
Laser-generated toroidal helium plasmas
Kooij, V.L.

Citation
Kooij, V. L. (2021, April 28). Laser-generated toroidal helium plasmas. Casimir PhD Series.
Retrieved from https://hdl.handle.net/1887/3161377
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3161377
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3161377


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/3161377 holds various files of this Leiden 
University dissertation.  
 
Author: Kooij, V.L. 
Title: Laser-generated toroidal helium plasmas 
Issue date: 2021-04-28 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/3161377
https://openaccess.leidenuniv.nl/handle/1887/1�


4
Microwave analysis of transient
toroidal helium plasmas

We experimentally studied laser-generated, atmospheric pressure, transient toroidal helium plasmas using
57 GHz microwave radiation. By combining interferometric measurements with detailed full-wave finite-
element calculations, we estimate, with sub-microsecond temporal resolution, the electron number density
and the electron collision rate, for the entire evolution of a toroidal plasma. We discuss in detail the
microwave interferometric set-up used to measure the complex transmission coefficient, and explain a
method whereby the finite-element calculations are used as a map between the measured transmission
coefficient and the desired plasma parameters. We briefly discuss an improvement of this method by which
a tomographically reconstructed, poloidal intensity profile, based on optical recordings, can be used to
better model the toroidal plasma in the finite-element calculations.

4.1 Introduction

In the previous chapters we have examined self-organising toroidal
plasmas, generated by a laser-induced breakdown plasma in quiescent
atmospheric pressure helium gas at room temperature. We proposed
that these transient toroidal helium plasmas might be a first step
towards the experimental realisation of self-organising knotted magnetic
structures in plasma.1 Furthermore, the apparent universality of these 1 See section 2.1.

structures suggests that they may provide the sought after stability in
magnetic confinement fusion experiments, and that they might emerge
naturally in astrophysical environments.2 2 Smiet 2017; Smiet, de

Blank et al. 2019.The prime plasma parameters of interest in any plasma experiment
are the electron number density and the electron collision rate. In this
chapter, aimed at obtaining these parameters for the entire evolution
of our transient toroidal helium plasma, we present interferometric
measurements using 57 GHz microwave radiation, and detailed full-
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wave finite-element calculations of our interferometric set-up.
The microwave interferometric measurements encode information on

the complex permittivity of our toroidal plasma, from which we can
derive an estimate of the electron number density and the electron
collision rate using the Drude-Lorentz model for electrical conductivity.

Alternative techniques that complement the microwave techniques
presented here are Rayleigh and Thomson scattering.3 Motivated by the3 Pokrzywka et al. 2012;

Nedanovska et al. 2015. expertise present in our group we opted to use microwave technology.
Although the spatial resolution is not expected to be comparable to
that of Rayleigh and Thomson scattering, which additionally provides
information on the electron temperature in a more direct fashion, our
choice was equally motivated by our long-term objective to sustain the
toroidal plasma through heating using microwave technology. We do
expect that our method will depend very critically on the geometry of
the plasma when cut-off electron densities are encountered.

The biggest challenges in our study of transient toroidal helium
plasmas are their limited lifetime, which is considerably less than 100 µs,
and their limited size, which is of the same order of magnitude as
the wavelength of the utilised microwave radiation. The latter implies
that the complex transmission coefficient measured by the microwave
interferometer depends in a non-trivial way on the complex permittivity
of the toroidal plasma.

Our4 approach to solving these two difficulties is to combine the4 The described method
for determining the
electron number density
and electron collision
rate was developed by
F.M.A. Smits and has
been implemented and
utilised in close collab-
oration with the author
of this dissertation.

interferometric measurements with detailed full-wave finite-element
calculations. We will discuss the microwave interferometric set-up used
to measure the complex transmission coefficient in detail first, and then
explain a method whereby the finite-element calculations are used as a
map between the measured transmission coefficient and the sought after
plasma parameters.

In our calculations of the complex transmission coefficient we have
approximated the toroidal plasma by a torus of fixed size and uniform
complex permittivity. In further simplifying our calculations, we used
tori of two sizes that are representative for the evolution of our toroidal
plasma. For each of these different sized tori, full-wave finite-element
calculations have been performed for a range of values for the complex
permittivity, or equivalently, for a range of electron number densities
and electron collision rates.

These simplifications obviously are a course approximation, but it
does provide us with a tractable means to obtain an estimate for the
plasma parameters with high temporal resolution. To improve upon
this we suggest a method by which a tomographically reconstructed,
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poloidal intensity profile, based on optical recordings, can be used to
better model the toroidal plasma in the finite-element calculations.

The toroidal plasmas studied in this work have been generated by
a single laser-induced breakdown plasma, in quiescent atmospheric
pressure helium gas at room temperature, using a laser pulse energy
of 250 mJ.

4.2 Electromagnetic waves in plasma

Prior to concentrating on the measurement techniques employed to
determine the plasma parameters of the toroidal plasma, it is instructive
to introduce some fundamental concepts from plasma physics, and
discuss in a more general manner the propagation of electromagnetic
waves in plasma.

Plasma oscillations

One of the intricate properties of plasma is the rapid oscillation of its
electrons.5 The origin of these plasma oscillations can be understood6 5 Tonks et al. 1929.

6 Here we loosely follow
F. F. Chen 1974, p. 70;
Wesson 2004, p. 38.

by considering electrons that are displaced with respect to the uniform
ion charge density. It is assumed that, because of their larger mass, the
ions form a uniform and stationary charge density. As a consequence of
the electron displacement, the resulting electric field will accelerate the
electrons back to their original position. However, due to their acquired
momentum, the electrons will overshoot and start to oscillate around
their equilibrium position, with a characteristic frequency known as the
plasma frequency. We can express this mathematically as follows.

The balance of momentum7 for the electron fluid in a cold plasma8 is 7 Chorin et al. 1993, p. 6.

8 For a cold plasma the
�rp pressure term in
the balance of momen-
tum is negligible.

given by

mene
Due

Dt
= �eneE (4.1)

where me is the electron mass, ne the electron number density, ue the
electron fluid velocity, e the elementary charge, E the electric field,
and D/Dt = ∂/∂t + ue · r the material derivative. In this equation
we recognise Newton’s second law of motion and the Lorentz force in
absence of a magnetic field.

We assume that the electron density ne can be separated into an
equilibrium density n0 and a small density perturbation n1. Then the
electric field is given by

r · E = � e
e0

n1. (4.2)
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After taking the divergence of equation 4.1 and eliminating r · E

through equation 4.2 we have

me
∂

∂t
r · ue =

e2

e0
n1 (4.3)

where the quadratic term (ue · r)ue originating from the material
derivative has been neglected as a consequence of our perturbative
approach.

The conservation of mass9 for the electron fluid is given by9 Chorin et al. 1993,
p. 11.

D
Dt

mene + mener · ue = 0. (4.4)

When we realise that ∂n0/∂t = 0 and rn0 = 0, and neglect quadratic
terms, then we may write

∂n1
∂t

+ n0r · ue = 0. (4.5)

Substitution of r · ue from equation 4.5 into equation 4.3 results in the
differential equation of a simple harmonic oscillator for the electron
density perturbation n1

∂2n1
∂t2 = �w2

p n1

where wp is the plasma frequency given by

wp ⌘

s
n0e2

e0me
. (4.6)

Note that we cannot explain the plasma oscillations from single particle
motion alone, it is necessary to consider the electrons as a fluid. This can
be understood when we realise that although the electric field is created
as a result of a small perturbation n1 it is the whole electron fluid with
density n0 that will be set in motion. The plasma frequency therefore
only depends on the equilibrium electron number density n0. It is one
of the most fundamental parameters of plasma physics.

Drude-Lorentz model for electrical conductivity

In deriving the plasma frequency we have neglected collisions between
electrons and ions, and between the electrons themselves for that matter.
These collisions however are responsible for many intricate plasma
transport processes, and electrical conductivity is one of them. Without
diving into a detailed discourse explaining electrical conductivity, it
is possible to convey the essentials through an elementary model first
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proposed by Drude.10 10 Drude 1900.

Let us assume once more that, because of their larger mass, the ions
form a uniform and stationary density. The electrons will consequently
be solely responsible for the transport of electrical current through
the plasma. Electrical conductivity manifests itself most recognisable
through Joule heating, where the electrons, through collisions, lose
kinetic energy to the ions and neutrals. Assume there is some unknown
instantaneous collision mechanism maintaining local thermodynamic
equilibrium, and that the probability per unit time for such a collision
to take place equals 1/t. Maintaining local thermodynamic equilibrium
simply means that immediately after each collision, the electron
velocity is solely prescribed by the local temperature and is therefore
independent of the velocity just before the collision. Further assume that
between collisions the electrons only interact with an externally applied
electric field and that other interactions can be neglected.11 11 The electron-ion inter-

action is not completely
neglected, it is still im-
plicitly assumed that
the electrons remain
confined to the quasi-
neutral plasma. See
Ashcroft et al. 1976,
p. 4.

The assumption of local thermodynamic equilibrium implies that the
momentum lost per electron per collision is equal to meue. We also
assumed that the probability per unit time an electron experiences a
collision is equal to 1/t implying a relaxation or collision time of t.
Consequently, the rate of change of momentum of the electron fluid is
given by meneue/t. The balance of momentum for the electron fluid for
a cold plasma is then given by12 12 F. F. Chen 1974, p. 56.

mene
Due

Dt
= �eneE � meneue

t
.

This equation simply states that the effect of the electron collisions is to
introduce a frictional damping term, in addition to the electromagnetic
driving term introduced in the derivation of the plasma frequency.
Using the conservation of mass given by equation 4.4 we have13 13 Chorin et al. 1993,

p. 7.
∂

∂t
(meneue) = �r · (meneue)ue

�mene(ue ·r)ue � eneE � meneue

t
.

Neglecting quadratic terms in ue and assuming that the electron density
ne equals the equilibrium electron density n0 results in

∂

∂t
(men0ue) = �en0E � men0ue

t
.

Since the current density j is defined as j ⌘ �en0ue we may write

∂

∂t
j = e0w2

pE � j

t

where wp is the plasma frequency defined in equation 4.6. When we
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assume that solutions have a harmonic time dependence e�iwt we can
write E(t) = E e�iwt and j(t) = j e�iwt, and find that1414 Throughout this

chapter we use the
quantum mechanical
sign convention, where
a wave propagating
in the k direction for
w > 0 is represented
by eik·x�iwt.

j = s(w)E

which is Ohm’s law of electrical conductivity, where s(w) is the
electrical conductivity given by

s(w) =
s0

1 � iwt
where s0 = e0w2

pt =
n0e2t

me
. (4.7)

At zero frequency, the electrical conductivity s(w) reduces to the direct-
current Drude conductivity s0.

Electromagnetic waves in linear media

The propagation of electromagnetic waves is an extensive subject about
which many works have been written.15 For the purpose of this section15 See for example

Jackson 1998; Griffiths
1999, and references
therein.

we will only consider the propagation of plane electromagnetic waves in
linear media and underline the equivalence of describing linear media
by, for example, the dispersion relation, the complex permittivity, or the
electrical conductivity.

For uniform isotropic linear media the Maxwell equations16 for a16 Jackson 1998, pp. 238
and 295. For uniform
isotropic linear media
the commonly used
fields D and H can be
written as D = eE and
B = µH. In that context
H is called the magnetic
field and B is called the
magnetic induction.

charge-free infinite medium are

r · E = 0 r⇥ E = �∂B

∂t

r · B = 0 r⇥ B = µj + µe
∂E

∂t

where the permeability µ and the permittivity e describe our linear
medium and may in general be complex functions. When we assume
that solutions have a harmonic time dependence e�iwt we can write
E(t) = E e�iwt, B(t) = B e�iwt and j(t) = j e�iwt, and the Maxwell
equations turn into

r · E = 0 r⇥ E = iwB

r · B = 0 r⇥ B = µj � iµewE.

When we take the curl of the equation for r⇥ E and eliminate r⇥ B,
then we can write

r⇥ (r⇥ E) = µew2
E + iµwj.

Using the vector calculus identity r ⇥ (r ⇥ A) = r(r · A) �r2
A,
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realising r · E is equal to zero, and substituting Ohm’s law of electrical
conductivity17,18

j = s(w)E, we arrive at the Helmholtz wave equation 17 We assume that a dc
magnetic field is absent
so Ohm’s law may be
applied. In the presence
of a dc magnetic field
this is no longer true
as the Hall effect and
magneto-resistance
become important.

18 The Drude-Lorentz
model has been derived
assuming a constant
electric field E. It is not
evident that the electri-
cal conductivity thus
found is applicable in
our context of a spatial-
ly varying electric field.
However, if the electric
field does not vary
appreciably over dis-
tances comparable to
the electron mean free
path, we can write the
current density j as
j(r, w) = s(w)E(r, w).
See Ashcroft et al. 1976,
p. 17.

r2
E + µe

⇣
1 + i

s

ew

⌘
w2

E = 0.

A possible solution is a plane electromagnetic wave eik·x�iwt propagating
in the k direction for w > 0. From the Helmholtz wave equation we then
find the requirement that the wave number k = |k| and the frequency w

are related by

k2 = µe
⇣

1 + i
s

ew

⌘
w2.

This is the dispersion relation for electromagnetic waves propagating in
uniform isotropic linear media.

Generally, a dispersion relation relates the wave number k of a
propagating wave to its frequency w, and is universally written as
w(k) = v(k) k, where v(k) is the propagation speed or phase velocity.19

19 An associated quan-
tity, the complex refrac-
tive index n, relates the
propagation speed in
free space (µ = µ0,
e = e0, and s = 0) to
the propagation speed
in the linear medium,
and can be defined
through n ⌘ k/k0,
where k0 ⌘ w

p
µ0e0 is

the wave number in free
space. Because k and n
are on an equal footing,
for the sake of clarity,
we deliberately omit
the complex refractive
index n.

It is important to realise that the propagation of electromagnetic waves
in linear media is completely determined by the dispersion relation and
that it represents all properties of our linear medium, regardless of
whether they originate from the permeability µ, the permittivity e, or
the electrical conductivity s. It is merely a choice by which measure we
wish to represent our linear medium.

As an example, assume our medium lacks both polarisation as well
as magnetic20 properties, implying e = e0 and µ = µ0, and that we

20 In magnetic media
the permeability µ is
no longer equal to the
permeability µ0 of free
space as a result of the
induced magnetisation
in response to an exter-
nal magnetic field.

opt to represent its electrical conductivity s solely by an equivalent
complex permittivity ee, hence eµ = µ0 and es = 0. Then we can write
the dispersion relation of our medium and its equivalent representation
respectively as

k2 = µ0e0

✓
1 + i

s

e0w

◆
w2

and

k2 = µ0eew2. (4.8)

Evidently we have

ee = e0

✓
1 + i

s

e0w

◆
(4.9)

which provides an equally apt representation of our electrically
conductive linear medium in terms of an equivalent complex
permittivity.
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The wave number k and the equivalent complex permittivity ee are
related through the equivalent dispersion relation 4.8 and universally
their real and imaginary parts are explicitly written

k ⌘ k 0 + i k 00

ee ⌘ ee 0 + i ee 00.

From the equivalent dispersion relation 4.8 we have2121 In terms of the com-
plex refractive index n
introduced earlier we
have n =

p
ee/e0. k = k0

s
ee
e0

where k0 ⌘ w
p

µ0e0 is the wave number in free space. The principal
square root can be expressed algebraically22 so we can write2322 Abramowitz et al.

1972, p. 17.

23 There exists ambigu-
ity regarding the sign
of the imaginary part
of the principal square
root and the imaginary
parts of k and ee. Here
k 00 > 0 and ee 00 > 0
represent loss where the
electromagnetic wave
attenuates exponen-
tially. Similarly k 0 > 0
represents propagation
in the k direction for
w > 0.

k 0 = k0

s
|ee|+ ee 0

2 e0
(4.10)

k 00 = k0

s
|ee|� ee 0

2 e0
. (4.11)

When considering the propagation of a plane electromagnetic wave,
we can assume, without loss of generality, that the propagation is in the
x-direction. Then we can write

e ikx�iwt = e i(k 0+i k 00)x�iwt = e�k 00 x e ik 0 x�iwt.

Evidently our electromagnetic wave attenuates exponentially with
attenuation constant k 00 while propagating with wave number k 0.

Plasma complex permittivity and electromagnetic wave propagation

In the previous sections we have gained some24 insight into the rapid24 Trivially, we have ex-
amined only some of
the countless intricate
properties of plasma.
See F. F. Chen 1974;
Bellan 2006; Goedbloed
et al. 2004; Kulsrud
2005 for more detailed
works. For a condensed
matter physics perspec-
tive the reader might
consult Marder 2010.

oscillation of electrons in plasma and the Drude-Lorentz model for
electrical conductivity, and appreciated the equivalence in representing
uniform isotropic linear media. Here, we will apply these insights to the
complex permittivity of plasma and the propagation of electromagnetic
waves in plasma.

The electrical conductivity s(w) obtained through the Drude-Lorentz
model is given by equation 4.7 and can be written as

s(w) =
e0w2

pt

1 � iwt

when we substitute the direct-current Drude conductivity s0. Then the
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equivalent complex permittivity ee given by equation 4.9 can be written
as

ee
e0

= 1 � n0
nc

1

1 + i
n

w

where we introduced the electron collision rate n ⌘ 1/t and the critical
electron number density25 nc ⌘ e0mew2/e2. The real part of the 25 At a constant frequen-

cy w the equivalent
complex permittivity ee
becomes zero when
the electron number
density n0 is equal to
the critical electron
number density given
by nc ⌘ e0mew2/e2.
Precisely at the critical
electron number density
we have wp = w. See
F. F. Chen 1974, p. 103.

equivalent complex permittivity ee can be written as

ee 0

e0
= 1 � n0

nc

1

1 +
⇣ n

w

⌘2

while its imaginary part takes the form

ee 00

e0
=

n0
nc

n

w

1 +
⇣ n

w

⌘2 .

The imaginary part makes it evident that a non-zero electron collision
rate n results, as expected, in loss represented by ee 00 > 0. The behaviour
of an electromagnetic wave propagating through the plasma is easily
obtained through equations 4.10 and 4.11 relating the real and imaginary
parts of k and ee.

We conclude this section by presenting in figure 4.1 the normalised26 26 In figure 4.1 we nor-
malised to k0 and essen-
tially present the real
and imaginary part of
the complex refractive
index introduced earlier.

real and imaginary part k 0/k0 and k 00/k0 of wave number k, as a
function of the normalised electron number density n0/nc and the
normalised electron collision rate n/w. From these, two observations
are noteworthy.

When electron collisions are negligible (n = 0) then, for electron
number densities larger than the critical density (n0 > nc), the real part
k 0 becomes zero, while the imaginary part k 00 acquires a finite value. The
equivalent complex permittivity turns negative, hence the wave number
becomes purely imaginary and propagation is not possible. We speak
of an evanescent wave. For electron number densities smaller than the
critical density (n0 < nc) wave propagating is lossless with a phase
velocity exceeding the speed of light in vacuum.

When electron collisions are present (n 6= 0) propagation is possible
for all electron number densities. Intuitively this can be understood
by realising that, due to their collisions, the electrons are limited in
their movement and are no longer able to fully respond to the applied
electromagnetic field.
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Figure 4.1: Normalised real part k 0/k0 and imaginary part k 00/k0 of wave number k, as a function of the normalised
electron number density n0/nc and the normalised electron collision rate n/w.

4.3 Microwave analysis of transient toroidal helium plasmas

The prime plasma parameters of interest in any plasma experiment
are the electron number density and the electron collision rate of the
plasma under consideration. In this section we present microwave
interferometric measurements at 57 GHz, aimed at obtaining these
parameters, with high temporal resolution, for the whole evolution
of our transient toroidal helium plasma. These measurements encode
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information on the complex transmission coefficient for microwaves
traversing our toroidal plasma, which in itself contains information
about the complex permittivity of the plasma. From this, we can derive
an estimate of the electron number density and the electron collision
rate through the Drude-Lorentz model for electrical conductivity.

The propagation of electromagnetic waves through a voluminous
plasma is straightforward, and for these plasmas the expressions
presented in section 4.2 can be utilised safely to obtain the electron
number density and the electron collision rate from the measured
complex permittivity of the plasma. Unfortunately, this simple strategy
is not applicable to our toroidal plasma. The wavelength of the utilised
microwave radiation is 5.3 mm, which is of the same order of magnitude
as the size of our toroidal plasma, as can be seen from our measurements
presented in section 2.3. The complex transmission coefficient measured
by the microwave interferometer therefore depends on the complex
permittivity in a non-trivial way.27 27 The small separation

of the horn antennas
used for the transmis-
sion measurements
further complicates the
determination of the
complex transmission
coefficient, because of
multiple reflections of
the microwave radiation
between these antennas.

Our approach to solving this difficulty is to perform complex
transmission measurements using a microwave interferometer, and
to subsequently compare these measurements to electromagnetic full-
wave finite-element calculations of the interferometric set-up, including
a torus mimicking our toroidal plasma. The complex transmission
coefficient calculated in this manner for a set of tori, each with a different
complex permittivity, can be used as a map to obtain the complex
permittivity of our toroidal plasma as a function of time.

Because the finite-element calculations already are computationally
intensive, we have approximated our toroidal plasma by a torus of
fixed dimensions and uniform complex permittivity. This necessarily
is a coarse approximation, but it does provide, with high temporal
resolution, a first estimate of the electron number density and the
electron collision rate as a function of time.

Examination of the microwave interferometer

A simplified schematic28 of the microwave interferometric set-up is 28 For a more lively im-
pression of the experi-
mental set-up we refer
to photo 2 on page 104.

presented in figure 4.2. Microwave radiation, generated using a 57 GHz
100 mW Gunn oscillator, is guided through rectangular TE10 mode
wave-guide with dimensions of 3.76 x 1.88 mm, to a 10 dB directional
coupler, were it is split into a reference and transmission signal. The
reference signal is guided through an adjustable attenuator while the
transmission signal is fed into a copper pyramidal horn antenna with
an apex-aperture distance of 45 mm and an aperture of 18 x 11 mm.
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Figure 4.2: Simplified schematic of the microwave interferometric set-up used to measure the complex transmission
coefficient of our transient toroidal helium plasma with high temporal resolution. See text for details. For a more lively
impression of the experimental set-up we refer to photo 2 on page 104.

This horn antenna couples the microwave radiation into free space,
which subsequently traverses the toroidal plasma before it is received
by a second identical pyramidal horn antenna. The horn antennas are
separated by a distance of 24.3 mm.

The reference and transmission signals are recombined using a 90°
3 dB directional coupler29 whose output ports are equipped with a29 A directional coupler

designed for a 3 dB
power split is known as
a hybrid coupler.

microwave power detector. The attenuator can be used to reduce the
power of the reference signal, while the phase between the reference
and transmission signals can be adjusted by changing the distance
between the horn antennas. Microwave isolators have been used to
prevent interference arising from reflections from the power detectors,
the pyramidal horn antennas, and the toroidal plasma. The power
detectors have been calibrated to correct for their non-linear power to
voltage response.

We note that the whole microwave interferometric set-up has been
mounted inside our plasma reactor. Because of the large number of
components, degassing becomes an issue and long evacuation times
are needed to remove the air from our plasma reactor. This is not the
most ideal approach, but it proved to be the most practical means to
integrate these measurements into our existing set-up for the generation
of toroidal helium plasmas.

The central component of the interferometric set-up is the 90° 3 dB
directional coupler. When all ports of a 90° 3 dB directional coupler are
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connected to matched wave-guides, and microwaves are assumed not to
traverse the coupler in the reverse direction, implying ideal microwave
isolators, then the voltages of the ports of the coupler are given by30,31,† 30 Collin 2001, p. 413.

31 The matrix in this
equation is a reduced
scattering matrix,
where the matrix
elements representing
microwaves traversing
the directional coupler
in the reverse direction
have been omitted.

"
V+

V�

#
=

1p
2

"
1 i
i 1

# "
Vt

Vr

#

where V+ and V� are the power detector input voltages, Vt is the
transmitted voltage after the microwave radiation has traversed the
toroidal plasma, and Vr is the reference voltage. When we assume that
the impedances are normalised to 1 Ohm, then for all voltages in our set-
up, the time-averaged power is given by P = 1

2 |V|2. The power received
by the microwave detectors is then given by

P+ =
1
4
|Vt + iVr|2

P� =
1
4
|Vt � iVr|2 .

The reference voltage Vr can be obtained in the following manner, while
calibrating the interferometric set-up. Let us use a superscript label
(cal) to denote an empty interferometer during this calibration. We can
adjust the attenuation of the reference signal, and the phase between the
reference and transmitted signals, in such a way that detector signal P�
becomes zero, implying we have V cal

t = iV cal
r . Consequently we have

P cal
t = P cal

r (4.12)

and

P cal
+ = 2P cal

r

P cal
� = 0 .

† In general the scattering matrix of a 3 dB directional coupler can be written as

⇥
S
⇤
=

1p
2

2

664

0 0 1 e ia

0 0 �e�ia 1
1 �e�ia 0 0

e ia 1 0 0

3

775

where a 2 R defines the phase difference between the output ports. Unfortunately the sign
of a is not always known. Moreover, the sign convention used to represent a propagating
wave affects the scattering matrix, specifically, a scattering matrix defined in one sign
convention is the complex conjugate of the other (see Ye et al. 2018). More about sign
conventions can be found in Muller 1969; Atkinson et al. 1992. Here we assume a = p

2 .
The sign of a is not important, because in an interferometric set-up, where only the change
in phase is relevant, all information can be distilled from the behaviour of the power
difference P+ � P� as a function of the distance d between the pyramidal horn antennas.



72 laser-generated toroidal helium plasmas

Without loss of generality32 we may assume V cal
r to be positive real32 In an interferometric

set-up only the phase
between the reference
and transmitted
signals is a meaningful
quantity.

valued, so we can write V cal
r =

p
2P cal

r =
p

P cal
+ .

An ideal directional coupler is a lossless component, therefore
conservation of energy implies that P+ + P� = Pt + Pr. For a calibrated
interferometer, the power of the microwave radiation traversing the
toroidal plasma, and received by the pyramidal horn antenna, is thus

Pt = P+ + P� � P cal
r . (4.13)

Our toroidal plasma will not only attenuate the microwave radiation,
it will also change its phase. This change in phase is encoded in the
power difference P+ � P� measured by the microwave detectors. Using
the complex conjugate properties of complex numbers and realising we
assumed V cal

r to be positive real valued, we can derive

Im(Vt) =
P+ � P�

V cal
r

(4.14)

where Im(Vt) denotes the imaginary part of Vt. Because |Vt| =
p

2Pt the
phase of Vt can be readily obtained.

Using the interferometer when P� is adjusted to zero makes the
complex transmission measurement insensitive to the sign of the change
in phase. This is evident from the fact that when the phase of Vt changes,
the transmitted power, and hence the sum P+ + P�, does not change. As
a consequence, the power difference P+ � P� will decrease irrespective
of the sign of the change in phase.

Ideally this is resolved by setting up the interferometer in such a way
that the power difference P+ � P� is zero, which can be accomplished
by adjusting the phase between the reference and transmitted signals
through adjustment of the distance between the pyramidal horn
antennas. In this case we immediately see from equation 4.14 that
the sign of the power difference P+ � P� will be equal to the sign
of the change in phase of the transmitted signal. Experimentally this
adjustment does not have to be accurate because, as we will show later,
we can correct for a non-zero power difference P+ � P� as long as
P� 6= 0.

Let us use a superscript zero (0) to denote an empty and calibrated
microwave interferometer where the power difference P+ � P� has been
adjusted to zero. The detector signals so defined can be obtained
straightforwardly from the recordings of the detector signals, just before
a laser-induced breakdown plasma is generated. Realising that the
transmitted power does not change while adjusting its phase, we have
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P0
t = P cal

t . Then, by making use of equations 4.12 and 4.13, we can write

P0
t =

P0
+ + P0

�
2

. (4.15)

If we now normalise all power measurements to P0
t = 1

2 |V0
t |2 and

denote these using a tilde (~) and furthermore define the normalised
transmitted voltage as eVt ⌘ Vt/|V0

t | we can write33 33 Note that due to the
chosen normalisation
eV0

t is complex for
P0
+ � P0

� 6= 0.
Furthermore | eV0

t | = 1
and ePt = | eVt|2.

| eVt| =
q

eP+ + eP� � 1

Im( eVt) =
eP+ � eP�

2
.

The normalised transmitted voltage eVt is easily obtained from these
relations and encodes information about the propagation of microwave
radiation through our toroidal plasma.34 When corrected for the phase 34 Due to the small sep-

aration of the pyram-
idal horn antennas,
multiple reflections
between these antennas
inevitably affects the
complex transmission
coefficient determined
in this experiment.

of eV0
t it is customary to denote this quantity in microwave technology

as the complex transmission coefficient S21.
The normalised transmitted voltage eVt is not uniquely defined

through | eVt| and Im( eVt) because the sign of the real part of eVt is
not known. In figure 4.3 we illustrate this ambiguity by showing
the simulated normalised detector signals eP+ and eP� of a 90° 3 dB
directional coupler as a function of the phase between Vt and Vr.
The non-zero power difference eP0

+ � eP0
� for the empty and calibrated

microwave interferometer has been chosen arbitrarily. It is clear that
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Figure 4.3: Illustration of the ambiguity in the determination of the phase of eVt due to the unknown sign of the real part
of eVt. See text for a detailed discussion.
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the horizontal dashed black line eP0
+ intersects the black sine eP+ at two

phase angles, reflecting the two possibilities for the real part of eVt. An
experimental analysis of the behaviour of the power difference eP+ � eP�
as a function of the distance d between the pyramidal horn antennas will
determine whether the real part is positive or negative. When the horn
antenna distance is decreased, the phase between Vt and Vr increases. If
at the same time eP+ � eP� increases, the real part of eVt is positive.35

35 Note that exchanging
the detector signals P+
and P� is equivalent to
adding p to the phase
between Vt and Vr . Fur-
thermore, recall that the
exact scattering matrix
of the directional cou-
pler, as well as the exact
length of the guides, are
not known. As a result,
only changes in the
phase between Vt and
Vr due to our toroidal
plasma, are a mean-
ingful quantity. Without
loss of generality we
can therefore assume
that P+ > P�.

Microwave interferometric complex transmission measurements

Using the experimental set-up and method set out in the previous
subsection, we performed complex transmission measurements on our
transient toroidal helium plasma, generated by a single laser-induced
breakdown plasma. These breakdown plasmas have been created in
quiescent atmospheric pressure helium gas at room temperature, with a
laser pulse energy of 250 mJ, using a 1" plano-convex lens with a focal
length of 50 mm. In section 2.3 it has been shown that the evolution
of these plasmas is very reproducible. In order to increase the signal
to noise ratio, most notably during the faint afterglow, therefore all
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Figure 4.4: Normalised microwave detector signals eP+ and eP� recorded during a complex transmission measurement on
a transient toroidal helium plasma, generated by a laser-induced breakdown plasma created in quiescent atmospheric
pressure helium gas at room temperature. Laser pulse energy: 250 mJ, focal length focussing lens: 50 mm, helium gas
pressure: 1000 mbar, microwave detector signal averaging: 100.
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recordings of the microwave detector signals have been averaged over
100 repetitions.

In figure 4.4 we present the recorded microwave detector signals
normalised to P0

t as defined in equation 4.15. The values for P0
+ and

P0
� have been obtained from the same recordings at 0 µs, just before a

laser-induced breakdown plasma is created.
From these recordings, the magnitude and phase of the complex

transmission coefficient S21 have been obtained using the method set
out in the previous subsection, and are presented in figure 4.5. The fast
response visible at 0 µs indicates that measurements can be obtained
with high temporal resolution.

Near the end of the evolution, the complex transmission coefficient
is seen to return to unity, with a slightly positive but monotonically
decreasing phase. This is expected from an extinguishing plasma
because, as was shown in section 4.2, plasma with a small electron
number density exhibits a wave number k slightly smaller than k0, the
wave number in free space.

Together with full-wave finite-element calculations, these complex
transmission measurements will be used to provide, with high temporal
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Figure 4.5: High temporal resolution complex transmission coefficient S21 obtained through microwave interferometric
measurements on a transient toroidal helium plasma, generated by a laser-induced breakdown plasma created in
quiescent atmospheric pressure helium gas at room temperature. The complex transmission coefficient has been derived
from the recorded microwave detector signals presented in figure 4.4.
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resolution, a first estimate of the electron number density and the
electron collision rate as a function of time.

Full-wave finite-element complex transmission calculations

For a voluminous plasma the relation between the complex transmission
coefficient S21 and the complex wave number k, and similar, to the
complex permittivity e, and hence to the electron number density and
the electron collision rate, is straightforward, and our treatise on the
propagation of electromagnetic waves in plasma presented in section 4.2
implies

S21 = e�k 00 d e i(k0�k 0) d

where k 0 and k 00 are respectively the real and imaginary part of the
complex wave number, d is the distance the microwave radiation
propagates through the voluminous plasma, and k0 is the wave number
of the microwave radiation in free space.

However, as explained in the introduction, the dimensions of our
toroidal plasma are of the same order of magnitude as the wavelength
of the microwave radiation used to probe the plasma. Therefore, the
limit for a voluminous plasma does not hold. Furthermore, because the
separation of the pyramidal horn antennas is likewise small compared
to the aperture of these antennas, multiple reflections between the horn
antennas become important. Our only viable resort to obtain the plasma
parameters from the presented complex transmission measurements are
full-wave finite-element calculations of our microwave interferometric
set-up, including a torus of uniform complex permittivity that is used
to mimic our toroidal plasma.

In figure 4.6 we present the geometry used for the finite-element
calculations, which shows the pyramidal horn antennas and the torus
mimicking our toroidal plasma. A fully absorbing cylindrical surface
around the horn antennas and the torus defines the region of free space.

Because the finite-element calculations already are computationally
intensive, we have limited the calculation of the complex transmission
coefficient to tori of two sizes that are representative for the evolution
of our toroidal plasma. These sizes have been obtained from the optical
measurements of our toroidal plasma presented in figure 2.8, at 30 µs
and 50 µs. These moments respectively lie midway of the expanding
phase, and towards the end of the evolution of the toroidal plasma. For
each of these different sized tori, full-wave finite-element calculations
have been performed for a range of values for the complex permittivity,
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Figure 4.6: Geometry used for the full-wave finite-element calculations showing the pyramidal horn antennas and the
torus mimicking our toroidal plasma. A fully absorbing cylindrical surface around the horn antennas and the torus
defines the region of free space.

or equivalently, for a range of electron number densities and electron
collision rates. These values have been guided by known estimates for
atmospheric pressure plasmas generated in the laboratory.36 36 Kabouzi et al. 2002;

F. F. Chen 1974;
Richardson 2019.

The optical size of the toroidal plasma is expected to be similar to the
electrical size determined by the free electrons in the toroidal plasma.
However, as electrons are assumed to be responsible for the plasma
emission, through collisional excitation of neutral atomic helium, low
energy electrons, with insufficient energy to cause excitation of the
helium atoms, can have a wider extent than optically observed.

Figure 4.7 presents the electric field strength of two representative
finite-element calculations for a normalised electron collision rate n/w

of 0.8 and a normalised electron number density n0/nc of 0.1 and 1.0.
Here n is the electron collision rate, w is the frequency of the microwave
radiation used to probe the toroidal plasma, n0 is the electron number
density, and nc is the critical electron number density as defined in
section 4.2. This figure clearly illustrates the complexity originating
from the fact that the wavelength of the microwave radiation used is of
the same order of magnitude as the dimensions of the toroidal plasma.
It is evident that the behaviour of an electromagnetic wave propagating
through such a plasma does not begin to compare with the propagation
through a voluminous plasma.

In the presented full-wave finite-element calculations the complex
permittivity has been assumed uniform throughout the torus. Ideally,
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the poloidal radiant intensity profile, obtained through the three-
dimensional tomographic reconstruction presented in section 2.5, is
used as a measure for the dimensions and the electron number density
of the toroidal plasma. However, the finite-element calculations already
are computationally intensive, and with the course approximations
applied we still are able to provide a first estimate for the plasma
parameters of our toroidal plasma.

The full-wave finite-element calculations performed in the above
manner relate the complex transmission coefficient S21 to pairs of the
electron number density n0 and the electron collision rate n. For

Electric field strength (arb. unit)
n0/nc = 0.1
ν/ω = 0.8

Electric field strength (arb. unit)
n0/nc = 1.0
ν/ω = 0.8

5 mm

5 mm

Figure 4.7: Electric field strength of two representative finite-element calculations for a normalised electron collision
rate n/w of 0.8 and a normalised electron number density n0/nc of 0.1 and 1.0, showing the complexity originating
from the fact that the wavelength of the microwave radiation used is of the same order of magnitude as the dimensions
of the toroidal plasma. Here n is the electron collision rate, w is the frequency of the microwave radiation used to
probe the toroidal plasma, n0 is the electron number density, and nc is the critical electron number density as defined
in section 4.2. The torus used to mimic the toroidal plasma in these calculations is represented by the two concentric
circles in the centre. The electric field strength is shown for the cross-sectional symmetry plane parallel to the long side
of the aperture of the pyramidal horn antennas shown in figure 4.6. As a consequence of the employed TE10 mode, the
electric field is directed orthogonal to this symmetry plane.
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reasons of readability, the presentation of this relation is postponed
to the next subsection, where it will be presented together with high
temporal resolution, complex transmission measurements, obtained
through the microwave interferometric measurements on our transient
toroidal helium plasma.

Electron number density and electron collision rate determination

In the previous sections we have presented high temporal resolution,
complex transmission measurements on our transient toroidal helium
plasma. We also presented full-wave finite-element calculations of
the complex transmission coefficient of our entire experimental set-up,
where our toroidal plasma has been mimicked by a uniform torus. In
figure 4.8 we present, in the complex plane, the complex transmission
coefficient obtained through both these methods. The continuous black
curve represents the evolution of the complex transmission coefficient
of our toroidal plasma for its entire evolution, while the coloured lines
represent the finite-element calculations for different sized tori, and for
different electron number densities and electron collision rates.
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Figure 4.8: Complex transmission coefficient S21 obtained for our transient toroidal helium plasma through high
temporal resolution complex transmission measurements using a microwave interferometer (continuous black curve
with time markers) together with full-wave finite-element calculations of our entire experimental set-up in which our
toroidal plasma has been mimicked by a torus of fixed size, and with uniform electron number density and electron
collision rate (coloured lines). The bullseye time markers along the black curve, at 30 µs and 50 µs, indicate when the
two representative sizes for the evolution of the toroidal plasma have been obtained.
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A first estimate of the electron number density and the electron
collision rate can now be obtained in high temporal resolution, by
regarding the finite-element calculations as a map from the complex
plane to the two-dimensional space spanned by the electron number
density and the electron collision rate, and subsequently applying this
map to the complex transmission coefficient obtained by our microwave
interferometric measurements. Because the map resulting from the
finite-element calculations is discrete, a linear interpolation has been
used to create a continuous map.

In figure 4.9 we present the normalised electron number density and
the normalised electron collision rate of our transient toroidal helium
plasma, as modelled by a uniform torus and obtained in the manner set
out above. It is clear that in the first half of the evolution, the electron
number density is well above cut-off. Towards the end of the evolution,
the electron number density monotonically decreases to zero, which is,
as explained earlier, expected for an extinguishing plasma. In this part
of the evolution, the electron number density and the electron collision
rate are of the order of 1019 m-3 respectively 1010 s-1, which conforms to
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Figure 4.9: High temporal resolution, normalised electron number density and normalised electron collision rate of our
transient toroidal helium plasma, as modelled by a uniform torus. Based on complex transmission measurements and
full-wave finite-element calculations of our entire experimental set-up, where our toroidal plasma has been mimicked
by a torus, these results have been obtained from figure 4.8 by regarding the finite-element calculations as a map for the
complex transmission measurements of the toroidal plasma. For our experiment utilising 57 GHz microwave radiation
we have w = 3.58 1011 s-1 and nc = 4.03 1019 m-3.
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known values for atmospheric pressure laboratory plasmas.37 37 Kabouzi et al. 2002;
F. F. Chen 1974;
Richardson 2019.

In the presented evolution of the plasma parameters, discontinuities
in the first derivative are clearly visible. These discontinuities are a
direct consequence of our choice of splitting the evolution of our toroidal
plasma into two parts, and assuming a uniform torus of fixed size
for each part. Evidently this is a very course approximation, as the
size, and even more importantly, the spatial distribution of the emission
from the toroidal plasma, has been seen to evolve considerably. This is
supported by the observation that the size of the torus used to mimic our
toroidal plasma in the finite-element calculations can have a significant
effect on the obtained plasma parameters. Specifically, attributing vastly
different plasma parameters (n0/nc, n/w) to differently sized tori can
result in an almost identical complex transmission coefficient, as can be
seen explicitly in figure 4.8 where the calculations for n0/nc = 3.6 and
n/w = 0.6 intersect.

In order to better understand the cause of the discontinuities visible in
the electron collision rate presented in figure 4.9, we will briefly discuss
these discontinuities in what follows.

(1) This discontinuity arises as a result of the extreme sensitivity of
the finite-element calculations on the size of the torus used to model
our toroidal plasma. This sensitivity has already been mentioned in
the preceding paragraph. In figure 4.8 this discontinuity corresponds
precisely to the moment (red label 1) when the measured transmission
coefficient leaves the domain in the complex plain spanned by the finite-
element calculations for constant electron density (purple, green and
blue dotted lines).

(2) When the measured transmission coefficient crosses the finite-
element calculations for a constant normalised electron collision rate of
1.0 (blue dot-dashed line and red label 2 in figure 4.8), a discontinuity
arises because, before this crossing, the electron collision rate increases
after leaving the first discontinuity, and after this crossing, it decreases
again, as the measured transmission coefficient continues to move
through the domain spanned by the finite-element calculations for a
constant electron collision rate (coloured dot-dashed lines). Note that to
create a continuous map a linear interpolation has been used.

(3) This discontinuity arises because the measured transmission
coefficient enters a region in the complex plane that is not bounded by
a series of finite-element calculations, which renders the interpolation
unreliable. This could be improved by performing additional finite-
element calculations for lower values of the electron collision rate.

In conclusion of this section, we will assess the electron collision
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rate presented in figure 4.9. We already noted that in the first half
of the evolution of the toroidal plasma, the electron number density
is well above cut-off. During this time, microwave radiation cannot
significantly penetrate the toroidal plasma, and the resulting electron
collision rate should therefore be interpreted with caution.

In the second half of the evolution, the electron collision rate
decreases monotonically to a limit value. Because plasma emission is
still observed during this time, it is not unreasonable to assume that the
electrons still have an elevated temperature while cooling down. But, at
the same time, the electron collision rate is seen to decrease a factor of
ten. For weakly ionised plasmas the electron collision rate is given by3838 Richardson 2019,

p. 38.

n = nn s

s
kTe
me

where nn is the neutral density, s is the scattering cross section, k
is the Boltzmann constant, Te is the electron temperature, and me is
the electron mass. Therefore, we ought to conclude that the electron
temperature should have been at least 30.000 K, assuming that the
neutral density has already been restored. The latter is a reasonable
assumption if we consider the density measurements presented in
section 2.5. However, such an electron temperature is unreasonable at
this time in the afterglow.3939 Nedanovska et al.

2015. If we reconsider the foregoing and bring to mind the optical images
of the toroidal plasma presented in section 2.5, we may reasonably
conclude that, because the toroidal plasma does not resemble a torus
in this part of its evolution, the finite-element calculations cannot be
considered representative during this time. As has been mentioned
before in this section, considerable improvements can be expected when
a tomographically reconstructed, poloidal radiant intensity profile,
based on optical recordings, is used as a measure for the dimensions
and the electron number density of the toroidal plasma.

4.4 Conclusion

In this chapter we have presented the electron number density and the
electron collision rate for the entire evolution of a transient toroidal
helium plasma. These plasmas have been generated by a single laser-
induced breakdown plasma, in quiescent atmospheric pressure helium
gas at room temperature, using a laser pulse energy of 250 mJ.

By combining interferometric measurements using 57 GHz micro-
wave radiation with detailed full-wave finite-element calculations of our
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interferometric set-up, we were able to obtain the plasma parameters
with high temporal resolution.

In the second half of the evolution, where the toroidal plasma can be
regarded as an afterglow, the electron number density and the electron
collision rate are of the order of 1019 m-3 respectively 1010 s-1, which
conforms to known values for atmospheric pressure laboratory plasmas.

We discussed in detail the microwave interferometric set-up used to
measure the complex transmission coefficient, and presented a method
whereby the finite-element calculations can be used as a map between
the measured transmission coefficient and the sought after plasma
parameters. With this approach we overcame the biggest challenges
in studying transient toroidal helium plasmas, namely their limited
lifetime and their limited size.

Because the finite-element calculations already are computationally
intensive, we have limited the calculation of the complex transmission
coefficient to uniform tori of two sizes that are representative for the
evolution of our toroidal plasma. For each of these different sized tori,
full-wave finite-element calculations have been performed for a range of
values for the complex permittivity.

In the presented evolution of the plasma parameters, discontinuities
in the first derivative are clearly visible. These discontinuities are a
direct consequence of our choice of splitting the evolution of our toroidal
plasma into two parts, and assuming a uniform torus of fixed size for
each part. Evidently this is a very course approximation, as the size and
the spatial distribution of the emission from the toroidal plasma have
been seen to evolve considerably.

We briefly discussed an improvement of this method by which a
tomographically reconstructed, poloidal radiant intensity profile, based
on optical recordings, can be used as a measure for the dimensions and
the electron number density of the toroidal plasma, to better model the
toroidal plasma in the finite-element calculations.

Finally, we note that the size of the torus used to mimic our toroidal
plasma in the finite-element calculations can have a significant effect on
the obtained plasma parameters. Specifically, attributing vastly different
plasma parameters to differently sized tori can result in an almost
identical complex transmission coefficient. This obviously complicates
the method whereby the finite-element calculations are used as a
map between the measured transmission coefficient and the sought
after plasma parameters. This suggest that considerable improvements
can be expected when utilising the aforementioned tomographically
reconstructed, poloidal radiant intensity profile.




