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General Discussion  

Clostridioides difficile is one of the major causes of antibiotic-associated diarrhoea 1,2. Despite 
being discovered in 1935 3, the bacterium only gained significant interest with the emergence 
of outbreak-related strains worldwide 4-6. The C. difficile strains associated with the outbreaks 
showed increased severity of disease and mortality, making C. difficile an important threat for 
healthcare 7-9. Over the years, much C. difficile research has focused on the main virulence 
factors that contribute to the development of CDI, such as the production and mechanism of 
action of the cytotoxic toxins that damage the epithelial cells, or the ability to sporulate, which 
is crucial for the transmission of C. difficile 1. Recently, the interest in other cellular pathways 
has increased, not only to understand cell physiology but also to search for new targets for 
therapeutics, such as DNA replication 10-12. These developments form the background of this 
PhD thesis. 

In this thesis, we aimed to characterize different aspects of C. difficile biology, in order to 
understand cellular mechanisms, such as the initiation of replication and the chromosome 
maintenance, but also the controversial role of TcdC in toxin regulation. Along the way, we 
developed new tools, several of which are based on luminescence, that will facilitate future 
C. difficile research.  

C. difficile new tools aid on new challenges 

Advances in genetic and molecular tools have been essential to the understanding of C. 
difficile cell biology. Recently, different approaches for the genetic manipulation of C. difficile 
have been developed that allow the use of chromogenic and fluorescent reporters to study 
gene expression and C. difficile cell components.  

In C. difficile, -glucuronidase (GusA) and the alkaline phosphatase (PhoZ) chromogenic 
reporters have been used 13-15. These reporters allowed to study the regulation of toxin gene 
expression, by RstA or CodY for instance 13,16,17. PhoZ colour development allows the use of 
this reporter not only in liquid media but also in a plate-based assay, where it can be detected 
by eye 15. Even though GusA and PhoZ reporters can provide qualitative or quantitative 
analysis of the gene expression in C. difficile, different drawbacks associated with the 
reporters have limited their use. The use of the chromogenic reporters is affected by the level 
of expression, as a low level or heterogenous expression can impair the quantification and 
visualization of the reporters in the bacterial cells 14,15. The main limitation of the reporters is 
the requirement on lysed cells for a quantitative measure of reporter activity 14,15. This can 
lead to artefacts, due to inefficient cell lysis, for instance 14,15. This presented an interesting 
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opportunity for the development of secreted reporters that could bypass the hurdle of C. 
difficile lysis.  

For the development of novel secreted reporters in C. difficile we took advantage of the signal 
sequence of the PPEP-1 protein, which is highly secreted by C. difficile 18-20. In Chapter 2 we 
use the PPEP-1 signal sequence and used a synthetic biology approach to engineer two novel 
secreted reporters, AmyEopt and sLucopt, both of which were codon-optimized for C. difficile. 

Our laboratory strain C. difficile 630 erm is not able to degrade starch, which enabled us to 
easily assess the PPEP-1-mediated secretion of the AmyEopt reporter and successfully validate 
the constitutive expression of the B. subtilis promoter Pveg. Amylase activity was observed 
both in liquid medium and in a plate-based assay, and although quantitative analysis of the 
activity was possible, it did not allow C. difficile growth with starch as sole carbon source. 
Additionally, not all C. difficile strains have the same metabolic capacity and some strains may 
have the ability to digest starch, potentially limiting the use of the AmyEopt reporter.  

In parallel with the AmyEopt reporter, we fused the PPEP-1 signal sequence to a codon-
optimized luciferase, based on the NanoLuc luciferase (Promega) 21. NanoLuc is a 19 kDa 
luciferase that requires furimazine for light emission 21-23. The high sensitivity of the luciferase 
and the linear dependency on the concentration of the luciferase substrate made this 
luciferase reporter a promising candidate for gene expression analysis in C. difficile. With a 
synthetic biology approach we were able to engineer a small secreted codon-optimized 
luciferase, which we named sLucopt. This reporter was efficiently expressed and secreted into 
the environment, allowing for easy assessment of gene expression, by sampling the culture 
medium. The efficient secretion of sLucopt minimizes artefacts due to the physiological burden 
imposed by the expression of the reporter, allowing the study of gene expression close to the 
in vivo situation. Despite the high sensitivity of the system, low levels of expression can be 
diluted beyond the limit of detection in the extracellular environment; in such cases, sampling 
of an intracellular reporter, such as the non-secreted Lucopt, is advised. 

Recently sLucopt was used in a plate-based-method to study the gene expression of B-
dependent promoters 24. However, this use does not allow for the quantification of the sLucopt 
activity and can potentially present artefacts due to exposure to the environmental oxygen 
(required for the luciferase activity). Nevertheless, it poses a quick approach to assess gene 
expression on solid media.  

sLucopt is highly stable and can retain activity in the culture medium or extracellular 
environment for prolonged periods of time. This stability and subsequent accumulation in the 
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environment may make the analysis of gene expression dynamics more challenging as 
downregulation of gene expression may be masked by earlier high-level expression.  

The high sensitivity and easy detection of the luciferase reporter represented a promising tool 
that could be adapted for a wide range of other approaches in C. difficile (Fig. 1). We, 
therefore, extended the use of this luciferase reporter as a tool to study C. difficile protein 
localization and protein-protein interactions in vivo in the course of our investigations. The 
entire luciferase reporter toolkit was made available to the C. difficile research community 
through a non-profit repository (Addgene). 

Fig. 1 – Schematic representation of the derived systems from the Lucopt luciferase for C. difficile 
studies. The secreted luciferase reporter system sLucopt allows for the extracellular detection of the 
luciferase, enabling quick and easy detection for gene expression studies. The bitLucopt system provides 
a valuable tool for protein-protein studies in vivo by tagging the proteins of interest (X,Y) with SmBit and 
LgBit. The HiBiTopt system allows the study of secreted proteins or complexes present at the cell surface.  

We implemented a system for the extracellular detection of proteins, HiBiTopt (Fig. 1), which 
allowed the determination of the localization of the C-terminus of the TcdC protein, in 
Chapter 3 (discussed in more detail later on). This complementation-based system allows the 
detection of extracellularly localized C-termini of proteins or secreted proteins-of-interest, by 
tagging them with the 11-amino acid tag HiBiTopt. The HiBiTopt will interact with high affinity 
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to the added luciferase larger subunit, the LgBiT, which can not enter the bacterial cell. When 
both sub-units interact and in combination with the furimazine substrates it emits light. 
Likewise, it can also allow the easy quantification of the protein expression by in-gel detection, 
as demonstrated for TcdC and other proteins (Chapter 3). 

The small size of the HiBiTopt tag is an advantage, as it might reduce artefacts compared to 
tagging of proteins with higher molecular weight tags, but as we only explored C-terminal 
tagging, further studies are required to determine whether the system can also be used for 
N-terminal fusions. The HiBiTopt system not only presents an interesting tool for topology 
determination but can potentially also be used for studies on protein secretion, membrane 
association and inhibitors of these processes. Recently, split-Nanoluc was used to monitor the 
translocation dynamics of proteins across the cell membrane, such as through the ubiquitous 
transporter Sec system in E. coli 25,26.  

Whereas HiBiTopt is engineered to have high affinity for the complementary subunit LgBiT, 
SmBiT has been engineered to have low affinity for the same protein while retaining the ability 
to complement activity of the luciferase. We used this characteristic in Chapter 5 to develop 
a method for luminescent detection of in vivo protein-protein interactions in C. difficile, with 
the bitLucopt assay. Several complementation assays are used for the in vivo detection of 
interacting partners, such as the bacterial or yeast two-hybrid systems, but these systems 
generally do not perform very well for C. difficile due to distinct codon bias. The split-SNAP 
complementation assay has successfully been applied in C. difficile 27. The split-SNAPtag 
subunits (11.1 kDa nSNAP and 11.8 kDa cSNAP) can interact to form a functional SNAPtag, 
when in close proximity in the cell 28. This is similar to the bitLucopt system, where the proteins 
of interest are tagged with different luciferase subunits (SmBit and LgBiT) that can 
reconstitute luciferase, resulting in luminescent signal. However, though in total the two 
systems are comparable in size, the SmBit subunit is much smaller (1.3 kDa) 29 than nSNAP 
and cSNAP, and may therefore lead to less tag-dependent artefacts in protein function.  

 

The developed luciferase systems contribute substantially to the available C. difficile toolkit 
and allowed us to address several questions related to toxin gene expression and 
chromosome dynamics in C. difficile. We anticipate that similar analyses can not only be 
performed to characterize the interactions of known C. difficile proteins within a complex 
machinery, such as the replisome, but also to identify unknown interactors.  

Despite the usefulness of the luciferase resulting from minimal cell manipulation, technical 
limitations prevent the use of luciferase in more in-depth approaches, such as the analysis of 
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the subcellular localization (other than intra- versus extracellular) and dynamics of gene 
expression at the single-cell level. Other techniques, such as fluorescent microscopy, are 
better suited for these purposes. This is exemplified by the compartmentalized expression of 
the C. difficile sporulation sigma factors using SNAPCd fusions, that enabled the 
characterization of the sporulation regulation pathway 30. Other fluorophores than SNAPCd 
have been used for the labelling of proteins and studying gene expression in C. difficile, like 
CFPopt, mCherryOpt and phiLOV2.1. 30-33. Despite the successful use of the different 
fluorophores in C. difficile, the work described in Chapter 6 clearly shows that further 
development of fluorophores is needed.  

In Chapter 5 we applied the HaloTag for the first time in C. difficile, in the characterization of 
the C. difficile chromatin protein HupA. Though the HaloTag fluorophore allowed us to 
successfully determine nucleoid localization of the protein, a more detailed analysis showed 
that there is significant room for improvement of the fluorophore (Chapter 6). The inefficient 
transcription and/or translation of the cytosolic HaloTag (Chapter 6) and the effect observed 
on the HupA function (Chapter 5) might be overcome with codon optimization, as the HaloTag 
has a high [G+C]-content. Nevertheless, HaloTag, like SNAPCd, is a substrate-dependent tag 
and the variety of commercially available substrates is a substantial asset for HaloTag-based 
visualization. Furthermore, combination of HaloTag with the Lucopt luciferase might allow new 
applications, such as NanoBRET 34, for analysis of protein interaction and dynamics in C. 
difficile in vivo studies.  

In order to understand the limitations of the different fluorophores to study C. difficile 
exponential growing cells, we compared the fluorophores CFPopt 31, mCherryOpt 32, phiLOV2.1 

33, SNAPCd 30 and HaloTag, under defined conditions, which we present in Chapter 6. We were 
able to point important limitations of existing fluorophores and highlighted important factors 
required for live-cell imaging of C. difficile. Importantly, this is the first comparison of 
fluorophores under carefully controlled conditions for C. difficile. However, we did not explore 
the potential use of other fluorophores, such as the substrate-dependent fluorophores FAST 
35 and UnaG 36,37. We did perform preliminary experiments to assess some aspects of UnaG 
for C. difficile microscopy, but these demonstrated that further understanding of the 
dynamics of availability of the intracellular FMN co-factor, as well as optimization of protein 
expression, is required (data not shown). 

Our work has underscored that one of the main practical limitations in C. difficile fluorescence 
microscopy is intrinsic green fluorescence. In Chapter 6 we explored the influence of C. difficile 
autofluorescence on fluorescence microscopy and the potential limitations for the use of 
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green fluorophores, such as phiLOV2.1. The results show that autofluorescence in C. difficile 
is growth phase-dependent, and might be a result of oxidation of specific cell components. It 
would be quite interesting to determine the components conferring the green fluorescence 
and their relevance for C. difficile physiology. Most likely (ribo)flavins and flavoproteins are 
responsible for the intrinsic green fluorescence, as shown for E. coli 38. Knocking out the C. 
difficile homolog of flavoproteins might provide a route to understand C. difficile 
autofluorescence if these do not encode essential functions. Recently, the role of flavoiiron 
proteins on the ability of C. difficile to cope with low levels of O2, that can be encountered in 
the gastrointestinal tract, was studied 39,40. A more detailed understanding of the 
autofluorescence may therefore also lead to insights in the response of C. difficile to 
environmental and stress conditions.  

In sum, the present work has introduced several tools for C. difficile studies: a) two secreted 
reporters for gene expression analysis, the amylase AmyEopt and the luciferase sLucopt (Fig. 1); 
b) the luciferase toolkit for in vivo complementation assays for extracellular detection of 
membrane-associated or secreted proteins (HiBiTopt) and protein-protein interactions 
(bitLucopt) (Fig. 1); c) the HaloTag fluorophore for protein tagging and fluorescent microscopy 
visualization. We conclude our study by analyzing C. difficile autofluorescence and 
benchmarking the previously characterized fluorophores CFPopt, mCherryOpt, phiLOV2.1 and 
SNAPCd, and HaloTag in C. difficile, exploring the limitations and advantages for live C. difficile 
fluorescence microscopy studies.  

TcdC C-terminus is extracellular 

A major focus of gene expression analysis over the past years has been the genes encoding 
the C. difficile glucosylating toxins, that are the main virulence factors contributing to CDI. 
Toxins A and B are encoded within the pathogenicity locus PaLoc by the tcdA and tcdB genes, 
together with genes encoding for TcdE, TcdR and TcdC which have been associated with the 
regulation of the toxins 41. TcdE has been described as a putative holin-like protein, required 
for the secretion of the toxins. However, tcdE-mediated secretion is still not fully understood 
and some studies indicate limited to no effects of a tcdE deletion on extracellular toxin levels 
42-44. TcdR is a sigma factor, and the role as a positive transcriptional regulator has been shown 
by direct recognition of the toxin promoters and subsequent activation of toxin gene 
expression by TcdR in vitro as well as in vivo 45,46. However, the role of TcdC in toxin regulation 
is highly debatable. Some studies have suggested that TcdC acts as an anti-sigma factor, acting 
as a negative regulator of toxin transcription, while others failed to show a correlation 
between TcdC and the toxin regulation 47-50.  
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Over the years, several studies have shown an intricate network of toxin regulation in 
response to physiological and environmental factors 17,46,51-54. Expression of TcdA, TcdB, TcdE 
and TcdR is low during the exponential growth phase but increases strongly upon entering the 
stationary growth phase 55. This is also seen in our work, when evaluating tcdA expression 
through sLucopt, in Chapter 2. Thus, toxin gene expression is triggered by features present in 
the stationary growth phase, such as a high cell density or nutrient limitation. 

Indeed, metabolism plays a crucial role in the regulation of toxin expression 46. The presence 
of glucose and certain amino acids in the medium, such as cysteine or proline, has been shown 
to inhibit toxin expression 51,56,57. In Chapter 2 we also recapitulated glucose-mediated 
repression of tcdA expression using the novel sLucopt reporter. To date, several toxin 
regulators have been identified, such as the CcpA and CodY proteins, that bridge C. difficile 
metabolism with the repression of toxin gene expression 58,59. H, a sigma factor involved in 
the regulation of genes that affect sporulation and motility at the onset of stationary phase, 
is also involved in toxin regulation, as a sigH mutant has increased toxin gene expression 60. 
Toxin expression is also regulated through quorum-sensing, mediated by the Agr-signaling 
system, which induces early transcription of tcdA and tcdB genes 61. Recently, RstA was 
identified as a major regulator of toxin expression 17. RstA represses toxin gene expression by 
downregulating TcdR expression and direct binding to the toxin promoters. Interestingly, the 
modulatory effect of RstA on the different genes is strain-dependent 17,62,63.  

The role of TcdC is still unclear. The tcdC genotype is quite variable between C. difficile strains 
of different PCR ribotypes. It was previously hypothesized that epidemic strains, which contain 
deletions or frame-shift mutations in the tcdC gene, might produce higher levels of toxins 49,64. 
However, several studies failed to demonstrate a correlation between tcdC genotype and 
toxin levels 48,50,65. In order to understand the role of TcdC, previous studies have identified 
different structural domains and some of their properties 66,67. The protein contains a 
(trans)membrane domain, that is believed to mediate its association with membrane, and an 
OB-fold domain at the C-terminus, that can bind G-quadruplex DNA structures 66,67. However, 
no topological data was available. We took advantage of the newly developed HiBiTopt 
complementation system, combined with additional biochemical experiments, to show that 
the TcdC C-terminus is localized extracellularly (Chapter 3). This raises many questions about 
the function of this domain and the putative binding partners. Determination of the structure 
of the TcdC C-terminus, especially in complex with a binding partner, would be a valuable 
asset to further explore the function of the domain.Previous studies have shown that TcdC 
might prevent the formation of a TcdR-RNA polymerase complex, thus repressing the toxins 
expression. Furthermore, in vitro binding of TcdC to ssDNA G-quadruplexes was observed 67. 
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However, both these functions would presumably require a cytosolic location of TcdC’s OB-
fold domain. The extracellular localization of the OB-fold domain suggests that binding to 
ssDNA G-quadruplexes in vitro could mimic an alternative TcdC binding partner. It is likely that 
TcdC could bind for instance oligosaccharides present in the environment or even at the host 
cell surface, contributing to the pathogenesis of the bacterium, as seen for certain OB-fold 
proteins in other organisms 68-70. However, extracellular TcdC-binding partners have not yet 
been identified. Possible pull-down experiments, with the available repertoire of C. difficile 
tags, or direct binding to putative host cell binding partners, including (cell surface-associated) 
carbohydrates, could elucidate the role – if any - of TcdC in toxin regulation. Additionally, the 
observed higher-than-expectedmolecular weight of TcdC could suggest post-translational 
modifications that may be present at the TcdC C-terminus, that determine and/or affect the 
binding to the extracellular components 71. 

An interesting, and so far poorly explored, question is how the expression of TcdC is regulated. 
Expression of the tcdC gene, in contrast to the remaining genes of the PaLoc, was found to be 
high in early exponential phase, and decreasing upon entry into stationary growth phase, 
suggesting a possible role as a negative regulator of toxin expression 55. In contrast, other 
studies showed a constant expression level during the stationary growth phase 50,58,72. Further 
analysis of TcdC expression under different environmental conditions, with for example a 
PtcdC-Lucopt fusion, might provide valuable insights in the regulation of tcdC expression. 
Additionally, evaluation of PtcdC-Lucopt in a wild-type background as well as in a tcdC mutant 
strain, might elucidate possible TcdC auto-regulation.  

To date, no TcdC regulators have been identified. Although regulation of tcdA, tcdB, and tcdR 
expression appears to be modulated by different proteins, like the H or the Agr quorum-
sensing system, no significant differences were observed in tcdC expression in these 
experiments 60,61. Agr-mediated transcription of TcdA and TcdB was observed in both non-
epidemic – that have a functional TcdC - and epidemic strains of C. difficile - that lack a 
functional TcdC - suggesting that Agr-mediated toxin regulation is independent of TcdC 61. 
Thus, TcdC regulation appears to be mediated through different mechanisms than toxin 
expression (if at all). 

The possible role of TcdC in toxin regulation is quite unclear. Although previously decreased 
virulence was observed when the truncated tcdC was restored 49, several studies using tcdC 
mutants or restoring truncated tcdC showed no significant differences on the toxin expression 
and did not observe a correlation between tcdC and gene expression 48,50,65,72. If TcdC, in fact, 
can act as a negative regulator of toxin expression, it likely does so indirectly rather than by 
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acting as an anti-sigma factor, and due to its extracellular location could play a role in linking 
environmental cues to toxin gene expression. Due to different tcdC alleles, the sensing of 
environmental factors might also be strain-specific, similar to what has been seen for the RstA 
mediated regulation of the toxin genes 63. Importantly, determination of the localization of 
the N-terminus of TcdC is still necessary to establish the complete TcdC topology, as binding 
of the TcdC C-terminus to the unknown partner might relay a signal to a potential small 
intracellular N-terminal domain that might trigger an effect on toxin gene expression.  

Together, the advances of the C. difficile toolkit have furthered our understanding of TcdC 
topology and also provide ways to address new and exciting questions regarding TcdC ‘s 
function. 

C. difficile chromosome dynamics and replication 

DNA topology can affect a plethora of cellular processes, most notably transcription and DNA 
replication 73-75. DNA replication is a highly conserved process, essential for cell survival 76,77. 
In most bacteria, replication of the chromosome starts with the unwinding of the origin of 
replication (oriC) and assembly of the replisome at the unwound region. Usually, bacterial 
DNA replication is initiated by the DnaA protein, that binds specific sequences in the oriC 
region, subsequently driving the recruitment of other proteins required not only for the 
formation of a replicative complex, like helicase and primase, but also for its regulation and 
remodelling, such as the DnaD/DnaB proteins and the nucleoid-associated proteins HU and IHF 
74,78,79. DNA replication is tightly linked to DNA topology, as seen in E.coli, where the disruption 
of the gene encoding HU resulted in perturbations of the coordination between the initiation 
of DNA replication and the cell growth 79,80.  

Only recently, characterization of DNA replication of C. difficile has been tackled molecularly, 
in part motivated by the potential as a target for new therapies 12,81. Proteins homologous to 
the B. subtilis and E. coli replication proteins have been identified and characterized in C. 
difficile, such as the DNA polymerase C (PolC), helicase and helicase loader, and also the 
primase 82,83. Interestingly, several differences were observed between C. difficile and the 
gram-positive model organism B. subtilis 82, which may provide a handle for species-specific 
therapeutic approaches. 

Little is known about the first steps of initiation of replication and possible regulators of this 
process in C. difficile. The differences in the replisome proteins, made us wonder whether 
such species-specific differences are also observed for DNA replication initiation. In this thesis, 
we therefore investigated origin unwinding by the initiator protein DnaA (Chapter 4). 
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In B. subtilis a basal system for the DnaA-dependent unwinding has been established 84. In the 
proposed model, DnaA initially binds to the double-stranded DNA (dsDNA) DnaA-boxes 
present in the origin region. Subsequently, several DnaA molecules bind in the origin region, 
allowing the ATP-dependent formation of a DnaA-filament over the conserved DnaA-trio, 
essential for the strand separation. The formation of a DnaA-filament imposes a topological 
alteration, by looping the DNA and stretching the bound region, thus separating the DNA 
strands and leading to origin unwinding. Additional DnaA molecules bind to the unwound 
region, binding to the single-stranded DNA, stabilizing the unwound region and recruiting the 
replisome 84. 

In Chapter 4 we were able to show DnaA-dependent unwinding, in the dnaA-dnaN intergenic 
region named oriC2. Analysis of the oriC genomic organization of several different clostridia 
showed a conserved architecture, similar to B. subtilis, suggesting a possible conserved 
mechanism for DnaA-dependent unwinding. However, as differences in later stages of the 
replication mechanism were observed 82, the steps of origin melting to the helicase loading 
await biochemical characterization.  

One important question in the initiation of replication of C. difficile is whether, and if so, how 
the origin region is remodelled by the action of proteins different from DnaA. In E. coli, 
chromosome remodelling activity at the origin region is dependent on histone-like protein 
IHF, which aids the formation of a DNA loop during oriC unwinding 85. The E. coli HU protein 
also facilitates the stabilization of the DnaA oligomer, through direct interaction with the 
DnaA N-terminal domain I 80 but it is unclear whether this mechanism is present in other 
species. However, C. difficile only contains a homologue of histone-like protein HU, the HupA 
protein, and does not contain a homologue to IHF 86. Prior to the work described in this thesis, 
this protein had not been characterized. 

In Chapter 5 we show that HupA binding to DNA induces a conformational change that leads 
to clear compaction of the chromosome in vivo and in vitro, suggesting that C. difficile HupA 
can indeed remodel DNA. However, an analysis of the role of HupA in chromosome 
remodelling for origin unwinding is not explored yet. Therefore, the HupA role in DnaA-
dependent unwinding and possible binding to DnaA should be tested, for instance using the 
P1 nuclease assay implemented in Chapter 4 and the developed luciferase toolkit. Of note, 
our work indicates that overexpression and/or C-terminal tagging with HaloTag might exert a 
modest effect on HupA functionality (Chapters 5 and 6), which should be taken into account 
when interpreting the results from experiments involving this fusion. To overcome this, 
codon-optimization of the HaloTag should be performed. Furthermore, the effect of tagging 
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and overexpression on HupA function could be untangled by comparison of the HaloTag-fused 
protein under conditions of overexpression (as used in this study) or at native levels (as for 
instance by insertion of the HaloTag-coding sequence through ACE at the hupA native locus). 
Insertion of the tag at the native locus of hupA would also allow one to explore native HupA 
dynamics during C. difficile growth in the absence of plasmid selection, and shed light on the 
involvement of HupA on replication initiation regulation and the reorganization of the 
nucleoid during sporulation.  

Remodelling of the oriC region of B. subtilis has been shown to involve primosome proteins 
DnaB and DnaD, which are unique to Firmicutes and are likely derived from phage proteins 
82,87,88. DnaB and DnaD proteins affect the DNA topology, facilitate recruitment of the helicase 
and are postulated to stabilize the melted region 89-91. Interestingly, C. difficile only contains 
one homologue of the DnaB-DnaD family of proteins, the CD3653 protein, which might 
perform similar functions in origin remodelling 12. If so, CD3653 remodelling of the oriC may 
be mediated through direct interaction with DnaA, as some of the residues in the DnaA 
interaction surface appear to be conserved in the C. difficile proteins 91,92. Some of the newly 
developed C. difficile tools and other methods used in this thesis could be used to explore the 
interactions of HupA and/or CD3653 with DnaA or other proteins present in the replisome or 
at the origin of replication, such as bitLucopt, size-exclusion chromatography and cross-linking. 
Additionally, the unwinding assay in combination with atomic force microscopy could be used 
to assess the influence of the potential interactors on the unwinding of the origin and 
stabilization of the DnaA filament.  

A broader search of proteins interacting with DnaA or other replication proteins is likely to 
provide valuable information on the replication complex at the origin of replication and/or 
the replication fork. Multiple methods could be used for this. Tag-mediated pull-down assays 
in combination with mass-spectrometry identification can be used for the identification of 
potential binding partners for the proteins studied in this thesis. For instance, the use of the 
HaloTag Complete Pull-Down System (Promega) could allow the identification of novel 
interactors, as a HaloTag-fused protein is efficiently captured by binding to the HaloLink resin. 
Despite the commercial availability of the system, preliminary experiments indicated that 
further optimization is required for use in C. difficile cell cultures (data not shown). 
Alternatively, purified proteins could be used to raise antibodies and perform pull-down 
experiments of native, non-tagged, proteins. As a first step, we have already generated 
antibodies against DnaA and showed that it can recognize non-tagged DnaA protein (data not 
shown).  
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Finally, a technique called BioID 93,94 can be used to identify interactors, or proteins in the 
same complex, even if they associate only transiently. The method is based on proximity-
dependent biotinylation of proteins and has successfully been used to study chromatin-
associated proteins in eukaryotes 95. The method employs a tag that is based on a mutant 
form of a heterologous biotin ligase, BirA, called BirA*. Expression of a BirA*-tagged protein 
results in the biotinylation of proteins in close proximity to the protein of interest, that can 
subsequently be characterized by streptavidin-based affinity purification and mass 
spectrometry 93,94. Preliminary experiments suggest this strategy is feasible for C. difficile, but 
further optimization is required (data not shown).  

Notwithstanding the obtained results so far, the identification of DnaA or other replication 
proteins interactors will need to be further investigated and validated by in vivo and in vitro 
experiments. For instance, using the developed luciferase toolkit to expand on the interaction 
between the proteins, which can be further confirmed by size exclusion chromatography and 
crosslinking. The available fluorescent reporters also provide a valuable tool for further 
characterization of the interactors. We were able to set up different constructs for live-cell 
microscopy for further analysis of the effect of potential protein regulators (data not shown), 
but also to evaluate the replication complex in vivo. A better understanding of chromosome 
dynamics and DNA replication, including its regulators, is crucial for our understanding of the 
coordination between the different cellular pathways and might lead to the identification of 
components that can be targeted for novel therapies. 

In conclusion, the work presented in this thesis has provided a luciferase toolkit for further C. 
difficile studies (Fig. 1), not only for gene expression analysis (sLucopt), but also for protein-
protein interaction studies in vivo (bitLucopt), secretion of proteins or even complexes present 
at the cell surface (HiBiTopt). We investigated the strengths and weaknesses of C. difficile 
fluorescence microscopy, by comparing the fluorophores previously described in C. difficile 
(CFPopt, mCherryOpt, phiLOV2.1 and SNAPCd), and introduced the use of the fluorophore 
HaloTag in C. difficile. Additionally, we analyzed C. difficile intrinsic fluorescence and report 
the potential limitations for live C. difficile microscopy. The development of the luciferase 
systems in C. difficile enabled the assessment of the localization of the TcdC C-terminus and 
the characterization of the in vivo multimerization of the HupA protein. Finally, we provide 
new insights into the chromosome remodelling and DNA replication by studying the DnaA-
dependent unwinding and characterizing the histone-like protein HupA. In this discussion, we 
presented the implications of our findings and provided perspectives for further research on 
TcdC-mediated toxin regulation and chromosome dynamics, specifically during DNA 
replication.   
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