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Improving on Adjusted R-Squared
Julian Karch

The amount of variance explained is widely reported for quantifying the model fit of a multiple linear 
regression model. The default adjusted R-squared estimator has the disadvantage of not being unbiased. 
The theoretically optimal Olkin-Pratt estimator is unbiased. Despite this, it is not being used due to 
being difficult to compute. In this paper, I present an algorithm for the exact and fast computation of 
the Olkin-Pratt estimator, which facilitates its use. I compare the Olkin-Pratt, the adjusted R-squared, 
and 18 alternative estimators using a simulation study. The metrics I use for comparison closely resemble 
established theoretical optimality properties. Importantly, the exact Olkin-Pratt estimator is shown to be 
optimal under the standard metric, which considers an estimator optimal if it has the least mean squared 
error among all unbiased estimators. Under the important alternative metric, which aims for the estimator 
with the lowest mean squared error, no optimal estimator could be identified. Based on these results, I 
provide careful recommendations on when to use which estimator, which first and foremost depends on 
the choice of which metric is deemed most appropriate. If such a choice is infeasible, I recommend using 
the exact Olkin-Pratt instead of the default adjusted R-squared estimator. To facilitate this, I provide the 
R package altR2, which implements the Olkin-Pratt estimator as well as all other estimators.
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Introduction
Multiple linear regression is one of the most used analysis 
methods within psychological research. The R-Squared (R2) 
value is commonly reported when performing multiple 
linear regression. It quantifies the proportion of variance 
of the dependent variable that can be accounted for by 
the regression model in the sample, which is commonly 
abbreviated as the proportion of variance explained. It is 
well known that the R2 value systematically overestimates 
the amount of variance explained in the population, 
which is arguably the more relevant quantity. To estimate 
the amount of variance explained in the population, the 
so-called adjusted R2 is typically used.

While standard linear regression software, such as 
SPSS and the “lm” function in R (R Core Team, 2018), 
and consequently the vast majority of psychological 
publications report only R2 and adjusted R2, many 
alternative estimators for the proportion of variance 
explained in the population have been proposed (see, 
Raju, Bilgic, Edwards, & Fleer, 1997; Shieh, 2008; Yin & 
Fan, 2001, for overviews). This leads to the question which 
of these estimators should be used. There have already 
been multiple studies addressing this issue (most notably, 
Raju et al., 1997; Shieh, 2008; Yin & Fan, 2001) via a 
systematic comparison of estimators.

In this study, I extend these previous comparisons in 
three aspects. First, I add a new estimator. This estimator 
is an implementation of the Olkin-Pratt estimator (Olkin & 
Pratt, 1958). The Olkin-Pratt estimator has been shown to 
be optimal under the most prevalent optimality criterion 
used in statistics, which considers an estimator optimal 
if it always has least mean squared error (MSE) among 
all unbiased estimators (Olkin & Pratt, 1958). Despite 
this favorable property, it is not used and has not been 
included in any of the previous comparisons due to the 
difficulties associated with computing it. Here, I show 
that the Olkin-Pratt estimator can be computed relatively 
straightforwardly, which facilitates its use.

Second, similarly to Raju et al. (1997), and Shieh (2008), 
I evaluate the estimators using both MSE and bias as both 
are essential. However, in contrast to Raju et al. (1997), 
Shieh (2008), I do not combine MSE and bias in an informal 
way but, instead, as suggested by concepts established 
within theoretical statistics (Lehmann & Casella, 2003). 
I will provide the detailed explantion of this strategy in 
the Methods section. Importantly, this strategy avoids 
non-transparent, conflicting recommendations such as 
Raju et al. (1997) recommending the use of the standard 
adjusted R2 estimator and Shieh (2008) the positive-part 
Pratt estimator despite both basing their conclusion on 
bias and MSE. It also leads to considering the optimality of 
estimators based on different perspectives, which weight 
the relative importance of bias and MSE differently. To 
obtain bias and MSE of the estimators, I perform a Monte-
Carlo simulation study.
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Third, to enable usage of the alternative estimators, I 
provide an R package (“altR2” on CRAN), which contains 
all estimators compared here. This also includes all 
estimators compared previously.

This paper is structured as follows. First, I introduce 
the compared estimators, the design of the simulation 
study, and the different perspectives used for 
evaluation. Then, I discuss which estimator is optimal 
under which perspective. I end by relating the results 
to previous studies and a recommendation of which 
estimators to use.

Method
Proportion of Variance Explained in the Population
Consider i = 1,…,N observations of the dependent variable 
Yi and the corresponding p predictors [Xi1,…,Xip]. The 
statistical model associated with multiple linear regression 
is then

	 0
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where β0,…,βP are the regression coefficients and ϵi a 
normal random variable with constant variance 2 
representing the residual error.

It must be differentiated whether the predictors 
are assumed to be fixed or random. I assume that the 
predictors are random since I agree with Yin and Fan 
(2001), that, in psychology, random predictors are 
the norm. In particular, in line with Shieh (2008), Yin 
and Fan (2001), I assume that the predictors have a 
joint multivariate normal distribution. Under this 
assumption, the dependent variable Yi is normally 
distributed with constant variance, which I will denote 
as total variance 2

Y .
The true proportion of variance explained in the 

population is 
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This is known as squared multiple correlation ρ2 in the 
statistical literature, which I will use from now on.

Estimators
Normal R2

The normal R2 replaces the error variance and the total 
variance by their maximum likelihood estimates 2̂   and 

2
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maximum likelihood estimates can be calculated using 
the total sums of squares SST as well as the residual sums 
of squares 2

R Tˆ: /YSS SS N   and 2
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into the definition of R2 one obtains
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Adjusted R2

The core idea of adjusted R2, is to replace the biased 
estimators with their unbiased counterparts. The unbiased 
estimates are 2 /( 1)RSS N p     and 2 /( 1)Y TSS N    

This leads to the adjusted R2, which is called Ezekiel 
estimator in the statistical literature:
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Somewhat counterintuitively, the Ezekiel estimator is not 
an unbiased estimator of the squared multiple correlation 
despite using unbiased estimators for the error and the 
total variance.

Variations of the Ezekiel Estimator 
In the literature, slight variations of the Ezekiel 
estimator have been proposed, which I also include in 
the comparison. Due to space constraints, I only list 
them here. For a detailed description of the estimators 
including their derivation, the reader is referred to Raju 
et al. (1997), Yin and Fan (2001) as well as the references  
therein.
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Maximum Likelihood Estimator
The maximum likelihood estimator 2 2( )ˆML R  introduced 
by Alf and Graf (2002) estimates the squared multiple 
correlation by finding the squared multiple correlation 
value that maximizes the likelihood of the observed 
data. I refer the reader to Alf and Graf (2002) for the 
computational details.

Olkin-Pratt Estimator
Olkin and Pratt (1958) proposed an estimator for the 
squared multiple correlation ρ2 and showed that it is the 
unique uniformly minimum variance unbiased estimator. 
That is, no matter the circumstances, the Olkin-Pratt 
estimator always has the smallest MSE among all unbiased 
estimators. Thus, among the unbiased estimators, it 
can be considered optimal. No such strong theoretical 
justification exists for any other estimator.

Despite this favorable property, the Olkin-Pratt 
estimator has not been implemented in any software 
package, is not being used, and has not been included in 
any previous comparison. The reason for this is that it has 
been believed to be difficult to compute (Shieh, 2008) 
since its formula contains the hypergeometric function. 
The hypergeometric function 2F1(a, b; c; z) is difficult 
to compute as it is defined via an infinite series (see 
Appendix A for the full definition). The Olkin and Pratt 
estimator is

   2 2 2 2
2 1

3 1
ˆ 1 1 1,1; ; 1 .

1 2OP

N N p
R R F R

N p
           

Due to the computation complexity of the hypergeometric 
function, different approximation approaches exist, which 
I will review in the following.
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Approximations of the Olkin-Pratt Estimator
One approach to approximate the Olkin-Pratt estimator 
is to only use the first K + 1 addends of the infinite series 
of the hypergeometric function. This leads to a family of 
estimators of the form

   2 2 2
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where tk is the kth addend of the hypergeometric series 
(see Appendix A).

In the previous comparisons, the 2 2
1 2ˆ ˆ,OP OP   and 2

5ÔP  
estimators have been included, which I also included in 
the comparison.

Other approximation approaches modify the 2
1ÔP   

estimator to correct for the left out addends. These  
are:
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For the rationales of these corrections, see Raju et al. 
(1997), Yin and Fan (2001) as well as the references 
therein.

New Estimator: Exact Olkin-Pratt Estimator
The existence of the approximations of the Olkin-Pratt 
estimator is based on the assumption that the Olkin-Pratt 
estimator is too difficult to compute, making it unusable 
in practice. In Appendix A, I show that this assumption 
is not true. In particular, I demonstrate that there are 
closed-form solutions for the hypergeometric function 
for all possible inputs required for the evaluation of 
the Olkin-Pratt estimator. These closed-form solutions 
allow the exact Olkin-Pratt estimator to be computed 
within milliseconds and thus facilitating its use in  
practice.

Positive-Part Estimators
All estimators introduced here, besides the normal 
R2 and the maximum likelihood estimator, share 
one disadvantage. The estimated squared multiple 
correlation can be negative, while the population 
squared multiple correlation cannot. In practice, this 
problem is commonly addressed by assuming that 
the population squared multiple correlation is 0 if 
an estimator returns a negative value. Shieh (2008)  
formalized this practice by suggesting that so-called 
positive-part estimators should be considered, which 
return 0 if the respective estimator returns a negative 
value and otherwise return the original estimate. Shieh 
(2008) showed that this increases the bias, as expected, 
but decreases MSE. Consequently, I also included the 
positive-part versions of all estimators introduced here 
in the comparison.

Simulation Study
Overview Design
In the simulation study, I varied the factors, sample size N, 
number of predictors p, and population squared multiple 
correlation ρ2. Fisher (1928) showed that these are the 
only factors modifying the sampling distribution of R2 and 
thus the bias and MSE of each estimator.

Sample Size
I investigated the sample sizes 10,20, 30, 40, 50, 
60,100,150. According to the estimates provided by 
Marszalek, Barber, Kohlhart, and Holmes (2011), the 
resulting range contains more than 75% of the sample 
sizes reported in psychological journals from 1995—2006. 
I chose to cover the sample sizes below 60 more densely 
because these sample sizes occurred more often and 
include more than 50% of the sample sizes reported in 
psychological journals.

Number of Predictors
As number of predictors p, I chose 2, 5 and 10. This is 
equivalent to the values used by one previous comparison 
(Shieh, 2008) and close to the values used by another one 
(Yin & Fan, 2001).

Squared Multiple Correlation
For the true squared multiple correlation ρ2, I included the 
values investigated in the previous comparison performed 
by Shieh (2008), 0.0, 0.1, 0.2,…, 0.9 as they sample the space 
of possible values in a relatively dense matter. I additionally 
included two small values: 0.01 and 0.05 as small squared 
multiple correlation values are relatively common in 
psychology (see, for example, Karch et al., 2019).

Data Generation
In Appendix B as well as in the code (https://doi.
org/10.24433/CO.8023088.v3.), I describe how I 
simulated data for a given combination of sample size N, 
number of predictors p, and squared multiple correlation 
ρ2 in detail. For generating the data, some parameters, 
like the residual variance, had to be set to fixed values. 
Importantly, the results are not influenced by those 
choices, as the sampling distribution of R2 and thus the 
bias and MSE of each estimator are independent of those 
parameter values (Fisher, 1928).

Replications
Fully crossing all factors would lead to 288 design cells. 
However, those design cells for which the sample size N 
was not at least two bigger (N ≥ p + 2) than the number 
of predictors p were removed since some estimators, for 
example, the Ezekiel estimator, require this. This resulted 
in 276 remaining design cells. For each design cell, I 
repeated the process of generating data and obtaining the 
estimates 100,000 times.

Evaluating the estimators
Uniformly Minimum Mean Squared Error Unbiased
The classical optimality criterion for point estimators is 
uniformly minimum variance unbiasedness (Lehmann 
& Casella, 2003, Chapter 2). For example, the standard 
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estimator of the regression coefficients (ordinary least 
squares) is uniformly minimum variance unbiased. A 
uniformly minimum variance unbiased estimator has 
the minimum MSE among all unbiased estimators in all 
circumstances. I will call this property uniformly minimum 
MSE unbiased to connect it more obviously to MSE. This 
property has been proven for the Olkin-Pratt estimator. 
Thus the Olkin-Pratt estimator is unbiased. Since all other 
estimators have a different expected value, it follows that 
they are biased.

Mostly, to validate the proposed implementation of the 
Olkin-Pratt estimator, I quantified whether an estimator 
was empirically unbiased, for a given sample size N, 
number of predictors p, squared multiple correlation ρ2 
condition, by using the one-sample t-test, with the null 
hypothesis of zero bias. I conclude that an estimator is 
overall empirically unbiased for a given sample size N, and 
number of predictors p condition if for no squared multiple 
correlation ρ2 value, the null hypothesis was rejected. As 
significance threshold I chose a = .005 as recommended 
by Benjamin et al., 2018. Note that an estimator might 
still be biased despite being empirically unbiased. Indeed, 
all estimators besides the Olkin-Pratt estimator are biased. 
However, if they are empirically unbiased, the bias is likely 
negligible.

Uniformly Lowest Mean Squared Error
It has been argued that considering only unbiased 
estimators is detrimental as biased estimators typically 
have lower MSE than unbiased estimators (Lehmann & 
Casella, 2003, Chapters 4 and 5). At the same time, MSE 
is well suited as the only metric for choosing between 
estimators as it trades off bias and variance. This argument 
leads to MSE being considered as the only metric (Lehmann 
& Casella, 2003, Chapters 4 and 5).

When using the MSE as the only metric, an optimal 
estimator has the lowest MSE across all conditions, in 
the case of this study, across all sample size N, number 
of predictors p, and squared multiple correlation ρ2 
combinations. In practice, such a uniformly best estimator 
does rarely exist (Lehmann & Casella, 2003, Chapters 4 
and 5). To confirm that this is the case, I identified the 
estimator with the lowest MSE for each combination of 
design factors.

Mean Squared Error Dominance
An estimator A dominates an estimator B if it always has 
lower MSE. This is an essential relationship because if an 
estimator is dominated by another estimator, it should 
never be used (if considering only MSE). Consequently, 
I also report the dominance relationships to determine 
the set of admissible estimators (those which are not 
dominated).

Maximum Mean Squared Error
The first solution to the problem that the uniformly 
lowest MSE rarely exists is typically used in frequentist 
inference. The strategy is to consider the maximum 
MSE over all unknown parameters (in this study, only 
the squared multiple correlation ρ2) as the metric for 

choosing between estimators. Consequently, I also report 
the maximum MSE for all estimators.

Average Mean Squared Error
The Bayesian solution to the fact that no estimator exists 
with uniformly the lowest MSE is to consider a weighted 
average of the MSEs over all unknown parameter 
values. The crucial question is which prior to use for the 
weighting. In line with the common practice of using flat 
priors in psychology (Albers, Kiers, & van Ravenzwaaij, 
2018), I average using a uniform prior over the squared 
multiple correlation ρ2.

A Note On Consistency
Note that all of the estimators are consistent. Thus for a 
fixed number of predictors p, they will all converge to the 
true squared multiple correlation value ρ2 as the sample 
size N increases. Consequently, it is to be expected that the 
differences between the estimators are most pronounced 
for smaller sample sizes.

Results
In the supplementary material (CSV Files S1, and S2, and 
Tables S3-S25), I present bias and MSE for each design cell. 
Here, I will focus on summarizing those values using the 
different evaluation strategies just discussed.

Uniformly Minimum Mean Squared Error Unbiased
Table 1 shows which estimators were empirically unbiased 
and under what condition. The exact Olkin-Pratt estimator 
was the only estimator that was empirically unbiased 
across all conditions. Additionally, only approximations of 
the exact Olkin-Pratt estimator were empirically unbiased 
in any condition, namely: the Olkin-Pratt K = 2, K = 5, and 
the Pratt estimator.

To investigate the size of the bias, I exemplarily 
display the bias of the most popular Ezekiel estimator, 
the previously recommended Pratt estimator, and the 
new exact Olkin-Pratt estimator in a small (N = 10) and 
big sample (N = 150) condition in Figures 1a and 1b 
respectively. In the small sample condition, both the 
Ezekiel and the Pratt estimator were substantially biased. 
The Pratt estimator up to .09 and the Ezekiel estimator 
up to .05. Both estimators consistently underestimated 
the squared multiple correlation ρ2. In the large sample 
condition, all estimators were virtually unbiased, as 
expected.

In summary, the results confirm that the newly proposed 
implementation of the Olkin-Pratt estimator is unbiased, 
whereas none of the other estimators is.

Uniformly Lowest Mean Squared Error
In Appendix C, the estimator with the lowest MSE 
for each combination of design factors is shown. As 
expected, no estimator had uniformly lowest MSE across 
all conditions. Instead, 6 out of the total 20 estimators 
were best in at least one condition, namely: the positive-
part versions of the Ezekiel, Smith, Wherry, and Claudy 
estimators as well as the maximum likelihood and the 
normal R2 estimators.
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In general, the unknown factor squared multiple 
correlation ρ2 must be known in order to select the best 
estimator for all sample size N, number of predictor p 
combinations. The difference in terms of MSE between the 
estimators was non-trivial for some conditions, especially 
when the sample size was small, as is exemplarily 
displayed in Figure 2a. In contrast, for large sample sizes, 
the difference between the estimator was negligible, 
as expected (see Figure 2b). In summary, without 
knowledge of the true squared multiple correlation ρ2, 
it is impossible to choose the estimator with the lowest 
MSE, and there can be substantial differences in MSE 
between the estimators.

Dominance
While no estimator dominated all other estimators, 
multiple estimators dominated at least one other 
estimator. In Figure 3, the full dominance relationships 
between all estimators are presented.

The two most relevant results are as follows. First, 
all positive-part versions dominated their regular 
counterparts. Second, within the Olkin-Pratt estimators, 
the simpler versions dominated the more complex. This is 
reflected by the Olkin-Pratt K = x estimators dominating all 
Olkin-Pratt K = y estimators for which x < y, all Olkin-Pratt 
K estimators dominating the exact Olkin-Pratt estimator, 
and the Olkin-Pratt K = 1 estimator dominating the Pratt 
estimator.

The dominated estimators were not considered 
for the maximum MSE as well as the average MSE 
perspective since the estimators dominating them are 
guaranteed to also perform better with regard to these 
metrics.

Maximum Mean Squared Error
In Table 2, the estimator with the lowest maximum 
MSE for each sample size N, number of predictors p 
combination is displayed. No estimator was best in this 

Table 1: Emperically Unbiased Estimators.

N p

2 5 10

10.00 OPE OPE

20.00 OP5, OPE OP5, OPE OP5, OPE

30.00 OP5, OPE OP5, OPE OP2, OP5, OPE

40.00 OP5, OPE OP2, OP5, OPE, P OP5, OPE, P

50.00 OP2, OP5, OPE, P OP2, OP5, OPE, P OP5, OPE, P

60.00 OP2, OP5, OPE OP2, OP5, OPE, P OP2, OP5, OPE, P

100.00 OP2, OP5, OPE, P OP2, OP5, OPE, P OP2, OP5, OPE, P

150.00 OP2, OP5, OPE, P OP2, OP5, OPE, P OP2, OP5, OPE, P

Note: For a sample size N, number of predictors p combination, the estimators are displayed that were deemed unbiased for all 
squared multiple correlation values ρ2. OPE = Exact Olkin-Pratt; OP2 = Olkin-Pratt, K = 2; OP5 = Olkin-Pratt, K = 5; P = Pratt.

Figure 1: Bias for selected estimators in a small sample (a) and a big sample (b) condition.
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sense across all conditions. Instead, 4 out of 20 estimators 
were best, namely: the positive-part versions of the Ezekiel 
and the Wherry estimators as well as the maximum 
likelihood and the normal R2 estimators.

To nevertheless obtain an overall best estimator, I also 
calculated the maximum MSE across all conditions for 
each estimator. The results are displayed in Table 3. Most 
importantly, the positive-part Ezekiel estimator was best 
with a maximum MSE of 0.1082. The maximum MSE of 
the second-best estimator (positive-part Pratt) was 0.1230 
and thus more than 10% higher.

Average Mean Squared Error
In Table 4, the estimator with the lowest average MSE for 
each sample size N, number of predictors p combination 
is displayed. No estimator was best in this sense across 
all conditions. Instead, 4 out of 20 estimators were best, 
namely: the positive-part versions of the Ezekiel, Wherry, 
and the Smith estimators, as well as the maximum 
likelihood estimator.

To nevertheless obtain an overall best estimator, I 
also calculated the average MSE across all conditions 
for each estimator. The result is displayed in 
Table 3. Importantly, the positive-part Ezekiel estimator 
again was best with an average MSE of 0.015353. 
However, the average MSE of the second-best estimator 
(maximum likelihood) was 0.015369 and thus virtually  
identical.

Impact of Always Using the Positive-Part Ezekiel 
Estimator
Since the positive-part Ezekiel estimator was best both in 
terms of average as well as maximum MSE, I investigated 
the impact of always using it. To do this, I calculated the 
increase in maximum MSE and average MSE for each N, p 
combination instead of the optimal estimator.

Figure 2: Mean squared error for selected estimators in a small sample (a) and a big sample (b) condition. For each 
condition, all estimators that had lowest mean squared error for a certain ρ2 value were selected.
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Figure 3: Matrix representing the dominance relation-
ships between the estimators. A black square signals 
that the estimator in the respective row dominates 
the estimator in the corresponding column. Rows 
and columns that contain no black square have been 
removed.
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Positive-part Wherry

Positive-part Olkin-Pratt, K = 1
Positive-part Olkin-Pratt, K = 2
Positive-part Olkin-Pratt, K = 5
Positive-part exact Olkin-Pratt

Positive-part Pratt
Positive-part Claudy

Table 2: Estimators With the Lowest Maximum Mean 
Squared Error.

N p

10 20 30 40 50 60 100 150

2 W+ R2 R2 R2 ML ML ML ML

5 E+ W+ W+ W+ W+ W+ ML ML

10 E+ W+ W+ W+ W+ ML ML

Note: E+ = positive-part Ezekiel; ML = Maximum Likelihood; R2 = 
normal R2; W+ = positive-part Wherry.
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The full results are displayed in Table 5. The increase 
in maximum MSE was never higher than 11%. The 
increase in mean MSE was never higher than 4%. Thus, 
the increase in MSE when always using the positive-part 
Ezekiel estimator was relatively mild.

Discussion and Conclusion
In this paper, I compared the novel exact Olkin-Pratt 
estimator and 19 additional estimators of the squared 
multiple correlation using different perspectives. These 
different perspectives all follow directly from optimality 
concepts established in theoretical statistics and are based 
on bias, MSE, or a combination thereof.

Regarding the most prevalent uniformly minimum MSE 
unbiased perspective, the results are unambiguous and in 
line with the theoretical optimality property established 
for the Olkin-Pratt estimator. The exact Olkin-Pratt 
estimator was optimal. It was the only estimator that was 
empirically unbiased across all conditions. Consequently, 
based on this perspective, the exact Olkin-Pratt estimator 
should always be used.

Regarding the perspectives that consider only MSE, the 
results are more ambiguous. No estimator had uniformly 
lowest MSE across all conditions. Even more importantly, 
no estimator was uniformly best according to the 
maximum or average MSE perspectives. However, across 
all conditions, the positive-part version of the most widely 
used Ezekiel (adjusted R2) estimator performed best both 
according to the maximum MSE as well as average MSE 
perspective.

To choose the best estimator under the MSE-only 
perspective, two cases have to be distinguished. First, there 
is some knowledge about the squared multiple correlation 
ρ2. Second, this is not the case. If there is some knowledge, 
then I advise using Table C1 in Appendix C to select the 
estimator with the lowest MSE for the particular study. If 

this is not the case, then one first has to decide for the 
maximum or the average MSE perspective. The maximum 
MSE perspective matches well with frequentist principles, 
whereas the average MSE perspective matches better with 
Bayesian principles. After this choice has been made, one 
can select the best estimator using Tables 2 or 4. In case 
constraints do not allow such an individualized choice, 
I recommend using the positive-part Ezekiel estimator. 
This choice is especially defendable in situations where 
the sample size N is large compared to the number of 
predictors p, as here the difference between estimators is 
small. Thus, choosing the default estimator, which most 
readers know, is a sound strategy.

If it is not possible to determine what is more important –  
unbiasedness or minimization of MSE – I recommend 
using the unbiased exact Olkin-Pratt estimator. There 
are three reasons for this. The first one is consistency. 
The uniformly lowest MSE unbiased perspective is the 
standard in regression analysis. In partlcular, the rationale 
given for using the ordinary least squared regression 
coefficients is that they are uniformly lowest MSE 
unbiased (Cohen, Cohen, West, & Aiken, 2003, p. 124). 
Second, psychology is traditionally primarily concerned 
with explanatory modeling (Yarkoni & Westfall, 2017), 
and in explanatory modeling, unbiasedness should be 
preferred over lower MSE (Shmueli, 2010). Third, and in 
relation to this, the fact that an estimator is unbiased 
guarantees that when estimates for the same property 

Table 4: Estimators With The lowest Average Mean 
Squared Error.

N p

10 20 30 40 50 60 100 150

2 W+ W+ W+ W+ ML ML ML ML

5 E+ S+ W+ W+ W+ W+ ML ML

10 E+ S+ S+ ML ML ML ML

Note: E+ = positive-part Ezekiel; S+ = positive-part Smith; W+ = 
positive-part Wherry; and ML = Maximum Likelihood.

Table 3: Maximum and Average Mean Squared Error.

E+ P+ S+ ML OPE+ OP5+ OP2+ OP1+ C+ W+ R2

Max. MSE 0.1082 0.1230 0.1317 0.1367 0.1380 0.1380 0.1387 0.1413 0.1533 0.1561 0.3543

Av. MSE 0.0154 0.0161 0.0154 0.0154 0.0161 0.0161 0.0161 0.0160 0.0166 0.0156 0.0260

Note: The minimum within each row is marked in bold. The average mean squared error was lowest for the E+ = estimator, when 
considering more than 4 digits.

E+ = Positive-part Ezekiel; P+ = positive-part Pratt; S+ = positive-part Smith; ML = Maximum Likelihood; OPE+ = positive-part exact 
Olkin-Pratt; 0P2+ = positive-part Olkin-Pratt K = 2; 0P5+ = positive-part Olkin-Pratt K = 5; C+ = positive-part Claudy; W+= positive-
part Wherry; R2 = normal R2.

Table 5: Relative Increase of the Average and Maximum 
Mean Squared Error When Always Using the Positive-
part Ezekiel Estimator.

N Maximum; p Average; p

2 5 10 2 5 10

10.00 8.63 0.00 2.14 0.00

20.00 10.56 4.98 0.00 3.63 0.64 0.00

30.00 7.68 5.02 2.37 3.27 1.20 0.13

40.00 6.53 5.10 3.94 2.99 1.52 0.30

50.00 5.41 4.47 3.94 2.60 1.57 0.33

60.00 4.80 3.73 3.70 2.41 1.43 0.50

100.00 3.03 2.66 2.17 1.78 1.20 0.63

150.00 2.02 1.89 1.73 1.29 0.99 0.70

Note: The increase is relative to the minimum average and maximum 
mean squared error respectively and expressed as a percentage.
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of interest from multiple studies are aggregated in a 
meta-analysis, this aggregation eventually leads to the 
true value, which is not the case when using a biased 
estimator, even if it has lower MSE.

On the surface, these recommendations conflict with 
previous recommendations based on simulation studies 
with similar designs. Yin and Fan (2001) recommended 
using the Pratt estimator and Shieh (2008) the positive-
part version of the Pratt estimator. The conflict with Yin 
and Fan (2001) is quickly resolved. They considered only 
the Pratt and the Claudy approximation of the Olkin-
Pratt estimator but not the more elaborate versions. 
Additionally, they used bias as the only metric for 
comparison. Thus, were they to repeat their study with 
the estimator included in this comparison, they should 
conclude that the exact Olkin-Pratt estimator should 
always be used.

The conflict with Shieh (2008) can also be resolved. 
While Shieh (2008) considered bias and MSE, he eventually 
based his conclusions almost exclusively on bias. 
Additionally, he considered computational complexity and 
the estimator not returning impossible negative values as 
factors. Balancing all these factors lead to the positive-part 
Pratt estimator. Using this same balance of factors, I would 
expect that the results presented here would not change 
the recommendation by Shieh (2008).

While the rationale presented in Shieh (2008) is sound, 
the rationale given here has several advantages. First, 
computational complexity becomes an irrelevant factor 
due to the R package provided, which can compute all 
estimators within milliseconds. Second, while ignoring 
estimators that do not return impossible negative 
values is intuitively appealing and beneficial from a 
pure MSE-based perspective, it is detrimental from the 
more prevalent unbiasedness perspective. As I already 
mentioned, the fact that an estimator is unbiased 
guarantees that when estimates for the same property of 
interest are obtained based on multiple studies, then the 
average of these estimates converges to the true value. 
Consequently, from this perspective, returning impossible 
values on one sample is less detrimental than converging 
on the wrong value when averaging across many samples 
(see, Okada, 2017, for a paper-length elaboration of this 
argument).

Limitations and Future Work
All results presented here rely on the assumption of a 
multivariate normal distribution of the predictor variables. 
This limitation is shared with all previous comparisons. As 
such, repeating this study with different distributions for 
the predictor variables to investigate the robustness of the 
results with regard to this assumption is recommended 
for future work.

Assessing bias and MSE through a simulation study has 
several disadvantages. First, the values are estimated and 
not computed exactly. I mitigated this issue by employing 
a much larger number of replications than previous 
comparisons (100,000) and hypothesis tests to account 
for the remaining small uncertainty of the estimates. I 

did not use more precise alternatives such as analytical 
derivations or numerical methods (Shieh, 2008) because 
both approaches would not allow a direct assessment of 
the provided R package.

A second disadvantage is that the conclusions from a 
simulation study often do not generalize beyond the 
considered design. I diminished this issue by augmenting 
the results of the simulation study with theoretical results. 
As such, the central finding that the Olkin-Pratt estimator 
is uniformly minimum MSE unbiased generalizes beyond 
the design considered. Whether the outcome that overall, 
the Ezekiel estimator performs best in terms of MSE also 
generalizes to other designs remains to be investigated. 
Also, selecting the MSE optimal estimator is only possible 
if the parameters of a data set (sample size, number of 
predictors) lie within the range considered here. For this 
reason, I carefully selected the parameter ranges such that 
they cover the majority of parameter values reported in 
psychology. Nevertheless, providing a table for all relevant 
parameter combinations is impossible. Instead, I advise 
researchers to run their own small simulation studies to 
determine the MSE optimal estimator for their particular 
situation. To facilitate this, I share the code used for 
running the simulation study as supplementary material 
https://doi.org/10.24433/CO.8023088.v3.

Conclusion
In conclusion, I recommend using the exact Olkin-
Pratt estimator by default. However, if the researcher 
is confident that minimizing MSE is more critical than 
unbiasedness, then a different estimator should be 
used. In this case, I recommend an individualized choice 
based on the strategy described at the beginning of this 
discussion, and if this is not feasible or the sample size 
N is large compared to the number of predictors p, the 
positive-part version of the Ezekiel estimator.
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Appendix A
Computation of the Hypergeometric Function
The hypergeometric function for real inputs a, b, c, z, ∈  
is as an infinite sum 2 1 0( , ; ; ) k kF a b c z t

   with addends

( ) ( )
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k k
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(q)k denotes the rising factorial, which is defined by

1 0
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( 1) ( 1) 0k
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q q q k k
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      

In general, the hypergeometric function is difficult to 
compute and for some inputs it is even not defined since 
it does not converge.

However, for the evaluation of the Olkin-Pratt estimator, 
the hypergeometric function only needs to be evaluated 
at the inputs a = 1, b = 1, c ∈ {m / 2 : m ∈  \ {0, 1}}, and 
z ∈ [0, 1] ⊂ . I restrict this further to the case c > 2, as 
this guarantees convergence. This restriction is fulfilled if 
N – p ≥ 3. Thus, there must be at least 4 samples more 
than there are predictors. For these inputs, closed-form 
solutions exist. For notational unclutterdness, I define the 
following function F (c, z) =2F1 (1, 1; c; z).

First, I discuss the pathological cases z =1 and z = 0. 
For z = 0, F(c; 0) = 0. For ( 1)

( 2)1, ( ;1) c
cz F c 
  .

Beyond those pathological cases, two cases have to be 
distinguished: 1) c being an integer, and 2) c not being an 
integer but divisible by 0.5.

For 1) c being an integer, a closed-form solution is 
presented in “Gauss Hypergeometric Function 2F1: Specific 
Values” (2019). It is:

 
1

2
2

( 1) 1 1 1
( ; ) log 1

( 1)

k cc

k

c z z z
F c z z

c k z zz





                  


For 2) c not being an integer but divisible by 0.5, the following 
rule presented in “NIST Digital Library of Mathematical 
Functions” (2019, Equation 15.5.16) can be leveraged.

D
ow

nloaded from
 http://online.ucpress.edu/collabra/article-pdf/6/1/45/458708/343-4856-1-pb.pdf by guest on 15 April 2021

https://doi.org/10.1525/collabra.149
https://doi.org/10.3102/10769986027003223
https://doi.org/10.3102/10769986027003223
https://doi.org/10.1038/s41562-017-0189-z 
https://doi.org/10.1038/s41562-017-0189-z 
https://doi.org/10.1098/rspa.1928.0224
https://doi.org/10.1098/rspa.1928.0224
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/06/07/02/
http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/03/06/07/02/
https://doi.org/10.1016/j.neuroimage.2019.05.030
https://doi.org/10.1016/j.neuroimage.2019.05.030
https://doi.org/10.2466/03.11.PMS.112.2.331-348
http://dlmf.nist.gov/
https://doi.org/10.3758/s13428-016-0760-y
https://doi.org/10.3758/s13428-016-0760-y
https://doi.org/10.1214/aoms/1177706717
https://doi.org/10.1214/aoms/1177706717
https://arxiv.org/abs/1407.7786
https://doi.org/10.1177/01466216970214001
https://doi.org/10.1177/01466216970214001
https://doi.org/10.1177/1094428106292901
https://doi.org/10.1214/10-STS330
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1080/00220970109600656


Karch: Improving on Adjusted R-SquaredArt. 45, page 10 of 11  

2 1(0,1; ; ) (1 ) ( ; )
( 1; ) .

( 1)

c F c z c z F c z
F c z

c z
 

 


Subsituting 2F1(0,1; c; z) = 1, this becomes the following 
recursive equation

(1 ) ( ; )
( 1; ) .

( 1)
c c z F c z

F c z
c z

 
 



with the base 1
2( ; )F z . The value of the base is known

1 1 arcsin( )
; 1

2 1 1

z z
F z

z z

            

These observations lead to the following algorithm for 
calculating the function F(c; z), which I display in the form 
of R code.

cur_c <- i - 1

cur_res <- (cur_c - cur_c * (1 - z) * cur_res) / (z * (cur_c - 1))

}

result <- cur_res

}

return(result)

}

hypergeo_analytical <- function(c, z) {

if (z == 0) {

return(1)

} else if (z == 1) {

return((c - 1) / (c - 2))

} else if (c %% 1 == 0) {

shared <- ((z - 1) / z)

the_sum <- 0

for (k in seq(from = 2, to = (c - 1), by = 1)) {

the_sum <- the_sum + shared^k / (c - k)

}

prefactor <- (c - 1) * z * (z - 1)^(-2)

result <- prefactor * (the_sum - shared^c * log(1 - z))

} else {

cur_res <- 1 / (1 - z) * (1 + (sqrt(z) * asin(sqrt(z))) / sqrt(1 - z))

for (i in seq(from = 1.5, to = c, by = 1)) {

While this algorithm works in general, it returns wrong 
results for some inputs if implemented using floating-
point arithmetic, as is commonly used in R and most 
other programming languages. In particular, the case 
z < 0.5 leads to wrong results. To resolve this, I relied 
on recent work about how to accurately compute the 
hypergeometric function using floating-point arithmetic 
(Pearson, Olver, & Porter, 2015).

In particular, I used the Taylor series approach, which 
is described in detail in Pearson et al. (2015, Section 
4.2). The Taylor series approach works similarly to the 
approximation of the hypergeometric series in the 
OKP estimators. It also relies on approximating the 
hypergeometric series by only employing a finite number 
of addends tk up to some threshold K. However, the crucial 
difference is that the threshold K is not fixed but is chosen 
dynamically such that the approximation error is minimal 
(see, Pearson et al., 2015, Section 4.2 for details).

To estimate the discrepancy between the Taylor series 
approach and the analytical algorithm, I used an input 
range for which the analytical algorithm returns correct 
results; in particular, z ∈ (0.5, 0.99), and c ∈ [5,1000]. In 
this range, the maximum difference between the Taylor 
series approach and the analytic algorithm was < 10-12. 
Thus, the Taylor series approach and the analytical 
algorithm are virtually indistinguishable. Consequently, 
while the Taylor series approach is an approximation, its 
approximation error is so small that I consider it exact.

Appendix B
Data Generation Details
Here, I will explain how I simulated data for a given 
combination of sample size N, number of predictors p, 
and squared multiple correlation ρ2.

As I mentioned in the main text, the core assumption of 
this paper is that the predictors have a multivariate normal 
distribution with mean vector µx and covariance matrix Σx. 
As the mean vector µx, I used the vector of p zeros and 
as the covariance matrix Σx the p × p identity matrix. To 
obtain N observations for each predictor, I sampled from 
this distribution N times.

Generating the dependent variable such that it leads to 
a certain squared multiple correlation values ρ2 is more 
complex. As the first step, I abitrarily set the error variance 
of 2   to 10. By rearranging Equation 2 to

2
2

2
,

1Y










the problem reduces to generating the dependent variable 
Y such that it has a total variance of 2

Y . The total variance 
2
Y  can be expressed as a function of the regression 

coefficients β = [β1,…, βp]
, the error variance 2  , and the 

covariance matrix of the predictors Σx:

2 2 .Y X     
 � (3)

There is still an infinite number of regression weights 
β that lead to a given total variance 2

Y . To solve this 
problem, I used the restriction that all regression weights 
must be equal. I denote their value with β*. Using this 
restriction, and the fact that the covariance matrix Σx was 
the identity matrix, Equation 3 simplifies to

2 2 2
*Y p    

and the value β* for the regression coefficients is thus

2 2

* .Y

p
 




 

With the error variance 2
Yσ  and the regression coefficients 

β, the dependent variable can be generated by applying 
Equation 1. As intercept β0, I used 100.

Appendix C
Estimators With the Lowest Mean Squared Error
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Table C1: Estimator with the lowest mean squared error for each sample size N, number of predictors p, and mulitiple 
squared correlation ρ2 combination.

ρρ2

N p 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10.00 2.00 E+ E+ E+ S+ R2 R2 R2 R2 R2 C+

10.00 5.00 E+ E+ E+ E+ S+ W+ R2 R2 R2 R2

20.00 2.00 E+ E+ E+ R2 R2 R2 R2 R2 R2 C+

20.00 5.00 E+ E+ E+ W+ W+ W+ R2 R2 R2 R2

20.00 10.00 E+ E+ E+ E+ W+ W+ W+ W+ W+ R2

30.00 2.00 E+ E+ W+ R2 R2 R2 R2 R2 R2 C+

30.00 5.00 E+ E+ E+ W+ W+ W+ R2 R2 R2 R2

30.00 10.00 E+ E+ E+ W+ W+ W+ W+ C+ C+ C+

40.00 2.00 E+ E+ W+ R2 R2 R2 R2 R2 R2 C+

40.00 5.00 E+ E+ W+ W+ W+ W+ R2 R2 R2 R2

40.00 10.00 E+ E+ E+ W+ W+ W+ W+ C+ C+ C+

50.00 2.00 E+ E+ ML ML R2 R2 R2 R2 R2 C+

50.00 5.00 E+ E+ W+ W+ W+ W+ R2 R2 R2 R2

50.00 10.00 E+ E+ S+ W+ W+ W+ W+ C+ C+ C+

60.00 2.00 E+ E+ ML ML R2 R2 R2 R2 C+ C+

60.00 5.00 E+ E+ W+ W+ W+ W+ R2 R2 R2 R2

60.00 10.00 E+ E+ W+ W+ W+ W+ W+ C+ C+ C+

100.00 2.00 E+ S+ ML ML R2 R2 R2 R2 C+ C+

100.00 5.00 E+ S+ ML ML ML W+ R2 R2 R2 R2

100.00 10.00 E+ E+ W+ ML W+ W+ C+ C+ C+ C+

150.00 2.00 E+ ML ML ML R2 R2 R2 R2 C+ C+

150.00 5.00 E+ S+ ML ML ML W+ R2 R2 R2 R2

150.00 10.00 E+ S+ W+ ML ML W+ C+ C+ C+ C+

Note: E+ = positive-part Ezekiel; S+ = positive-part Smith; ML = Maximum Likelihood; R2 = normal R2; W+ = positive-part Wherry; 
C+ = positive-part Claudy.

The columns for p2 = 0 and 0.01 are not shown. In this conditions, the positive-part Ezekiel estimator is always best as for the 
p2 = 0.05 column.
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