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ABSTRACT

Accurately matching visual and textual data in cross-modal retrieval has been widely studied in the mul-
timedia community. To address these challenges posited by the heterogeneity gap and the semantic gap,
we propose integrating Shannon information theory and adversarial learning. In terms of the heterogene-
ity gap, we integrate modality classification and information entropy maximization adversarially. For this
purpose, a modality classifier (as a discriminator) is built to distinguish the text and image modalities ac-
cording to their different statistical properties. This discriminator uses its output probabilities to compute
Shannon information entropy, which measures the uncertainty of the modality classification it performs.
Moreover, feature encoders (as a generator) project uni-modal features into a commonly shared space and
attempt to fool the discriminator by maximizing its output information entropy. Thus, maximizing infor-
mation entropy gradually reduces the distribution discrepancy of cross-modal features, thereby achieving
a domain confusion state where the discriminator cannot classify two modalities confidently. To reduce
the semantic gap, Kullback-Leibler (KL) divergence and bi-directional triplet loss are used to associate
the intra- and inter-modality similarity between features in the shared space. Furthermore, a regulariza-
tion term based on KL-divergence with temperature scaling is used to calibrate the biased label classifier
caused by the data imbalance issue. Extensive experiments with four deep models on four benchmarks
are conducted to demonstrate the effectiveness of the proposed approach.

© 2021 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Semantic information that helps us understand the world usu-
ally comes from different modalities such as video, audio, and text.
Namely, the same concept can be presented in different ways.
Therefore, it is possible to search semantically-relevant samples
(e.g. images) from one modality when given a query item from
another modality (e.g. text). With the increasing amount of multi-
modal data available, more efficient and accurate retrieval methods
are still in demand in the multimedia community.

Deep learning methods can effectively embed features from dif-
ferent modalities into a commonly shared space, and then measure
the similarity between these embedded features. To date, the “het-
erogeneity gap” [1] and the “semantic gap” [2] are still challenges
to be addressed for cross-modal retrieval. Since the data in dif-
ferent modalities are described by different statistical properties,
the heterogeneity gap characterizes the difference between fea-
ture vectors from different modalities that have similar semantics
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but are distributed in different spaces. Similarities between these
feature vectors are not well associated so that these vectors are
not directly comparable, leading to inconsistent distributions. The
semantic gap characterizes the difference between the high-level
user perception of the data and the lower-level representations of
the data by the computer (i.e. pixels or symbols). To achieve better
retrieval performance, it is essential to address these gaps for as-
sociating the similarity between cross-modal features in the shared
space.

To capture the semantic correlations between cross-modal fea-
tures, many approaches have been proposed in recent years. Some
approaches focus on designing effective structures from a deep
networks perspective. For instance, graph convolutional networks
are employed to model the dependencies within visual or tex-
tual data [3]. Other approaches focus on designing similarity con-
straint functions from a deep features perspective. For example, bi-
linear pooling-based methods are applied to align image and text
features to then accurately capture inter-modality semantic cor-
relations. In other examples, coordinated representation learning
methods [4], such as ranking loss [5,6] and cycle-consistency loss
[7] are widely used to preserve similarity between cross-modal
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features. These constraint functions mainly aim at reducing the
semantic gap by focusing on the similarity between two-tuple or
three-tuple samples. However, they might not directly mitigate the
heterogeneity gap caused by the inconsistent feature distributions
in the different spaces.

1.1. Motivations

Considering the limitations of similarity constraint functions,
we propose a new method to perform cross-modal retrieval from
two aspects. First, we reduce the heterogeneity gap by integrating
Shannon information theory [8] with adversarial learning, in order
to construct a better embedding space for cross-modal represen-
tation learning. Second, we combine two loss functions, including
Kullback-Leibler divergence loss and bi-directional triplet loss, to
preserve semantic similarity during the feature embedding proce-
dure, thereby reducing the semantic gap.

To do this, we combine the information entropy predictor and
the modality classifier in an adversarial manner. Information en-
tropy maximization and modality classification are two processes
trained with competitive goals. Since the image is a 3-channel
RGB array while the text is often symbolic, uni-modal features ex-
tracted from image or text data are characterized by different sta-
tistical properties, which can be used to distinguish the original
modalities these features belong to. As a result, when these fea-
tures in the shared space are correctly classified into their original
modalities with high confidence, then their feature distributions
convey less information content, and the modality classifier per-
forms modality classification with lower uncertainty. In contrast,
when cross-modal features become modality-invariant and show
their commonalities, these features cannot be classified into the
modality they originally belong to. In this case, the feature distri-
butions in the shared space conveys more information content and
higher modality uncertainty.

According to Shannon’s information theory [8], we can mea-
sure the modality uncertainty in the shared space by computing
information entropy. This basic proportional relation provides the
principle to mitigate the heterogeneity gap. For this purpose, we
integrate modality uncertainty measurement into cross-modal
representation learning. As shown in Fig. 1, a modality classifier
(in the following we call it a discriminator) is devised to classify
image and text modality, rather than perform a “true/false” binary
classification. This discriminator also provides its output proba-
bilities to calculate the information entropy of the cross-modal
feature distributions. At the start of training, the discriminator can
classify images and text modalities with high confidence due to
their different statistical properties. In contrast, the feature en-
coders (in the following we call it a generator) project features into
a shared space and attempt to fool the discriminator and make it
perform an incorrect modality classification until features in the
shared space are fused heavily into a confusion state, maximizing
the modality uncertainty.

On the basis of this heavily-fused state, we further use simi-
larity constraints on the feature projector to reduce the seman-
tic gap. Specifically, Kullback-Leibler (KL) divergence loss is used
to preserve semantic correlations between image and text features
by using instance labels as supervisory information. More impor-
tantly, we consider the issue of data imbalance and introduce a
regularization term based on KL-divergence with temperature scal-
ing to calibrate the biased label classifier. Afterwards, we adopt the
commonly used bi-directional triplet loss and instance label clas-
sification loss (i.e. categorical cross-entropy loss) to achieve good
retrieval performance.

1.2. Our contributions

Our contributions can be summarized three-fold as follows:
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Fig. 1. Conceptual diagram of combining information theory and adversarial learn-
ing for cross-modal retrieval. The features Z' € F? and Z' € F? with dimension d
for image-text pairs are extracted using deep neural networks. Shape indicates
modality and color denotes pair-wise similarity information. The modality classi-
fier aims to classify the text and image modalities, thereby minimizing the un-
certainty of modality classification it performs (measured by Shannon information
entropy). Conversely, the feature encoders project uni-modal features into a com-
monly shared space and attempt to fool this classifier by maximizing its uncertainty
of modality classification, which is computed by the information entropy predictor.
The modality classifier and the information entropy predictor are combined in an
adversarial manner to reduce the heterogeneity gap. If the classifier’s uncertainty is
maximized, features Z' and Z¢ are intertwined into a domain confusion state where
this classifier cannot confidently determine which modality each input feature (Z!
or Z') belongs to. Namely, this classifier becomes least-confident on its classifica-
tion results. This process of adversarial combining is introduced in Section 3.2 and
Section 4.1. Furthermore, the feature projector aims to associate the semantic simi-
larity by using pair-wise objective functions such as bi-directional triplet loss.

First, we combine information theory and adversarial learning
into an end-to-end framework. Our work is the first to explore
information theory in reducing the heterogeneity gap for cross-
modal retrieval. This method is beneficial for constructing a shared
space for further learning commonalities between cross-modal fea-
tures, which can be used for tasks in other modalities, such as
video-text matching.

Second, we introduce a regularization term based on KL-
divergence with temperature scaling to address the issue of data
imbalance, which calibrates biased label classifier training and
guarantees the accuracy of instance label classification. To the best
of our knowledge, we are not aware of any prior use in the context
of addressing imbalance issues on retrieval datasets.

Third, we use bi-directional triplet loss to constrain intra-
modality semantics. Aside from these intra-modality constraints,
we also consider optimizing inter-modality similarity. We use the
instance labels to construct a supervisory matrix. This matrix reg-
ularizes the semantic similarity between the projected image (or
text) features and text (or image) features by minimizing KL-
divergence. This inter-modality constraint is more effective since
it focuses on all the projected cross-modal feature distributions in
a mini-batch.

The rest of paper is organized as follows. Related work is re-
viewed in Section 2. We give definitions and a theoretical analysis
for the proposed method in Section 3.2. We present the specific
components for implementation including network structures, ob-
jective functions, and optimization in Section 4. We test the pro-
posed method on four datasets, and the results are reported in
Section 5. Finally, the conclusions are given in Section 6.

2. Related work
2.1. Cross-modal representation learning and matching

Preserving the similarity between cross-modal features should
consider two aspects: inter-modality and intra-modality. Supervi-

sion information (e.g. class label or instance label), if available, is
beneficial for learning features from these two aspects. Preserving
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feature similarity can be realized by using methods such as joint
representation learning and coordinated representation learning
[4]. Joint representation learning methods project the uni-modal
features into the shared space using straightforward strategies such
as feature concatenation, summation, and inner product. Subse-
quently, more complicated bilinear pooling methods, such as mul-
timodal compact bilinear (MCB) pooling, are proposed to explore
the semantic correlations of cross-modal features. To regularize the
joint representations, deep networks are commonly trained by us-
ing objective functions, such as regression-based loss [9,10].

Coordinated representation learning methods process image
and text features separately but impose them under certain sim-
ilarity constraints [4]. In general, these constraints can be cat-
egorized into classification-based and verification-based methods
in supervised scenarios. In terms of classification-based methods,
both image and text features are used to make a label classification
by using categorical cross-entropy loss function. Because a paired
image-text input has the same class label, their features can be as-
sociated in the shared space. However, classification-based meth-
ods cannot preserve the similarity between inter-modality features
well because the similarity between image and text features is not
directly regularized.

Verification-based methods, based on metric learning, are pro-
posed to further optimize inter-modality feature learning. Given a
similar (or dissimilar) image-text pair, their corresponding features
should be verified as similar (or dissimilar). Therefore, the goal of
deep networks is to push features of similar pairs closer, while
keeping features of dissimilar pairs further apart. Verification-
based methods include pair-wise constraints and triplet con-
straints, which focus on inferring the matching scores of image-
text feature pairs [10].

Triplet constraints optimize the distance between positive pairs
to be smaller than the distance between negative pairs by a mar-
gin. They can capture both intra-modality and inter-modality se-
mantic correlations. For example, bi-directional triplet loss has
been employed to optimize image-to-text and text-to-image rank-
ing [6]. Although triplet constraints are widely used for cross-
modal retrieval, the difficulties are in the mining strategy for neg-
ative pairs and the selection of a margin value, which are usually
task-specific and empirically selective.

2.2. Adversarial learning for cross-modal retrieval

The afore-mentioned joint and coordinated representation
learning approaches focus on two-tuple or three-tuple samples,
which may be insufficient for achieving overall good retrieval
performance. Adversarial learning, as an alternative method, has
shown its powerful capability for modeling feature distributions
and learning discriminative representations between modalities
when deep networks are trained with competitive objective func-
tions [6,11].

Recent progress in using adversarial learning for cross-modal
retrieval can be categorized as feature-level and loss function-level
discriminative models.

From a feature-level perspective, it is possible to preserve se-
mantic consistency by performing a min-max game between inter-
modality feature pairs [6]. A straightforward way is to build a dis-
criminator, making a “true/false” classification between image fea-
tures (regarded as true), corresponding matched text features (re-
garded as fake), and unmatched image features from other cat-
egories (also regarded as fake) [6]. Alternatively, a cross-modal
auto-encoder can be combined to generate features for another
modality. For example, a generator attempts to generate image fea-
tures from textual data and then regards them as true, while for a
discriminator, image features extracted from original images and
these from the generated “images” are labeled as true and fake,
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respectively. The adversarial training explores the semantic corre-
lations of cross-modal representations. Intra-modality discrimina-
tion also can be considered in cross-modal adversarial learning,
forcing the generator to learn more discriminative features. In this
case, the discriminator tends to discriminate the generated features
from its original input.

From a loss function-level perspective, instead of making a bi-
nary classification (ie. true or fake), adversarial learning is de-
signed to train two groups of loss functions or two processes with
competitive goals. This idea is applied in recent work for cross-
modal retrieval [6,11]. To be specific, a feature projector is trained
to generate modality-invariant representations in the shared space,
while a modality classifier is constructed to classify the generated
representations into two modalities. Similarly, in this paper, we
combine two networks and train them with two competitive goals.

2.3. Information-theoretical feature learning

As mentioned before, feature vectors from different modalities
are distributed in different spaces, resulting in the heterogeneity
gap, which affects the accuracy of cross-modal retrieval. Therefore,
it becomes essential to reduce feature distribution discrepancies
and thereby reduce the heterogeneity gap. The solution for this is
to measure and then minimize distribution discrepancy. For exam-
ple, distribution disparity of cross-modal features can be character-
ized by Maximum Mean Discrepancy (MMD), which is a differen-
tiable distance metric between distributions. However, MMD suf-
fers from sensitive kernel bandwidth and weak gradients during
training.

Information-theoretical based methods are used to measure the
differences of feature distributions and learn better cross-modal
features. As an example, the cross-entropy loss function is widely
used to estimate the errors between inference probabilities and
ground-truth labels where the gradients are computed according
to the errors. Once the gradients are computed, deep networks
can further update their parameters via the back-propagation algo-
rithm. KL-divergence (also called relative entropy) is another popu-
lar criterion to characterize the difference between two probability
distributions. Minimizing the difference is beneficial for retaining
the semantic similarity between features. For example, Zhang et al.
[12] employ the KL-divergence to measure the similarity between
projected features and supervisory information.

Recently, Shannon information entropy [8] has been used for
performing tasks such as semantic segmentation [13] and cross-
modal hash retrieval [14]. These studies indicate that Shannon en-
tropy can be used for multimodal representation learning by esti-
mating uncertainty [8]. Take generative adversarial networks as an
example: if the generator makes image features and text features
close and minimizes their discrepancy, then the discriminator will
become less-certain or under-confident, i.e., having a high informa-
tion entropy to predict which modality each feature comes from.
We applied this principle in our previous work [14] to design an
objective function to maximize the domain uncertainty over cross-
modal hash codes in a commonly shared space. Deep networks
trained by using information entropy construct a domain confu-
sion state where the heterogeneity gap can be effectively reduced.
On the basis of this state, other loss functions, such as ranking loss,
can be further applied to regularize feature similarity.

3. Proposed approach
3.1. Problem formulation
We consider a supervised scenario for cross-modal retrieval.

Denote X! as the input images and the corresponding descriptive
sentences as X!. Each image and its descriptive sentences have
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Fig. 2. (a): Image and text features are further embedded into a shared space via non-shared encoding sub-networks. The modality uncertainty can be predicted by using the
output classification probabilities from a predictor. (b): Relationship between output probabilities and information content. The more uncertain the shared space, the more
information content it conveys. (c): Relationship between modality uncertainty and output probabilities for each modality. When probabilities predicted for two modalities
are identical, the shared space is intertwined into a domain confusion state (i.e. most uncertain). If one modality is identified with a higher probability (closer to 1) while
another with a lower probability (closer to 0), the domain confusion state is not achieved.

the same instance label Y. Therefore, we can organize an input
pair (x/, xt, y) to train a deep network. To be specific, feature en-
coders Eq (- 051) and E, (+; 052) extract image and text features, re-
spectively, and then further embed these uni-modal features into
a shared space by using non-shared sub-networks. The embed-
ded features with dimension d are denoted as Z' = E; (X'; 6, ) and
Zt = E>(X"; 0g,). Z'.Z" € R%. Note that the parameters in the non-
shared sub-networks for uni-modal image and text feature embed-
ding have been included into 051 and 052, respectively. The goal is
to train a deep network to make the embedded features Z' and Z¢
modality-invariant and semantically discriminative, improving the
retrieval accuracy.

As shown in Fig. 1, the networks E;, E,, and the information
entropy predictor act as a generator, while the modality classifier
acts as a discriminator. The training of the generator and the dis-
criminator is formulated as an interplay min-max game to mitigate
the heterogeneity gap. The feature projector attempts to preserve
feature similarity under several constraints, which are introduced
in Section 4.2, 4.3, and 4.4.

3.2. Integrating information theory and adversarial learning

3.2.1. Information entropy and modality uncertainty

Image features can be extracted from convolutional neural net-
works, while text features can be extracted from sequential net-
works. These feature vectors from different modalities have similar
semantics but are distributed in different spaces. Their similarities
in the different spaces are not well associated so that these feature
vectors are not directly comparable. Hence, it is required to fur-
ther embed them into a shared space (i.e. Z' and Z¢ in Fig. 1). Uni-
modal features are characterized by different statistical properties.
Therefore, as shown in Fig. 2(a), it is possible to identify a feature
in the shared space coming from a visual modality with higher
probability P, (more certain classification) than coming from a tex-
tual modality with lower probability P,=1-P; (less certain classi-

fication). In other words, these cross-modal features are not in-
tertwined heavily. As a result, the domain confusion state is not
achieved. Conversely, if a given feature can not be distinguished
which modality this feature originally comes from, it indicates that
this feature has identical probability (P.=P) coming from each
modality. In this case, the shared space has highest uncertainty and
the cross-modal features are intertwined into a domain confusion
state, which corresponds to highest information content. We use
information entropy [8] to measure the uncertainty of the shared
space. Fig. 2(b) illustrates that two modalities with an equal prob-
ability leads to the highest Shannon information entropy and thus
information content.

Modality uncertainty refers to the unreliability of classification
that the discriminator classifies image features and text features
into two modalities. It is proportional to Shannon information en-
tropy [8], as shown in Fig. 2(c). Based on this observation [14],
we design the discriminator to measure its output modality un-
certainty by using information entropy as a criterion. Maximizing
information entropy means that the discriminator becomes least-
confident in classifying the original modality of image and text fea-
tures, resulting in the greatest reduction of the heterogeneity gap.

3.2.2. Adversarial learning and information entropy

To make cross-modal features modality-invariant, we devise a
generator and a discriminator, as shown in Fig. 1. The discrimina-
tor performs modality classification to identify visual modality and
textual modality based on cross-modal features. Following [6], we
define the modality label as Y} for these two modalities (for visual
modality = =i and textual modality * = t). Using output probabil-
ities of the discriminator, we can compute cross-entropy loss to
realize modality classification [6]. Once the network convergences
under the constraint of this loss function, visual modality and tex-
tual modality are clearly identified and classified, thereby minimiz-
ing the modality uncertainty.
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For clarity, we ignore the feature projector mentioned in Fig. 1, which includes label
classification loss, bi-directional triplet loss, and KL-divergence loss.

Conversely, the generator is designed to maximize the modality
uncertainty over the cross-modal feature distributions. To achieve
this, the generator learns modality-invariant features to fool the
discriminator, maximizing the uncertainty of modality classifica-
tion the discriminator performs. If the modality uncertainty is
maximized, the discriminator is most likely to make an incorrect
modality classification and be least-confident about its classifica-
tion results. In this case, cross-modal features are intertwined into
a domain confusion state and become indistinguishable.

To this end, we explore the ways to integrate information en-
tropy and adversarial learning into an end-to-end network, which
is introduced in Section 4.1. For better understanding, we also ex-
plore another combining paradigm in the Experimental Section.

3.3. KL-Divergence for cross-modal feature projection

To reduce the semantic gap, we use KL-divergence to charac-
terize the differences between projected cross-modal features (Z!
and Z¢ in Fig. 1) and a supervisory matrix computed from their in-
stance labels, i.e. KL((f(Z!, Z1)||f(Y,".Y})). (see Eq. 9). In this way,
the semantic correlations among cross-modal features can be pre-
served. We illustrate this process in Fig. 3. It is important to note
that when using KL-divergence to preserve semantic correlations
of cross-modal features, all positive and negative pairs in a mini-
batch are considered. As for the supervisory matrix f(Y,",Y)), it is
computed by using matrix multiplication and is normalized to the
range from 0 and 1.

We argue that different operations to realize f(Zi,Zz) affect
similarity preserving. Directly, the operation f(-) can be an inner
product on cross-modal features Z{ and Z¢. However, using the in-
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ner product has some implicit drawbacks. First, when multiplying
one image feature vector with all text feature vectors, the results
of the inner product are not optimally comparable due to the non-
normalized text features, and vice versa. Second, the angles be-
tween each image feature vector and each text feature vector, as
well as their whole feature distributions, are changing when train-
ing the deep network, which makes it problematic for an inner
product to measure feature similarity.

To tackle the above limitations, we adopt a cross-modal feature
projection to characterize the similarity between features. The idea
is related to the work in [12]. Cross-modal feature projection is
based on the same distribution and operates on the normalized
features. For instance, an image feature vector, zj. € Z!, can be pro-

jected to the distribution of a text feature vector zf( e Zt, then each

projected feature vector from image to text (termed “i — t”) can
be formulated as:

i St t

3=t — |7« ~%j 4> .

- 5] i t

R ETEA R

= <Z§-, Z> *Z) (1)

where “i” and “t” represent the visual and the textual modality,
respectively, “j” and “k” represent the index of each image fea-
ture and text feature in the shared space, respectively, 25( denotes
the normalized feature. Therefore, the length of 25.—’[ is equal to
|2§*f|=|<z§.,2§<>|, and denotes the similarity between image fea-
ture z; and text feature z,i. When associating each image feature z;
with all text features Z¢, we obtain all different lengths, Therefore,

when projecting all image features into all text features Z!, we get
a similarity matrix A;_,;, which is formulated as

N N
A (Z.2) = N |<2h 2| = 22T (2)
j=1k=1

Similarly, if projecting all text features into all image features
Z', we obtain another similarity matrix A;_,;:

N N
Ai(Z8Z) =) Y <. 2| =24(Z)T (3)
k=1 j=1

In the above two equations, Z! and Z* represent the cross-modal
features from two modalities. N is the number of samples in a
mini-batch. These two similarity matrices are normalized by a soft-
max function. Afterwards, we use KL-divergence to characterize the
difference between the normalized matrices and the supervisory
matrix, i.e. KL((f(Zl, Z1)||f(Y,".Y;)). The specific objective function
is introduced in Section 4.2.

4. Implementation and optimization

We introduce the implementation and optimization of our pro-
posed approach in this section. We employ four convolutional neu-
ral networks such as ResNet-152 [15] and MobileNet [16] to ob-
tain image features and a Bi-directional LSTM (Bi-LSTM) [17] to
extract text features. All the extracted image and text features are
uni-modal. Later, we borrow the protocols of non-shared encod-
ing sub-networks (fully-connected layers) in [12] to get the cross-
modal features Zi and Zt.

Once the cross-modal features are obtained, we use the pro-
posed algorithm to train the networks based on the above theo-
retical analysis. The algorithm includes combining information en-
tropy and adversarial learning to mitigate the heterogeneity gap,
and loss function terms (i.e. KL-divergence loss, categorical cross-
entropy loss, and bi-directional triplet loss) to preserve semantic
correlations between cross-modal features.
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4.1. Combining information theory with adversarial learning

We combine information entropy predictor and modality clas-
sifier in Fig. 1 into a unified sub-network, as shown in Fig. 4. In
this paradigm, the discriminator D with parameters @p performs a
modality classification and computes the Shannon information en-
tropy. The backbone nets E; and E, for feature extraction act as
the generator G. The whole structure forms a generative adversar-
ial network. The information entropy computed from the discrim-
inator back-propagates to the feature encoders. Specifically, when
the discriminator is fixed, and its parameters are 8}, then the in-
formation entropy H (P?) =E,, (=P» «log(P)) is computed from its
output probabilities P (D|Z!t; 0}) across the features for all classes.
Based on the information entropy, we can design a negative en-
tropy loss Ls = —H(PL;) (see Eq. 4) to train the network. The gradi-
ents computed from Ls update the parameters of feature extractors.
The negative information entropy Ls is label-free during training,
and it regularizes the whole feature distribution to be modality-
invariant.

The discriminator consists of some fully-connected layers. The
last layer with two neurons yields probabilities that correspond
to two modalities. This discriminator classifies whether the input
features Z' and Z' are from the visual or the textual modality
given the pre-defined modality label Y. In contrast, the genera-
tor (i.e. E; and E,) aims at learning modality-invariant features to
fool the discriminator to make an incorrect modality classification
so that the generator gradually maximizes the output information
entropy from the discriminator. Therefore, the learning process of
the discriminator affects that of the generator in an indirect way.
The objective function is calculated using the output probabilities
P,(D|Z't; 0p) of the discriminator.

For the generator E; and E:

N M
Y > (Pom(D'IZ}; 0p)xlog(P 1 (D'|Z5; 0p))
j=1m=1
+Pp i (D*|Z5; Op) +log (P, (D'1Z5: Op)))
M
s.t.y Pyn(D*|Z;:0p) =1, P, (D*|Z;: 0p) = 0 (4)

m=1

1

LSIN

It is expected for the generator G to maximize the information
entropy H(P}), and subsequently the modality uncertainty (see
Fig. 2). Since Ls is a negative entropy (Ls=fH(PL;)) to maximize
H(Py), it is minimized to optimize the parameters 6 and 6,
of the generator during training. For the discriminator D, depend-
ing on the modality label Y/ and Y{ and its output probabilities
P, (D|Z't; @p), the modality classification cross-entropy loss func-
tion is formulated as:
1N

Le=-5 ;(YJ*IOg(PB(DiIZi-; Op)) +Y¢xlog(Py(D1Z}: 0p)))  (5)

L. refers to the negative cross-entropy loss of the discriminator
and is minimized to clearly classify image and text features into
two modalities during training. Note that the gradients calculated
from term L; are only used to optimize the parameters 051 and
0r, of the generator, whereas the gradients from term L. are only
for optimizing the parameters @p of the discriminator, as shown in
Fig. 4. Minimizing loss L. and Ls; when trained iteratively will re-
duce the heterogeneity gap. The optimization method is straight-
forward, even though the gradients calculated from L. will not di-
rectly affect the parameters of the feature encoders E; and E,. The
output probabilities of the discriminator change when updating its
parameters, which will affect the Shannon information entropy and
affect the output features from E; and E, in the end.
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4.2. KL-Divergence for similarity preserving

We also compute KL-divergence directly across Z' and Z! to
further preserve semantic similarity. KL-divergence focuses on the
projections of image and text features and is computed by Ly =
KL((f(Z1,Z)||f(Y,T.Y;)). Here, superscript “T” means matrix trans-
pose. L,; focuses on constraining the whole feature distributions
and is complementary to the following bi-directional triplet loss
function. We have introduced the process of cross-modal fea-
ture projection in Section 3.3. Given the similarity matrices (i.e.
A (Z1,Z") and A,_;(Zt,Z")), we use the softmax function to nor-
malize these matrices in Eq. 6 and Eq. 7. The supervisory matrix
is normalized after matrix multiplication as in Eq. 8. Similar to
[12], since we project features from visual (or textual) modality
into textual (or visual) modality, the KL-divergence regularizes the
semantics in bi-directional feature projection, which is formulated
in Eq. 9 as:

exp(Ai.(Z',Z"))

T T exp(A(Z.29) (©)
L exp(AH,-(Zf,Z")) (7)
T Yexp(Ai(Z,Z0))
_exp(Y]'Y) 3
Y= Sexp( V) (®)
Ly = Ly, +Lu, .,
1 Pi~>t Pt~>i
= N{ZZP,-%*log<Qy+8> +ZZ[’Hi*log<Qy+8>}
(9)

where ¢ is a small constant to avoid division by zero. Loss L, refers
to the KL-divergence between the projections of image-text fea-
tures and their supervisory matrix. This loss is minimized and the
gradients computed from L are used to update the parameters
051 and 052 of the generator, thereby the semantics between im-
age features and text features can be associated.

4.3. Instance label classification

4.3.1. Categorical cross-entropy loss

Label classification is a popular idea for cross-modal features
learning [12]. We use the instance labels provided on the datasets
for label classification. For categorical cross-entropy loss, we apply
the norm-softmax strategy and feature projection in [12] to learn
more discriminative cross-modal features. On the one hand, the
normalized parameters #p in the label classifier encourage cross-
modal features to distribute more compactly so that the softmax
classifier performs label classification correctly. On the other hand,
projection between image and text features strengthens their sim-
ilarity association and is beneficial for label classification [12]. Fea-
ture projection can be computed using Eq. 1. Subsequently, given
the instance label y;, categorical cross-entropy loss L¢ is defined
by Eq. 10! and is minimized during training:

Lee = E,, (~y1 +log (p, (clZ'*: 7))

k {iy log oWy 5
= N Lj* v (SN2t
NS 3 exp(W;2)
N exp(W/ 2t=i
Yi.
+ 2 yjrlog |
= ¥ exp(Wj2)
st Wyl = 15270 =<zl, 2> +25; 2571 =<2, 2> #2, (10)

1 We omit the bias term for simplicity
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where N is the number of image-text pairs in a mini-batch. Wy,
and W; represent the y; ;-th and the j-th column of weights W
in classifier parameters 6p according to [12]. 2;* and 254*" are the
projections image to text and the projections text to image, respec-
tively, by using Eq. 1.

4.3.2. KL-Divergence for data imbalance

Label classification using categorical cross-entropy loss can pre-
serve semantic correlations between cross-modal features. How-
ever, we argue that there also exists a data imbalance issue when
training the label classifier because each image is described by
more than one sentence (e.g. each image has five description sen-
tences in the Flickr30K dataset). In the end, it causes the learned
label classifier to prefer text features.

The issue of data imbalance in cross-modal retrieval can be
resolved by constructing an augmented semantic space to re-
align features [18]. In this work, we use the temperature scal-
ing [19] to tackle the data imbalance issue. The biased label clas-
sifier can be calibrated by re-scaling its output probabilities i.e.,
pi-t=softmax(WZ2=") and pt~i=softmax(WZ"")  respectively.
Re-scaling the probabilities with temperature 7 raises the output
entropy so better image-text matching can be observed [19]. Sub-
sequently, we use KL-divergence to measure the differences be-
tween the re-scaled probabilities. Since the magnitudes of the gra-
dients produced by the re-scaling probabilities scale as 1/72, it is
important to multiply them by 72. Finally, the KL-divergence loss
on the scaling probabilities for data imbalance can be formulated
as Ldi:

L -[2 - 1 pi—>t i l pt—>i
=7 2 2P Hlog(org) + P rlog ()
. T it . th%i
s.t. p~t=softmax( ), p*~ =softmax( = ) (11)

where ¢ is a small constant to avoid division by zero. With t =1,
we recover the original KL-divergence. As reported in Table 5, we
find that the parameter t can affect the effectiveness of loss Lg;.
Minimizing loss Ly effectively reduces the influence of data im-
balance issue and improves retrieval accuracy. The final objective
function for label classification is (Lce + Ly;). The gradients calcu-
lated from loss (Lce + Lg;) are used to optimize the parameters 6,
0r,, and 0 in the generator and the label classifier, respectively.

4.4. Bi-directional triplet constraint

The triplet constraint is commonly used for feature learning. To
achieve the baseline performance, we use this constraint from an
inter-modality and an intra-modality perspective to strengthen the
discrimination of cross-modal features.

Given cross-modal features Z' and Z! in the shared space, the
cosine function is used to measure global similarity between fea-
ture vectors, i.e. Sy = (Z;'.)TZ}(. We adopt the hard sampling strat-
egy to select three-tuples features from an inter-modality and
an intra-modality viewpoint. Hence, the inter-modality and intra-
modality triplet loss functions are formulated as:

1/{ N
Linter = N > max[0,m — S + S
j ket k=
N
+ Zmax[O, m— Sk,j* + Sk,j’] (12)
k.j*.j-

1 N
Lintra = N Zmax[O’ m—Sjj +Sjj-]
joj* ™
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N

+ > max[0,m — Sy + Sy (13)
k.k+ k=
Ly = Linter + Lintra (14)

where m is the margin in the bi-directional triplet loss function.
For instance, in case of inter-modality, S+ = (Zj)TZ,z +» where the
anchor features are selected from the visual modality, while the
positive features are selected from the textual modality. In case of
intra-modality, S; j+ = (Z;)TZ;'.+, both the anchor features and the
positive features are selected from the visual modality. Minimizing
bi-directional triplet loss L keeps the correlated image-text pairs
closer to each other, while the uncorrelated image-text pairs are
pushed away. This loss directly operates on the cross-modal fea-
tures Z and Z¢ so that the gradients from it optimize the parame-
ters 0z, and 6, of the generator.

The problem of integrating information theory and adversarial
learning for cross-modal retrieval is formally defined, in Eq. 15, as
a min-max game using the previously defined loss terms. We fur-
ther introduce the complete procedure of training and optimiza-
tion in Algorithm 1. Finally, when trained to convergence, the net-

Algorithm 1
docode.
Input: mini-batch images X!, text X¢, instance label Y, modality la-
bel (Y}, Y!), total training batch S, pre-trained parameters 0,
update steps k
Initialization: learning rate Iry, Irp, 0g,, 0p, 6p
1: for n=1to S do

Whole network training and optimization pseu-

2 for k steps do
3: crpss-modal features embedding:
4 7' = E; (XY 051) (Embed image features into the

shared space)

Zt = Ey(X*; 0g,)
space)

loss computing and feature optimization:

Lee, Lg;, Ler, Ly calculation (Egs. 10, 11, 14, 9)

a

(Embed text features into the shared

© % N

P = D(Z; 0p) (Discriminator D)
PY = D(Z'; 0p)
10: Ls, Le calculation (Egs. 4, 5)
11: fix fp, update parameters 0, , 0,, 0p:
12: Op < 6p—1Iry- Vo, (Lee + Lgj)
13: 051 <« 051 — lr1 . volf] (LCE‘ + Ldi =+ Ltr =+ Lkl =+ LS)
14: 052 <~ 052 — lrz . VOEZ (Lce + Ldi + Ltr + Lkl + LS)

15: end for

16: fixate p, 0g,, Og,, update parameters 6p:

17: 0D <~ 09 — lr2 . VoD (LC)

18: end for

19: return the embedded cross-modal features Z and Z! in Figure
1

work yields cross-modal features Zi and Z' in the shared space,
as shown in Fig. 1. These return cross-modal features are used for
performing retrieval.

min max(Lee + Lgi + Ly + Ler + Ls)
0. .0 0,

Eyj"7Ey TP

0
minL. (15)
oD

5. Experiments

5.1. Datasets and settings

We demonstrate the efficacy of the proposed method on the
Flickr8K [20], Flickr30K [21], Microsoft COCO [22], and CUHK-
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PEDES [23] datasets. Each image in these datasets is described by
several descriptive sentences. For Flickr8K, we adopt the standard
dataset splitting method to obtain a training set (6K), a validation
set (1K), and a test set (1K). For Flickr30K, we follow the previous
work [12] and use 29,783 images for training, 1000 images for val-
idation and 1000 images for testing. For MS-COCO, we follow the
training protocol in [12] and split this dataset into 82,783 training,
30,504 validation and 5000 test images, and then report the per-
formance on both 5K and 1K test set. For CUHK-PEDES, it contains
40,206 pedestrian images of 13,003 identities. Following [12], we
split this dataset into 11,003 training identities with 34,054 images,
1000 validation identities with 3078 images and 1000 test identi-
ties with 3074 images. Note that all captions for the same image
are used as separate image-text pairs to train network.

Models are trained on GEFORCE TITAN X and Tesla K40 GPUs.
To extract text features, the embedded words are fed into a Bi-
LSTM to capture vectors with dimension 1024 (1024-D). We follow
[12] and set the Bi-LSTM with dropout rate 0.3. For fair compar-
ison, we adopt ResNet [15], MobileNet [16], and VGGNet [24] as
the backbone to extract image features and further fine-tune them
with learning rate Ir;=2 x 10—, decaying every 2 epochs expo-
nentially. The output 2048-D image features and 1024-D text fea-
tures are further projected into a shared space. Then cross-modal
features in the space are 512-D vectors (i.e. Z' and Z¢ in Fig. 1).
The batch size is set to 64 or 32 depending on available GPUs
memory. For the bi-directional triplet loss function, initially, we
treat the inter-modality and intra-modality sampling identically al-
though each of them might have different contributions [25], we
empirically set the margin to m = 0.5. The re-scaling parameter 7
for data imbalance issue is set as T =4 (see Table 5). In practice,
the discriminator can classify image and text modality easily at the
start of training, so the generator typically requires multiple (e.g.,
5) update steps per discriminator update step during training (see
Algorithm 1).

Once trained to converge, the network yields image features Z!
and text features Z'. We use the cosine function to measure their
similarity. We use Recall@K (K=1, 5, 10) for evaluation and com-
parison. Moreover, we adopt the precision-recall and mAP for the
ablation studies, and visualize their feature distributions by t-SNE.
Furthermore, we display the cross-modal retrieval results using our
method.

5.2. Performance evaluation

5.2.1. Results on the flickr30k and MS-COCO datasets

The retrieval results on the Flickr30K and MS-COCO datasets are
reported in Table 1. Hereafter, “Image-to-Text” means using an im-
age as a query item to retrieve semantically-relevant text from the
textual gallery. “Text-to-Image” means using a text as query to re-
trieve images from the visual gallery. In most cases, our proposed
approach shows the best performance when using three differ-
ent deep networks. For the “Image-to-Text” task on the MS-COCO
dataset, the best results are obtained by Zheng et al. [34], which
adopted a deeper network for text feature learning and used a
two-stage training strategy. However, for the “Text-to-Image” task
and the “Image-to-Text” task on the Flickr30K dataset, our method
performs better. Take ResNet-152 as an example, the results are
R@1=43.5% on the Flickr30K and R@1=48.3% on the MS-COCO for
“Text-to-Image” task; the results are R@1=56.5% on the Flickr30K
dataset and R@1=58.5% on the MS-COCO dataset for “Image-to-
Text” task.

Besides, we obverse that the strategy for network training is
critical for retrieval performance. Take [34] as an example, the
backbone network (ResNet-152) is fixed at stage I (R@1=44.2%
on “Image-to-Text” task on Flickr30K) and then fine-tuned with a
small learning rate on stage Il (R@1=55.6% on the “Image-to-Text”
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task on Flickr30K). In contrast, our network structure is trained
end-to-end in only one stage (we fine-tune the backbone network
with a small learning rate from the beginning). Our reported re-
sults are close to those in two-stage dual learning [34]. When
tested on the Flickr30K dataset for the “Image-to-Text” task, the
recall results are R@1=56.5%, R@5=82.2%, R@10=89.6%, which are
the best overall previous methods.

Obviously, the feature learning capacity of the backbone net-
works would affect retrieval performance significantly. We can see
from Table 1, the retrieval results based on ResNet-152 are usu-
ally higher than those of MobileNet and VGGNet. Moreover, our
method also has good performance using MobileNet. For instance,
regarding the “Image-to-Text” task on the Flickr30K dataset, the re-
call result of CMPM+CMPC [12] is R@1=40.3%, but the result from
our method is R@1=46.6%, which is a significant improvement.

Considering the two branches of “Image-to-Text” task and the
“Text-to-Image” task, we think that the data imbalance issue still
influences the performance of each branch. More specifically, for
all listed methods, the “Image-to-Text” task has better perfor-
mance, which indicates that the network still has more biases on
text feature learning as a result of the issue of data imbalance.
Thus, there exists more room for improvement using other strate-
gies, such as data augmentation.

5.2.2. Results on CUHK-PEDES dataset

The “Text-to-Image” retrieval results on the CUHK-PEDES
dataset are reported in Table 2. We evaluate the proposed method
using four deep networks. All results indicate that our method out-
performs other counterparts. The optimal results are achieved with
R@1=55.72% using ResNet-152 as backbone network. The results
using MobileNet are sub-optimal but also have some improve-
ments. For example, CMPM+CMPC achieves a recall R@1=49.37%
and R@10=79.27%, while our method obtains R@1=51.85% and
R@10=81.27%. Moreover, the results of our method show that
deeper networks achieve better retrieval performance, whereas the
light-weight MobileNet has a similar performance as ResNet-50.

5.2.3. Results on flickr8k dataset

The retrieval results on the Flick8K dataset are reported in
Table 3. The best results R@1=40.6%, R@5=67.8%, R@10=78.6% are
achieved by joint correlation learning [31] where a batch-based
triplet loss, which considers all image-sentences pairs, is used for
learning correlations. The second-best results are achieved using
ResNet-152 (same as [31]) R@1=40.1%, R@5=67.8%, R@10=79.2%,
which has better R@10 performance compared to [31]. Our method
shows competitive results compared to other counterparts and also
indicates that there exists room for further performance improve-
ment.

5.3. Ablation studies

For analyzing the effect of each component, the ablation studies
are conducted on the Flickr30K dataset using MobileNet as a back-
bone net, we use the commonly used categorical cross-entropy Lce
and bi-triplet loss function L to construct the baseline in Table 4,
we call this Baseline1 configuration “Only Lee + Lt ".

5.3.1. Analysis of KL-divergence for data imbalance

Each image in a dataset (e.g. Flickr30k) has more than one de-
scription sentence. We think this leads to a data imbalance issue
for cross-modal feature learning. The network has more text data
for training, which causes the learned label classifier to prefer text
features. Therefore, we adopt a regularization term L based on
KL-divergence to calibrate this bias. To this end, the label classi-
fier can be re-calibrated on the image features and text features.
In Table 4, this Baseline2 configuration is named “ Lee + L + Ly
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Table 1
Comparison of retrieval results on the Flickr30K [21] and MS-COCO [22] dataset (R@K (K=1,5,10)(%)).
Flickr30K MS-COCO
Method Backbone Net  Image-to-Text Text-to-Image Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
m-RNN [26] VGG 354 63.8 73.7 22.8 50.7 63.1 41.0 73.0 83.5 29.0 42.2 77.0
RNN+FV [27] VGG 35.6 62.5 74.2 274 55.9 70.0 41.5 72.0 829 29.2 64.7 80.4
DSPE+FV [25] VGG 40.3 68.9 79.9 29.7 60.1 721 50.1 79.7 89.2 39.6 75.2 86.9
CMPM+CMPCT [12] MobileNet 403 669 76.7 304 582 685 529 838 921 413 746 859
Word2VisualVec [28] ResNet-152 42.0 70.4 80.1 - - - - - - - - -
sm-LSTM [29] VGG 42.5 719 81.5 30.2 60.4 723 53.2 83.1 91.5 40.7 75.8 87.4
RRF-Net [30] ResNet-152 47.6 77.4 87.1 354 68.3 79.9 56.4 853 91.5 43.9 78.1 88.6
Joint learning [31] ResNet-152 48.6 73.6 83.6 323 62.5 74.0 55.3 82.7 90.2 41.7 75.0 87.4
CMPM+CMPC! [12] ResNet-152 49.6 76.8 86.1 373 65.7 75.5 - - - - - -
VSE+ [5] ResNet-152 52.9 80.5 87.2 39.6 70.1 79.5 513 82.2 91.0 40.1 753 86.1
TIMAM [32] ResNet-152 53.1 78.8 87.6 42.6 71.6 81.9 - - - - - -
DAN [33] ResNet-152 55.0 81.8 89.0 394 69.2 79.1 - - - - - -
Dual-path stage I [34] ResNet-152 44.2 70.2 79.7 30.7 59.2 70.8 52.2 80.4 88.7 37.2 69.5 80.6
Dual-path stage II [34] ResNet-152 55.6 81.9 89.5 39.1 69.2 80.9 65.6 89.8 95.5 471 79.9 90.0
Our ITMeetsAL VGG 38.5 66.5 76.3 30.7 59.4 70.3 442 76.1 86.3 37.1 72.7 85.1
Our ITMeetsAL MobileNet 46.6 73.5 82.5 344 63.3 74.2 54.7 84.3 91.1 41.0 76.7 88.1
Our ITMeetsAL ResNet-152 56.5 82.2 89.6 435 71.8 80.2 58.5 85.3 92.1 48.3 82.0 90.6
MS-COCO is tested on 1K images. The best results are in bold and the second best results are underlined.
Table 2
Retrieval results on the CUHK-PEDES [23] dataset (R@K (K=1,5,10)(%)).
Method Backbone Net Text-to-Image
R@1 R@5 R@10
Latent co-attention [35] VGG 25.94 - 60.48
Local-global association [36] ResNet-50 43.58 66.93 76.26
CMPM [12] MobileNet 44.02 - 77.00
Dual-path two-stage [34] ResNet-152 44.40 66.26 75.07
MIA [37] ResNet-50 48.00 70.70 79.30
CMPM+CMPC [12] MobileNet 49.37 - 79.27
Our ITMeetsAL VGG 44.43 68.26 77.50
Our ITMeetsAL MobileNet 51.85 73.36 81.27
Our ITMeetsAL ResNet-50 50.63 73.33 81.34
Our ITMeetsAL ResNet-152 55.72 76.15 84.26

Table 3
Retrieval results on the Flickr8K [20] dataset (R@K (K=1,5,10)(%)).

Method Backbone Net  Image-to-Text

R@1 R@5 R@10
RNN+FV [27] VGG 232 533 678
GMM-+HGLMM |[38] VGG 310 593 73.7
Word2VisualVec [28] ResNet-152 334 63.1 75.3
Joint learning [31] ResNet-152 40.6 67.8 78.6
Our ITMeetsAL VGG 2800 527 631
Our ITMeetsAL MobileNet 30.9 58.6 70.8
Our ITMeetsAL ResNet-152 40.1 67.8 79.2

The best results are in bold and the second best results are under-
lined.

The Recall and mean Average Precision (mAP) show the effective-
ness of this loss. Compared to Baselinel, the scaling KL-divergence
loss Ly; contributes more on Recall@1 for both the “Image-to-Text”
(42.3%) and “Text-to-Image” task (32.5%).

Table 4

5.3.2. Analysis of KL divergence for cross-modal feature projection

KL divergence is obtained by adding L,; which constrains the
image features and text features in the shared space under the su-
pervision of supervisory matrix. It focuses on the whole feature
distribution and is complementary to the bi-directional triplet loss
function. We denote Baseline3 as “L¢e + L¢r + Ly; + Ly;” in Table 4.
As we can see, Recall@1l of the “Image-to-Text” task has been
improved significantly by 2.4%. However, the KL-divergence loss
shows a slight improvement on the “Text-to-Image” task. The
results indicate that the KL-divergence loss function contributes
more to image feature learning, which might be caused by the is-
sue of data imbalance of the dataset.

5.3.3. Analysis of adversary combining

The prior loss terms have been used to constrain the similar-
ity of the image-text features in the shared space. Intuitively, two-
tuple or three-tuple feature exemplars are helpful for reducing the

Component analysis on the Flickr30K [21] (R@1, R@10, and mAP (%)).

Method using MobileNet

Flickr30K

Image-to-Text

Text-to-Image

R@1 R@I0 mAP R@l R@I0 mAP
Baselinel: Only Le + Ly 406 808 231 319 722 319
Baseline2: Le + Ly + Ly 423 806 244 325 730 325
Baseline3: Lee + Ler + Lgi + Ly 447 810 252 326 732 326
Full method: Lee + Ly + Ly + Ly + L + L 466 825 263 344 741 344
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Fig. 5. The precision_recall curves from “Baseline1” to “Full method” on Flickr30K, each line corresponds one experimental configuration in Table 4. The larger area under
the line indicates better performance.

Table 5
Temperature scaling analysis for loss Ly; (R@1, R@10, and mAP (%)).
Flickr30K
Temperature Image-to-Text Text-to-Image
R@1 R@10 mAP R@1 R@10 mAP
=1 44.0 80.6 24.8 329 73.5 329
=2 453 80.9 25.6 33.6 73.6 33.6
=3 46.2 83.2 25.7 333 73.4 333
=4 46.6 82.5 26.3 344 74.2 34.4
=5 46.0 81.6 26.1 343 73.9 343
7=6 45.9 80.2 26.1 331 73.4 331
Table 6
Comparison of two combining paradigms in four retrieval datasets (R@1, R@10, and mAP(%)).
Image-to-Text
Combining strategy ~ Backbone Net  Flickr30K MS-COCO CUHK-PEDES Flickr8K
R@1 R@10 mAP R@1 R@10 mAP R@1 R@10 mAP R@1 R@10 mAP
Method in Fig. 7 ResNet-152 55.30 88.30 32.23 57.00 92.10 35.12 67.79 93.75 34.79 39.00 77.70 2233
Method in Fig. 4 ResNet-152 56.50 89.60 32.58 58.50 92.10 36.28 65.58 93.60 3417 39.90 77.90 22.46

“semantic gap” and further making the whole feature distribution
close at the same time. However, the constraint loss functions (e.g.
cosine similarity) cannot constrain the distribution discrepancy of
the whole distribution because these loss functions are symmet-
rical. Focusing on the whole feature distribution, we combine the
Shanon information entropy Ls and the modality classification loss
Lc in an adversary training manner to reduce the heterogeneity
gap. This full method is named “Lce + Lir + Lg; + Ly + Ls + Le” and
corresponding results are shown in Table 4. Compared to former
baselines, the results obtained by using our method are improved
significantly.

Furthermore, we compare the precision-recall curves for the
above four configurations and baselines, the results are shown in
Fig. 5. The larger the area under the curve, the better the algo-
rithm. Regarding the different tasks, the improvements are slightly
different. Overall, we can see that each added component helps to
improve the overall performance of the retrieval algorithm.

5.3.4. Analysis of temperature T

We analyze the temperature parameter 7 in loss Ly in Eq. 11.
Other loss terms are kept the same with the full method, i.e.
“Lee + Ler + Lgj + Ly + Ls + Lc”. We vary this parameter t from 1 to
6, and their corresponding results are reported in Table 5. We can
observe that the optimal results are achieved if the classifier’s out-
put probabilities are re-scaled by t =4. As claimed in [19], the
temperature scaling raises the output entropy of the classifier with
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T > 1. In our experiments, we found it is beneficial for improving
the image-text matching.

5.3.5. Distribution visualization

We choose 40 image-text pairs from the Flickr30K dataset to vi-
sualize their feature distributions using t-SNE. We only choose the
first description caption among the five sentences. In Fig. 6, the cir-
cle and the triangle shape denote text features and image features,
respectively. Label information is represented by a different color.

This distribution indicates the effectiveness of each compo-
nent (e.g. KL-divergence for cross-modal feature projection, and the
Shannon information entropy trained in an adversarial manner). In
Fig. 6(a), there exist several feature outliers within the distribution
and the proximity relationship between pair-wise features is not
obvious. When using the proposed components, the features dis-
tribute much better. For example, in Fig. 6(d), all loss functions are
utilized to constrain feature learning, the pair-wise feature shows
a close proximity relationship. Moreover, image features and text
features are distributed within smaller ranges (-60 ~ 60). Few out-
liers exist among the whole distribution.

Qualitative retrieval results on the Flickr30K and the CUHK-
PEDES dataset are shown in Fig. 8. For the “Image-to-Text” task,
the proposed method can return almost all paired text of the query
image. The “Image-to-Text” task also has good performance, the
proposed method retrieves the paired image correctly. Also, other
retrieved images show contents relevant to the query sentence.
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Fig. 6. Feature distribution visualizations for the ablation studies. The shape represents modality and the color indicates the label information. Sub-figures (a)~(d) correspond
to the four experimental configurations in Table 4. When each loss function is gradually applied, the paired image features and text features have smaller distances. Best

viewed in color.
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Fig. 7. The illustration of independent combining information entropy and modality
classification into an adversary, which is an intuitive structure of the diagram in
Fig. 1. Other loss functions including categorical cross entropy loss, KL-divergence
loss, and bi-directional triplet loss are kept the same, but we do not show in this
graph for simplicity. Different from the framework in Fig. 4, the gradients computed
from the modality classifier in this combining paradigm are used to optimize the
parameters #; and 01 of the feature extractor. The feature extractor maximizes the
loss Ly = L (Eq. 5) of modality classifier C (to make image features and text features
as similar as possible), while the parameters 6. of the modality classifier minimize
the loss Ly. This process depends on a gradient reversal layer to multiply gradient
values by -1 when back-propagating [39]. .
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5.4. Further exploring

In this paper, we propose to integrate Shannon information en-
tropy with the discriminator for cross-modal retrieval. That is, the
discriminator performs modality classification and measures the
information entropy at the same time (see Fig. 4). Herein, we fur-
ther explore a paradigm to integrate information entropy with ad-
versarial learning. This combining paradigm is more straightfor-
ward to the structure in Fig. 1. Concretely, we build two branches
of sub-networks: an uncertainty predictor for modality uncer-
tainty prediction and a modality classifier for modality classifica-
tion. Then adversarial learning is implemented as an interplay be-
tween these two-subnetworks with competitive objectives. The un-
certainty predictor aims at maximizing the modality uncertainty
of the shared space (measured by information entropy), while the
modality classifier is to identify image inputs and text inputs by
modality classification. We illustrate this combining paradigm in
Fig. 7. Compared to the former paradigm depicted in Fig. 4, the
optimization depicted in Fig. 7 is different and more complex. The
gradients computed by the classifier are used to update parame-
ters #; and 67 in the feature extractor. To learn modality-invariant
features, the feature extractor minimizes the loss of the uncertainty
predictor and it maximizes the loss L; of the modality classifier,
which aims to make image features and text features as similar as
possible [39]. The parameters of the modality classifier minimize its
loss L. This training process needs to depend on the gradient re-
versal layer [39], which would multiply gradient values by -1 when
executing back-propagating.
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Image query Return text ranking Text query
— Black dog paddles through the water with a bright ball
= in its mouth.

A young blond
man and another
young man are
playing guitars
hooked up to amps.

A black dog swims in water with a colorful ball in his
mouth.

A black dog is swimming with a ball in his mouth.

A black do; i

A black dog is retrieving a ball in water.

ying a colorful ball swims

The woman is
blowing the pods |4
offa flower in a
green field

A young man with a denim jacket and writing on his
hand smiles in front of a bookcase full of v 3
A boy with a bruised nose and writing on his hands is
- o standing in a video rental store
A boy wearing a jean jacket with his hand on his chest
smiling at the camel
A young man looks at a coffee marker on the shelf of

The children
are getting off’
the bus.

a department store.

A boy with writing on his hand is standing in a store.
A person with a
purple head
covering and
purple shirt is
standing outside
a restaurant.

A woman with short black hair in a blue t-shirt holds a
baby in pink clothes with a pacifier.

A woman with short hair holds a small baby in her
arms.

The woman with the blue shirt is holding a baby

A woman holds the hand of a wide-eyed baby, in a
christmas themed outfit A womanina
red shirt raising
her arm to the
passing crowd
below.

A woman in a blue shirt talking to a baby.

A bald man in gray is holding out a stick whilst a black
and brown mps up to catch it

X L A guy wearing
A bald man demonstarting how high his brown and

black dog can jump. t-shirt is
skateboarding
down the road,
while someone sits|
and watches him |5
from the curb.

Man holding a stick while a dog jumps up to grab it.

A man holds a

ick above a jumping dog.
A dog jumps by a tree while another lays on the

ground

A man wearing a light
blue shirt, a pair of gray
and black shorts and a
pair of brown sandals.
The man is bald. He is
wearing a white collared
shirt, gray shorts, and flip
flops. He is carrying a
black backpack.

A man looks down at his lifted hands and wears a
white dinner jacket over a white shirt and over black
trousers with part of a black bow tie revealed at the
neck while he leans with legs apart.’, 'A white man
with black hair wears white and black suit with a
necktie color black.

This man is facing the camera and is wearing a white
blazer, a white shirt, black bow tie and black pants
and shoes. The man is wearing black dress shoes,
black pants and a white button down with a white
blazer and a black bow tie.

A woman wearing a white
and black plaid shirt, a
black and white plaid pair
of pants and a pair of
black and white shoes.
The woman is wearing a
jumpsuit with a white
background and blue
stripes while carrying a
large backpack.

A man is lifting his left arm and his other hand over
his body while he is formally dressed. He wears a
white jacket over a white shirt and black bow tie with
black trousers and shiny black shoes. A man wearing
a white shirt, a black bow tie, a white suit jacket, a
pair of black slacks and a pair of black shoes.

She is also wearing a colorful shirt and light
colored pants .A woman with a ponytail es a tan
shoulder bag over her back with the strap across her
right shoulder while she is dressed in a short-sleeve
blouse with a marbled print in black and pink over
gray pants that end mid-calf with gray sandals.

The man wears a orange t
shirt blue jean shorts with
black and grey sneakers
as he walks along the
pavement. This boy
follows behind a larger
man. The boy is stocky in
build. He wears a light
orange shirt, dark blue
pants and athletic shoes.

A dark haired girl with a brown bag on her shoulder. Th
girl is wearing a multi colored short sleeved top and
white capris and sandals on her feet and she has a large
brown should bag.

A woman wearing a gray, red and green shirt, a pair

of blue jeans and a pair of black shoes. This man is

wearing a flowery short sleeved shirt, light blue
jeans, and plain black shoes.
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Return image ranking

Fig. 8. Qualitative test results on the Flikcr30K and CUHK-PEDES datasets. We report Recall@5 of the “Image-to-Text” task and the “Text-to-Image” task from left to right.
The correct retrieval images or text are in red and a red box, while the failure retrieval are in green. For Flickr30K, each image is described by 5 sentences. Hence, each text
query also has a correct retrieved image, but other retrieved images have similar content as described by the sentence. For the CUHK-PEDES dataset, each category has more
than one image, thus almost all correct images are retrieved according to the text query. The list is best viewed in color. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

The training procedure is almost the same as used in
Algorithm 1 except for the gradients from the modality classifica-
tion loss that updates the backbone network, leading to a slower
training process. The retrieval performance of these two combined
methods presented in Fig. 4 and Fig. 7 (named as unified and sepa-
rate, respectively) are given in Table 6. The backbone net for image
feature extraction is ResNet-152. These two combined strategies
show different performances on the four datasets when combin-
ing information entropy and modality classification into a unified
discriminator. The performance improves slightly on the Flickr30K,
MS-COCO, and Flickr8K datasets when adopting the combining
strategy of Fig. 4. However, the method depicted in Fig. 7 has
better performance on the CUHK-PEDES dataset, which is not the
common objects dataset. This method has R@1 improved by 3.3%

12

(from 65.58% to 67.79%), Also, the mAP has improved by 1.8% com-
pared to the unified method depicted in Fig. 4. In summary, the
proposed framework of combining information entropy and adver-
sarial learning in Fig. 4 has better performance and has faster con-
vergence during training.

6. Conclusion

In this work, we explored methods to improve the performance
of cross-modal retrieval by integrating information theory and
adversarial learning by analyzing the relation between information
entropy and modality uncertainty. Based on this relation, we
explored two different paradigms to combine information entropy
maximization and modality classification in an adversarial manner.
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Training these two components iteratively reduces feature distri-
bution discrepancies and further the heterogeneity gap. This is
beneficial for preserving semantic similarity between cross-modal
features by using bi-directional triplet loss and cross-entropy
loss. In addition, we also considered the issue of data imbalance,
which leads to a biased classifier and affects label classification.
KL-divergence is used as an additional loss term to regularize the
re-scaled probabilities computed from image features and text
features. It is also used to constrain the cross-modal feature pro-
jections and is helpful for learning modality-invariant features. The
efficacy of the proposed method was demonstrated by thorough
experimental results on four well-known datasets using four deep
models.

Successfully combining information entropy and adversarial
learning depends on the competitive goals between the informa-
tion entropy predictor and the modality classifier, and this leads
to challenging directions worth further investigation. For example,
we used instance labels as supervisory information in this work.
Then the information entropy loss was computed only based on
image modality and text modality. However, retrieval performance
depends on the matching of each image-text feature pair. For some
large-scale datasets, each category may include a large number of
image-text pairs. Thus, it is valuable to make the information en-
tropy loss specific for each category so that the discrepancy be-
tween two modalities can be reduced more granularly. Moreover,
the problem of data imbalance leads to training a biased label clas-
sifier, which is an issue that can also be resolved by training strate-
gies like data augmentation or by using other loss functions, e.g.
knowledge distillation loss.

In terms of future work, the label-free Shannon information en-
tropy can be used in some unsupervised learning scenarios, and
has been used in performing tasks such as semantic segmenta-
tion [13]. Examining the application of combining Shannon in-
formation entropy with adversarial learning for cross-modal re-
trieval, we find that Shannon information entropy can be used
for multimodal feature learning by estimating the modality un-
certainty. It will be promising to explore Shannon entropy fur-
ther when applied to other kinds of cross-modal feature learn-
ing similar to image-text retrieval, such as video-text, audio-video,
and audio-text matching which aims at learning modality-invariant
representations.
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