VGG16 Conv5 sSp Loss 512 88.4 (N-S) - - information for mining lposmve and negative
@ samples.
Quartet- . ’75 48.5 48.8 Quartet-net learning is explored to improve
uarte VGG16 FC6 PCA Siamese 128 712 (m AP) (_j (_j feature discrimination where double-margin
Net [134] Loss contrastive loss is used.
NetVLAD VLAD Triplet 62.5 72.0 VLAD is integrated at the last convolutional
[38] VGGle Layer PCAy L(is 256 79.9 - ©) ) layer of VGG16 network as a plugged layer.
. . Dataset is cleaned automatically. Features are
Deep Retri- Conv5 MP + Triplet 86.1 94.5 .
ResNet-101 2048 90.3 - encoded by R-MAC. RPN is used to extract the
eval [132] Block PCAw Loss (82.8) (90.6) most relevant regions.
Exploring manifold learning for mining
i 78.2 85.1 PR
MoM [143]| VGG16 Conv5 Il)\g’; SxEmese 64 87.5 _ 72.6) 78.0) dis/similar samples. Features are tested
0 w 085 globally and regionally.
= Fine-tuning CNNs on an unordered dataset.
K| GeM Siamese 82.0 79.7
El GeM [41] | VGGI16 Conv5 ) 512 83.1 - Samples are selected from an automated 3D
b Pooling Loss (76.9) (72:6) reconstruction system.
5 . Employing Structure-from-Motion to select
_u; SH\/ES]N N1 vacis Conv5 PCA,, Slﬁmese 512 8.5 - (z; ‘% gg ‘f) positive and negative samples from unordered
o4 0588 - - i
k] images.
z . - Graph-based manifold learning is explored
g ~ Regression 92.0 96.6 pye . X
é)‘ IM}%4((]Z]I\IN ResNet-101 LI;\}/}Sr MP gLoss 2048 _ _ ©72) 93.3) within antll\t/l[E layer to mine tge rréag:hmgtand
2 non-matching pairs in unordered datasets.
5 - :
5 . - Exploring global feature structure by modeling
MDP-CNN| . Convs Triplet _ - 854 9.3 the manifold learning to select positive and
[144] ResNet-101| g0 SP Loss 2048 (85.1) (94.7) g P!

negative pairs.




