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The simple idea of splitting a sample into two and 
then developing the hypothesis on the basis of one 
part and testing it on the remainder may perhaps 
be said to be one of the most seriously neglected 
ideas in statistics.

—G. A. Barnard (commentary in Stone,  
1974, p. 133)

Null-hypothesis significance testing is still the dominant 
paradigm in psychological research despite numerous 
rounds of debate (Chow, 1998; Cohen, 1994; Hagen, 
1997; Krueger, 2001; Nickerson, 2000; Rozeboom, 1960). 
The many alternatives that have been proposed include 
a focus on estimation and confidence intervals (Cumming, 
2014) and a Bayesian approach (see Wagenmakers, 
2007). A particularly intriguing sentence in Wagenmakers’s 
(2007) discussion of the latter alternative reads as fol-
lows: “The universal yardstick for selecting between com-
peting models is predictive performance” (p. 795). In this 
Tutorial, we follow this lead of focusing on predictive 
performance in a cross-validation framework.

Since early this century, there has been an increased inter-
est in prediction, as opposed to explanation (Breiman, 2001; 
Shmueli, 2010). Explanatory data analysis starts with a 
theory about an empirical phenomenon. The statistical 
model is a translation of the theory into mathematical 

form, and statistical inference (tests, standard errors,  
p values) is used to test the theory. The parameters of 
the model—for example, the regression weights in a 
multiple regression model—are its key elements because 
they provide the test of the theory.

In contrast, in the predictive approach, the model 
itself is not of great interest, but the predictions the 
model generates are. In other words, to continue our 
previous example, the regression weights of a multiple 
regression model are not of interest, but the predictions 
that the regression model makes are. (For a recent 
discussion of the distinction between the inferential and 
prediction approaches in psychology, see Yarkoni & 
Westfall, 2017. More statistical treatments can be found 
in Breiman, 2001, and Shmueli, 2010.)

The theory underlying predictive models rests on the 
trade-off between bias and variance. Simply stated, the 
more complex a model is (i.e., the more parameters it 
includes), the better it will fit the data (less bias), but 
the more variable its predictions will be (more vari-
ance). On the other hand, a simpler model will fit worse 
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(more bias), but its predictions will be less variable 
(less variance). In a formal sense, when one fits a sta-
tistical model to a sample of data and investigates its 
predictive performance, the expected prediction error 
decomposes into (squared) bias and variance of the 
fitted model (Hastie, Tibshirani, & Friedman, 2009). The 
bias represents how far the average estimated model is 
from the true population model, whereas the variance 
represents the variability of the estimated models from 
sample to sample (for a detailed mathematical treat-
ment, see Hastie et al., 2009, and Matloff, 2017; more 
narrative treatments specific to psychology can be 
found in Yarkoni & Westfall, 2017; Chapman, Weiss, & 
Duberstein, 2016; and McNeish, 2015). Trading off bias 
and variance in practical data analysis is often per-
formed through cross-validation.

In its early years, the psychometric literature already 
included a substantial amount of work on trading off 
bias and variance, most notably through simple weight-
ing schemes for regression (Lawshe & Schucker, 1959; 
Pruzek & Frederick, 1978; Schmidt, 1971; Wainer, 1976), 
but also through estimating shrunken regression weights 
(Darlington, 1978; Rozeboom, 1979). Both methods 
allow for bias in the regression equation (simple unit 
weights or shrunken weights will, on average, not be 
equal to the population weights) in order to reduce the 
variance (i.e., unit weights do not depend on the data 
and therefore have zero variance).

It is often claimed that ordinary least squares regres-
sion produces unbiased estimates of the population 
model’s parameters. This sounds reassuring but is gen-
erally false. The claim should be that if the assumptions 
of regression are true, ordinary least squares regression 
produces unbiased estimates. This is an important qual-
ification that has been at the center of a great deal of 
confusion because, in general, the assumptions of a 
linear regression model are not strictly true, and the 
regression coefficients might therefore be biased. For 
example, if the relationship between two variables is 
nonlinear in the population, ordinary least squares lin-
ear regression cannot be correct on average.

The goal of explanatory modeling is to identify the 
true, unbiased model, so that a theory can be tested, 
whereas the goal of predictive modeling is to identify 
false (biased) but stable models. A researcher who 
wants to test whether a coefficient in the true underly-
ing probability model equals zero should use a statisti-
cal test resulting in a p value, because cross-validation 
does not consistently find the true underlying model. 
Whereas p values test the hypothesis that an effect is 
zero in the population, cross-validation tests whether 
a model’s predictions become better if this effect is 
added to the model. Hagerty and Srinivasan (1991) 

showed that including true but small effects in a statisti-
cal model does not always make predictions better.

In the early days of psychometrics, there was quite 
strong interest in cross-validation of regression equations 
(Mosier, 1951). The motivation was that the explained 
variance for the sample used to develop a regression 
model will to some extent reflect model overfit and be 
too high. A better estimate of explained variance there-
fore comes from a new sample that is entirely indepen-
dent of the development sample. Mosier (1951) was the 
first to propose something like what is nowadays often 
referred to as two-sample cross-validation, that is, fitting 
a regression model in the first sample and validating it 
in the second, fitting the model in the second sample and 
validating it in the first, and then taking the average of 
the two obtained correlations as the final cross-validation 
coefficient. Alternatively, there are statistical adjustments 
that one can make to estimate cross-validation results (see, 
e.g., Darlington, 1968; Rozeboom, 1978; and Claudy, 1978).

There are advantages to both approaches. The two-
sample cross-validation approach requires no distribu-
tional assumptions (Browne, 2000), but the formula- 
adjustment approach uses the data more efficiently. 
That is, two-sample cross-validation is inefficient in the 
sense that both the calibration (or training) set and the 
validation (or test) set are much smaller than the com-
plete data set. Therefore, the estimation is not as effi-
cient as it could be, and the validation set is small. 
Stone (1974) and Geisser (1975) tried to alleviate both 
concerns by introducing leave-one-out cross-validation, 
in which the data for N – 1 persons are used to estimate 
a model, and the data for 1 person are used to validate 
it, and this procedure is repeated until every observa-
tion has been used as the validation sample. Because 
the training samples are almost as large as the complete 
data set, much more efficient use is made of the data.

All these approaches use cross-validation to assess 
one final regression equation, that is, a model that has 
been obtained from the data in some way, say, by using 
p values. In machine learning, cross-validation is most 
often used for evaluation of different modeling proce-
dures and for variable or model selection. In the case 
of model selection, every model under consideration 
is cross-validated, and the one with the smallest pre-
diction error (i.e., loss) is selected. Such a procedure 
might be useful for psychological research but has not 
often been used by psychologists. One of the reasons 
might be that psychological researchers do not know 
how to perform such cross-validation, as there is no 
standard statistical software routine available for per-
forming it. SPSS, for example, does not have a cross-
validation tool, nor does it have the capability of fitting 
a regression model on part of the data and using the 
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fitted model to make predictions for another part of 
the data.

The goal of this Tutorial is to provide a rough outline 
of cross-validation for model selection, to introduce 
easily usable software (an R package) we have devel-
oped for this purpose, and to present a set of empirical 
examples. We conclude with a discussion on the use of 
the R package, the difficulties of model selection in gen-
eral, and the relationship between our cross-validation 
procedure and other forms of cross-validation.

Cross-Validation: Theory and an  
R Package

The oldest and simplest way to perform cross-validation 
is independent verification, in which one has two inde-
pendent data sets: a calibration set (C) and a validation 
set (V). The observations in the calibration set can be 
indexed with i = 1, . . . NC, and those in the validation 
set with j = 1, . . . NV.

In the calibration set, one fits the statistical model, 
for example, yi = a + bTxi + ei, to obtain estimated 
parameters a  and b . In the validation set, one uses the 
estimated parameters and the values of the predictor 
variables (xj) to compute predictions: yj  = â + b̂T xj. 
The predicted values yj  are used to compute the root 
mean square error of prediction (RMSEp):

RMSE
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In R (R Core Team, 2018), one can easily fit a model 
on the calibration set using the following code to obtain 
the estimated parameters:

output = glm(y ~ x, data = calibrationdata).

With the output of the model, one can make predictions 
for new data (i.e., the validation data) by using

predictions = predict(output, newdata = 
validationdata, type = "response").

Finally, the root mean square error of prediction can 
be computed using

sqrt(mean((predictions - validationdata 
$y)^2)).

We deliberately focus on an unstandardized mea-
sure on the scale of the original response variable. 
Within a sample, there is a direct link between the 

mean square error and the explained variance. Out of 
that sample, however, this link is broken because the 
mean is not calibrated. Therefore, Model 1 might predict 
ŷ j  = {1, 2, 3, 4, 5}, and Model 2 might predict ŷ j  =  
{7, 8, 9, 10, 11}, when the actual observations in the vali-
dation set are yj = {6, 7, 8, 9, 10}. It is clear that for both 
sets of predictions, the correlation with the observed 
outcome equals 1, whereas the RMSEp equals 5 for the 
first set of predictions and 1 for the second set (for more 
details, see Alexander, Tropsha, & Winkler, 2015).

This Tutorial focuses on cross-validation for model 
selection. In this scenario, the researcher has two or 
more models of interest and is interested in determining 
which model is best. In cross-validation, “best” is opera-
tionalized as having the smallest root mean square error 
of prediction. Our focus is on models from the family 
of generalized linear models. Many standard analysis 
tools often used in psychology fall in this family; these 
include the one-sample and two-samples t test, one-way 
and multiway analysis of variance, (multiple) regres-
sion, analysis of covariance, and logistic regression. 
Furthermore, this family is easily enriched to develop 
nonlinear regression models using polynomials (as we 
show) or splines. (See, e.g., Fox, 2016, for the general 
framework that links these analytic techniques.)

An important disadvantage of independent verifica-
tion is that one needs two data sets. A rather simple 
alternative to collecting two data sets is to collect only 
a single data set and then divide it into two independent 
sets. James, Witten, Hastie, and Tibshirani (2013) called 
this the validation-set approach to cross-validation. One 
part of the original data set takes the role of the calibra-
tion set, whereas the other takes the role of the valida-
tion set. As noted earlier, however, this strategy for 
performing cross-validation is not very efficient, 
because only half of the data is used to fit the model. 
Indeed, 70 years ago, Mosier (1951) already pointed to 
the loss of information in such an approach. However, 
the idea of splitting a data set into a calibration set and 
a validation set can be recycled: One can split the data 
into K independent sets of observations and use every 
set in turn as the validation set for which the other  
K – 1 sets are the calibration set. This is called K-fold 
cross-validation, and it leads to predictions for every 
observation in the data set. The data are thus used more 
efficiently. K is often chosen to be equal to 5 or 10 (see 
the section titled Choices to Be Made by the Researcher 
for further discussion about this choice). There are 
many ways in which the data can be partitioned into 
K sets, and each leads to a slightly different estimate of 
the root mean square error of prediction. To deal with 
these different estimates, it is necessary to repeat the 
cross-validation several times (Harrell, 2015). Using a 
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large number of replications (also termed repeats) 
solves the problem that one model might be favored 
as a result of a particular partitioning into sets. Repeat-
ing the K-fold cross-validation a number of times also 
has the advantage that one can count the number of 
times a particular model wins, that is, the number of 
times that model has a smaller prediction error than the 
other models under investigation.

We have implemented these ideas in the R package 
xvalglms. The main function in this package, xval.
glm, performs repeated K-fold cross-validation on a set 
of models. The user first needs to define a list of models 
and then calls the xval.glm function. Suppose you 
have a single predictor variable x and a response vari-
able y, and you would like to know whether predictions 
become more accurate if you use the predictor variable. 
You can compare the prediction errors of a model with 
and without the predictor variable as follows:

models <- vector(mode = "list", length = 2)
models[[1]] <- y ~ 1
models[[2]] <- y ~ 1 + x
output <- xval.glm(data = mydata, models)

This example specifies two regression models: Model 
1, with only an intercept (i.e., without the predictor 
variable), and Model 2, with an intercept and the 
predictor.

The function outputs the following information, 
along with a graph:

Results for (10-fold, 200 repeats)
Model:     | Wins |  2.5% |  mean | 97.5% |
[ 1] y ~ 1 |   0% | 0.409 | 0.412 | 0.418 |
[ 2] y ~ 1 + x |   100% |  0.394 | 0.401 | 0.410 |

For each model, the output shows the percentage of 
times it yields the smallest of the prediction errors from 
the models in competition (“wins” column), its average 
prediction error (“mean” column), and the 95% confi-
dence bounds for its prediction error (“2.5%” and 
“97.5%” columns).

The default graph has three panels (see Fig. 1). The 
upper panel shows the cumulative proportion of wins 
for each model during the repeated cycles of 10-fold 
cross-validation and can be used to verify whether the 
cross-validation results stabilized. If the lines are not 
flat at the end, the researcher should ask for more 
repeats of the K-fold cross-validation. The panel directly 
below shows boxplots of the 200 repetitions of predic-
tion error. The panel on the right shows a density esti-
mate for the boxplots. All this information is returned 
in an output object that can be saved.

Assumptions

Many introductory statistics textbooks emphasize the 
assumptions of statistical techniques. For linear regres-
sion, for example, the most important assumptions are 
(a) a linear relationship between the explanatory vari-
able and the response variable in the population, (b) 
normally distributed errors with constant variance 
(homoscedasticity), and (c) independence of the obser-
vations (Fox, 2016).

In the predictive mode, many of these standard 
assumptions are not needed any more. Focusing on the 
bias-variance trade-off is a strategy of actively seeking 
a bit of bias while diminishing variance. In that sense, 
there is no need to assume a linear relationship between 
the predictor and response variable; one can compare 
the predictive performance of several regression mod-
els, linear and nonlinear, and select one. The selected 
model is not necessarily equal to a true model (if that 
exists); it is the model that provides the best predictions 
as evaluated using the current data set. If the true popu-
lation model is nonlinear but the optimal predictive 
model is linear, this means that the usual assumption 
of normally distributed residuals with constant variance 
is false. Therefore, one can conclude that such a distri-
butional assumption for the residuals is not needed 
when one uses cross-validation for model selection.

However, the assumption that observations are inde-
pendent remains. If the observations are not indepen-
dent, the cross-validation procedure must be adapted 
to take into account the dependency. For clustered data 
(e.g., repeated measures within a participant or partici-
pants clustered in teams), a clustered variant of cross-
validation might be employed (Roberts et al., 2016).

What is important in cross-validation is the loss func-
tion employed to compute prediction error. In our 
examples, we use the square root of the averaged 
squared difference between the predictions and the 
actual observations. We could have focused on other 
loss functions, such as the average absolute loss, which 
probably would have led to other models being identi-
fied as optimal. In one of our application examples in 
the next section (and in the Supplemental Material), we 
illustrate the use of other loss functions.

Choices to be made by the researcher

Users of the cross-validation procedure have to make 
several choices: They must choose the number of folds, 
the number of repetitions, the loss function, and which 
models to compare. In our R package, we set some 
default values, which were chosen wisely and which 
we explain here:
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•• The choice of the number of folds is itself a bias-
variance trade-off. With K equal to the number of 
observations in the sample, an almost unbiased esti-
mate of the prediction error is obtained, because the 
size of the training sample in each of the folds is 
almost equal to the sample size. This absence of bias 
sounds good, but the variance from sample to sample 
is large. On the other hand, with K equal to 2, there 
is much less sample-to-sample variation, but the bias 
may be much larger because the training sample in 
each of the folds is only half of the sample size. 

Usually K = 10 is thought to be a good compromise, 
and we use it as default. When sample sizes are 
small—say, smaller than 40—we advise lowering K 
to, for example, 5.

•• Repetitions are important because they take away 
the randomness of results due to splitting the sam-
ple into K parts. Harrell (2015) advised using such 
repetitions. For our default, we chose a large num-
ber, 200. Because researchers nowadays have con-
siderable computational power, this is not an issue. 
To evaluate whether 200 repetitions is enough, a 
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Fig. 1.  Illustration of the output of the xvalglms package for a two-model comparison with 200 repetitions of 10-fold cross-validation. 
The upper panel shows the proportion of wins for each model as a function of the repetition number. The panel directly below shows 
boxplots of the two models’ prediction error (root mean square error of prediction, RMSEp); each box indicates the middle 50% of 
values, the horizontal line inside the box indicates the median, and the vertical lines represent the range from lowest to highest predic-
tion error, excluding outliers. The number of wins for each model is shown at the top. The panel on the right is a graph of the density 
estimates for the prediction errors of the competing models.



Cross-Validation	 253

researcher may look at the proportion of wins of 
each model over the repetitions (see, e.g., the top 
panel of Fig. 1). If the proportion of wins has sta-
bilized, the researcher can be confident that the 
number is large enough. If there is still large varia-
tion, we suggest increasing the number of repeti-
tions. Note that there is an interplay between the 
number of repetitions and the number of folds. If 
one uses leave-one-out cross-validation (K = sample 
size), there is no need to repeat the cross-validation 
because in every repetition exactly the same predic-
tion error is estimated.

•• As we have mentioned, our default for the loss func-
tion is the root mean square error. This is a loss 
function that can be used for different type of dis-
tributions in generalized linear models. However, in 
certain circumstances, a researcher might want to 
change the loss function. If, for example, one needs 
to make a decision for individuals, such as selecting 
them for treatment or a job, it is sensible to change 
the loss function for the logistic regression model 
to the misclassification rate. Alternatively, one might 
want to use a more robust version of a loss function 
and could choose absolute error loss instead of 
squared error loss for linear regression models. In 
the next section, we show how to change the loss 
function and discuss the implications of the choice 
of loss function for the model-selection results.

•• The last choice a researcher needs to make is which 
models to compare. Ideally, one would like to 
include all possible models, but especially in cases 
with many variables, comparing all possible models 
is not an option. The choice of models to compare 
can be guided from a more data-driven or a more 
theory-driven perspective. From a data-driven per-
spective, a researcher could let the data decide 
which models to include; however, such approaches 
can easily lead to underestimation of prediction 
errors (Hastie et al., 2009). The current implementa-
tion of our cross-validation R package does not 
include this form of estimation. Taking a theory-
driven perspective instead, a researcher has to 
choose which models to include. This can be done 
on the basis of, for example, theory or previous 
literature, but also on the basis of information 
regarding how likely certain models are. This latter 
option is akin to prior selection in a Bayesian frame-
work, in which certain models are assigned less 
weight if they are highly unlikely. Note that these 
issues arise mainly when there is a very large set of 
possible models. The number of variables in most 
psychological experiments is small enough to allow 
all models to be tested with our current framework.

Applications of Cross-Validation

In this section, we present six applications of the cross-
validation methodology. The first corresponds to a two-
samples t test. The corresponding predictive question 
is whether the overall mean for the two groups or a 
separate mean for each group provides better predic-
tion. In other words, does prediction become better if 
we use group information? The second application 
involves a univariate regression in which we would like 
to see whether the response variable is predicted better 
by using a predictor variable or by using the overall 
mean alone (i.e., an intercept-only model). Further-
more, we consider possible nonlinear relationships 
between the predictor and response variables by asking 
whether a second- or third-order polynomial predicts 
better than a linear regression does. Our third applica-
tion concerns a complex regression situation in which 
we expect higher-order interaction effects. In our fourth 
example, we look at a univariate regression with a 
dichotomous outcome. In this logistic regression, we 
also compare polynomial models. The choice of the 
loss function in the cross-validation procedure can 
affect the results, and we illustrate this in our fifth 
example. In the sixth example, we compare two theo-
ries using cross-validation, in order to choose the the-
ory that results in the most accurate predictions.

Before one can use the cross-validation function in 
xvalglms, it is necessary to download and load the 
package. This can be done as follows:

library(devtools)
install_github("Github-MS/xvalglms")
library(xvalglms)

Example 1: two-samples t test

The data set we use for this example is described in 
Howell’s (2015) textbook but originally came from 
Adams, Wright, and Lohr (1996). The authors were 
interested in the theory that homophobia may be 
unconsiously related to anxiety about being or becom-
ing homosexual. They administered an index of 
homophobia to 64 heterosexual males, who were then 
classified as either homophobic or nonhomophobic 
according to their scores. The men than saw sexually 
explicit videos portraying homosexual and heterosexual 
behavior, and their sexual arousal was recorded. Adams 
et  al. reasoned that if homophobia is unconsciously 
related to anxiety about one’s own sexuality, homopho-
bic individuals would show greater arousal in response 
to homosexual videos than would nonhomophobic 
individuals.
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The data for this example can be loaded from the 
Internet using

library(foreign)
mfile = "http://www.uvm.edu/~dhowell/
methods8/DataFiles/Tab7-5.sav"
Arousal = read.spss(mfile, to.data.
frame = TRUE)

This code puts the data in a data frame called Arousal.
In this example, we are interested in comparing pre-

dictions based on the overall mean with predictions 
based on the group means. We define these two models 
and then run our cross-validation function as follows:

models = vector(mode = "list", length = 2)
models[[1]] = Arousal ~ 1
models[[2]] = Arousal ~ 1 + Group
output = xval.glm(data = Arousal, models)

This code specifies a model predicting arousal level 
on the basis of the intercept alone (Model 1) and a model 
predicting arousal on the basis of whether someone is 
homophobic or nonhomophobic (group; Model 2). The-
oretically, the question that cross-validation will answer 
is whether adding the group variable leads to more accu-
rate predictions of arousal than are achieved by predict-
ing arousal from the overall mean arousal score only.

The output of this function is shown in Figure 2. 
Model 2 wins in all 200 cases and returns a much lower 
prediction error of around 12.20.

The two means that we need to use for making future 
predictions are 24.00 for Group 1 (homophobic) and 
16.50 for Group 2 (nonhomophobic). Predictions made 
using these means will be on average 12.20 units 
(RMSEp) off from the true value. This is quite a lot of 
error, but less than occurs when only the overall mean 
is used to make predictions.

Example 2: linear regression

A general goal of a study conducted by Margolin and 
Medina, and described in Wilcox (2017, p. 223), was to 
examine how children’s information processing is 
related to a history of exposure to marital aggression. 
Data were collected from 47 children. The aggression 
variable in this study reflected physical, verbal, and 
emotional aggression the children experienced during 
the previous year, and their information processing was 
measured on a recall test. We first read in the data in 
the data frame agdat:

mfile = "https://dornsife.usc.edu/
assets/sites/239/docs/

marital_agg_dat.txt"
agdat = read.table(mfile, header = TRUE)

A scatterplot of test score against aggression (see Fig. 
3) shows a decreasing trend in which test scores go 
down as aggression increases, although some upward 
trend for values of aggression is visible.

Next, we specify the theoretically relevant models:

models = vector(mode = "list", length = 4)
models[[1]] = test ~ 1
models[[2]] = test ~ Aggression
models[[3]] = test ~ poly(Aggression,2)
models[[4]] = test ~ poly(Aggression,3)
output = xval.glm(data = agdat, models)

The first model in this case specifies only the mean 
(an intercept). The second model includes aggression 
as a predictor. The question that cross-validation 
answers is whether the inclusion of this predictor leads 
to more accurate out-of-sample predictions. In this 
example, we also include nonlinear models: a quadratic 
polynomial (Model 3) and a cubic polynomial (Model 
4). With the last line of code, we call the cross-validation 
function to compare the predictive power of the four 
models. The results are shown in Figure 4. The qua-
dratic model predicts best; that is, the prediction error 
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Fig. 2.  Cross-validation results for the arousal data. Model 1 makes 
predictions based on the overall mean; Model 2 makes predictions 
based on the group means. The vertical axis represents the root 
mean square error of prediction (RMSEp). The number of wins is 
represented at the top of the graph. See Figure 1 for an explanation 
of the conventions used in the boxplots.
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is lower for the quadratic model than for the other 
models. Figure 3 shows the quadratic model fitted to 
the complete data. It is this model that might subse-
quently be used to interpret the relationship between 
aggression and score on the recall test.

The standard approach to model selection would use 
change in explained variance and incremental F tests. 
The F tests and resulting p values require assumptions 
such as normally distributed error terms with a mean 
of zero and constant variance. In the Supplemental 
Material, we show this analysis but also show that the 
assumptions are not tenable. The conditional mean of 
the residuals is not always zero, and the distribution of 
the residuals is positively skewed. These might affect 
the test statistics. The cross-validation procedure does 
not make these assumptions.

Example 3: moderated regression

In this section, we use publicly available data from a 
study that examined the effects of mortality salience 
(M) on attitudes about Muslims and multiculturalism (A) 
among native Dutch people with varying levels of 
national identification (N) and self-esteem (S; Tjew-A-
Sin & Koole, 2018a, 2018b). In their original study, the 
authors hypothesized and found a three-way interaction 
of mortality salience, national identification, and self-
esteem. They also found a main effect of national iden-
tification, a main effect of self-esteem, and a marginal 
interaction between self-esteem and mortality salience.

Exploring the data, we found 5 participants with 
extreme scores on the national-identification and 
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Fig. 3.  Scatterplot (with best-fitting regression line) of the aggression data: score on the recall 
test as a function of the aggression variable. The gray band represents uncertainty about the 
regression line (in the unlikely case that all assumptions are met, it represents the 95% con-
fidence interval).
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order polynomial of aggression, Model 3 uses a second-order poly-
nomial, and Model 4 uses a third-order polynomial. The vertical axis 
represents the root mean square error of prediction (RMSEp). The 
number of wins is represented at the top of the graph. See Figure 1 
for an explanation of the conventions used in the boxplots.
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self-esteem scales. In the Supplemental Material, we 
present analyses with and without the data for these 5 
participants. Here, for illustrative purposes, we report 
only on the data with the 5 participants removed. We 
note that the three-way interaction observed by Tjew-
A-Sin and Koole (2018b) is still present in this cleaned 
data set.

Whereas the authors used one complicated model 
and checked which effects were statistically significant, 
we approach this problem as a model-selection issue 
in which 16 different models are formulated. The sim-
plest is the intercept-only model (Model 1), and the 
most complex is the one including all main effects, all 
two-way interactions, and the three-way interaction 
(Model 16):

models = vector(mode = “list”, length = 16)
models[[1]] = A ~ 1
models[[2]] = A ~ M
models[[3]] = A ~ N
models[[4]] = A ~ S
models[[5]] = A ~ M + S
models[[6]] = A ~ M + N
models[[7]] = A ~ S + N
models[[8]] = A ~ M + S + N
models[[9]] = A ~ M * S + N
models[[10]] = A ~ M + S * N
models[[11]] = A ~ M * N + S
models[[12]] = A ~ M * N + M * S
models[[13]] = A ~ M * N + N * S
models[[14]] = A ~ M * S + N * S
models[[15]] = A ~ M * S + N * S + M * N
models[[16]] = A ~ M * N * S

The results of this analysis are shown in Figure 5. 
There are four competing models: Model 3, with only 
a main effect of national identification (33% of the 
wins); Model 7, with main effects of self-esteem and 
national identification (10% of the wins); Model 9, with 
a two-way interaction between self-esteem and mortal-
ity salience and a main effect of national identification 
(16% of the wins); and Model 16, with the three-way 
interaction (42% of the wins). Although the latter model 
wins in 84 of the 200 repetitions, the average prediction 
error for this model is 0.667, whereas that of the model 
with only a main effect is 0.665, a little bit smaller. The 
other two competing models have a root mean square 
error of prediction of 0.667. Therefore, in terms of pre-
diction all these model do equally well. The most com-
plicated model has the widest 95% prediction interval, 
from 0.653 to 0.685 (see the Supplemental Material), 
which is also clearly visible in Figure 5.

In this case, cross-validation provides quite a bit of 
information. Although the model with the three-way 

interaction wins most often, the gain in prediction accu-
racy is very small. A model with only a main effect of 
national identification performs equally well and might, 
just because of its simplicity, be the preferred model.

In this case, we can also use a standard approach of 
fitting a series of regression models and looking at the 
change in explained variance and corresponding test sta-
tistics. We present this analysis in the Supplemental Mate-
rial. One problematic aspect of this procedure is that not 
all models are nested, and therefore not all models can 
be compared with statistical tests. Furthermore, many  
p values are computed, which raises the question of how 
to correct for multiple comparisons. These issues, which 
also arise in stepwise procedures, are known to be prob-
lematic. Finally, this analysis requires distributional 
assumptions for the residuals. The diagnostic plots ques-
tion the validity of these assumptions.

Example 4: logistic regression

Hastie and Tibshirani (1990) reported data on the pres-
ence or absence of kyphosis, a postoperative spinal 
deformity. For this example, the predictor variable is 
the age of the patient in months, and we model the 
relationship between kyphosis and age using a logistic 
regression. Therefore, let π(xi) = p(Yi = 1|xi) denote 
the conditional probability of having kyphosis given 
age x. The logistic regression model with a linear effect 
of age on the log odds of kyphosis can be written as
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We compare the predictive power of this model with 
that of a model including only the intercept (i.e., a 
model in which age does not predict kyphosis) and a 
model that also includes a quadratic term:
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We repeatedly estimate the model parameters in the 
calibration sets and then make predictions in the valida-
tion sets. These predictions are in the form of probabili-
ties π̂(xj). Using this prediction in our loss function gives

RMSE
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with yj ∈ {0,1}, which is known as the Brier score.
The data are available in the gam package (Hastie, 

2018), in which the response variable is a string vari-
able. In the following code, we first recode the 
response variable to a 0,1 variable, where 1 indicates 
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presence of kyphosis. We then define three logistic 
regression models, an intercept-only model, a logistic 
regression with age as predictor and a logistic regres-
sion with age and age-squared as predictors. Finally, 
the cross-validation function for a logistic regression 
is called:

library(gam)
data(kyphosis)
kyphosis[,1] = as.numeric(kyphosis[,1] 
== "present")

models = vector(mode = "list", length = 3)
models[[1]] = Kyphosis ~ 1
models[[2]] = Kyphosis ~ Age
models[[3]] = Kyphosis ~ poly(Age,2)
output = xval.glm(data = kyphosis, 
models, glm.family = binomial)

The results of the cross-validation are shown in the 
left panel of Figure 6. It is clear that the quadratic poly-
nomial of age gives the best predictions. The right panel 
of Figure 6 shows the quadratic model fitted on all the 
data. This is a single-peaked curve; first the probability 

goes up, and later it goes down. Nowhere does the 
probability become larger than .5, so for every person, 
the model predicts the absence of kyphosis. For patients 
around the age of 100 months, the probability of kypho-
sis is about .40.

Example 5: changing the loss function

The default way to compute prediction error in our 
xval.glm function is by the root mean square error 
of prediction. As shown in the previous subsection, 
for logistic regression this equals the Brier score. In 
some situations, one might be interested in another 
loss function. For linear models, for example, one 
might be interested in the average absolute error. 
For logistic regression, one might be interested in 
the misclassification rate or the cross-validated 
deviance.

If another loss function should be employed, one 
first has to define it. This function must have two argu-
ments, the observed responses (y) and the predictions 
(preds). The function for the average absolute loss is 
defined in R as
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Fig. 5.  Cross-validation results for the Dutch data on attitudes toward Muslims and multiculturalism. Sixteen different 
models were formulated (see the text). The vertical axis represents the root mean square error of prediction (RMSEp). 
The number of wins is represented at the top of the graph. See Figure 1 for an explanation of the conventions used in 
the boxplots.
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absloss = function(y,preds){mean(abs 
(y - preds))}

With this function, we can run the four models for 
the aggression data again with the following adapted 
call:

output = xval.glm(data = agdat, models, 
loss = absloss)

Now prediction error is defined as the average absolute 
error. The results of these four models are portrayed in 
Figure 7. The quadratic model still provides the best 
results, although in this case the intercept-only and 
linear models are closer to the winner than before.

In the Supplemental Material, we also show exam-
ples in which we change the loss function in the logistic 
regression for the kyphosis data from the Brier score 
to the cross-validated deviance and the misclassification 
rate. The cross-validated deviance gives results similar 
to those for the Brier score, whereas the misclassifica-
tion rate completely changes the conclusions, thus 
demonstrating the importance of the loss function for 
the results. The misclassification rate is insensitive to 
differences in probabilities, whereas the Brier score and 
the deviance are sensitive to such differences. The 
analysis using the misclassification rate indicates that 
age does not have an influence on the presence of 

kyphosis and that no child will develop kyphosis. The 
analysis using the Brier score as the loss function indi-
cates that the probability of kyphosis is smaller than .5 
for every child, but also that 40% of the treated children 
around the age of 100 months will develop kyphosis. 
The main question for the surgeon, then, is whether or 
not this is an acceptable risk.

Another consideration in the choice of the loss func-
tion is the goal of the analysis. Is the goal to classify new 
patients, or is it to obtain better insight about the rela-
tionships between the variables (i.e., to advance theory)? 
In the first case, one should use the misclassification rate 
as measure of predictive performance; in the second 
case, it is better to use a more sensitive measure.

Example 6: comparing the predictive 
power of two theories

Pollack, VanEpps, and Hayes (2012) investigated the 
effect of economic stress on intentions to disengage 
from entrepreneurial activities. The participants in this 
study were 262 members of a networking group for 
small-business owners who responded to an online 
survey about the recent performance of their business 
and their emotional and cognitive responses to the 
economic climate.

The participants were asked a series of questions 
about how they felt their business was doing. Their 
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Fig. 6.  Results for the kyphosis data. The left panel shows the cross-validation results for three logistic models predicting kyphosis from 
age: Model 1 makes predictions based on an intercept-only model, Model 2 includes age as a predictor, and Model 3 is based on a qua-
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responses were used to create an index of economic 
stress (estress; higher scores reflect greater stress). 
They were also asked to rate the extent to which they 
had various feelings related to their business, such as 
feeling discouraged, hopeless, worthless, and the like. 
An aggregation of these ratings was used to quantify 
business-related depressed affect (affect; higher 
scores reflect more depressed affect). Another measure 
was entrepreneurial self-efficacy (ese), which indexed 
participants’ confidence in their ability to successfully 
engage in various entrepreneurship-related tasks, such 
as setting and meeting goals, creating new products, 
managing risk, and making decisions. Finally, they were 
also asked a set of questions to quantify their intentions 
to withdraw from entrepreneurship in the next year 
(withdraw; higher scores indicate greater withdrawal 
intentions). Moreover, we have a set of covariates: sex 
(0 = female, 1 = male), age (in years), and tenure 
(length of time in business).

For these data, there are two theories. The first the-
ory is that economic stress has an influence on with-
drawal intentions but that this effect is mediated by 
business-related depressed affect. When we take the 

covariates into account, this theory leads to a regression 
model with withdraw as the response and estress, 
affect, sex, age, and tenure as predictors. The 
second theory is that economic stress is not at all 
related to withdrawal intentions and that withdrawal 
intentions are just an effect of individual differences. 
That is, more confident persons have less depressed 
affect and therefore lower intentions to withdraw. 
When we take the covariates into account, this theory 
leads to a regression model with withdraw as the 
response and ese, affect, sex, age, and tenure 
as predictors.

The two theories lead to two regression models that 
are not nested. That is, these models are hard to com-
pare using statistical tests such as, for example, the 
likelihood ratio test. It is, however, quite easy to com-
pare the two theories using cross-validation. This can 
be done using the following code:

library(foreign)
ecdata = read.spss("estress.sav", 
to.data.frame = TRUE)

models = vector(mode = "list", length = 2)
models[[1]] = withdraw ~ tenure + 
estress + affect + sex + age
models[[2]] = withdraw ~ tenure + 
affect + sex + age + ese
output = xval.glm(data = ecdata, models)

The results are shown in Figure 8, which indicates 
that the second theory leads to more accurate predic-
tions (i.e., the prediction error is lower).

Discussion

Lately, there has been an increased interest in an old 
methodology: cross-validation. The importance of cross-
validation for psychological research was recognized 
quite early (Mosier, 1951). Nevertheless, this method is 
not often used in psychology, possibly because no sim-
ple software tools for implementing it are available. We 
have developed such a tool in the open-source software 
R. This R package can be downloaded from the Internet. 
The function uses K-fold cross-validation and uses many 
(200) repetitions in order to compare a set of models. 
Most often the models differ in one term, and the ques-
tion that is answered is, does this extra term lead to 
better predictions? The software is built around the fam-
ily of generalized linear models, which encompass many 
different analysis methods often used in psychology. 
The main function (xval.glm) is easily adapted to any 
other statistical method implemented in R that has an 
estimation and a prediction function.
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Fig. 7.  Cross-validation results for the aggression data with mean 
absolute error as the loss function. Model 1 makes predictions based 
on the overall mean, Model 2 makes predictions based on a first-
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second-order polynomial, and Model 4 uses a third-order polynomial. 
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package), as measured by the mean absolute error. The number 
of wins is represented at the top of the graph. See Figure 1 for an 
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We have presented several examples of cross-
validation for types of analyses often encountered in 
psychology. We hope that researchers can adapt the 
code for their own analyses. We have focused on model 
selection, in which several models of interest are 
defined and compared in a repeated K-fold cross-
validation procedure. The best model is selected and 
fitted to all the data, and the result might be used as a 
prediction tool for the future. Because of the repeti-
tions, our software package yields a distribution of the 
prediction errors. Note that because the optimal model 
is selected, there is a risk that these future predictions 
will be a bit worse compared with the distribution that 
is obtained in the analysis. This is simply due to regres-
sion to the mean, a phenomenon often observed. If an 
honest measure of prediction error is needed, the 
model selection is performed as described in the exam-
ples, the best model is fitted to the complete data, and 
finally a good measure of prediction error is obtained 
using an independent data set (i.e., a separate data set or 
an independent portion of the original data set). This 
amounts to doing repeated K-fold cross-validation and 
testing the selected model on an independent holdout set.

The function we have developed returns boxplots of 
the prediction error of the different models under con-
sideration, the number of wins of each of the models 
in the 200 repetitions, and a density curve of the pre-
diction errors for the different models. These density 
curves sometimes present a better picture of the distri-
bution of prediction errors than the boxplots do. In 
most of our examples, we had clear winners; that is, 
the distributions of prediction errors did not show much 
overlap, and the percentage of wins was largely in favor 
of one of the models. In our example of moderated 
regression, results were not as clear, and four compet-
ing models were identified. Experience shows that even 
if one model wins all the time, the distributions of 
prediction errors may have large overlap, suggesting 
that for every repeat, one model performs just a little 
better than the other ones. In such a case, the percent-
age of wins might be a misleading indicator, and the 
gain in prediction accuracy should be taken into 
account. To do so, it is important to relate the measure 
of prediction error to knowledge about the dependent 
variable. Is a gain of, for example, 0.5 meaningful in 
relation to the distribution of the response variable, and 
would such a gain be noticeable in practice? Sometimes 
there is considerable overlap in the distributions. For 
example, the percentages of wins for two models might 
be 55% and 45%. This means that the data cannot really 
distinguish between the two models. One choice in 
such a case would be to favor the more parsimonious 
model, that is, to conclude that there is not enough 

evidence that the extra term provides incremental valid-
ity. Another choice would be to conclude that there is 
not enough information to make a choice between the 
two models. In choosing between two models, one 
might take into account how easy it is to obtain the 
extra information required by the more complex one: 
If it is just a matter of asking a single question, it might 
be worthwhile to gather and use this information; on 
the other hand, if a really expensive test (in terms of 
time or money) is required, it may not be worthwhile 
to obtain this information in order to improve predic-
tions slightly.

Cross-validation is a resampling technique. Another 
resampling technique is the bootstrap (Efron & 
Tibshirani, 1993). The bootstrap is often used to obtain 
confidence intervals of the parameters of a statistical 
model, but it can also be used to assess predictive 
performance, via either of two approaches. In the first 
approach, many bootstrap samples are drawn from the 
observed data, and statistical models are fitted to each 
of them; that is, each of the bootstrap samples is used 
as the calibration sample, and the observations not in 
that bootstrap sample (often called the out-of-bag 
observations) are the validation set. The advantage of 
this procedure is that the calibration samples are as 
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large as the original sample. Because the bootstrap 
samples are drawn with replacement, a disadvantage 
is that only 63.2% of the observations in the original 
sample are in each bootstrap sample, and this creates 
bias. The second approach, which was developed to 
deal with this bias, is called the .632 bootstrap (Efron, 
1983; Efron & Tibshirani, 1997). Again, each bootstrap 
sample is used to calibrate the statistical models, but 
in this method the validation is performed on the boot-
strap sample as well as on the out-of-bag observations. 
This yields two estimates of prediction error, and the 
difference between these estimates indicates the opti-
mism of the in-sample approach. The final prediction 
error is computed as a weighted average of the two 
measures of prediction error.

A topic we have not discussed is models with tuning 
parameters, such as modern regression models like the 
lasso (Tibshirani, 1996). For cross-validation with such 
a model, one needs to find (a) an optimal value for the 
penalty parameter and (b) the prediction error for the 
regression model with the optimal penalty parameter. 
This can be done with nested cross-validation (Varma 
& Simon, 2006), in which K-fold cross-validation (inner 
loop) is performed within K-fold cross-validation (outer 
loop). More specifically, the data are split in K parts. 
One part is selected to be the test set, and the others 
are the training set. K-fold cross-validation is then per-
formed in the training set, by fitting the whole series 
of models for every possible value of the penalty 
parameter. The value that gives the smallest prediction 
error is then used to make predictions in the test set of 
the outer loop.

There are many ways to do cross-validation. We have 
focused on repeated K-fold cross-validation, which 
includes leave-one-out cross-validation. In addition, we 
have briefly discussed this method’s relationships with 
the bootstrap and nested cross-validation (see Kohavi, 
1995, for a more detailed comparison of cross-validation 
with the bootstrap). There are other related forms of 
cross-validation, for which brief descriptions can be 
found in Steyerberg (2009), Arlot and Celisse (2010), 
Kuhn and Johnson (2013), and Krstajic, Buturovic, 
Leahy, and Thomas (2014). Krstajic et al. also discuss 
the pitfalls and benefits of different cross-validation 
strategies.

We would like to conclude with the recommendation 
that cross-validation should be a standard procedure in 
data analysis, either as a model-selection procedure, as 
discussed in this article, or as validation of models 
selected in other ways. Focusing on out-of-sample per-
formance increases the chances that obtained results are 
replicable (Yarkoni & Westfall, 2017), or as Bokhari and 
Hubert (2018) declared, “the lack of cross validation can 
lead to inflated results and spurious conclusions.”
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