

The metallophilic interaction between cyclometalated complexes: photobiological applications

Zhou, X.

Citation

Zhou, X. (2021, May 26). *The metallophilic interaction between cyclometalated complexes: photobiological applications*. Retrieved from https://hdl.handle.net/1887/3158746

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3158746

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle #https://hdl.handle.net/1887/3158746 holds various files of this Leiden University dissertation.

Author: Zhou, X. Title: The metallophilic interaction between cyclometalated complexes: photobiological applications Issue Date: 2021-04-08

APPENDIX I SUPPORTING INFORMATION FOR CHAPTER 2

Scheme AI.1 (a) Toluene, BINAP, Pd(dba)₂, KOt-Bu, 85 °C, N₂, 3 days; (b) CH₃COOH, N₂, 135 °C, 12 h.

Figure AI.1 IR spectra of ligands **HL**¹ (a), **HL**² (b), palladium complexes **PdL**¹ (c), **PdL**² (d), and the reference complex [Fe(bbpya)(NCS)₂] (e).

Complex	PdL ²
Crystal data	
Chemical formula	$C_{21}H_{14}N_4Pd$
$M_{ m r}$	428.76
Crystal system, space	Monoclinic, $P2_1/n$
group	
Temperature (K)	110
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.3734 (3), 7.2412 (2), 20.6547 (6)
β (°)	100.020 (3)
$V(Å^3)$	1527.83 (8)
Ζ	4
Radiation type	Μο Κα
$\mu (mm^{-1})$	1.23
Crystal size (mm)	0.23 imes 0.11 imes 0.04
Data callection	
Data conection	SumarNaus Dual Cu at zone Atlas
A has mation as mastion	Supernova, Dual, Cu al zero, Allas
Absorption correction	Gaussian Cruchlic DBO 117120200 (Disclus Outerd Diffusction 2017)
	CrysAlls PRO 1.1/1.39.29c (Rigaku Oxford Diffraction, 2017)
	Numerical absorption correction based on gaussian integration over a
	multifaceted crystal model Empirical absorption correction using
	spherical harmonics, implemented in SCALE3 ABSPACK scaling
— —	algorithm.
T_{\min}, T_{\max}	0.625, 1.000
No. of measured,	20278, 3517, 3063
independent and	
observed $[I > 2\sigma(I)]$	
reflections	
R _{int}	0.036
$(\sin \theta / \lambda)_{max} (A^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)].$	0.025, 0.060, 1.07
$wR(F^2)$, S	
No. of reflections	3517
No. of parameters	320
No. of restraints	581
H-atom treatment	H-atom parameters constrained
Λ_{0max} Λ_{0min} (e Å ⁻³)	0.88 -0.79

Table AI.1 Crystallographic Data for PdL^2

Figure AI.2 Time-evolution of the absorption spectra of PdL^1 (left) and PdL^2 (right) in PBS: DMSO (50 µm, 1:1) solution at 310 K for 24 hours. The spectra were measured every 30 min.

Figure AI.3 Evolution of the absorption spectrum of complexes PdL^1 (a) and PdL^2 (b) when incubated in Opti-MEM containing 2.5% FCS at 310 K for 24 hours. The spectra were measured every 30 min. Inset: time evolution of the absorbance at 450 nm. The color of spectra change from black (0 h) to red (24 h).

Table AI.2 Octanol-water partition coefficients (log Pow) of the two palladium complexes.

Complex	log Pow	
PdL ¹	-0.64	
PdL ²	0.046	

Figure AI.4 Dose-response curves for A431 cells incubated with palladium complexes and irradiated 5 min with blue light (blue data points), or left in the dark (black data points). Photocytoxicity assay outline: cells seeded at 5×10^3 cells/well at t = 0 h; treated with **PdL**¹ or **PdL**² at t = 24 h; irradiated at t = 48 h, blue light (455 nm, 5 min, 10.5 mW cm⁻², 3.2 J cm⁻²); SRB assay performed at t = 96 h. Incubation conditions: 37 °C, 21% O₂, 7% CO₂.

Complex	λ_{abs} , nm ($\epsilon \ge 10^3 \text{ M}^{-1}$	λem	$\phi_p{}^b$	φa ^b	Lifetime (ns) ^{a,c}	
	cm ⁻¹) ^a	(nm) ^b			$ au_1$	$ au_2$
PdL ¹	251 (26.8), 286 (17.1), 422 (4.3)	539	0.0017	0.89	0.271±0.002 (97%)	6.4±0.3 (3%)
PdL ²	283 (16.7), 347 (11.7)	604	0.00084	0.38	0.333±0.005 (96%)	5.3±0.5 (4%)

Table AI.3 Photophysical data for PdL¹ and PdL²

^a Measurements were carried out in methanol. ^b Measurements were carried out at 450 nm excitation wavelength and in a solution of deuterated methanol in air atmosphere according to literature. The absorption of complexes at 450 nm were set below 0.1 to avoid the generation of excimer. A solution of $[Ru(bpy)_3]Cl_2$ (Tris(2,2'-bipyridyl)dichlororuthenium(II)) in deuterated methanol (photoluminescence quantum yield $\varphi_P = 0.015$, singlet oxygen quantum yield $\varphi_A = 0.73$) was used as reference. ^c Excitation source 375 nm. Biexponential model: $y = y_0 + A_1 \exp(-(x-x_0)/\tau_1) + A_2 \exp(-(x-x_0)/\tau_2)$

Figure AI.5 The phosphorescence lifetime spectra and fit curve of palladium complexes in methanol. Fit equation: $y = y_0 + A_1 \exp(-(x-x_0)/\tau_1) + A_2 \exp(-(x-x_0)/\tau_2)$.

Table AI.4 HOMO and LUMO energies, Energy gap (ΔE) of PdL¹ and PdL²

Complex	LUMO/eV	HOMO/eV	ΔE/eV
$PdL^{\overline{1}}$	-2.048	-5.258	3.21
PdL ²	-2.114	-5.644	3.53

Figure AI.6 TDDFT-calculated spectra for **PdL**¹, **PdL**² (left) and [**PdHL**¹]⁺, [**PdHL**²]⁺ (right) at the TZP/COSMO level in methanol. The theoretical curves were calculated and plotted in ADF with Gaussian Fixed Oscillator Strengths. Scaling factor = 1.0, peak width = 30 nm.

APPENDIX II SUPPORTING INFORMATION FOR CHAPTER 3

Scheme AII.1 Synthesis of ligands MeL^1 - MeL^3 and of their palladium complexes. Reaction condition: (a) CH₃I, KO*t*-Bu, DMF, room temperature, 24 h; (b) palladium(II) acetate, CH₃COOH, N₂, 135 °C, 24 h; (c) Palladium(II) acetate, MeOH, 65 °C, 24 h.

Figure AII.1 The aromatic region of the ¹H NMR spectrum of complexes [1]⁺-[3]²⁺ at low (2 mg/mL) and high (7 mg/mL) concentration. Solvent: CD₃OD.

Figure AII.2 DFT calculation of HOMOs (bottom) and LUMOs (top) orbitals of $[1]^+-[3]^{2+}$; occupied orbitals (HOMO) have red and blue lobes, and unoccupied orbitals (LUMO) brown and cyan lobes. Element color code: grey = C; orange = Pd; blue = N; white = H. Level of theory: ADF/DFT/PBE0/TZP/COSMO(water).

Complex	НОМО	/eV	LUMO/eV	ΔE/eV
[1]+	-6.24		-2.41	3.83
[2]+	-6.58		-2.46	4.11
[3] ²⁺	-6.95		-2.82	4.13

Table AII.2 HOMO and LUMO energies, energy gap (ΔE) of complexes [1]⁺-[3]²⁺.

Figure AII.3 TDDFT-calculated spectra for palladium complexes [1]⁺-[3]²⁺. Level of theory: ADF/TDDFT/PBE0/TZP/COSMO (water).

Figure AII.4 The phosphorescence lifetime spectra and fit curve of complexes $[1]^+-[3]^{2+}$ in water under air atmosphere at room temperature. Fit equation: $y = y_0 + A_1 \exp(-(x-x_0)/\tau_1)$ ([1]⁺ and [2]⁺, $y = y_0 + A_1 \exp(-(x-x_0)/\tau_1) + A_2 \exp(-(x-x_0)/\tau_2)$ ([3]²⁺). Excitation wavelength: 375 nm. The data were analysized via OriginPro 9.1.

comp	olex	H ₂ O	PBS	Opti-MEM FCS	with	Opti-MEM FCS	without	Opti-MEM BSA	with
Solut	ion only	54	40	894		107		8257	
[1] +	5 μΜ	37	65	2268		1936			
[T]	50 µM	146	187	19144		18970		14105	
[2]+	5 μΜ	30	58	2775		5657			
	50 µM	67	61	22311		25377		13359	
Г 2 12+	5 μΜ	56	60	927		136			
[3]-	50 µM	79	21	930		101		8056	

Table AII.5 The derived countrate (kcps) values of complexes in different solutions and different concentrations.

Figure AII.5 Size distributions according to DLS of solution of [1]OAc-[3]OAc at 5 or 50 μ M in different solvents.

Figure AII.6 DLS size distribution (left and middle) and derived count rate (right) of **[1]OAc** (50 μM) in Opti-MEM complete medium at different pH.

Figure AII.7 Time evolution of the absorbance spectra of solutions of $[1]^+$ - $[3]^{2+}$ in H₂O (a), PBS (b), cell medium with FCS (c), cell medium without FCS (d), H₂O with GSH (200 μ M, e) and H₂O with ascorbic acid (200 μ M, f) at 310 K. Concentration 50 μ M. The color change of the spectra indicates the time, with black corresponding to the first curve (0 h) and red to the last one (24 h).

Figure AII.8 TEM images of samples prepared from evaporated MilliQ water solutions of [1]OAc, [2]OAc, and [3](OAc)₂ (50 μM). Scale bar: 2 μm (top) and 200 nm (bottom).

Figure AII.9 The Cryo-TEM images of complexes $[1]^+$ - $[2]^+$ (50 μ M) in the Opti-MEM medium with or without FCS.

Figure AII.10 Structures of the DFT-optimized dimers $\{[1]^+\}_2$ (left) and $\{[2]^+\}_2$ (right).

Figure AII.11 The absorbance (a) and emission spectra (b) of [1]OAc (50 μ M) in water and Opti-MEM complete medium.

Figure AII.12 The absorbance of ABMDMA Opti-MEM complete solution (100 μ M) in the absence or presence of [Ru(bpy)₃]Cl₂ (50 μ M) under dark or blue light (450 nm) irradiation. (b) Absorbance time evolution and linear fit curve at 378 nm of ABMDMA Opti-MEM complete solution (100 μ M) in the absence or presence of [**1**]OAc (50 μ M), [Ru(bpy)₃]Cl₂ (50 μ M) under blue light irradiation. The baseline for these spectra was a solution of [**1**]OAc (50 μ M) or [Ru(bpy)₃]Cl₂ (50 μ M) in Opti-MEM medium without ABMDMA.

Figure AII.13 Dose-response curves for A549 and A431 cancer cells incubated with complexes [1]OAc-[3](OAc)₂ and cisplatin, either in the dark (black data points) or upon blue light irradiation (5 minutes, 5.66 mW cm⁻², 1.7 J cm⁻², blue data points), under normoxic condition (37 °C atmosphere, 21% O_2 and 7.0% CO₂).

Figure AII.14 Dose-response curves for A549 and A431cancer cells incubated with complexes **[1]OAc-[3](OAc)**₂, cisplatin, 5-ALA and Rose bengal either in the dark (black data points) or upon blue light irradiation (455 nm, 8 min, 3.54 mW cm⁻², 1.7 J cm⁻², blue data points) under hypoxic condition (37 °C atmosphere, 1% O₂ and 7.0% CO₂).

Figure AII.15 Graphical representation of the EC₅₀ values of complexes [1]OAc-[3](OAc)₂ in A549 and A431 in the dark or upon blue light irradiation, in normoxic vs. hypoxic conditions. (irradiation condition: normoxic 455 nm, 5 minutes, 5.66 mW cm⁻², 1.7 J cm⁻², hypoxic 455 nm, 8 min, 3.54 mW cm⁻², 1.7 J cm⁻²).

Complex	Treatmen t (ng Pd)	Metal uptake (ng Pd/millio n cells)	Metal uptake efficienc y (%)	Fractions	Metal distributio n (ng Pd/million cells)	Relative metal distributio n (%)
[1]OAc	212.84	19±7	5.2	cytosol membranes nucleus cytoskeleto n	0.7±0.1 0.23±0.03 0.23±0.03 17±3	3.5 1.1 1.1 94.3
[2]OAc	212.84	14±4	9.8	cytosol membranes nucleus cytoskeleto n	0.45 ± 0.05 0.68 ± 0.09 0.34 ± 0.04 12 ± 2	3.3 5.1 2.5 89.1
[3](OAc) 2	212.84	1.7±0.2	0.8	cytosol membranes nucleus cytoskeleto n	0.42±0.09 0.28±0.06 0 1.1±0.2	23.3 15.6 0 61.1

Table AII.7 Palladium cellular uptake according to ICP-MS analysis in the different fractions of A549 cells treated with **[1]OAc-[3](OAc)**₂ (1 μ M) in the dark after 24 h.

FITC-Annexin V

Figure AII.16 Annexin V/propidium iodide double staining FACS data for A549 cells after treatment with cisplatin (15 μ M) and complexes **[1]OAc-[3](OAc)**₂ (15 μ M) in the dark or upon blue light irradiation (455 nm, 5 minutes, 5.66 mW cm⁻², 1.7 J cm⁻²).

Scheme AII.2 The sketch of *in vivo* experiments for complexes [1]⁺ and [2]⁺.

Figure AII.17. Bodyweight of mice treated with [1]OAc and [2]OAc and control groups.

APPENDIX III SUPPORTING INFORMATION FOR CHAPTER 4

Figure AIII.1 ¹H NMR of complexes **[PtMeL²]OAc** and **[PtMeL²]OAc** at low (2 mg/mL MeOD) and high (7 mg/mL MeOD) concentration.

Figure AIII.2 (a) DFT calculation of HOMOs (bottom) and LUMOs (top) orbitals of $[1]^+$ and $[2]^+$ in monomer and dimer states. Occupied orbitals (HOMO) have red and blue lobes, and unoccupied orbitals (LUMO) brown and cyan lobes. Element color code: blue = N, grey = C, white = Pt and H.

Complex	Energy (nm)	Energy (eV)	Oscillator strength (f)	Orbital transition contribution
	370 3522	3 3177	0 3260	65.1% HOMO-1→LUMO
[1]+	570.3522	5.5477	0.3200	26.0% HOMO→LUMO+1
	441.1625	2.8104	0.2223	96.8% HOMO→LUMO
[2]+	275 1118	2 2052	0 4247	61.0%% HOMO-1→LUMO
	575.1118	5.5055	0.4247	35.7%% HOMO→LUMO
	518.4094	2.3916	0.0188	78.3% HOMO→LUMO
1[1],12+	471.8107	2.6278	0.0996	93.8% HOMO→LUMO
[1]2	151 6116	2 7272	0.0202	15.3% HOMO-2→LUMO
	434.0110	2.1213	0.0203	11.9% HOMO-1→LUMO+1
	473.1412	2.6204	0.0163	83.3% HOMO→LUMO
[2]2 ²⁺	447.1158	2.7730	0.0697	93.5%HOMO→LUMO
	413.8552	2.9958	0.0506	91.8% HOMO-1→LUMO

Table AIII.1 The lowest (λ >350 nm) and most intense (f > 0.01) TDDFT singlet-singlet transitions calculation information of platinum complexes in monomer and dimer states.

Figure AIII.3 Singlet oxygen generation of aggregates of **[1]OAc-[2]OAc** and reference $[Ru(bpy)_3]Cl_2$ in Opti-MEM complete medium. (a-c) The absorbance change of ABMDMA (100 μ M) in Opti-MEM complete in presence of **[1]OAc-[2]OAc** or reference $[Ru(bpy)_3]Cl_2$ (50 μ M) upon blue light irradiation (d) Evolution of the absorbance at 378 nm vs. irradiation time of ABMDMA (100 μ M) in Opti-MEM complete medium in the absence or presence of **[1]OAc-[2]OAc** or reference $[Ru(bpy)_3]Cl_2$ (50 μ M) under blue light irradiation. Irradiation conditions: 298 K, 450 nm, 5.23 mW cm⁻², 80 s.

Figure AIII.4 The phosphorescence lifetime spectra and fitting curves for platinum complexes [1]OAc and [2]OAc in aerated methanol, water and Opti-MEM. Fit equation: $y = y_0 + A_1 \exp(-(x-x_0)/\tau_1) + A_2 \exp(-(x-x_0)/\tau_2)$.

Figure AIII.5 The solid emission spectra of complexes **[1]OAc** and **[2]OAc** (excitation 450 nm, laser intensity 50 mW cm⁻², Edmund optics high-pass filter was used to filter the spectra below 500 nm).

Appendix III

Figure AIII.6 Time evolution for 24 h of the absorbance spectra of solutions of **[1]OAc** and **[2]OAc** (50 μ M) in PBS (a), OptiMEM with (b) or without (c) FCS medium (2.5 % v/v). Interval: 15 min, from black (0 h) to red (24 h).

Figure AIII.7 Size distribution observed by Dynamic Light Scattering (DLS) for **[1]OAc** and **[2]OAc** (50 μ M) dissolved in different buffers. PBS = phosphate buffer saline; BSA = bovine serum albumin (50 g/L in Opti-MEM medium); GB = globulin (30 g/L in Opti-MEM medium).

Figure AIII.8 TEM images of [1]OAc and [2]OAc (50 μ M) in Opti-MEM with FCS (2.5 % v/v).

Figure AIII.9 Selected timepoints from 16-h time-lapse confocal fluorescence live-cell imaging of **[1]OAc** uptake by A549 cells. The complex was added in the dish 15 min before initiation of the measurement (t=0). The top row shows overlayed bright field and **[1]OAc** fluorescence images. The bottom row shows **[1]OAc** fluorescence images. Red arrows indicate **[1]OAc** uptake by the cell. Brightfield and fluorescence (561 nm excitation) images were acquired every 50 s. Time is indicated in hours:minutes:seconds format. The selected time points are extracted from <u>Video S1</u>.

Figure AIII.10 Confocal images of A549 cells treated with or without complexes [1]OAc and [2]OAc (red, 650-750 nm, $\lambda_{ex} = 552$ nm), and staining with Hoechst 33342 (blue, 420-480 nm, $\lambda_{ex} = 405$ nm). Scale bar: 20 µm. complex concentration 5 µM, Pearson coefficients -1.

Figure AIII.11 Confocal microscopy overlapping images and pixel intensity curves for A549 cells co-treated with complexes **[1]OAc** (red, 5 μ M) and (green) dyes Endoplasmic reticulum Green Fluorescent Protein (GFP), Mitochondria GFP, MitoTracker Green FM, LysoTrackerTM Green DND-26, HCS LipidTOXTM Green Neutral Lipid Stain and BODIPYTM FL C5-Ceramide complexed to BSA Golgi. Green channel ($\lambda_{ex} = 488$ nm, $\lambda_{em} = 500-530$ nm). Red channel ($\lambda_{ex} = 552$ nm, $\lambda_{em} = 650-750$ nm).

Figure AIII.12 Confocal microscopy overlapping images and pixel intensity curves for A549 cells co-treated with complex **[2]OAc** (red, 5 μ M) and (green) dyes Endoplasmic reticulum Green Fluorescent Protein (GFP), Mitochondria GFP, MitoTracker Green FM, LysoTrackerTM Green DND-26, HCS LipidTOXTM Green Neutral Lipid Stain and BODIPYTM FL C5-Ceramide complexed to BSA Golgi. Green channel ($\lambda_{ex} = 488$ nm, $\lambda_{em} = 500 - 530$ nm). Red channel ($\lambda_{ex} = 552$ nm, $\lambda_{em} = 650 - 750$ nm).

Table AIII.2 Pearson's correlation coefficients measured for co-localization studies of complexes **[1]OAc** or **[2]OAc** and different organelle-staining dyes in confocal cell imaging shown in Figure S15 and S16.

Dro	Complex	
Dye	[1]OAc	[2]OAc
Endoplasmic reticulum GFP	-0.1 to 0.2	-0.1 to 0.2
Mitochondria GFP	-0.2 to 0.4	0.3 to 0.6
MitoTracker Green FM	0.2 to 0.4	0.3 to 0.5
LysoTracker [™] Green DND-26	-0.3 to 0.1	0.0 to 0.3
HCS LipidTOX [™] Green Neutral Lipid Stain	0.0 to 0.1	-0.1 to 0.1
BODIPY TM FL C5-Ceramide complexed to BSA golgi Dye	0.5 to 0.7	-0.4 to 0.6

Table AIII.3 Platinum cellular uptake according to ICP-MS analysis in A549 cells treated with [1]OAc and [2]OAc (5 μ M, 1 mL) in combination with different inhibition conditions after 2 h.

Complex	inhibitor	uptake (ng Pd/million cells)	Inhibition percent ^a
	control	111±25	0%
[1]OAc	dynasore	84±7	24%
	4 °C	52±2	53%
	control	159±5	0%
	dynasore	58±7	64%
	4 °C	66±8	58%

^a Inhibition percent = (uptake_{control}-uptake_{inhibitor})/uptake_{control} \times 100%.

Figure AIII.13 Electron Microscopy imaging of control A549 cells without platinum treatment (scale bar 1 μ M).

APPENDIX IV SUPPORTING INFORMATION FOR CHAPTER 5

Table AIV.1 Selected bond distances (Å) and angels (degree) in the crystal structure of PdL.

Distance (Å)		Angel (°)	
Pd-N1	2.144(3)	C11-Pd1-C17	92.09(12)
Pd-C11	1.969(3)	C11-Pd1-N1	80.17(11)
Pd-C17	1.972(3)	C17-Pd1-N1	171.99(11)
Pd-N3	2.163(3)	C17-Pd1-N3	80.24(11)°
Pd-Pd	3.518	N1-Pd1-N3	107.42(10)

Table AIV.2 TDDFT singlet-singlet transitions calculation information of PdL in monomeric or dimeric state.

State	Energy	Energy	Oscillator strength	Orbital transition
	(nm)	(eV)	(f)	contribution
Monomer	383.0	4.0697	0.1262	HOMO→LUMO 89.9%
	335.2	3.6989	0.3642	HOMO→LUMO+1 84.7%
	304.65	3.2369	0.7603	HOMO-1→LUMO 70.9%
Dimer	540.1232	2.2955	0.0043	HOMO→LUMO 100%
	501.6673	2.4714	0.0484	HOMO→LUMO 96%
	450.6614	2.7512	0.0168	HOMO→LUMO 47.3%
				HOMO-1→LUMO 36.9%
	400.7565	3.0938	0.0819	HOMO→LUMO+1 86.4%

Table AIV.3 The photophysical properties of PdL in monomeric state.

Solvent	λ_{abs} , nm ($\epsilon \ge 10^3 \text{ M}^{-1} \text{ cm}^{-1}$) ^a	$\lambda_{em} (nm)^{a,b}$	lifetime (ns) ^{a,d}	φ _p ^c	φ _Δ ^c
DMSO	343 (25.8), 405 (5.2), 481 (3.7)	564	0.406 ± 0.004	0 0008	0.00
THF	347 (22.5), 410 (4.3), 480 (2.9)	540	0.432 ± 0.005	0.0008	0.09

^a measurement were carried out in aerated DMSO or THF ^b excitation and concentration: 419 nm, 100 μM.

^c measurement was carried out in MeOD.

^d excitation source : 340 nm. Monoexponential model: $y = y_0 + A_1 \exp[-(x-x_0)\tau_1]$

Figure AIV.1 (a) DLS derived count rate in the DMSO/H₂O or THF/H₂O system of **PdL** (100 μ M) after 30 min self-assembly; (b) Size distribution of the DLS analysis in the DMSO/H₂O or THF/H₂O system of **PdL** (100 μ M) after 30 min self-assembly; TEM images of samples prepared from the DMSO/H₂O (c) or THF/H₂O (d) system of **PdL** (100 μ M) after 30 min self-assembly. Inset picture scale bar: 500 nm.

Figure AIV.2 (a) The molar absorption coefficient (black solid line) and emission spectra of **PdL** in tetrahydrofuran (THF) solution at different concentrations (blue dash line 10 μ M; black dash line 100 μ M, red dash line 1000 μ M). (b) Time evolution of the absorption spectra of H₂O/THF solution (100 μ M, 9:1, v/v) of **PdL** at 298 K for 30 min (30 s interval, the color of

spectra change from black (0 min) to red (30 min); the blue line is the absorbance spectra of **PdL** (100 μ M) in pure THF). Inset: time evolution of the absorption at 350 nm (black square), 480 nm (red dot), 504 nm (green triangle) of the solution. (d) Emission spectra of **PdL** (100 μ M) in pure THF (fw (V_{water}/V_{total}) = 0.0) and water/THF mixture (9:1, v/v, fw = 0.9); excitation 419 nm. (d) Emission spectra of **PdL** (20 μ M) in different THF/water ratio (from v/v = 10/0 to 1/9, excitation 450 nm).

Figure AIV.3 DLS scattering-derived count rate of **PdL** in Opti-MEM complete medium at 0 and 30 min under room temperature.

Figure AIV.4 Time evolution of the absorption spectrum of an Opti-MEM complete solution of 9,10-anthracenediyl-bis(methylene)-dimalonic acid (ABMDMA, 100 μ M) in the absence or presence of **PdL** (25 μ M) or rose Bengal, under green light irradiation (515 nm).

Figure AIV.5 The emission spectra of dihydroethidium (DHE) solution (DMSO or Opti-MEM complete) in the absence or presence of PdL (25 μ M) under green light irradiation (520 nm) or in the dark, over 60 s.

Figure AIV.6 Dose-response curves for 2D-monolayer (a) or 3D-spheroid (b) for different human cancer cell lines incubated with **PdL**, either in the dark (black data points) or upon green

light irradiation (green data points) under normoxic-2D (520 nm, 20 min, 10.92 mW/cm², 13 J/cm²), hypoxic-2D (520 nm, 32 min, 6.90 mW/cm², 13 J/cm²), normoxia-3D spheroid condition (520 nm, 32 min, 6.90 mW/cm², 13 J/cm²), or hypoxia-3D spheroid condition (520 nm, 55 min, 3.99 mW/cm², 13 J/cm²).

Figure AIV.7 Annexin V/Propidium iodide double staining FACS data for A375 cells after treatment with cisplatin (7.5 μ M) or **PdL** (0.5 μ M or 2 μ M) in the dark or upon green light irradiation (normoxic 520 nm, 20 min, 10.9 mW/cm², 13 J/cm²) after 2 (a), 4 (b) and 24 h (c)

Figure AIV.8 Bright filed images (left) and diameter (right, μ m) for A549 (a) and A375 (b) 3D tumor spheroids kept in the dark (black bars) or irradiated with green light (green bars, 520 nm, 13 J/cm²). Scar bar 500 μ m.

Figure AIV.9 The H&E staining of different mice organs after treatment with vehicle control or PdL, and either without or with green light irradiation (100 mW/cm², 10 min, 60 J/cm²). Scale bar 200 μ m.

Figure AIV.10 EM images showing the morphology of nanoparticles found in the blood of mice 12 h after intravenous tail injection of **PdL** (middle and right images), or in an untreated control mice (left image). Injection dose: 2.1 μ mol/kg, 0.9 mg/kg, 420 μ M, 100 μ L saline.

APPENDIX V SUPPORTING INFORMATION FOR CHAPTER 6

[1]Cl		[2]AuCl4	
Au-C28	2.030(7)	Au-N3	1.995(18)
Au-N3	2.046(6)	Au-N6	2.00(2)
Au-N4	2.050(6)	Au-N4	2.002(16)
Au-C1	2.060(5)	Au-N1	2.081(18)
C28-Au-N3	166.6(6)	N3-Au-N6	167.2(13)
C28-Au-N4	92.7(3)	N3-Au-N4	81.4(6)
N3A Au-N4A	81.5(3)	N6-Au-N4	93.2(9)
C28-Au-C1	96.5(3)	N3-Au-N1	88.8(9)
N3-Au-C1	91.3(3)	N6-Au-N1	99.0(7)
N4-Au-C1	166.9(4)	N4-Au-N1	163.0(13)

Table AV1. The selected bond distances (Å) and angels (°) of [1]Cl and [2]AuCl4.

Figure AV1. The crystal packing structure of [1]Cl with the intermolecular π - π stacking distance. The H and counterions were omitted for clarity.

Table AV2. The TDDFT singlet-singlet transitions calculation information of gold complexes.

Complex	Energy (nm)	Energy (eV)	Oscillator strength (f)	Orbital transition contribution
[1]+	451	2.7451	0.2282	97.4% HOMO→LUMO
	370	3.3471	0.1146	95.6% HOMO-1→LUMO
	694	1.7863	0.0074	97.8% HOMO→LUMO
[2]+	531	2.3334	0.0066	98.1% HOMO-1→LUMO
	469	2.6413	0.1915	95.9% HOMO→LUMO+1

Figure AV2. The TDDFT absorbance peaks and spectra of [1]⁺ and [2]⁺.

Figure AV3. Time evolution of the absorbance spectrum of [1]Cl and [2]Cl (50 μ M) in PBS solution (100 μ M) for 24 hours at 37 °C; measurement interval 15 min, color changes from black (0 s) to red (24 h).

Figure AV4. ¹H NMR of the precipitate formed after 24 h of incubation of compound [2]Cl (3.0 mM) and GSH (6.0 mM) at a ratio of 1:2 (top) and spectra of H₂biqbpy2 (bottom) added as a reference for peak identification. All spectra were measured in DMSO-d₆ at 25 °C.

Figure AV5. Dose-response curves for four cancer cells and one healthy skin cells incubated with [1]Cl under normoxic or hypoxic conditions, in the 2D-monolayer or 3D-spheroid model.

Figure AV6. Dose-response curves for four cancer cells and one healthy skin cells incubated with **[2]Cl** under normoxic or hypoxic conditions, in the 2D-monolayer or 3D-spheroid model.

Figure AV7. Dose-response curves for four cancer cells and one healthy skin cells incubated with cisplatin under normoxic or hypoxic conditions, in the 2D-monolayer or 3D-spheroid model.

Figure AV8. Bright-field imaging of 3D tumor spheroids treated with gold complexes or vehicle control (DMSO); scale bar is 500 μ m. The cells were seeded at t=0 (500 cells per well), treated at t=4 days, measured (diameter) at t=7 days.