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a b s t r a c t 

Accurately matching visual and textual data in cross-modal retrieval has been widely studied in the mul- 

timedia community. To address these challenges posited by the heterogeneity gap and the semantic gap, 

we propose integrating Shannon information theory and adversarial learning. In terms of the heterogene- 

ity gap, we integrate modality classification and information entropy maximization adversarially. For this 

purpose, a modality classifier (as a discriminator) is built to distinguish the text and image modalities ac- 

cording to their different statistical properties. This discriminator uses its output probabilities to compute 

Shannon information entropy, which measures the uncertainty of the modality classification it performs. 

Moreover, feature encoders (as a generator) project uni-modal features into a commonly shared space and 

attempt to fool the discriminator by maximizing its output information entropy. Thus, maximizing infor- 

mation entropy gradually reduces the distribution discrepancy of cross-modal features, thereby achieving 

a domain confusion state where the discriminator cannot classify two modalities confidently. To reduce 

the semantic gap, Kullback-Leibler (KL) divergence and bi-directional triplet loss are used to associate 

the intra- and inter-modality similarity between features in the shared space. Furthermore, a regulariza- 

tion term based on KL-divergence with temperature scaling is used to calibrate the biased label classifier 

caused by the data imbalance issue. Extensive experiments with four deep models on four benchmarks 

are conducted to demonstrate the effectiveness of the proposed approach. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Semantic information that helps us understand the world usu- 

lly comes from different modalities such as video, audio, and text. 

amely, the same concept can be presented in different ways. 

herefore, it is possible to search semantically-relevant samples 

 e.g. images) from one modality when given a query item from 

nother modality ( e.g. text). With the increasing amount of multi- 

odal data available, more efficient and accurate retrieval methods 

re still in demand in the multimedia community. 

Deep learning methods can effectively embed features from dif- 

erent modalities into a commonly shared space, and then measure 

he similarity between these embedded features. To date, the “het- 

rogeneity gap” [1] and the “semantic gap” [2] are still challenges 

o be addressed for cross-modal retrieval. Since the data in dif- 

erent modalities are described by different statistical properties, 

he heterogeneity gap characterizes the difference between fea- 
ure vectors from different modalities that have similar semantics 
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ut are distributed in different spaces. Similarities between these 

eature vectors are not well associated so that these vectors are 

ot directly comparable, leading to inconsistent distributions. The 

emantic gap characterizes the difference between the high-level 

ser perception of the data and the lower-level representations of 

he data by the computer ( i.e. pixels or symbols). To achieve better 

etrieval performance, it is essential to address these gaps for as- 

ociating the similarity between cross-modal features in the shared 

pace. 

To capture the semantic correlations between cross-modal fea- 

ures, many approaches have been proposed in recent years. Some 

pproaches focus on designing effective structures from a deep 

etworks perspective. For instance, graph convolutional networks 

re employed to model the dependencies within visual or tex- 

ual data [3] . Other approaches focus on designing similarity con- 

traint functions from a deep features perspective. For example, bi- 

inear pooling-based methods are applied to align image and text 

eatures to then accurately capture inter-modality semantic cor- 

elations. In other examples, coordinated representation learning 

ethods [4] , such as ranking loss [5,6] and cycle-consistency loss 

7] are widely used to preserve similarity between cross-modal 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Conceptual diagram of combining information theory and adversarial learn- 

ing for cross-modal retrieval. The features Z i ∈ F d and Z t ∈ F d with dimension d

for image-text pairs are extracted using deep neural networks. Shape indicates 

modality and color denotes pair-wise similarity information. The modality classi- 

fier aims to classify the text and image modalities, thereby minimizing the un- 

certainty of modality classification it performs (measured by Shannon information 

entropy). Conversely, the feature encoders project uni-modal features into a com- 

monly shared space and attempt to fool this classifier by maximizing its uncertainty 

of modality classification, which is computed by the information entropy predictor. 

The modality classifier and the information entropy predictor are combined in an 

adversarial manner to reduce the heterogeneity gap. If the classifier’s uncertainty is 

maximized, features Z i and Z t are intertwined into a domain confusion state where 

this classifier cannot confidently determine which modality each input feature ( Z i 

or Z t ) belongs to. Namely, this classifier becomes least-confident on its classifica- 

tion results. This process of adversarial combining is introduced in Section 3.2 and 

Section 4.1 . Furthermore, the feature projector aims to associate the semantic simi- 

larity by using pair-wise objective functions such as bi-directional triplet loss. 
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eatures. These constraint functions mainly aim at reducing the 

emantic gap by focusing on the similarity between two-tuple or 

hree-tuple samples. However, they might not directly mitigate the 

eterogeneity gap caused by the inconsistent feature distributions 

n the different spaces. 

.1. Motivations 

Considering the limitations of similarity constraint functions, 

e propose a new method to perform cross-modal retrieval from 

wo aspects. First, we reduce the heterogeneity gap by integrating 

hannon information theory [8] with adversarial learning, in order 

o construct a better embedding space for cross-modal represen- 

ation learning. Second, we combine two loss functions, including 

ullback-Leibler divergence loss and bi-directional triplet loss, to 

reserve semantic similarity during the feature embedding proce- 

ure, thereby reducing the semantic gap. 

To do this, we combine the information entropy predictor and 

he modality classifier in an adversarial manner. Information en- 

ropy maximization and modality classification are two processes 

rained with competitive goals. Since the image is a 3-channel 

GB array while the text is often symbolic, uni-modal features ex- 

racted from image or text data are characterized by different sta- 

istical properties, which can be used to distinguish the original 

odalities these features belong to. As a result, when these fea- 

ures in the shared space are correctly classified into their original 

odalities with high confidence, then their feature distributions 

onvey less information content, and the modality classifier per- 

orms modality classification with lower uncertainty. In contrast, 

hen cross-modal features become modality-invariant and show 

heir commonalities, these features cannot be classified into the 

odality they originally belong to. In this case, the feature distri- 

utions in the shared space conveys more information content and 

igher modality uncertainty. 

According to Shannon’s information theory [8] , we can mea- 

ure the modality uncertainty in the shared space by computing 

nformation entropy. This basic proportional relation provides the 

rinciple to mitigate the heterogeneity gap. For this purpose, we 

ntegrate modality uncertainty measurement into cross-modal 

epresentation learning. As shown in Fig. 1 , a modality classifier 

in the following we call it a discriminator ) is devised to classify 

mage and text modality, rather than perform a “true/false” binary 

lassification. This discriminator also provides its output proba- 

ilities to calculate the information entropy of the cross-modal 

eature distributions. At the start of training, the discriminator can 

lassify images and text modalities with high confidence due to 

heir different statistical properties. In contrast, the feature en- 

oders (in the following we call it a generator ) project features into 

 shared space and attempt to fool the discriminator and make it 

erform an incorrect modality classification until features in the 

hared space are fused heavily into a confusion state, maximizing 

he modality uncertainty. 

On the basis of this heavily-fused state, we further use simi- 

arity constraints on the feature projector to reduce the seman- 

ic gap. Specifically, Kullback-Leibler (KL) divergence loss is used 

o preserve semantic correlations between image and text features 

y using instance labels as supervisory information. More impor- 

antly, we consider the issue of data imbalance and introduce a 

egularization term based on KL-divergence with temperature scal- 

ng to calibrate the biased label classifier. Afterwards, we adopt the 

ommonly used bi-directional triplet loss and instance label clas- 

ification loss ( i.e. categorical cross-entropy loss) to achieve good 

etrieval performance. 

.2. Our contributions 

Our contributions can be summarized three-fold as follows: 
2 
First, we combine information theory and adversarial learning 

nto an end-to-end framework. Our work is the first to explore 

nformation theory in reducing the heterogeneity gap for cross- 

odal retrieval. This method is beneficial for constructing a shared 

pace for further learning commonalities between cross-modal fea- 

ures, which can be used for tasks in other modalities, such as 

ideo-text matching. 

Second, we introduce a regularization term based on KL- 

ivergence with temperature scaling to address the issue of data 

mbalance, which calibrates biased label classifier training and 

uarantees the accuracy of instance label classification. To the best 

f our knowledge, we are not aware of any prior use in the context 

f addressing imbalance issues on retrieval datasets. 

Third, we use bi-directional triplet loss to constrain intra- 

odality semantics. Aside from these intra-modality constraints, 

e also consider optimizing inter-modality similarity. We use the 

nstance labels to construct a supervisory matrix. This matrix reg- 

larizes the semantic similarity between the projected image (or 

ext) features and text (or image) features by minimizing KL- 

ivergence. This inter-modality constraint is more effective since 

t focuses on all the projected cross-modal feature distributions in 

 mini-batch. 

The rest of paper is organized as follows. Related work is re- 

iewed in Section 2 . We give definitions and a theoretical analysis 

or the proposed method in Section 3.2 . We present the specific 

omponents for implementation including network structures, ob- 

ective functions, and optimization in Section 4 . We test the pro- 

osed method on four datasets, and the results are reported in 

ection 5 . Finally, the conclusions are given in Section 6 . 

. Related work 

.1. Cross-modal representation learning and matching 

Preserving the similarity between cross-modal features should 

onsider two aspects: inter-modality and intra-modality. Supervi- 

ion information ( e.g. class label or instance label), if available, is 

eneficial for learning features from these two aspects. Preserving 
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eature similarity can be realized by using methods such as joint 

epresentation learning and coordinated representation learning 

4] . Joint representation learning methods project the uni-modal 

eatures into the shared space using straightforward strategies such 

s feature concatenation, summation, and inner product. Subse- 

uently, more complicated bilinear pooling methods, such as mul- 

imodal compact bilinear (MCB) pooling, are proposed to explore 

he semantic correlations of cross-modal features. To regularize the 

oint representations, deep networks are commonly trained by us- 

ng objective functions, such as regression-based loss [9,10] . 

Coordinated representation learning methods process image 

nd text features separately but impose them under certain sim- 

larity constraints [4] . In general, these constraints can be cat- 

gorized into classification-based and verification-based methods 

n supervised scenarios. In terms of classification-based methods, 

oth image and text features are used to make a label classification 

y using categorical cross-entropy loss function. Because a paired 

mage-text input has the same class label, their features can be as- 

ociated in the shared space. However, classification-based meth- 

ds cannot preserve the similarity between inter-modality features 

ell because the similarity between image and text features is not 

irectly regularized. 

Verification-based methods, based on metric learning, are pro- 

osed to further optimize inter-modality feature learning. Given a 

imilar (or dissimilar) image-text pair, their corresponding features 

hould be verified as similar (or dissimilar). Therefore, the goal of 

eep networks is to push features of similar pairs closer, while 

eeping features of dissimilar pairs further apart. Verification- 

ased methods include pair-wise constraints and triplet con- 

traints, which focus on inferring the matching scores of image- 

ext feature pairs [10] . 

Triplet constraints optimize the distance between positive pairs 

o be smaller than the distance between negative pairs by a mar- 

in. They can capture both intra-modality and inter-modality se- 

antic correlations. For example, bi-directional triplet loss has 

een employed to optimize image-to-text and text-to-image rank- 

ng [6] . Although triplet constraints are widely used for cross- 

odal retrieval, the difficulties are in the mining strategy for neg- 

tive pairs and the selection of a margin value, which are usually 

ask-specific and empirically selective. 

.2. Adversarial learning for cross-modal retrieval 

The afore-mentioned joint and coordinated representation 

earning approaches focus on two-tuple or three-tuple samples, 

hich may be insufficient for achieving overall good retrieval 

erformance. Adversarial learning, as an alternative method, has 

hown its powerful capability for modeling feature distributions 

nd learning discriminative representations between modalities 

hen deep networks are trained with competitive objective func- 

ions [6,11] . 

Recent progress in using adversarial learning for cross-modal 

etrieval can be categorized as feature-level and loss function-level 

iscriminative models. 

From a feature-level perspective, it is possible to preserve se- 

antic consistency by performing a min-max game between inter- 

odality feature pairs [6] . A straightforward way is to build a dis- 

riminator, making a “true/false” classification between image fea- 

ures (regarded as true), corresponding matched text features (re- 

arded as fake), and unmatched image features from other cat- 

gories (also regarded as fake) [6] . Alternatively, a cross-modal 

uto-encoder can be combined to generate features for another 

odality. For example, a generator attempts to generate image fea- 

ures from textual data and then regards them as true, while for a 

iscriminator, image features extracted from original images and 

hese from the generated “images” are labeled as true and fake, 
3 
espectively. The adversarial training explores the semantic corre- 

ations of cross-modal representations. Intra-modality discrimina- 

ion also can be considered in cross-modal adversarial learning, 

orcing the generator to learn more discriminative features. In this 

ase, the discriminator tends to discriminate the generated features 

rom its original input. 

From a loss function-level perspective, instead of making a bi- 

ary classification ( i.e. true or fake), adversarial learning is de- 

igned to train two groups of loss functions or two processes with 

ompetitive goals. This idea is applied in recent work for cross- 

odal retrieval [6,11] . To be specific, a feature projector is trained 

o generate modality-invariant representations in the shared space, 

hile a modality classifier is constructed to classify the generated 

epresentations into two modalities. Similarly, in this paper, we 

ombine two networks and train them with two competitive goals. 

.3. Information-theoretical feature learning 

As mentioned before, feature vectors from different modalities 

re distributed in different spaces, resulting in the heterogeneity 

ap, which affects the accuracy of cross-modal retrieval. Therefore, 

t becomes essential to reduce feature distribution discrepancies 

nd thereby reduce the heterogeneity gap. The solution for this is 

o measure and then minimize distribution discrepancy. For exam- 

le, distribution disparity of cross-modal features can be character- 

zed by Maximum Mean Discrepancy (MMD), which is a differen- 

iable distance metric between distributions. However, MMD suf- 

ers from sensitive kernel bandwidth and weak gradients during 

raining. 

Information-theoretical based methods are used to measure the 

ifferences of feature distributions and learn better cross-modal 

eatures. As an example, the cross-entropy loss function is widely 

sed to estimate the errors between inference probabilities and 

round-truth labels where the gradients are computed according 

o the errors. Once the gradients are computed, deep networks 

an further update their parameters via the back-propagation algo- 

ithm. KL-divergence (also called relative entropy) is another popu- 

ar criterion to characterize the difference between two probability 

istributions. Minimizing the difference is beneficial for retaining 

he semantic similarity between features. For example, Zhang et al . 

12] employ the KL-divergence to measure the similarity between 

rojected features and supervisory information. 

Recently, Shannon information entropy [8] has been used for 

erforming tasks such as semantic segmentation [13] and cross- 

odal hash retrieval [14] . These studies indicate that Shannon en- 

ropy can be used for multimodal representation learning by esti- 

ating uncertainty [8] . Take generative adversarial networks as an 

xample: if the generator makes image features and text features 

lose and minimizes their discrepancy, then the discriminator will 

ecome less-certain or under-confident, i.e. , having a high informa- 

ion entropy to predict which modality each feature comes from. 

e applied this principle in our previous work [14] to design an 

bjective function to maximize the domain uncertainty over cross- 

odal hash codes in a commonly shared space. Deep networks 

rained by using information entropy construct a domain confu- 

ion state where the heterogeneity gap can be effectively reduced. 

n the basis of this state, other loss functions, such as ranking loss, 

an be further applied to regularize feature similarity. 

. Proposed approach 

.1. Problem formulation 

We consider a supervised scenario for cross-modal retrieval. 

enote X i as the input images and the corresponding descriptive 

entences as X t . Each image and its descriptive sentences have 
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Fig. 2. (a): Image and text features are further embedded into a shared space via non-shared encoding sub-networks. The modality uncertainty can be predicted by using the 

output classification probabilities from a predictor. (b): Relationship between output probabilities and information content. The more uncertain the shared space, the more 

information content it conveys. (c): Relationship between modality uncertainty and output probabilities for each modality. When probabilities predicted for two modalities 

are identical, the shared space is intertwined into a domain confusion state ( i.e. most uncertain). If one modality is identified with a higher probability (closer to 1) while 

another with a lower probability (closer to 0), the domain confusion state is not achieved. 
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he same instance label Y . Therefore, we can organize an input 

air ( x i , x t , y ) to train a deep network. To be specific, feature en-

oders E 1 (·; θE 1 
) and E 2 (·; θE 2 

) extract image and text features, re- 

pectively, and then further embed these uni-modal features into 

 shared space by using non-shared sub-networks. The embed- 

ed features with dimension d are denoted as Z i = E 1 (X i ; θE 1 
) and 

 

t = E 2 (X t ; θE 2 
) , Z i ,Z t ∈ R d . Note that the parameters in the non-

hared sub-networks for uni-modal image and text feature embed- 

ing have been included into θE 1 
and θE 2 

, respectively. The goal is 

o train a deep network to make the embedded features Z i and Z t 

odality-invariant and semantically discriminative, improving the 

etrieval accuracy. 

As shown in Fig. 1 , the networks E 1 , E 2 , and the information

ntropy predictor act as a generator, while the modality classifier 

cts as a discriminator. The training of the generator and the dis- 

riminator is formulated as an interplay min-max game to mitigate 

he heterogeneity gap. The feature projector attempts to preserve 

eature similarity under several constraints, which are introduced 

n Section 4.2, 4.3 , and 4.4 . 

.2. Integrating information theory and adversarial learning 

.2.1. Information entropy and modality uncertainty 

Image features can be extracted from convolutional neural net- 

orks, while text features can be extracted from sequential net- 

orks. These feature vectors from different modalities have similar 

emantics but are distributed in different spaces. Their similarities 

n the different spaces are not well associated so that these feature 

ectors are not directly comparable. Hence, it is required to fur- 

her embed them into a shared space ( i.e. Z i and Z t in Fig. 1 ). Uni-

odal features are characterized by different statistical properties. 

herefore, as shown in Fig. 2 (a), it is possible to identify a feature

n the shared space coming from a visual modality with higher 

robability P i (more certain classification) than coming from a tex- 

ual modality with lower probability P t =1 −P (less certain classi- 
i 

4 
cation). In other words, these cross-modal features are not in- 

ertwined heavily. As a result, the domain confusion state is not 

chieved. Conversely, if a given feature can not be distinguished 

hich modality this feature originally comes from, it indicates that 

his feature has identical probability ( P i =P t ) coming from each 

odality. In this case, the shared space has highest uncertainty and 

he cross-modal features are intertwined into a domain confusion 

tate, which corresponds to highest information content. We use 

nformation entropy [8] to measure the uncertainty of the shared 

pace. Fig. 2 (b) illustrates that two modalities with an equal prob- 

bility leads to the highest Shannon information entropy and thus 

nformation content. 

Modality uncertainty refers to the unreliability of classification 

hat the discriminator classifies image features and text features 

nto two modalities. It is proportional to Shannon information en- 

ropy [8] , as shown in Fig. 2 (c). Based on this observation [14] ,

e design the discriminator to measure its output modality un- 

ertainty by using information entropy as a criterion. Maximizing 

nformation entropy means that the discriminator becomes least- 

onfident in classifying the original modality of image and text fea- 

ures, resulting in the greatest reduction of the heterogeneity gap. 

.2.2. Adversarial learning and information entropy 

To make cross-modal features modality-invariant, we devise a 

enerator and a discriminator, as shown in Fig. 1 . The discrimina- 

or performs modality classification to identify visual modality and 

extual modality based on cross-modal features. Following [6] , we 

efine the modality label as Y ∗c for these two modalities (for visual 

odality ∗ = i and textual modality ∗ = t). Using output probabil- 

ties of the discriminator, we can compute cross-entropy loss to 

ealize modality classification [6] . Once the network convergences 

nder the constraint of this loss function, visual modality and tex- 

ual modality are clearly identified and classified, thereby minimiz- 

ng the modality uncertainty. 
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Fig. 3. KL-divergence for cross-modal feature projection, which considers all fea- 

tures Z i and Z t in the shared space. Each paired image feature and text feature 

share the same instance label, indicated by the same color. The cross-modal feature 

projection module is critical to explore the similarity between image features and 

normalized text features. The projection process is formulated in Eqs. 2 and 3 . 

Fig. 4. The implementation of integrating information entropy predictor and 

modality classifier in Fig. 1 into a unified discriminator. Together with the feature 

extractors, the whole framework is in the form of generative adversarial network. 

For clarity, we ignore the feature projector mentioned in Fig. 1 , which includes label 

classification loss, bi-directional triplet loss, and KL-divergence loss. 
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Conversely, the generator is designed to maximize the modality 

ncertainty over the cross-modal feature distributions. To achieve 

his, the generator learns modality-invariant features to fool the 

iscriminator, maximizing the uncertainty of modality classifica- 

ion the discriminator performs. If the modality uncertainty is 

aximized, the discriminator is most likely to make an incorrect 

odality classification and be least-confident about its classifica- 

ion results. In this case, cross-modal features are intertwined into 

 domain confusion state and become indistinguishable. 

To this end, we explore the ways to integrate information en- 

ropy and adversarial learning into an end-to-end network, which 

s introduced in Section 4.1 . For better understanding, we also ex- 

lore another combining paradigm in the Experimental Section. 

.3. KL-Divergence for cross-modal feature projection 

To reduce the semantic gap, we use KL-divergence to charac- 

erize the differences between projected cross-modal features ( Z i 

nd Z t in Fig. 1 ) and a supervisory matrix computed from their in-

tance labels, i.e. KL (( f (Z i , Z t ) || f (Y � 
l 

, Y l )) , (see Eq. 9 ). In this way,

he semantic correlations among cross-modal features can be pre- 

erved. We illustrate this process in Fig. 3 . It is important to note

hat when using KL-divergence to preserve semantic correlations 

f cross-modal features, all positive and negative pairs in a mini- 

atch are considered. As for the supervisory matrix f (Y � 
l 

, Y l ) , it is

omputed by using matrix multiplication and is normalized to the 

ange from 0 and 1. 

We argue that different operations to realize f (Z i , Z t ) affect 

imilarity preserving. Directly, the operation f (·) can be an inner 

roduct on cross-modal features Z i and Z t . However, using the in- 
5 
er product has some implicit drawbacks. First, when multiplying 

ne image feature vector with all text feature vectors, the results 

f the inner product are not optimally comparable due to the non- 

ormalized text features, and vice versa. Second, the angles be- 

ween each image feature vector and each text feature vector, as 

ell as their whole feature distributions, are changing when train- 

ng the deep network, which makes it problematic for an inner 

roduct to measure feature similarity. 

To tackle the above limitations, we adopt a cross-modal feature 

rojection to characterize the similarity between features. The idea 

s related to the work in [12] . Cross-modal feature projection is 

ased on the same distribution and operates on the normalized 

eatures. For instance, an image feature vector, z i 
j 
∈ Z i , can be pro-

ected to the distribution of a text feature vector z t 
k 

∈ Z t , then each

rojected feature vector from image to text (termed “i → t”) can 

e formulated as: 

ˆ 
 

i → t 
j = | z i j | ∗

<z i 
j 
, z t 

k 
> 

| z i 
j 
|| z t 

k 
| ∗ z t 

k 

| z t 
k 
| 

= <z i j , ̄z 
t 
k > ∗z̄ t k (1) 

here “i ” and “t” represent the visual and the textual modality, 

espectively, “ j” and “k ” represent the index of each image fea- 

ure and text feature in the shared space, respectively, z̄ t 
k 

denotes 

he normalized feature. Therefore, the length of ˆ z i → t 
j 

is equal to 

 ̂ z i → t 
j 

| = |<z i 
j 
, ̄z t 

k 
>| , and denotes the similarity between image fea-

ure z i 
j 

and text feature z t 
k 
. When associating each image feature z i 

j 

ith all text features Z t , we obtain all different lengths, Therefore, 

hen projecting all image features into all text features Z t , we get 

 similarity matrix A i → t , which is formulated as 

 i → t (Z i , Z t ) = 

N ∑ 

j=1 

N ∑ 

k =1 

|<z i j , ̄z 
t 
k >| = Z i ( ̄Z t ) � (2) 

Similarly, if projecting all text features into all image features 

 

i , we obtain another similarity matrix A t→ i : 

 t→ i (Z t , Z i ) = 

N ∑ 

k =1 

N ∑ 

j=1 

|<z t k , ̄z 
i 
j >| = Z t ( ̄Z i ) � (3) 

In the above two equations, Z i and Z t represent the cross-modal 

eatures from two modalities. N is the number of samples in a 

ini-batch. These two similarity matrices are normalized by a soft- 

ax function. Afterwards, we use KL-divergence to characterize the 

ifference between the normalized matrices and the supervisory 

atrix, i.e. KL (( f (Z i , Z t ) || f (Y � 
l 

, Y l )) . The specific objective function

s introduced in Section 4.2 . 

. Implementation and optimization 

We introduce the implementation and optimization of our pro- 

osed approach in this section. We employ four convolutional neu- 

al networks such as ResNet-152 [15] and MobileNet [16] to ob- 

ain image features and a Bi-directional L STM (Bi-L STM) [17] to 

xtract text features. All the extracted image and text features are 

ni-modal. Later, we borrow the protocols of non-shared encod- 

ng sub-networks (fully-connected layers) in [12] to get the cross- 

odal features Z i and Z t . 

Once the cross-modal features are obtained, we use the pro- 

osed algorithm to train the networks based on the above theo- 

etical analysis. The algorithm includes combining information en- 

ropy and adversarial learning to mitigate the heterogeneity gap, 

nd loss function terms ( i.e. KL-divergence loss, categorical cross- 

ntropy loss, and bi-directional triplet loss) to preserve semantic 

orrelations between cross-modal features. 



W. Chen, Y. Liu, E.M. Bakker et al. Pattern Recognition 117 (2021) 107983 

4

s  

t

m

t

t

i

i

t

f

o

B

t  

e

T

a

i

l

t

f

g

t

f

s

e

t

T

P

L

I

e

F  

H

o

i

P

t

L

a

t

f

θ
f

F

d

f

r

o

p

a

4

f

p

K  

p

a

f

t

A  

m

i

[

i

s

i

P

P

Q

L

} 
) 

w

t

t

g

θ
a

4

4

l

f

t

m

n

m

c

p

i

t

t

b

L

1 We omit the bias term for simplicity 
.1. Combining information theory with adversarial learning 

We combine information entropy predictor and modality clas- 

ifier in Fig. 1 into a unified sub-network, as shown in Fig. 4 . In

his paradigm, the discriminator D with parameters θD performs a 

odality classification and computes the Shannon information en- 

ropy. The backbone nets E 1 and E 2 for feature extraction act as 

he generator G . The whole structure forms a generative adversar- 

al network. The information entropy computed from the discrim- 

nator back-propagates to the feature encoders. Specifically, when 

he discriminator is fixed, and its parameters are θ
� 
D , then the in- 

ormation entropy H(P � 
D 
) = E 

i,t 
(−P � 

D 
∗ log (P � 

D 
)) is computed from its 

utput probabilities P � 
D 
(D | Z i,t ; θ� 

D ) across the features for all classes. 

ased on the information entropy, we can design a negative en- 

ropy loss L s = −H(P � 
D 
) (see Eq. 4 ) to train the network. The gradi-

nts computed from L s update the parameters of feature extractors. 

he negative information entropy L s is label-free during training, 

nd it regularizes the whole feature distribution to be modality- 

nvariant. 

The discriminator consists of some fully-connected layers. The 

ast layer with two neurons yields probabilities that correspond 

o two modalities. This discriminator classifies whether the input 

eatures Z i and Z t are from the visual or the textual modality 

iven the pre-defined modality label Y ∗c . In contrast, the genera- 

or ( i.e. E 1 and E 2 ) aims at learning modality-invariant features to 

ool the discriminator to make an incorrect modality classification 

o that the generator gradually maximizes the output information 

ntropy from the discriminator. Therefore, the learning process of 

he discriminator affects that of the generator in an indirect way. 

he objective function is calculated using the output probabilities 

 

D 
(D | Z i,t ; θD ) of the discriminator. 

For the generator E 1 and E 2 : 

 s = 

1 

N 

N ∑ 

j=1 

M ∑ 

m =1 

(
P i D,m 

(D 

i | Z i j ; θD ) ∗log(P i D,m 

(D 

i | Z i j ; θD )) 

+ P t D,m 

(D 

t | Z t j ; θD ) ∗log(P t U,m 

(D 

t | Z t j ; θD ))) 

s.t. 

M ∑ 

m =1 

P ∗D,m 

(D 

∗| Z ∗j ; θD ) = 1 , P ∗D,m 

(D 

∗| Z ∗j ; θD ) ≥ 0 (4) 

t is expected for the generator G to maximize the information 

ntropy H(P � 
D 
) , and subsequently the modality uncertainty (see 

ig. 2 ). Since L s is a negative entropy ( L s =−H(P � 
D 
) ) to maximize

(P � 
D 
) , it is minimized to optimize the parameters θE 1 

and θE 2 
f the generator during training. For the discriminator D, depend- 

ng on the modality label Y i c and Y t c and its output probabilities 

 

D 
(D | Z i,t ; θD ) , the modality classification cross-entropy loss func- 

ion is formulated as: 

 c = − 1 

N 

N ∑ 

j=1 

(
Y i c ∗log(P i D (D 

i | Z i j ; θD )) + Y t c ∗log(P t D (D 

t | Z t j ; θD ))) (5) 

L c refers to the negative cross-entropy loss of the discriminator 

nd is minimized to clearly classify image and text features into 

wo modalities during training. Note that the gradients calculated 

rom term L s are only used to optimize the parameters θE 1 
and 

E 2 
of the generator, whereas the gradients from term L c are only 

or optimizing the parameters θD of the discriminator, as shown in 

ig. 4 . Minimizing loss L c and L s when trained iteratively will re- 

uce the heterogeneity gap. The optimization method is straight- 

orward, even though the gradients calculated from L c will not di- 

ectly affect the parameters of the feature encoders E 1 and E 2 . The 

utput probabilities of the discriminator change when updating its 

arameters, which will affect the Shannon information entropy and 

ffect the output features from E and E in the end. 
1 2 

6 
.2. KL-Divergence for similarity preserving 

We also compute KL-divergence directly across Z i and Z t to 

urther preserve semantic similarity. KL-divergence focuses on the 

rojections of image and text features and is computed by L kl = 

L (( f (Z i , Z t ) || f (Y � 
l 

, Y l )) . Here, superscript “� ” means matrix trans-

ose. L kl focuses on constraining the whole feature distributions 

nd is complementary to the following bi-directional triplet loss 

unction. We have introduced the process of cross-modal fea- 

ure projection in Section 3.3 . Given the similarity matrices ( i.e. 

 i → t (Z i , Z t ) and A t→ i (Z t , Z i ) ), we use the softmax function to nor-

alize these matrices in Eq. 6 and Eq. 7 . The supervisory matrix 

s normalized after matrix multiplication as in Eq. 8 . Similar to 

12] , since we project features from visual (or textual) modality 

nto textual (or visual) modality, the KL-divergence regularizes the 

emantics in bi-directional feature projection, which is formulated 

n Eq. 9 as: 

 i → t = 

exp(A i → t (Z i , Z t )) ∑ 

exp(A i → t (Z i , Z t )) 
(6) 

 t→ i = 

exp(A t→ i (Z t , Z i )) ∑ 

exp(A t→ i (Z t , Z i )) 
(7) 

 y = 

exp(Y � 
l 

Y l ) ∑ 

exp(Y � 
l 

Y l ) 
(8) 

 kl = L kl i → t 
+ L kl t→ i 

= 

1 

N 

{ ∑ ∑ 

P i → t ∗ log 

(
P i → t 

Q y + ε 

)
+ 

∑ ∑ 

P t→ i ∗ log 

(
P t→ i 

Q y + ε 

)
(9

here ε is a small constant to avoid division by zero. Loss L kl refers 

o the KL-divergence between the projections of image-text fea- 

ures and their supervisory matrix. This loss is minimized and the 

radients computed from L kl are used to update the parameters 

E 1 
and θE 2 

of the generator, thereby the semantics between im- 

ge features and text features can be associated. 

.3. Instance label classification 

.3.1. Categorical cross-entropy loss 

Label classification is a popular idea for cross-modal features 

earning [12] . We use the instance labels provided on the datasets 

or label classification. For categorical cross-entropy loss, we apply 

he norm-softmax strategy and feature projection in [12] to learn 

ore discriminative cross-modal features. On the one hand, the 

ormalized parameters θP in the label classifier encourage cross- 

odal features to distribute more compactly so that the softmax 

lassifier performs label classification correctly. On the other hand, 

rojection between image and text features strengthens their sim- 

larity association and is beneficial for label classification [12] . Fea- 

ure projection can be computed using Eq. 1 . Subsequently, given 

he instance label y l , categorical cross-entropy loss L ce is defined 

y Eq. 10 1 and is minimized during training: 

 ce = E 

i,t 

(
−y l ∗ log 

(
p 

P 

(
c| Z i,t ; θP 

)))
= − 1 

N 

{ 
N ∑ 

j=1 

y l, j ∗ log 

( 

exp( W 

� 
y l, j ̂

 z i → t 
j 

) ∑ 

j exp 
(
W 

� 
j ˆ z i → t 

j 

)
) 

+ 

N ∑ 

j=1 

y l, j ∗ log 

( 

exp( W 

� 
y l, j ̂

 z t→ i 
j 

) ∑ 

j exp 
(
W 

� 
j ˆ z t→ i 

j 

)
) 

} 

s.t. || W j || = 1 ; ˆ z i → t 
j = <z i j , ̄z 

t 
j > ∗z̄ t j ; ˆ z t→ i 

j = <z t j , ̄z 
i 
j > ∗z̄ i j (10) 
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F

here N is the number of image-text pairs in a mini-batch. W y l, j 

nd W j represent the y l, j -th and the j-th column of weights W 

n classifier parameters θP according to [12] . ˆ z i → t 
j 

and ˆ z t→ i 
j 

are the 

rojections image to text and the projections text to image, respec- 

ively, by using Eq. 1 . 

.3.2. KL-Divergence for data imbalance 

Label classification using categorical cross-entropy loss can pre- 

erve semantic correlations between cross-modal features. How- 

ver, we argue that there also exists a data imbalance issue when 

raining the label classifier because each image is described by 

ore than one sentence ( e.g. each image has five description sen- 

ences in the Flickr30K dataset). In the end, it causes the learned 

abel classifier to prefer text features. 

The issue of data imbalance in cross-modal retrieval can be 

esolved by constructing an augmented semantic space to re- 

lign features [18] . In this work, we use the temperature scal- 

ng [19] to tackle the data imbalance issue. The biased label clas- 

ifier can be calibrated by re-scaling its output probabilities i.e. , 

p i → t =sof tmax ( W 

� ˆ z i → t 

τ ) and p t→ i =sof tmax ( W 

� ˆ z t→ i 

τ ) , respectively. 

e-scaling the probabilities with temperature τ raises the output 

ntropy so better image-text matching can be observed [19] . Sub- 

equently, we use KL-divergence to measure the differences be- 

ween the re-scaled probabilities. Since the magnitudes of the gra- 

ients produced by the re-scaling probabilities scale as 1 /τ 2 , it is 

mportant to multiply them by τ 2 . Finally, the KL-divergence loss 

n the scaling probabilities for data imbalance can be formulated 

s L di : 

 di = 

τ 2 

N 

∑ ∑ { p i → t ∗log ( 
p i → t 

p t→ i +ε 
) + p t→ i ∗log ( 

p t→ i 

p i → t +ε 
) } 

s.t . p i → t =sof t max ( 
W 

� ˆ z i → t 

τ
) , p t→ i =sof t max ( 

W 

� ˆ z t→ i 

τ
) (11) 

here ε is a small constant to avoid division by zero. With τ = 1 , 

e recover the original KL-divergence. As reported in Table 5 , we 

nd that the parameter τ can affect the effectiveness of loss L di . 

inimizing loss L di effectively reduces the influence of data im- 

alance issue and improves retrieval accuracy. The final objective 

unction for label classification is ( L ce + L di ). The gradients calcu- 

ated from loss ( L ce + L di ) are used to optimize the parameters θE 1 
,

E 2 
, and θP in the generator and the label classifier, respectively. 

.4. Bi-directional triplet constraint 

The triplet constraint is commonly used for feature learning. To 

chieve the baseline performance, we use this constraint from an 

nter-modality and an intra-modality perspective to strengthen the 

iscrimination of cross-modal features. 

Given cross-modal features Z i and Z t in the shared space, the 

osine function is used to measure global similarity between fea- 

ure vectors, i.e. S jk = (Z i 
j 
) � Z t 

k 
. We adopt the hard sampling strat-

gy to select three-tuples features from an inter-modality and 

n intra-modality viewpoint. Hence, the inter-modality and intra- 

odality triplet loss functions are formulated as: 

 inter = 

1 

N 

( 

N ∑ 

j,k + ,k −
max [0 , m − S j,k + + S j,k − ] 

+ 

N ∑ 

k, j + , j −
max [0 , m − S k, j + + S k, j − ] 

) 

(12) 

 intra = 

1 

N 

( 

N ∑ 

j, j + , j −
max [0 , m − S j, j + + S j, j − ] 
7 
+ 

N ∑ 

k,k + ,k −
max [0 , m − S k,k + + S k,k − ] 

) 

(13) 

 tr = L inter + L intra (14) 

here m is the margin in the bi-directional triplet loss function. 

or instance, in case of inter-modality, S j,k + = (Z i 
j 
) � Z t 

k + , where the

nchor features are selected from the visual modality, while the 

ositive features are selected from the textual modality. In case of 

ntra-modality, S j, j + = (Z i 
j 
) � Z i 

j + , both the anchor features and the 

ositive features are selected from the visual modality. Minimizing 

i-directional triplet loss L tr keeps the correlated image-text pairs 

loser to each other, while the uncorrelated image-text pairs are 

ushed away. This loss directly operates on the cross-modal fea- 

ures Z i and Z t so that the gradients from it optimize the parame- 

ers θE 1 
and θE 2 

of the generator. 

The problem of integrating information theory and adversarial 

earning for cross-modal retrieval is formally defined, in Eq. 15 , as 

 min-max game using the previously defined loss terms. We fur- 

her introduce the complete procedure of training and optimiza- 

ion in Algorithm 1 . Finally, when trained to convergence, the net- 

lgorithm 1 Whole network training and optimization pseu- 

ocode. 

nput: mini-batch images X i , text X t , instance label Y , modality la- 

bel ( Y i c , Y 
t 
c ), total training batch S, pre-trained parameters θE 1 

, 

update steps k 

nitialization: learning rate lr 1 , lr 2 , θE 2 
, θP , θD 

1: for n = 1 to S do 

2: for k steps do 

3: cross-modal features embedding: 

4: Z i = E 1 (X i ; θE 1 
) (Embed image features into the 

shared space) 

5: Z t = E 2 (X t ; θE 2 
) (Embed text features into the shared 

space) 

6: loss computing and feature optimization: 

7: L ce , L di , L tr , L kl calculation (Eqs. 10, 11, 14, 9) 

8: P i 
D 

= D (Z i ; θD ) (Discriminator D ) 

9: P t 
D 

= D (Z t ; θD ) 

0: L s , L c calculation (Eqs. 4, 5) 

11: fix θD , update parameters θE 1 
, θE 2 

, θP : 

2: θP ← θP − lr 2 · ∇ θP 
(L ce + L di ) 

3: θE 1 
← θE 1 

− lr 1 · ∇ θE 1 
(L ce + L di + L tr + L kl + L s ) 

4: θE 2 
← θE 2 

− lr 2 · ∇ θE 2 
(L ce + L di + L tr + L kl + L s ) 

5: end for 

6: fixate θP , θE 1 
, θE 2 

, update parameters θD : 

17: θD ← θD − lr 2 · ∇ θD 
(L c ) 

18: end for 

9: return the embedded cross-modal features Z i and Z t in Figure 

1 

ork yields cross-modal features Z i and Z t in the shared space, 

s shown in Fig. 1 . These return cross-modal features are used for 

erforming retrieval. 
 

 

 

min 

θ
E 1 

, θ
E 2 

, θ
P 

max 
θ

D 

(L ce + L di + L kl + L tr + L s ) 

min 

θ
D 

L c 
(15) 

. Experiments 

.1. Datasets and settings 

We demonstrate the efficacy of the proposed method on the 

lickr8K [20] , Flickr30K [21] , Microsoft COCO [22] , and CUHK- 
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EDES [23] datasets. Each image in these datasets is described by 

everal descriptive sentences. For Flickr8K, we adopt the standard 

ataset splitting method to obtain a training set (6K), a validation 

et (1K), and a test set (1K). For Flickr30K, we follow the previous 

ork [12] and use 29,783 images for training, 10 0 0 images for val-

dation and 10 0 0 images for testing. For MS-COCO, we follow the 

raining protocol in [12] and split this dataset into 82,783 training, 

0,504 validation and 50 0 0 test images, and then report the per- 

ormance on both 5K and 1K test set. For CUHK-PEDES, it contains 

0,206 pedestrian images of 13,003 identities. Following [12] , we 

plit this dataset into 11,003 training identities with 34,054 images, 

0 0 0 validation identities with 3078 images and 10 0 0 test identi-

ies with 3074 images. Note that all captions for the same image 

re used as separate image-text pairs to train network. 

Models are trained on GEFORCE TITAN X and Tesla K40 GPUs. 

o extract text features, the embedded words are fed into a Bi- 

STM to capture vectors with dimension 1024 (1024-D). We follow 

12] and set the Bi-LSTM with dropout rate 0.3. For fair compar- 

son, we adopt ResNet [15] , MobileNet [16] , and VGGNet [24] as 

he backbone to extract image features and further fine-tune them 

ith learning rate lr 1 =2 × 10 −5 , decaying every 2 epochs expo- 

entially. The output 2048-D image features and 1024-D text fea- 

ures are further projected into a shared space. Then cross-modal 

eatures in the space are 512-D vectors ( i.e. Z i and Z t in Fig. 1 ).

he batch size is set to 64 or 32 depending on available GPUs 

emory. For the bi-directional triplet loss function, initially, we 

reat the inter-modality and intra-modality sampling identically al- 

hough each of them might have different contributions [25] , we 

mpirically set the margin to m = 0 . 5 . The re-scaling parameter τ
or data imbalance issue is set as τ = 4 (see Table 5 ). In practice,

he discriminator can classify image and text modality easily at the 

tart of training, so the generator typically requires multiple ( e.g. , 

) update steps per discriminator update step during training (see 

lgorithm 1 ). 

Once trained to converge, the network yields image features Z i 

nd text features Z t . We use the cosine function to measure their 

imilarity. We use Recall@K (K = 1, 5, 10) for evaluation and com- 

arison. Moreover, we adopt the precision-recall and mAP for the 

blation studies, and visualize their feature distributions by t-SNE. 

urthermore, we display the cross-modal retrieval results using our 

ethod. 

.2. Performance evaluation 

.2.1. Results on the flickr30k and MS-COCO datasets 

The retrieval results on the Flickr30K and MS-COCO datasets are 

eported in Table 1 . Hereafter, “Image-to-Text” means using an im- 

ge as a query item to retrieve semantically-relevant text from the 

extual gallery. “Text-to-Image” means using a text as query to re- 

rieve images from the visual gallery. In most cases, our proposed 

pproach shows the best performance when using three differ- 

nt deep networks. For the “Image-to-Text” task on the MS-COCO 

ataset, the best results are obtained by Zheng et al . [34] , which

dopted a deeper network for text feature learning and used a 

wo-stage training strategy. However, for the “Text-to-Image” task 

nd the “Image-to-Text” task on the Flickr30K dataset, our method 

erforms better. Take ResNet-152 as an example, the results are 

@1 = 43.5% on the Flickr30K and R@1 = 48.3% on the MS-COCO for 

Text-to-Image” task; the results are R@1 = 56.5% on the Flickr30K 

ataset and R@1 = 58.5% on the MS-COCO dataset for “Image-to- 

ext” task. 

Besides, we obverse that the strategy for network training is 

ritical for retrieval performance. Take [34] as an example, the 

ackbone network (ResNet-152) is fixed at stage I (R@1 = 44.2% 

n “Image-to-Text” task on Flickr30K) and then fine-tuned with a 

mall learning rate on stage II (R@1 = 55.6% on the “Image-to-Text”
8 
ask on Flickr30K). In contrast, our network structure is trained 

nd-to-end in only one stage (we fine-tune the backbone network 

ith a small learning rate from the beginning). Our reported re- 

ults are close to those in two-stage dual learning [34] . When 

ested on the Flickr30K dataset for the “Image-to-Text” task, the 

ecall results are R@1 = 56.5%, R@5 = 82.2%, R@10 = 89.6%, which are 

he best overall previous methods. 

Obviously, the feature learning capacity of the backbone net- 

orks would affect retrieval performance significantly. We can see 

rom Table 1 , the retrieval results based on ResNet-152 are usu- 

lly higher than those of MobileNet and VGGNet. Moreover, our 

ethod also has good performance using MobileNet. For instance, 

egarding the “Image-to-Text” task on the Flickr30K dataset, the re- 

all result of CMPM+CMPC [12] is R@1 = 40.3%, but the result from 

ur method is R@1 = 46.6%, which is a significant improvement. 

Considering the two branches of “Image-to-Text” task and the 

Text-to-Image” task, we think that the data imbalance issue still 

nfluences the performance of each branch. More specifically, for 

ll listed methods, the “Image-to-Text” task has better perfor- 

ance, which indicates that the network still has more biases on 

ext feature learning as a result of the issue of data imbalance. 

hus, there exists more room for improvement using other strate- 

ies, such as data augmentation. 

.2.2. Results on CUHK-PEDES dataset 

The “Text-to-Image” retrieval results on the CUHK-PEDES 

ataset are reported in Table 2 . We evaluate the proposed method 

sing four deep networks. All results indicate that our method out- 

erforms other counterparts. The optimal results are achieved with 

@1 = 55.72% using ResNet-152 as backbone network. The results 

sing MobileNet are sub-optimal but also have some improve- 

ents. For example, CMPM+CMPC achieves a recall R@1 = 49.37% 

nd R@10 = 79.27%, while our method obtains R@1 = 51.85% and 

@10 = 81.27%. Moreover, the results of our method show that 

eeper networks achieve better retrieval performance, whereas the 

ight-weight MobileNet has a similar performance as ResNet-50. 

.2.3. Results on flickr8k dataset 

The retrieval results on the Flick8K dataset are reported in 

able 3 . The best results R@1 = 40.6%, R@5 = 67.8%, R@10 = 78.6% are

chieved by joint correlation learning [31] where a batch-based 

riplet loss, which considers all image-sentences pairs, is used for 

earning correlations. The second-best results are achieved using 

esNet-152 (same as [31] ) R@1 = 40.1%, R@5 = 67.8%, R@10 = 79.2%,

hich has better R@10 performance compared to [31] . Our method 

hows competitive results compared to other counterparts and also 

ndicates that there exists room for further performance improve- 

ent. 

.3. Ablation studies 

For analyzing the effect of each component, the ablation studies 

re conducted on the Flickr30K dataset using MobileNet as a back- 

one net, we use the commonly used categorical cross-entropy L ce 

nd bi-triplet loss function L tr to construct the baseline in Table 4 , 

e call this Baseline1 configuration “Only L ce + L tr ”. 

.3.1. Analysis of KL-divergence for data imbalance 

Each image in a dataset ( e.g. Flickr30k) has more than one de- 

cription sentence. We think this leads to a data imbalance issue 

or cross-modal feature learning. The network has more text data 

or training, which causes the learned label classifier to prefer text 

eatures. Therefore, we adopt a regularization term L di based on 

L-divergence to calibrate this bias. To this end, the label classi- 

er can be re-calibrated on the image features and text features. 

n Table 4 , this Baseline2 configuration is named “ L ce + L tr + L ”.
di 
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Table 1 

Comparison of retrieval results on the Flickr30K [21] and MS-COCO [22] dataset (R@K (K = 1,5,10)(%)). 

Flickr30K MS-COCO 

Method Backbone Net Image-to-Text Text-to-Image Image-to-Text Text-to-Image 

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 

m-RNN [26] VGG 35.4 63.8 73.7 22.8 50.7 63.1 41.0 73.0 83.5 29.0 42.2 77.0 

RNN + FV [27] VGG 35.6 62.5 74.2 27.4 55.9 70.0 41.5 72.0 82.9 29.2 64.7 80.4 

DSPE + FV [25] VGG 40.3 68.9 79.9 29.7 60.1 72.1 50.1 79.7 89.2 39.6 75.2 86.9 

CMPM+CMPC † [12] MobileNet 40.3 66.9 76.7 30.4 58.2 68.5 52.9 83.8 92.1 41.3 74.6 85.9 

Word2VisualVec [28] ResNet-152 42.0 70.4 80.1 - - - - - - - - - 

sm-LSTM [29] VGG 42.5 71.9 81.5 30.2 60.4 72.3 53.2 83.1 91.5 40.7 75.8 87.4 

RRF-Net [30] ResNet-152 47.6 77.4 87.1 35.4 68.3 79.9 56.4 85.3 91.5 43.9 78.1 88.6 

Joint learning [31] ResNet-152 48.6 73.6 83.6 32.3 62.5 74.0 55.3 82.7 90.2 41.7 75.0 87.4 

CMPM+CMPC ‡ [12] ResNet-152 49.6 76.8 86.1 37.3 65.7 75.5 - - - - - - 

VSE + [5] ResNet-152 52.9 80.5 87.2 39.6 70.1 79.5 51.3 82.2 91.0 40.1 75.3 86.1 

TIMAM [32] ResNet-152 53.1 78.8 87.6 42.6 71.6 81.9 - - - - - - 

DAN [33] ResNet-152 55.0 81.8 89.0 39.4 69.2 79.1 - - - - - - 

Dual-path stage I [34] ResNet-152 44.2 70.2 79.7 30.7 59.2 70.8 52.2 80.4 88.7 37.2 69.5 80.6 

Dual-path stage II [34] ResNet-152 55.6 81.9 89.5 39.1 69.2 80.9 65.6 89.8 95.5 47.1 79.9 90.0 

Our ITMeetsAL VGG 38.5 66.5 76.3 30.7 59.4 70.3 44.2 76.1 86.3 37.1 72.7 85.1 

Our ITMeetsAL MobileNet 46.6 73.5 82.5 34.4 63.3 74.2 54.7 84.3 91.1 41.0 76.7 88.1 

Our ITMeetsAL ResNet-152 56.5 82.2 89.6 43.5 71.8 80.2 58.5 85.3 92.1 48.3 82.0 90.6 

MS-COCO is tested on 1K images. The best results are in bold and the second best results are underlined. 

Table 2 

Retrieval results on the CUHK-PEDES [23] dataset (R@K (K = 1,5,10)(%)). 

Method Backbone Net Text-to-Image 

R@1 R@5 R@10 

Latent co-attention [35] VGG 25.94 - 60.48 

Local-global association [36] ResNet-50 43.58 66.93 76.26 

CMPM [12] MobileNet 44.02 - 77.00 

Dual-path two-stage [34] ResNet-152 44.40 66.26 75.07 

MIA [37] ResNet-50 48.00 70.70 79.30 

CMPM + CMPC [12] MobileNet 49.37 - 79.27 

Our ITMeetsAL VGG 44.43 68.26 77.50 

Our ITMeetsAL MobileNet 51.85 73.36 81.27 

Our ITMeetsAL ResNet-50 50.63 73.33 81.34 

Our ITMeetsAL ResNet-152 55.72 76.15 84.26 

Table 3 

Retrieval results on the Flickr8K [20] dataset (R@K (K = 1,5,10)(%)). 

Method Backbone Net Image-to-Text 

R@1 R@5 R@10 

RNN + FV [27] VGG 23.2 53.3 67.8 

GMM + HGLMM [38] VGG 31.0 59.3 73.7 

Word2VisualVec [28] ResNet-152 33.4 63.1 75.3 

Joint learning [31] ResNet-152 40.6 67.8 78.6 

Our ITMeetsAL VGG 28.0 52.7 63.1 

Our ITMeetsAL MobileNet 30.9 58.6 70.8 

Our ITMeetsAL ResNet-152 40.1 67.8 79.2 

The best results are in bold and the second best results are under- 

lined. 
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he Recall and mean Average Precision (mAP) show the effective- 

ess of this loss. Compared to Baseline1, the scaling KL-divergence 

oss L di contributes more on Recall@1 for both the “Image-to-Text”

42.3%) and “Text-to-Image” task (32.5%). 
Table 4 

Component analysis on the Flickr30K [21] (R@1, R@10

Flic

Method using MobileNet Ima

R@1

Baseline1: Only L ce + L tr 40.6

Baseline2: L ce + L tr + L di 42.3

Baseline3: L ce + L tr + L di + L kl 44.7

Full method: L ce + L tr + L di + L kl + L s + L c 46.6

9 
.3.2. Analysis of KL divergence for cross-modal feature projection 

KL divergence is obtained by adding L kl which constrains the 

mage features and text features in the shared space under the su- 

ervision of supervisory matrix. It focuses on the whole feature 

istribution and is complementary to the bi-directional triplet loss 

unction. We denote Baseline3 as “L ce + L tr + L di + L kl ” in Table 4 .

s we can see, Recall@1 of the “Image-to-Text” task has been 

mproved significantly by 2.4%. However, the KL-divergence loss 

hows a slight improvement on the “Text-to-Image” task. The 

esults indicate that the KL-divergence loss function contributes 

ore to image feature learning, which might be caused by the is- 

ue of data imbalance of the dataset. 

.3.3. Analysis of adversary combining 

The prior loss terms have been used to constrain the similar- 

ty of the image-text features in the shared space. Intuitively, two- 

uple or three-tuple feature exemplars are helpful for reducing the 
, and mAP (%)). 

kr30K 

ge-to-Text Text-to-Image 

 R@10 mAP R@1 R@10 mAP 

 80.8 23.1 31.9 72.2 31.9 

 80.6 24.4 32.5 73.0 32.5 

 81.0 25.2 32.6 73.2 32.6 

 82.5 26.3 34.4 74.1 34.4 
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Fig. 5. The precision_recall curves from “Baseline1” to “Full method” on Flickr30K, each line corresponds one experimental configuration in Table 4 . The larger area under 

the line indicates better performance. 

Table 5 

Temperature scaling analysis for loss L di (R@1, R@10, and mAP (%)). 

Flickr30K 

Temperature Image-to-Text Text-to-Image 

R@1 R@10 mAP R@1 R@10 mAP 

τ= 1 44.0 80.6 24.8 32.9 73.5 32.9 

τ= 2 45.3 80.9 25.6 33.6 73.6 33.6 

τ= 3 46.2 83.2 25.7 33.3 73.4 33.3 

τ= 4 46.6 82.5 26.3 34.4 74.2 34.4 

τ= 5 46.0 81.6 26.1 34.3 73.9 34.3 

τ= 6 45.9 80.2 26.1 33.1 73.4 33.1 

Table 6 

Comparison of two combining paradigms in four retrieval datasets (R@1, R@10, and mAP(%)). 

Image-to-Text 

Combining strategy Backbone Net Flickr30K MS-COCO CUHK-PEDES Flickr8K 

R@1 R@10 mAP R@1 R@10 mAP R@1 R@10 mAP R@1 R@10 mAP 

Method in Fig. 7 ResNet-152 55.30 88.30 32.23 57.00 92.10 35.12 67.79 93.75 34.79 39.00 77.70 22.33 

Method in Fig. 4 ResNet-152 56.50 89.60 32.58 58.50 92.10 36.28 65.58 93.60 34.17 39.90 77.90 22.46 
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semantic gap” and further making the whole feature distribution 

lose at the same time. However, the constraint loss functions ( e.g. 

osine similarity) cannot constrain the distribution discrepancy of 

he whole distribution because these loss functions are symmet- 

ical. Focusing on the whole feature distribution, we combine the 

hanon information entropy L s and the modality classification loss 

 c in an adversary training manner to reduce the heterogeneity 

ap. This full method is named “L ce + L tr + L di + L kl + L s + L c ” and

orresponding results are shown in Table 4 . Compared to former 

aselines, the results obtained by using our method are improved 

ignificantly. 

Furthermore, we compare the precision-recall curves for the 

bove four configurations and baselines, the results are shown in 

ig. 5 . The larger the area under the curve, the better the algo-

ithm. Regarding the different tasks, the improvements are slightly 

ifferent. Overall, we can see that each added component helps to 

mprove the overall performance of the retrieval algorithm. 

.3.4. Analysis of temperature τ
We analyze the temperature parameter τ in loss L di in Eq. 11 . 

ther loss terms are kept the same with the full method, i.e. 

L ce + L tr + L di + L kl + L s + L c ”. We vary this parameter τ from 1 to

, and their corresponding results are reported in Table 5 . We can 

bserve that the optimal results are achieved if the classifier’s out- 

ut probabilities are re-scaled by τ = 4 . As claimed in [19] , the

emperature scaling raises the output entropy of the classifier with 
10 
> 1 . In our experiments, we found it is beneficial for improving 

he image-text matching. 

.3.5. Distribution visualization 

We choose 40 image-text pairs from the Flickr30K dataset to vi- 

ualize their feature distributions using t-SNE. We only choose the 

rst description caption among the five sentences. In Fig. 6 , the cir- 

le and the triangle shape denote text features and image features, 

espectively. Label information is represented by a different color. 

This distribution indicates the effectiveness of each compo- 

ent ( e.g. KL-divergence for cross-modal feature projection, and the 

hannon information entropy trained in an adversarial manner). In 

ig. 6 (a), there exist several feature outliers within the distribution 

nd the proximity relationship between pair-wise features is not 

bvious. When using the proposed components, the features dis- 

ribute much better. For example, in Fig. 6 (d), all loss functions are 

tilized to constrain feature learning, the pair-wise feature shows 

 close proximity relationship. Moreover, image features and text 

eatures are distributed within smaller ranges (-60 ∼ 60). Few out- 

iers exist among the whole distribution. 

Qualitative retrieval results on the Flickr30K and the CUHK- 

EDES dataset are shown in Fig. 8 . For the “Image-to-Text” task, 

he proposed method can return almost all paired text of the query 

mage. The “Image-to-Text” task also has good performance, the 

roposed method retrieves the paired image correctly. Also, other 

etrieved images show contents relevant to the query sentence. 



W. Chen, Y. Liu, E.M. Bakker et al. Pattern Recognition 117 (2021) 107983 

Fig. 6. Feature distribution visualizations for the ablation studies. The shape represents modality and the color indicates the label information. Sub-figures (a) ∼(d) correspond 

to the four experimental configurations in Table 4 . When each loss function is gradually applied, the paired image features and text features have smaller distances. Best 

viewed in color. 

Fig. 7. The illustration of independent combining information entropy and modality 

classification into an adversary, which is an intuitive structure of the diagram in 

Fig. 1 . Other loss functions including categorical cross entropy loss, KL-divergence 

loss, and bi-directional triplet loss are kept the same, but we do not show in this 

graph for simplicity. Different from the framework in Fig. 4 , the gradients computed 

from the modality classifier in this combining paradigm are used to optimize the 

parameters θI and θT of the feature extractor. The feature extractor maximizes the 

loss L d = L c ( Eq. 5 ) of modality classifier C (to make image features and text features 

as similar as possible), while the parameters θc of the modality classifier minimize 

the loss L d . This process depends on a gradient reversal layer to multiply gradient 

values by -1 when back-propagating [39] . . 
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.4. Further exploring 

In this paper, we propose to integrate Shannon information en- 

ropy with the discriminator for cross-modal retrieval. That is, the 

iscriminator performs modality classification and measures the 

nformation entropy at the same time (see Fig. 4 ). Herein, we fur- 

her explore a paradigm to integrate information entropy with ad- 

ersarial learning. This combining paradigm is more straightfor- 

ard to the structure in Fig. 1 . Concretely, we build two branches 

f sub-networks: an uncertainty predictor for modality uncer- 

ainty prediction and a modality classifier for modality classifica- 

ion. Then adversarial learning is implemented as an interplay be- 

ween these two-subnetworks with competitive objectives. The un- 

ertainty predictor aims at maximizing the modality uncertainty 

f the shared space (measured by information entropy), while the 

odality classifier is to identify image inputs and text inputs by 

odality classification. We illustrate this combining paradigm in 

ig. 7 . Compared to the former paradigm depicted in Fig. 4 , the

ptimization depicted in Fig. 7 is different and more complex. The 

radients computed by the classifier are used to update parame- 

ers θI and θT in the feature extractor. To learn modality-invariant 

eatures, the feature extractor minimizes the loss of the uncertainty 

redictor and it maximizes the loss L d of the modality classifier, 

hich aims to make image features and text features as similar as 

ossible [39] . The parameters of the modality classifier minimize its 

oss L d . This training process needs to depend on the gradient re- 

ersal layer [39] , which would multiply gradient values by -1 when 

xecuting back-propagating. 
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Fig. 8. Qualitative test results on the Flikcr30K and CUHK-PEDES datasets. We report Recall@5 of the “Image-to-Text” task and the “Text-to-Image” task from left to right. 

The correct retrieval images or text are in red and a red box, while the failure retrieval are in green. For Flickr30K, each image is described by 5 sentences. Hence, each text 

query also has a correct retrieved image, but other retrieved images have similar content as described by the sentence. For the CUHK-PEDES dataset, each category has more 

than one image, thus almost all correct images are retrieved according to the text query. The list is best viewed in color. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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The training procedure is almost the same as used in 

lgorithm 1 except for the gradients from the modality classifica- 

ion loss that updates the backbone network, leading to a slower 

raining process. The retrieval performance of these two combined 

ethods presented in Fig. 4 and Fig. 7 (named as unified and sepa- 

ate, respectively) are given in Table 6 . The backbone net for image 

eature extraction is ResNet-152. These two combined strategies 

how different performances on the four datasets when combin- 

ng information entropy and modality classification into a unified 

iscriminator. The performance improves slightly on the Flickr30K, 

S-COCO, and Flickr8K datasets when adopting the combining 

trategy of Fig. 4 . However, the method depicted in Fig. 7 has 

etter performance on the CUHK-PEDES dataset, which is not the 

ommon objects dataset. This method has R@1 improved by 3.3% 
12 
from 65.58% to 67.79%), Also, the mAP has improved by 1.8% com- 

ared to the unified method depicted in Fig. 4 . In summary, the 

roposed framework of combining information entropy and adver- 

arial learning in Fig. 4 has better performance and has faster con- 

ergence during training. 

. Conclusion 

In this work, we explored methods to improve the performance 

f cross-modal retrieval by integrating information theory and 

dversarial learning by analyzing the relation between information 

ntropy and modality uncertainty. Based on this relation, we 

xplored two different paradigms to combine information entropy 

aximization and modality classification in an adversarial manner. 
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raining these two components iteratively reduces feature distri- 

ution discrepancies and further the heterogeneity gap. This is 

eneficial for preserving semantic similarity between cross-modal 

eatures by using bi-directional triplet loss and cross-entropy 

oss. In addition, we also considered the issue of data imbalance, 

hich leads to a biased classifier and affects label classification. 

L-divergence is used as an additional loss term to regularize the 

e-scaled probabilities computed from image features and text 

eatures. It is also used to constrain the cross-modal feature pro- 

ections and is helpful for learning modality-invariant features. The 

fficacy of the proposed method was demonstrated by thorough 

xperimental results on four well-known datasets using four deep 

odels. 

Successfully combining information entropy and adversarial 

earning depends on the competitive goals between the informa- 

ion entropy predictor and the modality classifier, and this leads 

o challenging directions worth further investigation. For example, 

e used instance labels as supervisory information in this work. 

hen the information entropy loss was computed only based on 

mage modality and text modality. However, retrieval performance 

epends on the matching of each image-text feature pair. For some 

arge-scale datasets, each category may include a large number of 

mage-text pairs. Thus, it is valuable to make the information en- 

ropy loss specific for each category so that the discrepancy be- 

ween two modalities can be reduced more granularly. Moreover, 

he problem of data imbalance leads to training a biased label clas- 

ifier, which is an issue that can also be resolved by training strate- 

ies like data augmentation or by using other loss functions, e.g. 

nowledge distillation loss. 

In terms of future work, the label-free Shannon information en- 

ropy can be used in some unsupervised learning scenarios, and 

as been used in performing tasks such as semantic segmenta- 

ion [13] . Examining the application of combining Shannon in- 

ormation entropy with adversarial learning for cross-modal re- 

rieval, we find that Shannon information entropy can be used 

or multimodal feature learning by estimating the modality un- 

ertainty. It will be promising to explore Shannon entropy fur- 

her when applied to other kinds of cross-modal feature learn- 

ng similar to image-text retrieval, such as video-text, audio-video, 

nd audio-text matching which aims at learning modality-invariant 

epresentations. 
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