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Abstract. We present a retrieval method for ammonia (NH3)

total columns from ground-based Fourier transform infrared

(FTIR) observations. Observations from Bremen (53.10◦ N,

8.85◦ E), Lauder (45.04◦ S, 169.68◦ E), Réunion (20.9◦ S,

55.50◦ E) and Jungfraujoch (46.55◦ N, 7.98◦ E) were used

to illustrate the capabilities of the method. NH3 mean

total columns ranging 3 orders of magnitude were ob-

tained, with higher values at Bremen (mean of 13.47×

1015 molecules cm−2) and lower values at Jungfraujoch

(mean of 0.18× 1015 molecules cm−2). In conditions with

high surface concentrations of ammonia, as in Bremen, it

is possible to retrieve information on the vertical gradient,

as two layers can be distinguished. The retrieval there is

most sensitive to ammonia in the planetary boundary layer,

where the trace gas concentration is highest. For conditions

with low concentrations, only the total column can be re-

trieved. Combining the systematic and random errors we

have a mean total error of 26 % for all spectra measured at

Bremen (number of spectra (N )= 554), 30 % for all spec-

tra from Lauder (N = 2412), 25 % for spectra from Réunion

(N = 1262) and 34 % for spectra measured at Jungfraujoch

(N = 2702). The error is dominated by the systematic uncer-

tainties in the spectroscopy parameters. Station-specific sea-

sonal cycles were found to be consistent with known seasonal

cycles of the dominant ammonia sources in the station sur-

roundings. The developed retrieval methodology from FTIR

instruments provides a new way of obtaining highly time-

resolved measurements of ammonia burdens. FTIR-NH3 ob-

servations will be useful for understanding the dynamics of

ammonia concentrations in the atmosphere and for satellite

and model validation. It will also provide additional infor-

mation to constrain the global ammonia budget.

1 Introduction

Nitrogen emissions in the form of ammonia (NH3), which

largely derive from agriculture, have been associated with

acidification and eutrophication of soils and surface waters

(Krupa, 2003; Vitousek et al., 1997), which may reduce bio-

diversity in vulnerable ecosystems (Bobbink et al., 1998,

2010). Ammonia also reacts with nitric acid and sulfuric

acid to form ammonium salts, which account for a large

fraction of particulate matter concentrations (Schaap et al.,

2004). Particulate matter is a major contributor to smog

and is related to negative health impacts (Pope III et al.,

2009). Moreover ammonium salts play an important role in

the radiance balance of the Earth, thus having an impact

on climate change (Charlson et al., 1991; Erisman et al.,

2007). It has been shown that reduced nitrogen also plays

a role in the fixation of carbon dioxide (CO2) (Reay et al.,

2008). Human activities have increased the global emissions
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of reactive nitrogen (Nr) to the atmosphere (Holland et al.,

1999). Current global Nr emissions have been estimated to

be almost 4 times larger than pre-industrial levels (Fowler et

al., 2013), with NH3 emissions amounting to 49.3 Tg in 2008

(EDGAR – Emission Database for Global Atmospheric Re-

search, 2011). Consequently this has led to large increases

in atmospheric nitrogen deposition (Rodhe et al., 2002; Den-

tener et al., 2006). Biomass burning was found to account for

11 % of the global emission budget of NH3 (Bouwman et al.,

1997). While agricultural emissions dominate in the North-

ern Hemisphere, biomass burning is one of the main sources

of NH3 concentration in the Southern Hemisphere.

Despite its central role in many environmental threats, lit-

tle is known about the ammonia budget and its distribution

across the globe. Uncertainties in global and regional emis-

sion rates are large, with errors of more than 50 % (Erisman

et al., 2007; Sutton et al., 2013). Ammonia concentrations

have a large variability in time and space and a short lifetime

in the order of hours. The lack of globally distributed obser-

vations hampers our understanding. Surface observations are

available, but these are not homogenously distributed over

the globe, with most observation sites located in the North-

ern Hemisphere. Most sites provide data with a poor tem-

poral resolution (e.g. many observation networks use pas-

sive samplers with a sampling time of 2 or 4 weeks (Thi-

jsse et al., 1998; Puchalski et al., 2011)), whereas emis-

sion and deposition dynamics affect concentrations on the

scale of hours to days. Systems with higher sampling fre-

quency such as the AMANDA, MARGA and (denuder) fil-

ter packs are available, but the number of measurement net-

works using these instruments is limited as they are often

costly to operate (Erisman et al., 2001; Thomas et al., 2009;

Mount et al., 2002; Hansen et al., 2003). Moreover, mea-

suring NH3 is challenging and existing in situ measurement

techniques are often prone to sampling artefacts (von Bo-

brutzki et al., 2010). Recent advances in open-path remote

sensing techniques, like (mini-)differential optical absorption

spectroscopy (DOAS) systems and open-path quantum cas-

cade laser (QCL) instruments, show great potential in over-

coming part of these sampling issues (Volten et al., 2012;

Miller et al., 2014), but are still in the development stage and

not widely applied yet. Another aspect is the lack of verti-

cal information, as most instruments only measure surface

concentrations (Erisman et al., 2007, 2008; Van Damme et

al., 2015a). Some recent airborne measurements have been

made (Nowak et al., 2007, 2010; Leen et al., 2013), but only

during dedicated campaigns with limited temporal and spa-

tial coverage. In short, it is very difficult to obtain detailed

knowledge on the global ammonia budget using field obser-

vations that are currently available.

Remote sensing products from atmospheric satellite

sounders such as the Infrared Atmospheric Sounding In-

terferometer (IASI), the Tropospheric Emission Spectrom-

eter (TES) and the Cross-track Infrared Sounder (CrIS) (Van

Damme et al., 2014a; Shephard et al., 2011, 2015) have be-

come available and show good promise to improve NH3 con-

centration monitoring (Van Damme et al. 2014b; Luo et al.,

2015; Whitburn et al., 2015). However, these data sets are

constrained by the overpass time of the satellite and the atmo-

spheric conditions (cloud coverage, thermal contrast, etc.).

Moreover, the uncertainties associated to the data are rela-

tively large, which calls for a detailed evaluation of the data.

A recent study (Van Damme et al., 2015a) showed a number

of challenges related to the validation. First, reliable hourly

in situ data are sparse. Second, when not using optimal es-

timation satellite products, as is the case for the IASI-NH3

retrieval, one has to assume a vertical profile to link surface

concentrations to a column value. Third, the ground-based

observations are often influenced by local sources, whereas

satellite observations have a footprint of the order of tens of

kilometres. A recent study by Shephard et al. (2015) shows

the potential of an instrument that can be used for profile

comparisons. In the study, instruments on an aircraft were

used to measure a vertical profile of NH3; these measure-

ments were used as a validation tool for the NH3-profile ob-

servations of TES. Hence, a measurement methodology that

provides columnar and vertical profiles of ammonia concen-

trations at a high temporal resolution would be highly ben-

eficial for evaluating the merits of the novel satellite prod-

ucts. Fourier transform infrared spectrometry (FTIR) pro-

vides this methodology. Atmospheric sounders have a long

history for validation of satellite products. FTIR observations

are already commonly used for the validation of satellite

products of, among others, carbon monoxide (CO), methane

(CH4) and nitrous oxide (N2O) (Wood, 2002; Griesfeller et

al., 2006; Dils et al., 2006; Kerzenmacher et al., 2012).

FTIR spectrometry is a well-established remote sensing

technique for the observation of atmospheric trace gases

(Rao and Weber, 1992). FTIR has so far been used to estimate

ammonia emissions from fires (Yokelson et al., 1997, 2007;

Paton-Walsh et al., 2005), but only on a campaign basis,

not through long-term monitoring. There are several moni-

toring stations with FTIR instruments that are operated on a

regular basis, providing long-term time series for a suite of

key tropospheric and stratospheric species, including carbon

dioxide (CO2), carbon monoxide (CO) and ozone (O3). So

far nobody has systematically analysed the FTIR measure-

ments for NH3. We have developed a NH3-retrieval strategy

for four Network for the Detection of Atmospheric Compo-

sition Change (NDACC) FTIR stations, spanning very dif-

ferent concentration conditions (polluted and remote sites),

in order to obtain time series of NH3 total columns and show

their value for describing temporal variations.

First we present the measurement sites and the retrieval

strategies in Sect. 2. We describe the characteristics of the re-

trieval in Sect. 3.1.1 and the uncertainty budget in Sect. 3.1.2.

Section 3.2 constitutes of an interpretation of the results in

combination with a comparison with existing data sets of CO

total columns and temperature to distinguish between emis-

sion sources. We summarize the results in Sect. 4.
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2 Measurement sites and retrieval strategies

2.1 Sites description

Ground-based FTIR instruments measure the solar absorp-

tion spectra under cloud-free conditions by using a Fourier

transform spectrometer. These spectra can be analysed by

using a line-by-line model (Pougatchev et al., 1995; Hase

et al., 2004, 2006), which models the spectroscopic absorp-

tion lines by using known parameters from a spectroscopic

database (e.g. HITRAN, Rothman et al., 2013) in combina-

tion with the radiative state of the atmosphere, and an opti-

mal estimation inversion scheme (Rodgers, 2000). Informa-

tion on vertical concentration profiles can be retrieved us-

ing the pressure broadening of the absorption lines. For the

NDACC network the spectral region measured is the near- to

mid-infrared domain (740 to 4250 cm−1, i.e. 13.5 to 2.4 µm),

with a HgCdTe or InSb cooled detector (Zander et al., 2008)

and a suite of optical filters being used to optimize the signal-

to-noise ratio in the complementary spectral regions. Instru-

ments in the network are routinely checked and character-

ized using laboratory measurements of HBr lines and the

line-fit software (Hase et al., 1999) to assess the instrument

line shape, alignment and measurement noise levels. Four

NDACC stations are used in our study, two in each hemi-

sphere:

– The site of Bremen (53.10◦ N, 8.85◦ E) is especially

suitable to measure variations in ammonia concentra-

tions as the surrounding state, Lower Saxony, is a

region with intensive agricultural activities with high

and temporal variable emissions (Dämmgen and Eris-

man, 2005). In short, the ammonia total columns

(moleculescm−2) at Bremen are expected to reach high

values compared to background stations. The University

of Bremen operates a Bruker 125HR spectrometer and

a solar tracker by Bruker GmbH, directly on the univer-

sity campus.

– The Jungfraujoch station (46.55◦ N, 7.98◦ E) is a high-

altitude station (3580 m a.s.l.) located in Switzerland

(Zander et al., 2008). There are no sources of large emis-

sions surrounding the station itself as it is located in the

free troposphere. At Jungfraujoch, a Bruker 120HR in-

strument has been in operation since the early 1990s.

For the current study, specific for the Jungfraujoch site,

we used a subset of spectra recorded during the 2004–

2013 time period with apparent solar zenith angles

(SZA) between 70 and 85◦ to increase the capability to

retrieve the very low ammonia concentrations.

– The Lauder (45.04◦ S, 169.68◦ E) National Institute of

Water and Atmospheric Research (NIWA) atmospheric

research station in Central Otago, New Zealand, is sit-

uated at an altitude of 370 m a.s.l. Long-term opera-

tions started in 1991 with a Bruker 120M (Griffith et

al., 2003). This instrument was replaced with a Bruker

120HR in October 2001. Ammonia emissions in the sur-

rounding valley are mostly due to livestock grazing on

the pastures and are a by-product of seasonal fertilizer

application. In recent years there has been an increase in

cattle grazing and crop cultivation (EDGAR – Emission

Database for Global Atmospheric Research, 2011).

– Réunion Island (20.9◦ S, 55.50◦ E) is located in the

Indian Ocean to the east of Madagascar. The station

is located at the University campus of Saint-Denis on

the north side of the island. Agricultural activities are

mostly related to sugar cane production. The island

is prone to some local biomass burning and wild fire

events, which are known to emit ammonia. It is also

very close to Madagascar, a region with frequent and

intense biomass burning events, and it has been found,

using backward trajectory, that the emissions in Mada-

gascar can be transported to Réunion Island within 1

day (Vigouroux et al., 2009). The measurements used

in this study are performed with a Bruker 120M spec-

trometer. Details on the measurements can be found in

Senten et al. (2008) and Vigouroux et al. (2012).

These stations are expected to provide significant differences

in variability and levels of ammonia, making them suitable

to demonstrate the strength of our retrieval scheme for ap-

plication across the whole network. A summary of the sta-

tion descriptions is given in Table 1. CO columns were ob-

tained from the NDACC database to be used for comparison

in Sect. 3.

2.2 NH3 retrieval strategies

The ammonia absorption lines from its υ2 vibrational band

can be observed in the 700–1350 cm−1 wavenumber range

and they are also used in the retrieval of satellite prod-

ucts of ammonia (e.g. Clarisse et al., 2009; Van Damme et

al., 2014a). In this spectral range the FTIR spectra can be

measured using a potassium bromide (KBr) beam splitter

in combination with a mercury–cadmium–telluride (MCT)

nitrogen-cooled detector (Zander et al., 2008). The retrieval

scheme of trace gas concentrations from FTIR spectra is built

on the use of a set of spectral micro-windows containing ab-

sorption lines of the targeted species, with minimum interfer-

ence by other atmospheric species or solar lines. Two slightly

different sets of spectral micro-windows were used at the

four stations, but both sets use the same main NH3 absorption

lines. The target and interfering species are summarized in

Table 2, with the profile-retrieved species indicated in bold.

To properly estimate ammonia, interfering species like O3

and water vapour (H2O) that overlap NH3 lines in the υ2 vi-

brational band have to be accounted for. Two micro-windows

were chosen that contain as few interfering species as possi-

ble. In both sets, the first micro-window (MW1) covers the

NH3 absorption line at 930.75 cm−1. At Bremen/Lauder, the
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Table 1. FTIR stations used in the analysis. The location, longitude, latitude and altitude are given for each station as well as the instrument

used for the measurements. Some station specifics are given in the last column.

Station Location Longitude Latitude Altitude (m a.s.l.) Instrument Station specifics

Bremen Germany 8.85◦ E 53.10◦ N 27 Bruker 125 HR City, fertilizers, livestock

Lauder New Zealand 169.68◦ E 45.04◦ S 370 Bruker 120 HR Fertilizers, livestock

Réunion Indian Ocean 55.5◦ E 20.90◦ S 85 Bruker 120 M Fertilizers, fires

Jungfraujoch Switzerland 7.98◦ E 46.55◦ N 3580 Bruker 120 HR High altitude, no large sources

Table 2. Micro-windows used in the NH3 retrieval at the four stations.

Stations Micro-window Spectral range (cm−1) Interfering species (profile-

retrieved species in bold)

Signal-to-noise

ratio (SNR)

Bremen and Lauder MW1 930.32–931.32 NH3, H2O, O3, CO2, N2O,

HNO3, SF6, CFC-12, solar

lines

Bremen – real

SNR mean value

of 450

MW2 966.97–967.68 NH3, H2O, O3, CO2, N2O,

HNO3, solar lines

Lauder – real

SNR mean value

of 250

Réunion MW1 929.4–931.4 NH3, H2O, O3, CO2, N2O,

HNO3, SF6, CFC-12

Réunion – real

SNR mean value

of 365

MW2 962.1–970.0 NH3, H2O, O3, CO2, N2O,

HNO3, HDO, 686O3, solar

lines

Jungfraujoch MW1 929.4–931.4 NH3, H2O, O3, CO2, N2O,

HNO3, SF6, CFC-12

MW2 962.1–970.0 NH3, H2O, O3, CO2, N2O,

HDO, 686O3, solar lines

Jungfraujoch –

fixed at 250

choice was to use only isolated NH3 absorption features to

avoid possible problems due to line mixing, therefore the

spectral window MW1 is only 1 cm−1 wide (930.32–931.32;

MW1). Figure 1 shows an example of a synthetic spectrum

calculated to fit a observation that was measured with the

125HR in Bremen on the 19 April 2010 at 09:59 UTC (so-

lar zenith angle of 45◦). The NH3 concentrations on this

day were slightly higher than average, resulting in slightly

stronger NH3 absorption features in the spectra. The top two

figures show the absorption contributions of the absorbing

species in both micro-windows. The bottom two panels show

an enlarged version of the figure to distinguish the interfer-

ing species with smaller absorption features. At Réunion Is-

land/Jungfraujoch, MW1 was extended (929.4–931.4; MW1)

to cover another NH3 line at 929.9 cm−1. This improved

the retrieval for Réunion Island because at this location the

NH3 concentration levels are much lower than at Bremen

and the water vapour concentrations are much higher. In this

high humidity condition, the 930.75 cm−1 line is not isolated

from H2O, and it improved the retrieval to add the more iso-

lated one at 929.9 cm−1 (see Fig. 2). The main interfering

species in MW1 are CO2, N2O and H2O. Minor interfering

species are SF6 and CFC-12. The second window spans the

NH3 line at 967.35 cm−1. Again, different widths are used

for Bremen/Lauder (966.97–967.68; MW2) and Réunion Is-

land/Jungfraujoch (962.7–970; MW2). The very weak ab-

sorption signatures at Réunion Island and Jungfraujoch are

close to the noise level and therefore the whole NH3 ab-

sorption shape is retrieved (about 964–968 cm−1; see Fig. 2)

rather than a single line. The main interfering species in

MW2 are O3, CO2 and H2O for all sites. At Réunion Is-

land HDO also interferes in MW2 as well as the isotopologue
686O3 (i.e. 16O–18O–16O), which has been fitted in addition

to the main 666O3. At Jungfraujoch apart from CO2, two

O3 isotopologues (the most abundant and 686O3) and water

vapour, which are the main interferences, N2O, CFC-12, SF6

and HDO absorptions are also retrieved. Typical NH3 absorp-

tions are weak, on the order of a few tenths of a percent.

The typical measurement noise (signal-to-noise ratio) differs

per spectra and site but ranges between ∼ 250 at Lauder and

∼ 450 at Bremen. Channelling was not an issue in any of the

spectra and did not need to be fitted.

Except at Jungfraujoch where SFIT2 is used, the retrieval

is performed using the more recent SFIT4.0.9.4 algorithm

(Pougatchev et al., 1995; Hase et al., 2004, 2006). Both ver-

sions use a form of the optimal estimation method (Rodgers,

2000) to retrieve the volume mixing ratios and total columns

of NH3 and make use of a priori information (profile and
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Figure 1. Calculated spectrum for both spectral windows measured with the 125HR in Bremen on the 19 April 2010 at 09:59 UTC, corre-

sponding to a total column of 18.83×1015 molecules cm−2. The top two panels show the individual contributions of the different species in

the first (MW1) and second (MW2) spectral windows. The second row shows the same calculated spectra but now with the y-axis scaled to

show the minor interfering species.

covariance matrix). For Bremen, Lauder and Jungfraujoch

the used NH3 a priori volume mixing ratios are based on

balloon observations (Toon et al., 1999, NH3 available in

data set but not reported). The shape of the balloon measure-

ments’ profile was kept constant but extended and scaled to

expected surface concentrations. The a priori surface volume

mixing ratio is estimated to be 10 ppb for Bremen (Dämm-

gen and Erisman, 2005). Although the shape of NH3 pro-

files do change through time, the largest share of NH3 is ex-

pected to be in the mixing layer, which is represented by the

lowest layers in the calculation (Van Damme et al., 2015a;

Nowak et al., 2010). At Réunion Island, the a priori profile

was taken from the MOZART model (L. Emmons, private

communication, 2014). The a priori profile peaks at a higher

altitude (4–5 km) instead of the boundary layer as in Bremen,

as NH3 is expected to originate mainly from the transport of

biomass burning emissions at this location. At all stations,

the a priori profiles of the interfering species were taken from

the Whole Atmosphere Community Climate Model (Chang

et al., 2008).

At Bremen and Lauder, the a priori covariance matrices

only have diagonal values, corresponding to standard devia-

tions of 100 % for all layers with no interlayer correlation,

chosen in relation to the large range of possible concen-

trations and variations between layers. At Jungfraujoch and

Réunion Island, we did not use the a priori covariance matrix

as an optimal estimation; however, the Tikhonov-type L1 reg-

ularization (e.g. Sussmann et al., 2009) was adopted for the

Jungfraujoch retrievals. After several tests, values of 50 and

250 were adopted for the alpha parameter and the signal to

noise for inversion, respectively. A Tikhonov regularization

with an alpha parameter value of 50 was also adopted for the

Réunion retrievals. The signal to noise ratio is calculated for

each of the spectra, the mean value being 365.

Daily temperature and pressure profiles for the meteoro-

logical variables were taken from NCEP (National Centers

for Environmental Prediction). For the radiative transfer cal-

culations the profiles were split into about 50 levels, depend-

ing slightly on the station, from ground up to 80 km (100 km

in the case of Jungfraujoch and Réunion Island). The lay-

ers have a typical thickness of 500 m in the troposphere, up

www.atmos-chem-phys.net/15/12789/2015/ Atmos. Chem. Phys., 15, 12789–12803, 2015
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Figure 2. Example of a synthetic atmospheric spectrum for both

spectral windows at Réunion Island, computed for 5 June 2011, and

a total column of 1.07×1015 molecules cm−2. The top panel shows

the individual contributions of the main species in the first spectral

window. The bottom panel shows the second spectral window.

to 2 km for the higher layers. For the line spectroscopy we

use the HITRAN 2012 database (Rothman et al., 2013) in

combination with a number of corrections for CO2 (ATMOS,

Brown et al., 1996) (except for Jungfraujoch for which the

HITRAN lines are used) and sets of pseudo-lines generated

by G. C. Toon (NASA-JPL) to account for broad unresolved

absorptions by heavy molecules (e.g. CFC-12, SF6).

Figure 3 shows an example of the fit in both micro-

windows for the same measured spectra as used in Fig. 1. The

top two and bottom two panels show the calculated (green

line) and measured spectrum (blue line) and the residual of

both micro-windows. The simultaneous fits are good with a

standard deviation of 0.15 % in both cases.

3 Results of the FTIR retrievals

3.1 Characteristics of the NH3 retrievals

3.1.1 Vertical information

The retrieved vertical information differs from station to sta-

tion. The top of Fig. 4 shows the average NH3 volume mix-

ing ratios (VMR) for each of the retrieved layers (blue line)

and the a priori profile that was used as input in the retrieval

(green line), for the four stations. The bottom of Fig. 4 shows

the averaging kernels for each of the four stations averaged

over all available observations. As mentioned earlier most of

the NH3 at Bremen is in the lowest layers. In Fig. 4 this is

also observed as the averaging kernel shows the most sensi-

tivity in the lowest layers (red and green lines for the layers

0.03–0.5 and 0.5–1 km). The combination of the two spec-

tral micro-windows contains, on average, 1.9 degrees of free-

dom of signal (DOFS) for the Bremen spectra, which means

around two independent vertical layers can be retrieved. The

two separate layers consist of a layer covering ground–1 km

and one that covers 1–6 km height, which can be observed in

Fig. 4. It must be taken into account, however, that the aver-

aging kernels shown are a mean of all observations and thus

the retrievable number of layers and combined layer depths

vary from spectra to spectra. On average, the Lauder spec-

tra have a DOFS of 1.4. There is only vertical information

for multiple layers during periods with increased NH3 total

columns, which mostly occur during summer. Similar to Bre-

men, averaging kernels peak near the surface. At Réunion

Island, only a DOFS of 1.0 is achieved, with almost no ver-

tical information available. All the averaging kernels peak at

the same altitude (about 5 km), which is also the peak of the

a priori profile (Fig. 4). Similar to the Réunion spectra, the

Jungfraujoch spectra do not have vertical information with a

DOFS of 1.0.

3.1.2 Uncertainties budget

For the error analysis the posteriori error calculation included

in the SFIT4 package is used. The error calculation is based

on the error estimation approach by Rodgers (2000). It allows

the calculation of the error by attributing errors to each of the

parameters used in the retrieval. The error budget can be di-

vided into three contributions: the error due to the forward

model parameters, the measurement noise and the error due

to the vertical resolution of the retrieval (smoothing error).

The assumed uncertainties for the parameters used in the re-

trieval are listed in Table 3 for the parameters used in the cal-

culation for Bremen, Lauder and Réunion. For Jungfraujoch,

the error computation was performed using the perturbation

method, the spectra of 2009 to 2011 and the Rodger formal-

ism as explained e.g. in Franco et al. (2015). For Réunion Is-

land, the covariance matrix used for the smoothing error has

diagonal elements representing 150 % variability from the a
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Figure 3. Measured and calculated spectrum for both spectral windows measured with the 125HR in Bremen on the 19 April 2010 at

09:59 UTC, corresponding to a total column of 18.83× 1015 molecules NH3 cm−2. The top two panels show the observed (blue line) and

calculated (green line) spectra for MW1 (left) and MW2 (right). The bottom two figures show the residuals of the fits in both spectral

windows.

Figure 4. Top panels: the retrieved NH3 profile (blue) and the a priori profile (green) in order from left to right: Bremen (left), Lauder (Left

middle), Réunion Island (right middle) and Jungfraujoch (right). Horizontal lines indicate the standard deviation in all observations for each

layer. Bottom panels: the normalized averaging kernel for each of the stations.

priori profile. To reflect the error in the NCEP temperature

profiles, we assume an uncertainty of about 2 K in the tro-

posphere and a 5 K uncertainty in the stratosphere. For the

uncertainty in the NH3 line parameters we assume values as

stated in the HITRAN 2012 database. We assume a conser-

vative 20 % uncertainty for the intensity and 10 % for both

the temperature and pressure broadening coefficients.

The results of the error calculation are listed in Table 4.

Combining the systematic and random errors, we have a

mean total error of 25.8 % for all the spectra measured at

Bremen (N = 554), 30.2 % for the spectra at Lauder (N =

2412), 25.2 % for the Réunion spectra (N = 1262) and 34.2

for the Jungfraujoch spectra (N = 2702). The errors are dom-

inated by uncertainties in the spectroscopy. In detail, the ran-

dom error sources amount to a mean error of 9.1 % for the

Bremen spectra, which is mostly due to uncertainty in tem-

perature, measurement noise and the zero level of the sensor

(i.e. an instrument property). In the case of the systematic
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Table 3. Random and systematic uncertainties used in the error calculation.

Version (stations) SFIT 4 (Bremen, Lauder, Réunion) Version (stations) SFIT 2 (Jungfraujoch)

Parameter Random uncertainty Systematic uncertainty Parameter Random uncertainty Systematic uncertainty

Temperature 2 K troposphere 2 K troposphere Temperature 1.5 K 0–20 km

5 K stratosphere 5 K stratosphere 2.0 K 20–30 km

5.0 K 30 km –

Solar line shift 0.005 cm−1 0.005 cm−1 Line intensity 20.0 %

Solar line strength 0.1 % 0.1 % Line T broadening 10.0 %

Solar zenith angle 0.01◦ 0.01◦ Line P broadening 10.0 %

Phase 0.001 radian (rad) 0.001 rad Interfering species HITRAN2012: varies

Zero level 0.01 0.01 Instrumental line shape (ILS) 10 %

Background curvature 0.001 cm−2 Influence of a priori profiles Calculated

Field of view 0.001 Solar zenith angle (SZA) 0.2◦

Line intensity 20.0 %

Line T broadening 10.0 %

Line P broadening 10.0 %

Interfering species HITRAN2012: varies

Table 4. Mean random and systematic errors for each of the individual NH3 retrieval parameters. The table is split into two sections to cover

both the error calculation using SFIT4 (Bremen, Lauder, Réunion) and SFIT2 (Jungfraujoch). At the bottom the errors are summarized into

total mean errors for each of the stations.

Station Bremen Lauder Réunion Jungfraujoch

Parameter Mean Mean Mean Mean Mean Mean Parameter Mean Mean

random systematic random systematic random systematic random systematic

error (%) error (%) error (%) error (%) error (%) error (%) error (%) error (%)

Temperature 4.9 4.9 3.6 3.6 2.7 2.9 Temperature 15.2

Solar zenith angle 1.6 1.6 Solar zenith angle 1.9

Phase 1.0 1.0 1.1 1.1 Instrumental line shape 1.4

Zero level 5.0 5.0 6.8 6.8

Measurement noise 4.5 8.4 10.9 Measurement noise 18.2

Interfering species 1.3 2.4 0.9 8.7 (H2O Interfering species 1.4

line pressure

broadening)

Retrieval parameters 0.1 0.1 Model parameters 1.4

Background curvature 1.1 1.2 0.3 Forward model 1.0

Smoothing error 2.8 8.1 10.3 Smoothing 5.4

Spectroscopy 21.0 22.7 17.8 Spectroscopy 20.1

NH3 a priori 6.1

Influence of a priori 6.6

profiles (H2O & HDO)

Subtotal error 9.1 23.5 12.0 27.0 15.3 20.0 Subtotal error 25.3 23.1

Total error 25.8 30.2 25.2 Total 34.2

error, with a mean error of 23.5 %, the error is for the

largest part due to the spectroscopy (i.e. line parameters),

with smaller contributions of the temperature, zero level,

phase and the smoothing error. The results are similar for

the Lauder, Réunion and Jungfraujoch spectra, with most of

the uncertainty coming from the line parameters. Hence, line

intensity parameters of the ammonia absorption lines are crit-

ical for the NH3 concentrations.

3.2 Time series

Figure 5 shows the NH3 total columns retrieved from all

available spectra from 2004 to 2013. Table 5 gives a sum-

mary of statistics of the retrieved NH3 columns. Individ-

ual measurements at Bremen (blue) show high concentra-

tions, especially in spring, with an overall mean column to-

tal of 13.7× 1015 molecules NH3 cm−2 and a root-mean-

square error (RMSE) of 20.22 indicating a large variability

in the observations. The amplitude of the spring peaks varies

Atmos. Chem. Phys., 15, 12789–12803, 2015 www.atmos-chem-phys.net/15/12789/2015/



E. Dammers et al.: Retrieval of ammonia from ground-based FTIR solar spectra 12797

Table 5. Statistics of the NH3 columns. (No.: number of data points, DOFS: degrees of freedom of signal, mean ± the error of the mean,

RMSE: root-mean-square error.). Total columns are given in 1× 1015 molecules NH3 cm−2.

Station No. Mean Mean Median RMSE

DOFS (molecules ×1× 1015) (molecules ×1× 1015) (molecules ×1× 1015)

Bremen 554 1.9 13.75± 4.24 9.51 20.22

Lauder 2412 1.4 4.17± 1.40 2.85 5.95

Réunion 1262 1.0 0.80± 0.54 0.56 1.14

Jungfraujoch 2702 1.0 0.18± 0.07 0.15 0.22

Figure 5. Time series of retrieved NH3 columns (in molecules NH3 cm−2). From top to bottom the figure shows the Bremen (blue), Lauder

(red), Réunion (green) and Jungfraujoch (yellow) total columns. The bars reflect the errors in the individual observations.

throughout the years, with maxima in 2010 and 2013, reach-

ing ∼ 93× 1015 and 85× 1015 molecules NH3 cm−2. The

variability through the years is caused by changes in mete-

orology, emissions and timing of the measurements. Gaps

in the data are due to days with overcast and instrument

downtimes. The individual observed columns are sorted into

monthly averages to analyse the seasonal variability and to

understand the processes driving the NH3 concentrations.

This is shown in Fig. 6, together with monthly averages of

surface temperature and CO total columns. NH3 column to-

tal concentrations at Bremen (Blue line) have a seasonal cy-

cle with highest levels during spring, the summer months and

autumn. The maximum concentrations occur around April,

which is consistent with temporal emission patterns for ma-

nure application reported for this region (Friedrich and Reis,

2004; Van Damme et al., 2015b; Paulot et al., 2014). The

baseline variability with higher concentrations in summer

can be explained by an increase in volatilization rates of

NH3, emitted from livestock housing, which is driven by an-

imal activity and temperature (Gyldenkærne et al., 2005). A

comparison is made with CO to distinguish between agricul-

tural and fire emissions sources. A correlation between NH3

and CO columns is not observed, which is consistent with

agriculture being the dominant source of ammonia.
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Figure 6. 2004–2013 monthly averaged columns for NH3, CO and temperature. The top two panels show the monthly NH3 column concen-

trations (molecules NH3 cm−2) for each of the four stations. Vertical lines indicate the mean monthly error. The bottom two panels show

additional column concentrations of CO (bottom, left) and temperature (bottom, right).

On average the measurements at Lauder (Fig. 5, red line,

top panel) yield a column total of 4.17× 1015 molecules

NH3 cm−2. These levels are about one-third of the concen-

trations measured at Bremen (blue, top panel). Spectra from

Lauder are available for most days in the retrieved time se-

ries, which makes it easier to discern peaks and variability.

Distinctive peaks are only visible in each summer. Maxima

during springtimes are not often observed. The peak values

are similar in between years, with maxima typically around

30× 1015 molecules NH3 cm−2. The RMSE of 5.95 reflects

a large variability in the observations between individual re-

trievals. The average error is 1.34× 1015 molecules NH3

cm−2, which is around a quarter of the mean. Figure 6 shows

the seasonal cycle of Lauder (red line, top left panel). The

seasonal variation of NH3 coincides with that of the atmo-

spheric temperature (red line, bottom right panel) and with

the livestock emissions in the surrounding region, which are

strongly correlated with temperature.

The third panel of Fig. 5 shows the observations from Réu-

nion (green symbols, bottom panel). The mean column total

observed at Réunion is 0.80× 1015 molecules NH3 cm−2.

The concentrations are low during most of the year. How-

ever, peaks reaching densities of ∼ 6× 1015 molecules NH3

cm−2 can be observed during the end of each year. The peaks

in September–November coincide with the dry season, in-

dicating that emissions are mostly due to biomass burning

and large fire events (Vigouroux et al., 2012). This is sup-

ported by the increased CO concentrations, which are also

observed in October and November (see, bottom left panel,

Fig. 6). NH3 surface concentration measurements are not

available for this region but a recent paper by Van Damme

et al. (2015b), which uses IASI-NH3 observations, shows

similar seasonal cycles for the south-eastern parts of Africa

(Madagascar). Temperature is almost constant throughout

the year and is not a major factor in the seasonality of Réu-

nion.

Observations from Jungfraujoch have the lowest mean

concentration of all four stations (Fig. 5, orange line), with a

mean of 0.18×1015 molecules NH3 cm−2. The low concen-

trations at Jungfraujoch are expected, as the station is located

in the free troposphere high above the surrounding valleys.

Transport of NH3 from the valleys only occurs sporadically

during days with intense vertical mixing. This was also ob-

served in an earlier study of CO concentrations (Barret et al.,

2003). The Jungfraujoch observations show almost no sea-

sonal effects with only a minimal increase during the sum-

mer months. The low concentrations measured at Jungfrau-

joch support our assumption on the vertical distribution of the

ammonia concentrations with low values in the troposphere

that were used in our a priori profiles.

4 Conclusions and perspectives

In this study we presented a new method to retrieve ammo-

nia total columns from ground-based FTIR solar spectra. Ob-

servations from four complementary stations were used to

illustrate the capabilities of the retrieval method. NH3 total

columns ranging 3 orders of magnitude were obtained with

high abundances at Bremen (mean of 13.7× 1015 molecules

cm−2, with a mean DOFS of 1.9) to low columns at Jungfrau-

joch (mean of 0.18× 1015 molecules cm−2, with a mean

DOFS of 1.0). The very low levels obtained at Jungfrau-

joch demonstrate the sensitivity of the retrieval method we
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developed. A separate error calculation shows random errors

in the order of 10 % and systematic errors of 25 % for indi-

vidual observations. The errors are dominated by uncertain-

ties in spectroscopy, atmospheric temperature and deviations

in instrumental parameters. For conditions with high surface

concentrations of ammonia, as in Bremen, it is possible to re-

trieve information on the vertical gradient as two layers can

be discriminated. At Bremen, the retrieval is most sensitive

to ammonia in the planetary boundary layer, where most of

the ammonia is expected. For conditions with lower concen-

trations there is not enough information to discriminate in-

dividual layers. Station-specific seasonal cycles were found

to be consistent with known seasonal cycles of the dominant

ammonia sources in the station surroundings. For example,

highest levels in Bremen were observed during springtime

when manure is applied to the fields, with column total con-

centrations reaching up to 93× 1015 molecules cm−2.

Remote sensing techniques avoid sampling artefacts com-

mon to other techniques such as filter packs (Puchalski et

al., 2011; von Bobrutzki et al., 2010). For in situ observa-

tions, open-path remote sensing techniques, e.g. DOAS and

QCL instruments, are starting to be used (Volten et al., 2010;

Miller et al., 2014). The FTIR-NH3 observations would be

an excellent addition to these approaches as it provides the

NH3 total column and profiles, including vertical informa-

tion, for sites sampling high ammonia levels. With a mean

error of ∼ 25 % for all observations in high ammonia source

areas, the accuracy of the FTIR retrievals is comparable to

that reported for satellite products (TES, IASI, CrIS). Com-

pared to the in situ open-path remote sensing methods, the

FTIR method has a higher uncertainty, but this is a trade-

off for the ability to retrieve vertical information. To improve

the accuracy of the FTIR-NH3 retrieval, a reassessment of

the spectral line parameters is necessary.

Observations from existing networks commonly represent

daily or even monthly averaged concentration values, which

severely complicates any attempt to validate satellite obser-

vations. The novel FTIR-NH3 observations enable a direct

validation of satellite products. As the FTIR- NH3 prod-

uct provides averaging kernels, a direct comparison can be

made with optimal estimation satellite retrievals while tak-

ing account of the a priori information and vertical sensi-

tivity of both instruments (Rodgers and Connor, 2003). A

dedicated field campaign was executed at the Cabauw Ex-

perimental Site for Atmospheric Remote Sensing (CESAR)

in the Netherlands (spring and summer 2014) to validate

the IASI-NH3 using a range of instruments, including mini-

DOAS instruments and a Bruker IFS-66 instrument.

The uncertainty in the emission distributions hampers the

performance and prediction capabilities of air quality and

climate models (Heald et al., 2012). Emissions are usu-

ally based on nationally reported yearly emission inventories

(Pouliot et al., 2012) and gridded by distributing the emis-

sions according to animal populations and agricultural land

use (Bouwman et al., 2002; Kuenen et al., 2011). To improve

on static emission time profiles, a new direction is to in-

clude the impact of the meteorological variability of ammo-

nia emissions in modelling systems (Sutton et al., 2013). Re-

cently, such an improvement was shown to greatly enhance

the performance of air quality models (Skjøth et al., 2011).

Satellite observations in combination with chemical transport

models (CTM) have been used to provide a top-down con-

straint on ammonia emissions (e.g. Zhu et al., 2013). Simi-

lar to satellite observations, FTIR total columns in combina-

tion with surface and satellite observations could provide the

means to evaluate the emission modelling through compar-

ing trends and concentration anomalies within and between

years. For this purpose continuous time series are necessary.

Due to the lack of continuous data (i.e. more than one obser-

vation per hour) we could not derive a typical diurnal cycle

in this study, whereas this would be highly useful for model

evaluation. Improved knowledge on the diurnal cycles may

also greatly help to interpret model evaluation results com-

pared to satellite data, as they provide snapshots, e.g. daily

observations by IASI at 09:30 local time. Also, the model–

measurement comparison would be less sensitive to mod-

elling errors in the turbulent vertical exchange as the ammo-

nia is integrated vertically.

The developed retrieval methodology from FTIR instru-

ments provides a new way of obtaining vertically and tem-

porally resolved measurements of ammonia concentrations.

FTIR-NH3 observations may prove very valuable for satel-

lite and model validation and may provide a complementary

source of information to constrain the global ammonia bud-

get.
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