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ABSTRACT

The use of molecular tools for the detection and identification of invertebrate 
species enables the development of more easily standardizable inventories of 
biological elements for water quality assessments, as it circumvents human-
based bias and errors in species identifications. Current Ecological Quality Ratio 
(EQR) assessments methods, however, often rely on abundance data. Translating 
metabarcoding sequence data into biomass or specimen abundances has proven 
difficult, as PCR amplification bias due to primer mismatching often provides 
skewed proportions of read abundances. While some potential solutions have been 
proposed in previous research, we instead looked at the necessity of abundance data 
in EQR assessments. In this study, we used historical monitoring data from natural 
(lakes, rivers and streams) and artificial (ditches and canals) water bodies to assess 
the impact of species abundances on the EQR scores for macroinvertebrates in 
the Water Framework Directive (WFD) monitoring program of The Netherlands. 
By removing all the abundance data from the taxon observations, we simulated 
presence/absence-based monitoring, for which EQRs were calculated according to 
traditional methods. Our results showed a strong correlation between abundance-
based and presence/absence-based EQRs. EQR scores were generally higher without 
abundances (75.8% of all samples), which resulted in 9.1% of samples being assigned 
to a higher quality class. The majority of the samples (89.7%) were assigned to the 
same quality class in both cases. These results are valuable for the incorporation of 
presence/absence metabarcoding data into water quality assessment methodology, 
potentially eliminating the need to translate metabarcoding data into biomass or 
absolute specimen counts for EQR assessments.
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2.1 INTRODUCTION

Quality monitoring of freshwater ecosystems is prescribed under the European Union 
Water Framework Directive of 2000 (EU WFD; Directive 2000/60/EC) and focuses 
on monitoring of biological quality elements (BQEs) (European Union 2000). In 
Europe, benthic invertebrates are one of the most prevalently monitored BQE (Birk 
et al. 2012). Invertebrate communities are made up of species that represent a broad 
range of trophic levels, ecological functions and tolerances to stressors (Kenney et al. 
2009). Traditional monitoring of freshwater macroinvertebrates, however, is labor-
intensive and heavily dependent on expert knowledge of the assessors, making it slow, 
expensive and prone to human-induced bias and errors at all stages of collecting, 
sorting and identifying (Clarke & Hering 2006, Haase et al. 2010).

The incorporation of DNA barcodes (Hebert et al. 2003) into the identification 
process seems to have alleviated some of the human-induced issues. The use of these 
barcodes for identification of species has become more and more accepted, especially 
given the decline in traditional taxonomists (Hopkins & Freckleton 2002) and the 
ability of DNA barcodes to provide identifications of non-adult specimens and 
distinguish between cryptic clades (Sweeney et al. 2011, Jackson et al. 2014, Macher 
et al. 2016). Recent developments in DNA metabarcoding show high potential to 
assess biodiversity across many biomes (Taberlet et al. 2012a, Carew et al. 2013, Leray 
et al. 2013, Gibson et al. 2014, Stein et al. 2014, Pauls et al. 2014).

Now that the actual identification of species in bulk samples with high throughput 
sequencing (HTS) has shown its efficacy, the focus seems to shift towards solving 
some of the other issues concerning these novel strategies, especially the relationship 
between input biomass or specimen counts and output HTS sequence abundances 
(Amend et al. 2010, Deagle et al. 2013, Kelly et al. 2014, Elbrecht & Leese 2015, Piñol 
et al. 2015, Gibson et al. 2015, Hering et al. 2018, Aylagas et al. 2018)

The discussion, regarding the use of HTS read counts as an approximation of 
biomass or specimen abundances, is important for the biological components of the 
WFD as well. Abundance of (indicator) species or species groups is used in many 
European assessment metrics (albeit regularly as abundance classes) and is often 
part of multi-metric approaches (Birk et al. 2012, Hering et al. 2018, Pawlowski 
et al. 2018). While information on species abundances and evenness are generally 
considered important ecosystem properties, the often relatively simple WFD scoring 
systems may abide with a presence/absence-based methodology. Most traditional 
morphological monitoring relies on specimen count data, rather than biomass 
abundances, so even in situations where read abundances can be translated into 
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relative biomass, comparisons are difficult, considering also that most invertebrate 
taxa differ in biomass depending on their life stage. If presence/absence data can be 
as useful for WFD scoring as abundance data, it would allow for easier and faster 
incorporation of molecular techniques, especially now that efforts have been made 
to infer biotic indices from DNA data (Aylagas et al. 2014, Elbrecht et al. 2017a, 
Pawlowski et al. 2018).

In this study, therefore, we assessed the influence of species abundances on 
the Ecological Quality Ratio (EQR) scores for macroinvertebrates in the WFD 
monitoring program of The Netherlands. The Dutch system uses abundance data (in 
the form of abundance classes) for macroinvertebrates, where each species is scored 
as either a positive indicator, a negative indicator, a characteristic species or none of 
the aforementioned, depending on the type of water body (Evers et al. 2012, Van der 
Molen et al. 2016). A simple formula is used to calculate the ratio between normalized 
values for the indicators and expected reference values for the water type, which 
is expressed as a value between 0 and 1. Using historical records from traditional 
monitoring, we evaluated whether abundance data and presence/absence-based data 
produce comparable EQR scores.

2.2 MATERIALS AND METHODS

EQR scores for macrofauna were calculated on historical monitoring data from four 
Dutch water authorities (Hoogheemraadschap van Rijnland, Waterschap Aa en Maas, 
Waterschap Brabantse Delta and Waterschap Rivierenland), using morphological 
macroinvertebrate records from 2009 to 2017. These records are based on traditional 
macrofauna monitoring using kick-net sampling and morphological identification. 
The dataset included 877 monitoring locations spanning 23 different water types 
according to the Dutch classification system. Most locations were monitored more 
than once (some even annually), creating a total of 1780 macrofauna samples. An 
overview of the samples is provided in Table 2.1.

EQR macrofauna scores were calculated for all samples. The scoring system is 
based on the presence and/or abundance of positive indicator (DP), negative indicator 
(DN) and characteristic (KM) taxa. Most taxa are identified to species level in the 
Dutch macrofauna metrics, although for some “harder to identify” groups, species 
aggregates or higher-level taxonomic assignments are used (Evers et al. 2012, Van der 
Molen et al. 2016). In the most recent version of the Dutch WFD benchmarks, the 
absolute abundances of the dominant negative and the characteristics species used in 
the calculation are transformed into abundance classes (van der Hammen 1992). The 
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EQR scores are calculated according to three different methods, based on the water 
type. Natural water bodies are divided into lentic and lotic. For lentic water bodies, 
such as lakes, the EQR is calculated according to the formula:

 EQRL= (200*((KM%)/KMmax)+(100-DN%)+KMDP%)/400

Where KM% is the percentage of characteristic taxa, KMmax is a constant value 
representing the expected fraction of characteristic taxa depending on the specific 
water type, DN% is the percentage of negative indicator individuals and KMDP% is 
the percentage of characteristic and positive indicator individuals (Van der Molen 
et al. 2016). Lotic water bodies, such as streams and rivers, are calculated slightly 
differently, with more emphasis on the negative indicators:

 EQRR= (200*((KM%)/KMmax)+(2*(100-DN%))+KMDP%)/400

For artificial water bodies, such as ditches and canals, the calculation is performed 
according to the following formula:

 EQRA= ((2*PT/PTmax)+(1-(DN%/DNmax)))/3

TABLE 2.1. Overview of samples. Distribution of samples used in this study, per water authority (includes 
survey time span), divided into the three categories defined by the EQR calculation: artificial ditches and 
canals, natural lentic (lakes) waters and natural lotic (rivers and streams) waters. No monitoring sites are 
present in rivers and streams for Hoogheemraadschap van Rijnland.

Natural waters Artificial waters
TotalLakes 

(type M12-M32)
Rivers / streams 
(type R04-R18)

Ditches / canals 
(type M01-M10)

Hoogheemraadschap Rijnland 
(2009–2014) 198 n/a 173 371

Waterschap Aa en Maas 
(2011–2017) 9 221 150 380

Waterschap Brabantse Delta 
(2011–2016) 139 230 62 431

Waterschap Rivierenland 
(2011–2017) 8 56 534 598

Total 354 507 919 1780
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Where PT is the absolute number of positive indicator taxa, PTmax is the absolute 
number expected positive indicator taxa, DN% is the percentage of negative indicator 
individuals and DNmax is a constant value depending on the specific water type 
(Evers et al. 2012). The resulting score of all formulae is a value between 0 and 1, 
which is subdivided into five quality classes: “bad” (EQR <0.2), “poor” (0.2–0.4), 
“moderate” (0.4–0.6), “good” (0.6–0.8) and “high” (0.8–1.0). These scores also reflect 
how observed conditions compare to reference status (and thus target status) for 
the assessed water type, where the highest status shows no difference and the lowest 
status shows substantial differences (Birk et al. 2012). For artificial water bodies, there 
are only four quality classes, with “good” representing scores between 0.6 and 1.0, as 
artificial waters have no natural reference status for comparison.

For each of the 1780 samples, EQR scores were calculated using both original data 
with abundance classes and a manipulated dataset, converted to a presence/absence 
monitoring scheme by setting all specimen counts to 1. Any duplicate taxa in a given 
sample (e.g. where both adult and juvenile specimens were recorded separately) were 
removed to avoid aggregation into abundance classes other than 1 (abundance class 
1 indicates a single specimen was found). QBWat software version 5.33 (Pot 2015) 
was used to compare and score the original and manipulated monitoring lists with 
predefined positive and negative indicator species lists, as well as the characteristic 
taxa list and the EQR based on the relevant formula for each water type was 
calculated. These predefined species lists (positive indicators, negative indicators 
and characteristic taxa) have been created specifically for EQR assessments and are 
based on species characteristics described in literature and expert judgements (Van 
der Molen et al. 2016). EQR scores with and without abundances were compared to 
determine the effect on the score, as well as the effect on the classification into the five 
quality classes. Dunn’s test was used to investigate the difference between water types 
and between quality classes.

2.3 RESULTS

The investigated macrofauna samples had an average of 72.1 ± 0.8 (mean ± SEM) 
species (minimum 1, maximum 217) recorded, with an average of 1221.5 ± 25.8 
specimens (minimum 1, maximum 11767). Mean EQRs, calculated with presence/
absence-based data, were highly correlated to original EQRs based on abundance class 
data, for natural lentic sites (Pearson correlation r = 0.993, p <0.001) (Figure 2.1A), 
natural lotic sites (Pearson correlation r = 0.982, p <0.001) (Figure 2.1B) and artificial 
sites (Pearson correlation r = 0.983, p <0.001) (Figure 2.1C). Neither of the EQRs, 
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nor the difference between the two scores (ΔEQR) followed a normal distribution. 
Mean EQR without abundance data was 0.424 ± 0.003, which was significantly higher 
than the mean EQR calculated with abundance classes (0.404 ± 0.003) (Wilcoxon 
signed-rank test, p <0.001). The majority of EQRs were higher without abundances 
(1349 samples, 75.8%), 359 samples scored lower (20.2%) and only 72 out of 1780 
samples (4.0%) scored exactly the same (based on scores with three decimal digits). 
The removal of abundance classes had significantly less impact on the scoring for 
natural lentic systems (mean ΔEQR 0.006 ± 0.001) than it had on both natural lotic 
systems (0.021 ± 0.001) and artificial water bodies (0.024 ± 0.001) (Dunn’s test, p 
<0.001). There was no significant difference between the lotic and artificial systems 
(Figure 2.2A). Removal of abundance data had a stronger effect on samples from the 
lowest quality class (“bad”), where the mean ΔEQR was significantly higher than all 
other quality classes (Dunn’s test, p <0.001). Mean ΔEQR of the “poor” class, in turn, 
was significantly higher than those of “moderate” and “good” (Dunn’s test, p <0.001), 
while there was no significant difference in the impact on “moderate” and “good”. 
The “high” class was excluded from this analysis with only two of 1780 samples being 
assigned to that category (Figure 2.2B).

When assigning quality classes to the EQRs based on presence/absence data, 1596 
(89.7%) of all samples were assigned to the same class, 22 (1.2%) were scored lower 
and 162 (9.1%) were scored higher. The change was most profound in the samples 
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FIGURE 2.1. EQR (presence/absence) versus EQR (abundance classes). Comparison of macroinvertebrate 
EQR scores in standard assessment using abundance classes and EQR scores in simulated scenarios with 
presence/absence data for (A) natural lentic waters (lakes, n=354), (B) natural lotic waters (streams and 
rivers, n=507) and (C) artificial waters (ditches and canals, n=919). Coloured boxes indicate EQR quality 
classes: “bad” (red), “poor” (orange), “moderate” (yellow), “good” (green) and “high” (blue). For artificial 
water bodies, there are only four quality classes, with “good” representing scores between 0.6 and 1.0. 
For all comparisons, the EQR scores of abundance class data and presence/absence data was significantly 
correlated (Pearson correlation, p <0.001). Pearson correlation values are provided in the panels.
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originally assigned to “bad”, where 51 out of 117 (43.6%) were assigned to “poor”, the 
class above. Results were comparable for the different water types: 95.2% of natural 
lentic samples, 89.9% of natural lotic samples and 87.4% of artificial samples were 
assigned to the same class. Samples assigned to a different quality class were assigned 
to a class either directly below or directly above its previous classification.

2.4 DISCUSSION

Our results show there is a strong correlation between traditional EQR based 
on freshwater macrofauna using abundance data and EQRs calculated without 
abundance data in the Dutch system. For most samples, scores were comparable 
between the abundance- and presence/absence-based methods, with the majority 
(89.7%) being assigned to the same quality class in both cases. The difference seems 
to be largest in samples at the lower end of the EQR score spectrum, with almost half 
(43.6%) ending up in a higher quality class (“poor” instead of “bad”).
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FIGURE 2.2. Factors influencing ΔEQR. Comparison of differences in EQR between assessment using 
abundance classes and using presence/absence data, (A) split by water type and EQR calculation 
method and (B) split per original assessment quality class (“high” was omitted, with only two samples 
in this data set). On average, classifications without abundance are higher than original assessments 
(ΔEQR positive). Removal of abundance resulted in significantly lower differences in natural lentic 
waters compared to natural lotic and artificial waters (Dunn’s test, p <0.001). There was no significant 
difference between lotic and artificial. Removal of abundance data has significantly more impact on 
EQR assessments for samples originally classified as “bad” compared to all other classes (Dunn’s test, 
p <0.001). ΔEQR was also significantly higher in “poor” samples compared to “moderate” and “good”.
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Based on the formulae used for the calculation of the EQRs, it can already be 
deduced that abundance is not a consideration for all components that determine 
the final score. For natural lakes, half the score is represented by the fraction of 
characteristic taxa, which does not take individual specimen counts into account. 
The fraction of the score defined by factors that use abundance data is slightly 
lower for natural streams and rivers (two fifths) and for artificial ditches and canals 
abundances are not used for two thirds of the final score (Van der Molen et al. 2016). 
Interestingly, in our analysis, the impact of removal of abundances was significantly 
smaller in lakes than it was in rivers and streams and artificial water bodies (Figure 
2.2A). A larger impact on rivers and streams was expected, as 60% of the final EQR 
is based on the abundance of individuals scoring on each of the three indicator 
lists (positive, negative and characteristic). However, in the artificial systems, this 
only amounts to one third of the final score, so one would expect the impact to be 
smaller, especially considering that the quality classes most impacted by the removal 
of abundance (“bad” and “poor”, Figure 2.2B) only account for 35.8% of the artificial 
water samples in the data presented in this paper, whereas those classes account for 
49.4% and 81.1% of lakes and streams, respectively.

The parts of the EQR score that do rely on abundance data in the Dutch system 
use abundance classes rather than actual specimen abundances. This may be a major 
factor in why the removal of abundances has only a limited impact on the EQR 
scores. Abundance classes were introduced into the Dutch metrics to reduce the 
effect of extremely high abundances of a single species on the EQR. The abundance 
class system uses a total of nine classes, where class “1” represents a single specimen 
and class “9” represents abundances over 1808 specimens. When applied to the 
monitoring data, this means that an abundance of 20 specimens is translated to class 
“4”, whereas an abundance of 200 specimens is assigned to class “6”. Thus, whilst the 
actual abundance difference might be tenfold, in the calculation it would be only 1.5-
fold, already reducing the effect of absolute abundances on the final EQR (van der 
Hammen 1992, Evers et al. 2012).

These observations are important when considering the incorporation of molecular 
techniques into WFD quality monitoring methodology. Given that techniques, such 
as metabarcoding, are proving their efficacy in the process of identification of species 
in bulk samples, incorporation of such techniques into the actual monitoring is only a 
matter of time (Zimmermann et al. 2015, Elbrecht et al. 2016, Pawlowski et al. 2018). 
Efforts have been made in trying to link amplification bias in HTS with amplification 
success and PCR efficiency of quantitative PCR (qPCR) methods, showing there may 
be a relationship between low read numbers in HTS and high Cq values in qPCR, 
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although PCR efficiency itself seemed unrelated (Pawluczyk et al. 2015). Even in 
case such an approach would yield usable information, it would not only require a 
priori knowledge of species present within a sample, but also seems cumbersome in 
complex monitoring samples, such as the ones used for this study (with an average 
of 72 species).

While our results imply that the technically difficult DNA-based quantifications 
might be avoided when calculating EQR scores, being able to measure species-
abundance relationships from DNA data would nonetheless be desirable, since such 
relationships play an important role in understanding community composition and 
dynamics (Hubbell 2001). However, even for the relatively straightforward EQR 
scoring, the findings in this study cannot be translated into a conclusion that any bias 
can simply be ignored. These biases are an important consideration when generating 
taxon lists using HTS on bulk sample metabarcoding. Uneven distributions, paired 
with preferential amplification of certain taxonomic groups, will result in incomplete 
recovery of taxa from a sample. It is therefore still important to take the necessary 
steps to avoid primer bias as much as possible.

One of the main advantages of DNA-based identifications over traditional 
taxonomy is the ability to reliably identify larval stages and complicated taxonomical 
groups, for example in cryptic species, showing contrasting reactions to stressors 
(Macher et al. 2016, Beermann et al. 2018). The use of metabarcoding to replace 
morphological taxonomic assignment will bring changes to the species lists that can 
be used for EQR or other quality assessments because there will be more information 
on those groups that are currently underused due to identification difficulties, as 
well as potentially higher resolutions of the identifications. Such changes alone may 
already prove challenging to use in traditional EQR assessments, as these systems 
have been set up with known limitations in mind. The Dutch macrofauna metric, 
for instance, makes little to no distinction between genera and species in the family 
Tubificidae, and many Chironomidae genera have the same scoring for each of its 
species (Van der Molen et al. 2016). Any such changes alone would warrant a new 
system, rather than recalibration of the currently used methodologies that are partly 
built around the limitations of morphological identifications. However, until the lack 
of knowledge about species-level responses to stressors has been resolved, higher-
resolution taxa lists can be merged into less resolved levels to allow for compatibility 
with current assessment systems.

Taking these considerations into account, together with the fact that expanding 
the DNA barcode repository for freshwater macroinvertebrates is one of the main 
focal points of the European DNAqua-Net collaboration (Leese et al. 2016), the 
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generation of reliable species lists based on molecular data rather than morphological 
assessments is no longer a vision for the future. EQRs have always been used as a way 
to quickly assess the ecological status of water bodies. Thorough knowledge of the 
potential caveats in molecular identification and/or detection techniques will allow 
for new EQR methods to be developed, methods better suited for use with molecular 
data. The transition towards DNA-based EQRs certainly has the potential to induce 
supranational standardization within water quality assessment. Especially with 
international collaborations such as those in DNAqua-Net, which states that its goal 
is to “develop a roadmap to include [DNA-based tools] in the standardized ecological 
assessment of aquatic ecosystems in Europe and beyond” (Leese et al. 2016). Any such 
molecular-based EQRs might benefit from using more easily generated presence/
absence taxon lists instead of an abundance-based analysis, allowing for faster and 
more and easily standardizable water quality assessments.

2.5 CONCLUSIONS

We demonstrated the viability of adopting presence/absence data instead of specimen 
abundance data in a WFD water quality assessment program. Given all obstacles 
hampering the translation of HTS read data into biomass or absolute specimen counts, 
this paves the way for incorporating metabarcoding workflows into future assessment 
methodology. While species abundances are still valuable for a thorough ecological 
understanding of natural systems, the EQRs have been used more as a relatively quick 
assessment of ecological status of water bodies compared to reference situations. 
The EQR methodology used in this paper applies to the quality monitoring in The 
Netherlands and results may vary for other nations, based on the methods of EQR 
calculation. We urge researchers to look into the actual influence of abundance data 
on their WFD programs and in studies using metabarcoding data. With molecular 
techniques, such as metabarcoding of environmental DNA or bulk samples, proving 
to be successful, it is imperative that developments in routine EQR assessments, be 
they recalibrations or entirely new systems, strive to be more compatible with the 
potential lack of abundance data.
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