

Simulating the birth environment of circumstellar discs

Concha Ramirez, F.A.

Citation

Concha Ramirez, F. A. (2021, April 6). Simulating the birth environment of circumstellar discs. Retrieved from https://hdl.handle.net/1887/3158796

Version: Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3158796

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle $\underline{\text{https://hdl.handle.net/1887/3158796}}$ holds various files of this Leiden University dissertation.

Author: Concha Ramirez, F.A.

Title: Simulating the birth environment of circumstellar discs

Issue Date: 2021-04-06

Resumen en español

OS DISCOS CIRCUMESTELARES son estructuras de gas y polvo que rodean a las estrellas , jóvenes. Es en estos discos donde eventualmente se formarán los planetas, por lo que estudiar su evolución es importante para comprender la formación de los sistemas planetarios. Nuestro propio sistema solar comenzó siendo un disco circumestelar rotando en torno al Sol. Estos discos surgen rápidamente luego de la formación de su estrella, y durante sus primeros miles de años de evolución están inmersos en los vestigios del proceso de formación estelar. Este ambiente puede ser muy hostil para los discos. Gran parte de las estrellas no se forman en solitario, sino en grupos. Estrellas vecinas pueden pasar muy cerca de los discos, removiendo material de sus zonas exteriores y truncándolos. Si esta estrella tiene su propio discos, ambos pueden incluso intercambiar material. Si hay estrellas masivas en los alrededores, la radiación ultravioleta que estas emiten puede calentar la superficie de los discos y evaporar parte de su masa, en un proceso llamado fotoevaporación externa. Incluso la radiación proveniente de la estrella que alberga al disco puede remover material de las regiones más internas, en un proceso conocido como fotoevaporación interna. A medida que los discos se mueven a través del gas presente en el ambiente, la fricción puede remover material de sus zonas externas y endurecer su superficie. Y, si hay una explosión de supernova en la región, los discos en las cercanías pueden ser completamente destruídos por la onda expansiva.

Los discos circumestelares también se expanden, debido a su propia evolución interna. La materia fluye desde las regiones externas hacia las internas, y este material es acretado, o consumido, por la estrella central. Las zonas externas del disco se expanden, debido a la conservación de momento angular. Si los discos evolucionan sin perturbaciones, este proceso de mover material desde afuera hacia adentro en conjunto con la expansión continúa hasta que toda su masa inicial ha sido consumida. En aislamiento, este proceso dura alrededor de 10 millones de años. Sin embargo, observaciones de discos en regiones de formación estelar muestran que los discos desaparecen en un tiempo mucho menor, incluso antes de un millón de años de evolución. Este efecto puede estar relacionado con dos procesos. En primer lugar, la formación de planetas puede comenzar muy temprano en la vida de los discos, por lo que la masa está siendo utilizada para formar planetas rocosos y núcleos de planetas gaseosos. En segundo lugar, los efectos ambientales descritos anteriormente pueden ayudar a que la masa de los discos disminuya rápidamente. Si el rol del ambiente es importante, este puede ser de vida o muerte para los sistemas planetarios: si los discos pierden su masa poco después de formarse, no hay suficiente tiempo para que los planetas se formen. Constreñir los efectos que el ambiente tiene sobre los discos permite determinar las escalas de tiempo necesarias para que se formen los planetas.

Esta tesis investiga cómo el ambiente generado por el proceso de formación estelar afecta la evolución de los discos circumestelares recién formados, con un enfoque en dos mecanismos en particular: truncamientos debido a encuentros con otras estrellas, y fotoevaporación

132 Resumen en español

externa causada por la radiación de estrellas masivas en la región. Los efectos de estos procesos son cuantificados analizando las distribuciones finales de masa y tamaño de los discos, además de sus tiempos de vida. Todo el trabajo desarollado en esta tesis se basa en simulaciones computacionales de los procesos astrofísicos descritos. Usando el framework Astrophysical MUltipurpose Software Environment, AMUSE⁶, integramos códigos para modelar dinámica estelar, evolución estelar, evolución interna de los discos, y el proceso de fotoevaporación. Todo el código desarollado para esta tesis es abierto y está disponible online⁷.

En el Capítulo 2 modelamos cúmulos estelares con 1500 estrellas, donde cada una está rodeada por un disco circumestelar. Los cúmulos estelares son conjuntos de estrellas que se mantienen unidas por su fuerza de gravedad. Modelamos la evolución de los discos usando un modelo semi-analítico, que nos permite calcular su masa y tamaño en el tiempo. Buscamos estudiar cómo la presencia de gas entre las estrellas afecta la tasa de encuentros entre discos y de eventuales truncamientos. Modelamos tres tipos de cúmulos: uno donde el gas está presente durante toda la simulación, uno sin gas, y otro donde el gas está presente durante la primera mitad de la simulación y luego es expulsado. Las simulaciones modelan la evolución del sistema por 2 millones de años. Nuestros resultados muestran que los tamaños de los discos son similares en los tres tipos de cúmulo, ya que la evolución intrínseca de los discos hace que se expandan más rápido de lo que son truncados. En los modelos donde los discos se expanden más lentamente, los tamaños finales de los discos son similares a los observados en regiones reales de formación estelar.

En el Capítulo 3 introducimos un nuevo modelo para los discos, que nos permite implementar fotoevaporación externa. En estas nuevas simulaciones, todas las estrellas de poca masa (menos de 2 veces la masa del Sol) tienen un disco circumestelar, y todas las estrellas más masivas emiten radiación ultravioleta. Esta radiación evapora material de los discos cercanos. En estas simulaciones modelamos la evolución interna de los discos, los truncamientos debido a encuentros con otras estrellas, y fotoevaporación externa. Modelamos cúmulos con 100 estrellas que evolucionan por 2 millones de años. Los resultados muestran que la masa que pierden los discos debido a la fotoevaporación es decenas de veces más que la que se pierde debido a truncamientos. Esto significa que la fotoevaporación externa es un proceso mucho más relevante para la evolución de los discos. También determinamos que la fotoevaporación es extremadamente eficiente al evaporar los discos: alrededor del 60% de los discos son destruídos dentro de los primeros 100.000 años de evolución del sistema, y al final de las simulaciones sólo entre un 10% y un 20% de los discos aún poseen algo de masa. Esto demuestra que, en las regiones donde existen estrellas masivas, los planetas deben comenzar a formarse rápidamente una vez que se han formados los discos. De otro modo, los discos simplemente no tendrán suficiente masa para formar sistemas planetarios.

Utilizando el mismo modelo desarrollado para el Capítulo 3, en el Capítulo 4 simulamos una serie de cúmulos con 1000 estrellas y diferentes radios, desde 0.5 pársec hasta 5 pársec (un pársec es casi 3,3 años luz, 210.000 veces la distancia entre la Tierra y el Sol, o 31 trillones de kilómetros). De esta manera exploramos regiones con distintas densidades estelares. Buscamos determinar cómo la densidad de una región afecta las masas y tiempos de vida de los discos. En nuestros resultados encontramos que la masa de los discos disminuye drásticamente a medida que la densidad estelar aumenta. En particular, en regiones donde la densidad es mayor a 100 estrellas por pársec² es difícil que discos con suficiente masa para formar planetas puedan sobrevivir. Comparamos las distribuciones de las masas en nuestras simulaciones con observaciones de discos en regiones de formación estelar, y encontramos

⁶http://amusecode.org

⁷http://github.com/franciscaconcha

Resumen en español

que las simulaciones y observaciones siguen una tendencia similar en términos de la relación entre masa y densidad estelar: mientras más estrellas hay en un cúmulo, menos masivos son los discos ahí presentes.

En los primeros cuatro capítulos de esta tesis, consideramos que todas las estrellas en las simulaciones se formaron al mismo tiempo, y que inicialmente están distribuidas en una configuración esférica. En la realidad, el proceso de formación estelar resulta en distribuciones más irregulares, con estructuras fractales y filamentos. En el Capítulo 5 tomamos un paso atrás de las simulaciones anteriores, y comenzamos modelando una aproximación simple de formación estelar. Esto otorga dos grandes diferencias con las simulaciones anteriores: la distribución espacial de las estrellas no es esférica, y no todas las estrellas se forman al mismo tiempo. Luego de que una estrella se forma, le asignamos un disco que evoluciona usando el mismo model que en los Capítulos 3 y 4, pero además agregamos los procesos de fotoevaporación interna (es decir, debido a la radiación de la misma estrella) y la evolución del polvo separado del gas al interior de los discos. Las simulaciones corren por 2 millones de años después de que se forma la última estrella. Nuestros resultados muestran que extender la formación estelar en el tiempo permite que los discos más jóvenes sobrevivan hasta el final de las simulaciones. Cuando termina el proceso de formación estelar, el gas remanente es expulsado de la región. Esta expulsión hace que los cúmulos se expandan rápidamente, ya que tratan de recuperar su estado de equilibrio. En esta expansión, la distancia entre las estrellas aumenta, lo que reduce la densidad estelar de la región y disminuye los efectos de la radiación sobre los discos. Al final de las simulaciones sobreviven más discos, y estos son más masivos, que en los resultados de los capítulos anteriores. El nuevo modelo para el polvo en los discos también resulta en una mayor retención de masa, lo cual permite a los discos mantener reservas de material para la formación de planetas.

Los resultados de las simulaciones desarrolladas para esta tesis muestran que el ambiente es un factor extremadamente importante para definir la supervivencia de los discos circumestelares. Los procesos que ocurren en los alrededores de los discos acotan el tiempo disponible para la formación de planetas. Conclusiones similares se obtienen al observar discos circumestelares en regiones de formación estelar de distintas edades y densidades. En particular, la fotoevaporación externa es muy eficiente al destruir los discos, y así, limita el tiempo y la masa disponible para formar planetas. Estos resultados tendrán importantes consecuencias para futuros estudios de formación planetaria.

* * *