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ABSTRACT

Background: Current understanding of metabolic heart disease consists of myriad of 
different pathophysiological mechanisms. Epicardial adipose tissue (EAT) is increas-
ingly recognized as metabolically active and associated with adverse cardiovascular 
outcomes. The present study aimed to investigate the effect of increased EAT volume in-
dex on left ventricular (LV) myocardial fat content (LV-myoFat) and burden of interstitial 
myocardial fibrosis, and their subsequent effects on LV myocardial contractile function.

Methods: 40 volunteers (mean age 35 ± 10 years, 26 males) of varying body mass index 
(BMI: 25.0 ± 4.1 kg/m2, range 19.3–36.3 kg/m2) and without diabetes or hypertension 
were prospectively recruited. EAT volume index, LV-myoFat and extracellular volume 
(ECV) were quantified by magnetic resonance imaging (MRI). LV myocardial contractile 
function was quantified by speckle tracking echocardiography global longitudinal strain 
(GLS) on the same day as MRI examination.

Results: Mean total EAT volume index, LV-myoFat and ECV were 30.0 ± 19.6 cm3/m2, 
5.06 ± 1.18% and 27.5 ± 0.5% respectively. On multivariable analyses, increased EAT 
volume index and insulin resistance were independently associated with both increased 
LV-myoFat content and higher burden of interstitial myocardial fibrosis. Furthermore, 
increased EAT volume index was independently associated with LV GLS.

Conclusions: Increased EAT volume index and insulin resistance were independently 
associated with increased myocardial fat accumulation and interstitial myocardial fibro-
sis. Increased EAT volume index was associated with detrimental effects on myocardial 
contractile function as evidenced by a reduction in LV GLS.
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INTRODUCTION

There is a growing body of evidence that the altered metabolic milieu seen in obese and 
diabetic patients causes myocardial structural changes and contractile dysfunction.1 
Commonly referred to as metabolic heart disease, we have previously shown that im-
paired left ventricular (LV) myocardial systolic function as quantified by 2-dimensional 
(2D) global longitudinal strain (GLS) echocardiography was associated with increased 
myocardial fat accumulation, coronary artery disease, increased interstitial fibrosis, and 
increased epicardial adipose tissue (EAT) volume.2-5 EAT is depot of visceral fat directly 
overlying the myocardium, and is of similar embryological origin as abdominal mesen-
teric and omental visceral fat.6 Increasingly, EAT is recognized as a metabolically active 
endocrine organ that secretes adipokines associated with detrimental myocardial and 
coronary vascular dysfunction.7 Several studies have demonstrated a direct correlation 
between EAT and myocardial fat (i.e. triglyceride [TG]) accumulation,8, 9 and animal 
research suggested that EAT may directly channel fatty acids to the myocardium as 
a local energy source.10, 11 However, when the amount of free fatty acid uptake by the 
heart exceeds its oxidative capacity, it is converted and stored as intracellular TG.12 It is 
currently accepted that the intracellular myocardial TG is probable inert, but increased 
shunting of free fatty acid into the non-oxidative pathway leads to accumulation of toxic 
fatty acid intermediates such as ceramide that disrupt normal cellular signaling and 
eventually leads to cellular apoptosis and replacement fibrosis.13

Magnetic resonance imaging (MRI) techniques such as proton magnetic resonance spec-
troscopy ([1H]-MRS) and multi-echo Dixon water and fat separated imaging with variable 
projection (VARPRO) can quantify LV myocardial fat (LV-myoFat) content.14, 15 Similarly, 
the modified Look-Locker inversion recovery (MOLLI) sequence can quantify the burden 
of interstitial fibrosis by extracellular volume (ECV) expansion.16, 17 In the present study, 
volunteers of normal weight, as well as overweight and obese individuals without the 
confounding influences of diabetes or hypertension were evaluated to determine the 
effect of increased EAT volume index on LV-myoFat content and burden of LV interstitial 
fibrosis. We hypothesize that: 1) increased EAT volume index is independently associ-
ated with increased myocardial fat accumulation and interstitial fibrosis; and 2) EAT 
volume index is independently associated with myocardial contractile function.
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METHODS

Study population and study protocol
A total of 40 volunteers with a wide range of body mass index (BMI) were prospectively 
recruited from the community. Exclusion criteria included age < 18 years, pregnancy, 
rhythm other than sinus rhythm, hypertension, diabetes mellitus, previously known 
underlying coronary artery disease, LV systolic dysfunction or previous myocardial 
infarction, moderate or severe valvular stenosis or regurgitation, pre-existing hepatic 
or renal disorders, active smoker, current use of any regular medications, inability to 
provide informed consent, and inability to undergo a cardiac MRI. All participants’ blood 
tests, transthoracic echocardiogram and cardiac MRI examinations were performed on 
the same day after an overnight fast.

Figure 1 outlines the study protocol. In brief, a subset of 15 randomly selected volun-
teers underwent “clinical reference standard” [1H]-MRS to validate LV-myoFat content 
by VARPRO. All 40 volunteers underwent cardiac MRI to quantify LV volumes, LV mass, 
EAT volume, LV-myoFat content by the VARPRO, and burden of LV interstitial fibrosis by 
ECV using the MOLLI sequence. 4, 16, 17 All 40 volunteers also underwent echocardiograms 
to quantify myocardial contractile function by 2D LV GLS.

 

Figure 1. Outline of study protocol. Subset of 15 volunteers underwent quantification of myocardial TG by 
[1H]-MRS to validate LV-myoFat by the VARPRO sequence. All 40 volunteers underwent fasting blood tests, 
cardiac MRI and echocardiography on the same day after an overnight fast. LV-myoFat = left ventricular myo-
cardial fat; [1H]-MRS = proton magnetic resonance imaging; HDL = high density lipoprotein; LDL = low density 
lipoprotein; TG = triglyceride; HOMA-IR = homeostatic model assessment index of insulin resistance; HbA1c = 
glycated hemoglobin; VARPRO = variable projection; MOLLI = modified Look-Locker inversion recovery; LV = left 
ventricle/ventricular; 2D = 2-dimensional; GLS = global longitudinal strain.
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The study was approved by the institutional ethics committee and all subjects provided 
written informed consent. The data, analytic methods, and study materials will not be 
made available to other researchers for purposes of reproducing the results or replicat-
ing the procedure for competitive reasons.

Demographic, anthropomorphic and metabolic data
All subjects underwent an overnight fast of at least 8 hours. Clinical data collected in-
cluded age, gender, height, weight, waist/hip ratio, and resting blood pressures. Waist 
circumference was measured midway between the lower rib margin and iliac crest. 
Hip circumference was measured at the level of widest circumference over greater 
trochanters.18 Blood tests included fasting lipid profile, fasting plasma glucose, glycated 
hemoglobin (HbA1c), insulin, and glomerular filtration rates (GFR) calculated by the 
Modification of Diet in Renal Disease formula.19

High-density lipoprotein (HDL) cholesterol was measured as a homogeneous assay in 
liquid phase (Boehringer Mannheim, Mannheim, Germany) on a Hitachi 747 autoana-
lyzer. Low-density lipoprotein (LDL) cholesterol was calculated according to the Friede-
wald equation: LDL-cholesterol (mmol/L) = Total cholesterol – HDL-cholesterol – TG / 2.2.

Fasting plasma glucose was measured by enzymatic assay (Dade Behring, Newark, DE, 
USA). Serum insulin was evaluated using a chemiluminescent enzyme immunoassay 
(Immulite 2000; Diagnostic Products, Los Angeles, CA, USA). The homeostatic model as-
sessment (HOMA) index of insulin resistance (HOMA-IR) was computed using the HOMA 
calculator that utilizes the HOMA2 model as previously reported.20 HbA1c measurements 
were performed using high performance liquid chromatography cation-exchange ana-
lyzers by Bio-Rad D-10TM Hemoglobin Testing System (Bio-Rad Laboratories, Inc., Hercu-
les, CA). This assay is National Glycohemoglobin Standardization Program (NGSP) and 
International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) certified, 
and standardized to the Diabetes Control and Complications Trial (DCCT) assay.

Cardiac magnetic resonance imaging
All participants underwent a cardiac MRI examination using a 1.5T Siemens Magnetom 
Avanto (Erlangen, Germany) system on the same day as their transthoracic echocar-
diogram and blood tests. During the examination, the entire heart was imaged in the 
short-axis orientation with retrospective ECG-gating and breath-hold. Typical imaging 
parameters were: balanced steady state free-precession imaging, echo time (TE) = 1.0 
ms, repetition time (TR) = 3.1 ms, flip angle = 54°, slice thickness = 8 mm with a gap of 2 
mm, field of view = 340x340 mm, reconstructed matrix size = 156x192.
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LV end-diastolic mass index, LV end-diastolic volume index (EDVI) and LV end-systolic 
volume index (ESVI) were measured and corrected for body surface area.21 LV ejection 
fraction (LVEF) was calculated and expressed as a percentage. Differences in LV end-
diastolic and end-systolic volumes were used to calculate stroke volume, multiplied by 
heart rate to calculate cardiac output, and corrected for body surface area to calculate 
cardiac index. Peripheral vascular resistance was calculated as the ratio of mean blood 
pressure to cardiac output. Images were digitally stored on hard disks and analyzed of-
fline using dedicated quantitative software (MASS V2010-EXP, Leiden University Medical 
Center, Leiden, The Netherlands).

MRI quantification of myocardial triglyceride/fat content
Quantification of myocardial TG content by [1H]-MRS is considered the “clinical reference 
standard”, but is time consuming to perform (mean scan duration 13.2 ± 4.5min).13, 22  
In contrast, newer MRI techniques such as VARPRO can rapidly obtain fat and water 
separated images to quantify LV-myoFat content in a single breath-hold. Furthermore, 
it can avoid contamination from EAT. Therefore, a subset of 15 volunteers underwent 
concomitant [1H]-MRS to validate LV-myoFat by VARPRO.

Quantification of myocardial triglyceride content by [1H]-MRS
Cardiac [1H]-MRS was performed as previously described (Figure 2, top panels).2, 22 Briefly, 
[1H]-MRS spectra were obtained by point resolved spectroscopy sequence (PRESS) with 
an 6mL voxel (1x2x3 cm) placed in the interventricular septum using the 4-chamber and 
short-axis views at end-diastole. Spectroscopic data acquisitions were double-triggered 
with ECG triggering and respiratory navigator echoes to minimize motion artifacts. End-
diastolic spectra were acquired with the following parameters: TE = 25 ms, TR = 2000 ms, 
1024 data points, bandwidth 1000Hz. Automatic shimming was performed before the 
spectroscopy data acquisition using the gradient-recalled echo shim technique whereby 
a field map was generated from a single-slab double-echo 3D gradient-recalled echo 
acquisition with two in-phase TEs with respect to fat and water, which were then used to 
calculate the shim currents to improve B0 homogeneity. Water-suppressed spectra were 
acquired with 128 signal averages to quantify myocardial TG. Non-water suppressed 
spectra were acquired with 16 signal averages and used as an internal standard.

[1H]-MRS data were then fitted by use of Java-based MR user interface software ( jMRUI 
version 2.2, Leuven, Belgium) AMARES algorithm as previously described.2 Resonance 
frequency estimates for myocardial TG were described by assuming Gaussian line 
shapes and summing the amplitudes of lipid resonances at 0.9 and 1.3 ppm. Resonance 
frequency estimate for water used for internal standardization was described by as-
suming a Lorentzian line shape that peaks at 4.7ppm. Myocardial TG content relative 
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to water was calculated and expressed as a percentage based on: (signal amplitude of 
myocardial TG)/(signal amplitude of water)x100%.2

Quantification of LV-myoFat content by VARPRO sequence
The VARPRO multi-point Dixon algorithm is a multi-echo gradient sequence with fat 
and water separation.14, 23, 24 This multi-echo Dixon fat-water separation jointly estimates 
the fieldmap, fat, and water images (Figure 2, middle panel). The sequence was ECG 
triggered, with 2 R-R intervals between inversions, and used an echo-train readout with 
4 echoes. Typical imaging parameters were: gradient echo, TE = 1.27, 3.18, 5.09, 7.00 
ms, TR = 11.2 ms, flip angle = 24°, slice thickness 6 mm, field of view = 360 x 292 mm, 
reconstructed matrix size = 256x218, bandwidth = 1502 Hz/pixel. The LV basal and mid-
ventricular short-axis slices by the VARPRO sequence were obtained at exactly the same 
LV level as quantification of interstitial fibrosis by MOLLI sequence (see below).

During analysis, the LV contours at the basal and mid-ventricular short axis slices were 
deliberately drawn in the mid-myocardium to exclude and avoid contamination by EAT 
and the LV blood pool using MASS research software. Although the LV apical segments 
were also acquired during the VARPRO image acquisitions, it was not included in the 
analyses due to partial volume effects from EAT and LV blood pool secondary to the 
curvature of the LV apex that will compromise accurate quantifications of LV-myoFat 
content. LV-myoFat fat content was calculated and expressed as a percentage based 
on: (mean pixel signal intensity of LV fat-only image)/(mean pixel signal intensity of LV 
water-only image)x100%.

MRI quantification of LV interstitial fibrosis by MOLLI sequence
The MOLLI T1 mapping sequence was used to quantify the burden of interstitial fibrosis 
by ECV.16, 17 All participants received 0.1mmol/kg of gadolinium diethylenetriamine 
penta-acetic acid. The MOLLI sequence imaging parameters were: single-shot steady-
state free precession read out with trigger delay to coincide with end-diastole, TE = 1.0 
ms, TR = 2.7 ms, flip angle = 35°, slice thickness = 8mm, field of view = 340x340 mm, 
reconstructed matrix size = 106x192 pixels, trigger delay = 300ms. The LV basal and 
mid-ventricular short-axis slices by the MOLLI sequence were obtained at exactly the 
same LV level as quantification of LV-myoFat content by VARPRO. These images were 
then processed with a curve fitting technique to generate T1 maps as described below.

To quantify the ECV, LV endocardial and epicardial borders were outlined using MASS 
research software.4, 25 Contours were deliberately drawn to ensure the inclusion of only 
myocardium and the exclusion of EAT and LV blood pool. The software then performs 
automatic pixel-by-pixel quantification of myocardial T1 time by fitting data acquired 



144 ﻿

﻿

at the various inversion times.4, 25 A mean global native and post-contrast myocardial 
T1 time were subsequently automatically calculated as the average of all the individual 
myocardial T1 time from each pixel. ECV was calculated as per previous publication and 
expressed as a percentage 16:

200 
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A higher ECV is indicative of increased collagen deposition and thus a greater 

degree of myocardial interstitial fibrosis.  A higher ECV is indicative of increased collagen deposition and thus a greater degree of 
myocardial interstitial fibrosis.

MRI quantification of epicardial adipose tissue volume
Total EAT volume was quantified using a T1 weighted double inversion recovery Half-
Fourier-Acquired Single-shot Turbo spin Echo (HASTE) black blood imaging (Figure 2, 
bottom panels). Manual contours were drawn whereby mediastinal fat and pericardial 
fat (outside the visceral pericardium and on the external surface of the parietal pericar-
dium) were excluded. The volumes of EAT in all the slices were calculated by converting 
the number of pixels to square centimetres multiplied by the slice thickness. Total EAT 
volume was subsequently calculated by summing the volumes of all slices from the level 
of pulmonary artery bifurcation to the diaphragm and indexed to body surface area. 
Typical imaging parameters were: turbo spin echo, TE = 26.0 ms, TR = 1000 ms depend-
ing on RR interval, flip angle = 160°, slice thickness 6 mm with a gap of 6 mm, field of view 
= 440x440 mm, reconstructed matrix size = 256x176.

MRI quantification of visceral adiposity
Abdominal visceral fat depots were quantified by using the VARPRO sequence with 
similar imaging parameters as outlined previously. Six consecutive transverse images 
were obtained with the middle image at the middle of the fourth lumbar vertebra. Simi-
larly, manual contours were drawn to include only the abdominal visceral fat, and the 
volumes of the visceral fat depots in each slice was calculated by converting the number 
of pixels to square centimeters multiplied by the slice thickness. The total L4 visceral fat 
volume was calculated by summing the volumes of all 6 slices.

Echocardiography
Transthoracic echocardiography was performed with the subjects at rest using a com-
mercially available ultrasound system (Vivid E9, 4V probe, GE-Vingmed, Horten, Norway) 
on the same day as their cardiac MRI and blood tests. A complete 2D, color, pulsed 
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and continuous-wave Doppler echocardiogram was performed according to standard 
techniques.26 All images were digitally stored on hard disks for offline analysis (EchoPAC 
version 113, GE-Vingmed, Horten, Norway).

Doppler assessment
Mitral inflow velocities were recorded using conventional pulsed-wave Doppler echocar-
diography in the apical 4-chamber view using a 2 mm sample volume. Transmitral early 
(E wave) and late (A wave) diastolic velocities as well as deceleration time were recorded 
at the mitral leaflet tips. Pulsed-wave tissue Doppler velocities were recorded at the 
septal mitral annulus in the apical 4-chamber view at end-expiration as recommended 
to obtain the mitral annular early diastolic (e’) velocity.27 LV filling pressure (septal E/e’) 
was calculated as the ratio of transmitral E wave to septal mitral annular e’ velocity.

 

 
Figure 2. Quantification of myocardial TG by “clinical reference standard” [1H]-MRS with the voxel of interest 
placed in the interventricular septum (top left panel). Myocardial TG was calculated from the summation of 
the lipid resonance amplitudes at 0.9 and 1.3ppm (top right panel). Quantification of LV-myoFat by VARPRO 
where epicardial and endocardial borders were deliberately drawn in the mid-myocardium to avoid contami-
nation from EAT and LV blood pool (middle panels). The “water only” (middle left panel) and “fat only” (middle 
right panel) were obtained simultaneously from VARPRO, and both the endocardial and epicardial contours 
were identical on both images. Example of quantification of EAT volume (bottom panels).
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Two-dimensional speckle tracking
2D speckle tracking analyses were performed on standard grey scale images in the apical 
2-, 3- and 4-chamber views. During analysis, the endocardial border was manually traced 
at end-systole and the region of interest width adjusted to include the entire myocardi-
um. LV GLS was calculated from the 3 individual apical global longitudinal strain curves.

Statistical analysis
All continuous variables were tested for Gaussian distribution. Continuous variables 
were presented as mean ±1 SD unless otherwise stated, and categorical variables were 
presented as frequencies and percentages. Unpaired Student’s t-test and Mann-Whitney 
U test were used to compare 2 groups of continuous variables of Gaussian and non-
Gaussian distribution respectively. Pearson correlation was used to determine the 
association between 2 continuous variables. Intraclass correlation and Bland-Altman 
plot were used to validate VARPRO to quantify LV-myoFat content against “clinical refer-
ence standard” myocardial TG content by [1H]-MRS. Multiple linear regression analyses 
were performed to identify independent variables associated with LV-myoFat content 
by VARPRO sequence, ECV as a measure of LV interstitial fibrosis, and 2D LV GLS by 
speckle tracking echocardiography. In each multiple linear regression model, significant 
univariables with p  < 0.05 were entered as covariates and independent variables were 
identified using the backward elimination method. To avoid potential multicollinearity, 
a tolerance of  > 0.4 (equating to a Variance Inflation Factor of  > 2.5) was set. To deter-
mine if EAT volume index was independently associated with LV-myoFat, ECV, and 2D LV 
GLS (rather than just a measure of overall visceral adiposity), all multivariable analyses 
were repeated with L4 visceral fat volume forced into the models. A 2-tailed p value of  < 
0.05 was considered significant. All statistical analyses were performed using IBM SPSS 
Statistics for Windows, version 21.0 (Armonk, NY).

RESULTS

A total of 40 volunteers (26 males) with a mean age of 35 ± 10 years were recruited. The 
mean heart rate, LVEDVI, LVESVI, LVEF and LV mass index were 61 ± 9 beats/min, 90 ± 15 
mL/m2, 40 ± 8 mL/m2, 55 ± 4% and 43 ± 8 g/m2 respectively.

The mean BMI was 25.0 ± 4.1 kg/m2 (range 19.3 to 36.3 kg/m2), and the mean waist/hip 
ratio was 0.88 ± 0.11 (range 0.74 to 1.33). Twenty-two volunteers (55.0%) were identified 
as overweight/obese based on waist/hip ratio as classified by the World Health Orga-
nization cut-off values. The mean total EAT volume index was 30.0 ± 19.6 cm3/m2, and 
there was no gender difference in EAT volume index (p = 0.28).
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Table 1. Clinical, MRI and echocardiographic characteristics of study population.

Variable All Volunteers

(n = 40)

Volunteers 
without [1H]-MRS

(n = 25)

Volunteers with 
[1H]-MRS

(n = 15)

p value*

Clinical
Age (years) 35 ± 10 35 ± 11 36 ± 9 0.79

Male gender 26 (65%) 16 (64%) 10 (67%) 0.86

Waist/hip ratio 0.88 ± 0.11 0.88 ± 0.10 0.89 ± 0.14 0.92

Heart rate (beats/min) 61 ± 9 61 ± 10 60 ± 8 0.83

Systolic BP (mmHg) 128 ± 11 129 ± 11 126 ± 12 0.51

Diastolic BP (mmHg) 79 ± 9 79 ± 9 79 ± 10 0.97

Biochemical
Total cholesterol (mmol/L) 4.82 ± 0.72 4.85 ± 0.72 4.78 ± 0.74 0.77

LDL cholesterol (mmol/L) 2.92 ± 0.56 2.93 ± 0.51 2.91 ± 0.66 0.89

HDL cholesterol (mmol/L) 1.44 ± 0.39 1.47 ± 0.47 1.40 ± 0.23 0.60

Plasma triglyceride (mmol/L) 1.03 ± 0.52 1.02 ± 0.48 1.04 ± 0.59 0.93

Fasting plasma glucose (mmol/L) 5.0 ± 0.5 5.0 ± 0.6 5.0 ± 0.3 0.67

HbA1c (%) 5.2 ± 0.2 5.2 ± 0.2 5.2 ± 0.3 0.93

Fasting Insulin (mU/L) 5.8 ± 5.1 6.2 ± 5.7 5.2 ± 4.1 0.99

HOMA-IR 1.30 ± 1.11 1.39 ± 1.24 1.16 ± 0.88 0.92

GFR (mL/min/1.73m2) 99 ± 16 97 ± 17 101 ± 13 0.52

MRI
LV mass index (g/m2) 43 ± 8 43 ± 6 43 ± 10 0.89

LVEDVI (mL/m2) 90 ± 15 91 ± 11 89 ± 21 0.74

LVESVI (mL/m2) 40 ± 8 41 ± 6 39 ± 10 0.48

LVEF (%) 55 ± 4 55 ± 3 55 ± 4 0.58

Stroke volume (mL) 95 ± 19 95 ± 15 96 ± 25 0.81

Cardiac output (L/min) 5.7 ± 1.1 5.7 ± 1.1 5.7 ± 1.2 0.96

Cardiac index (L/min/m2) 3.0 ± 0.6 3.0 ± 0.6 2.9 ± 0.6 0.80

Peripheral vascular resistance (dyn.s/cm5) 1385 ± 288 1393 ± 318 1371 ± 240 0.82

L4 visceral fat volume (cm3) 324 ± 239 227 ± 200 264 ± 219 0.60

EAT volume index (cm3/m2) 30.0 ± 19.6 27.3 ± 16.0 34.6 ± 24.3 0.26

LV-myoFat content (%) 5.1 ± 1.2 5.0 ± 1.1 5.2 ± 1.3 0.51

ECV (%) 27.5 ± 0.5 27.3 ± 0.5 27.8 ± 0.4 0.037

Echocardiography
Transmitral E velocity (m/s) 0.77 ± 0.17 0.77 ± 0.18 0.78 ± 0.16 0.98

Transmitral E/A ratio 1.8 ± 0.8 1.8 ± 0.9 1.9 ± 0.6 0.77

Deceleration time (ms) 166 ± 28 169 ± 31 159 ± 20 0.26

Septal E’ velocity (cm/s) 12.3 ± 3.0 11.9 ± 3.1 12.9 ± 2.6 0.30

Septal E/e’ ratio 6.6 ± 1.8 6.8 ± 1.8 6.2 ± 1.8 0.33

2D LV GLS -19.0 ± 2.4 -19.0 ± 2.7 -19.2 ± 2.0 0.77

*p value by unpaired Student’s t-test or Mann-Whitney U test for continuous variables of Gaussian and non-Gaussian dis-
tribution respectively, and Chi square test for categorical variables. 2D: 2-dimensional; BP: blood pressure; EAT: epicardial 
adipose tissue; ECV: extracellular volume; EDVI: end-diastolic volume index; ESVI: end-systolic volume index; EF: ejection 
fraction; GFR: glomerular filtration rate; GLS: global longitudinal strain; HbA1c: glycated hemoglobin; HDL: high density 
lipoprotein; LDL: low density lipoprotein; HOMA-IR: homeostatic model assessment index of insulin resistance; LV: left 
ventricular; LV-myoFat: left ventricular myocardial fat content by VARPRO sequence.
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Validation of VARPRO sequence against [1H]-MRS
A subset of 15 randomly volunteers underwent “clinical reference standard” [1H]-MRS to 
quantify myocardial TG content. Table 1 outlines the baseline clinical, MRI and echocar-
diographic characteristics between the 15 randomly selected volunteers against the rest 
of the cohort. Other than a slight difference in ECV between these 2 groups (27.3 ± 0.5 vs. 
27.8 ± 0.4%, p = 0.037), there were no significant differences in other variables. Figures 
3 and 4 show LV-myoFat content by VARPRO overestimated myocardial TG content 
compared to [1H]-MRS:
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Figure 3. Scatterplot showing excellent reliability of VARPRO quantification of LV-myoFat against “clinical 
reference standard” quantification of myocardial TG content by [1H]-MRS.

 
Figure 4. Bland-Altman plot showing overestimation of VARPRO quantification of LV-myoFat against “clinical 
reference standard” quantification of myocardial TG content by [1H]-MRS.
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However, LV-myoFat content quantification by VARPRO had excellent reliability com-
pared to the “clinical reference standard” myocardial TG quantification by [1H]-MRS with 
an intraclass correlation for consistency of r = 0.92 (95% confidence interval 0.75-0.97).

Determinants of LV-myoFat content
The mean LV-myoFat content by VARPRO for all 40 volunteers was 5.06 ± 1.18%. There 
was no gender difference in LV-myoFat content (p = 0.36). LV-myoFat content increased 
with older age (r = 0.51, p = 0.001), higher insulin resistance (HOMA-IR, r = 0.51, p = 0.001) 
and increasing measures of obesity by EAT volume index (r = 0.61, p < 0.001), waist/
hip ratio (r = 0.59, p < 0.001) and L4 visceral fat volume (r = 0.60, p < 0.001). There was 
also a correlation between LV-myoFat content and plasma TG (r = 0.48, p = 0.002), LDL-
cholesterol (r = 0.33, p = 0.038) and HDL-cholesterol (r = -0.37, p = 0.018), but not total 
cholesterol (p = 0.23).

To identify the independent variables associated with LV-myoFat content, significant 
univariables (age, HOMA-IR, EAT volume index, waist/hip ratio, plasma TG, LDL-choles-
terol and HDL-cholesterol) were entered as covariates into a multiple linear regression 
model. On multivariable analysis, only HOMA-IR (standardized β = 0.32, p = 0.024) and 
EAT volume index (standardized β = 0.47, p = 0.002) were independently associated with 
LV-myoFat content.

To determine if increased EAT volume index was truly independently associated with 
LV-myoFat content rather than just a measure of overall visceral adiposity, waist/hip 
ratio was replaced with L4 visceral fat volume in the multiple linear regression model. 
Although L4 visceral fat volume was highly correlated with EAT volume index (r = 0.69, 
p < 0.001), it was forced into the multivariable model. Despite that, similar results were 
obtained with only HOMA-IR (standardized β = 0.32, p = 0.024) and EAT volume index 
(standardized β = 0.47, p = 0.002) remaining as significantly associated with LV-myoFat 
content.

Determinants of burden of LV interstitial fibrosis
The mean ECV was 27.5 ± 0.5%, and there was no gender difference (p = 0.88). On univari-
able analysis, ECV was significantly correlated with higher LV-myoFat content (r = 0.71, p 
< 0.001), older age (r = 0.64, p = 0.002), higher HOMA-IR (r = 0.51, p = 0.021) and increasing 
EAT volume index (r = 0.69, p = 0.001).

To identify the independent variables associated with ECV, significant univariables 
(age, LV-myoFat, HOMA-IR and EAT volume index) were entered as covariates into a 
multiple linear regression model. EAT volume index (standardized β = 0.46, p = 0.025) 
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and LV-myoFat content (standardized β = 0.41, p = 0.045) were independently associated 
with ECV. The results did not change when L4 visceral fat volume was forced into the 
multivariable model.

Determinants of LV myocardial function
The mean 2D LV GLS was -19.0 ± 2.4%, and women had significantly higher GLS than men 
(-20.3 ± 2.2 vs. -18.4 ± 2.3%, p = 0.013). 2D LV GLS was significantly correlated with age 
(r = 0.44, p = 0.005), HOMA-IR (r = 0.60, p < 0.001), EAT volume index (r = 0.66, p < 0.001), 
LV-myoFat (r = 0.50, p < 0.001) and ECV (r = 0.70, p < 0.001).

On multivariable analysis whereby age, gender, HOMA-IR, EAT volume index, LV-myoFat 
and ECV were entered into the model, only EAT volume index was independently as-
sociated with 2D LV GLS (standardized β = 0.44, p = 0.041). Similarly, when L4 visceral 
fat volume was forced into the model, only EAT volume index remained independently 
associated with 2D LV GLS.

Variability analysis
We have previously reported the intra- and inter-observer measurement variabilities for 
LV GLS expressed as mean absolute difference ± 1 SD were 1.2 ± 0.5% and 0.9 ± 1.0% 
respectively.28 Table 2 outlines the intra- and inter-observer measurement variabilities 
for ECV, LV-myoFat content and EAT volume index expressed as mean absolute differ-
ences ± 1 SD and intraclass correlation for agreement in 10 randomly selected subjects.

DISCUSSION

The present study evaluated the complex interplay between insulin resistance, in-
creased EAT volume, myocardial fat accumulation and LV interstitial fibrosis, leading to 
LV myocardial systolic dysfunction in volunteers with normal weight, as well as over-

Table 2. Intra-observer and inter-observer measurement variability

Variable Intra-observer Inter-observer

Absolute difference ICC
(95% CI)

Absolute 
difference

ICC
(95% CI)

ECV 0.21 ± 0.08
0.97

(0.80 – 0.99)
0.28 ± 0.13

0.93
(0.73 – 0.98)

LV-myoFat 0.26 ± 0.19
0.98

(0.91 – 0.99)
0.42 ± 0.50

0.91
(0.67 – 0.98)

EAT volume index 3.0 ± 1.5
0.99

(0.96 – 0.99)
3.6 ± 2.2

0.99
(0.95 – 0.99)

CI: Confidence interval; EAT: Epicardial adipose tissue; ECV: Extracellular volume; ICC: Intraclass correlation; LV-myoFat: 
left ventricular myocardial fat content by VARPRO sequence.
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weight and obese individuals. This study showed that insulin resistance and EAT volume 
index were independently associated with increased myocardial fat accumulation and 
LV interstitial fibrosis. On multivariable analyses, EAT volume index was independently 
associated with impaired LV myocardial systolic contractile function.

Quantification of LV-myoFat by VARPRO versus [1H]-MRS
In the present study, VARPRO significantly overestimated LV-myoFat content compared 
to [1H]-MRS. This is likely secondary to its inherent T1 bias, especially with its high flip 
angle. As previously shown by Kühn et al and Liu et al, increasing flip angle (≥5-10°) will 
overestimate fat fraction by chemical shift imaging compared to [1H]-MRS.29, 30 However, 
a lower flip angle will significantly reduce the signal-to-noise ratio, and the noise can 
lead to incorrect estimation of the true fat fraction.30 Although VARPRO significantly 
overestimated LV-myoFat content, it still had excellent correlation and reliability when 
compared to [1H]-MRS (Figure 3).

However, VARPRO has significant advantages over [1H]-MRS. Firstly, it permits regional 
and global LV quantification of LV-myoFat, whereas [1H]-MRS is limited to the inter-
ventricular septum due to the risk of contamination from EAT. Secondly, VARPRO is 
performed with a single breath-hold, whereas [1H]-MRS will require double respiratory 
and cardiac gating that will significantly increase scan duration.22 Finally, slice position-
ing for various imaging sequences (e.g. VARPRO for LV-myoFat and MOLLI for interstitial 
fibrosis) can be consistently and completely matched as demonstrated in the present 
study.

Epicardial adipose tissue, insulin resistance and myocardial steatosis
The myocardium has a very high energy demand in order to perform cardiac contraction 
and relaxation. Under normal physiological conditions, it predominately metabolizes 
free fatty acids through β-oxidation which accounts for approximately 50-70% of its 
energy production.7 Although the source of this free fatty acid is generally derived from 
circulating plasma triglyceride and free fatty acid, it is now recognized that EAT is a 
readily available local store of TG that directly release free fatty acid to the myocardium 
at times of increased cardiac fatty acid metabolism.10, 11, 31 As such, the present study 
demonstrated that both increased EAT volume index and insulin resistance were inde-
pendently associated with increased myocardial fat accumulation. This is consistent 
with previous studies that showed increased EAT volume in obese patients was associ-
ated with increased myocardial fat accumulation.8, 9 In addition, type 2 diabetes, the 
archetypal disease where pathophysiology is characterized by insulin resistance, is also 
associated with increased myocardial fat accumulation.2
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Epicardial adipose tissue and myocardial interstitial fibrosis
However, EAT is also now increasingly recognized as an endocrine organ that secretes 
adipokines.7 Both EAT and the underlying myocardium share the same coronary micro-
circulation with no anatomical fascial boundary separating the 2 structures. As such, 
adipokines and cytokines secreted by EAT have a direct vasocrine and paracrine effect 
on coronary and myocardial function.32 Secretions of pro-inflammatory adipokines 
such as IL-6, MCP-1, leptin and visfatin are increased with larger EAT volumes, while the 
secretions of anti-inflammatory adipokines such as adiponectin and adrenomedullin 
are decreased, all leading to increased coronary vasoconstriction, inflammation and 
atherosclerosis.7 Furthermore, increased secretion of TNF-α from EAT has also been 
shown to induce cardiomyocyte apoptosis leading to replacement fibrosis.33 Mazurek 
and colleagues previously demonstrated higher levels of pro-inflammatory cytokines 
such as IL-6 and TNF-α in EAT harvested from patients undergoing coronary artery 
bypass grafting compared to subcutaneous adipose tissue.33 TNF-α worsens insulin 
resistance and causes vasoconstriction, which is also associated with increased produc-
tion of angiotensin II and endothelin-1.34, 35

Previous studies have shown increased TNF-α is associated with cardiac dilatation, in-
creased interstitial inflammatory infiltrates, abnormal calcium homeostasis, increased 
apoptosis, extracellular matrix remodeling, ventricular arrhythmias and death.36, 37 To 
the best of the authors’ knowledge, the present in-vivo study is the first to demonstrate 
larger EAT volumes is associated with increased myocardial interstitial fibrosis in hu-
mans.

Epicardial adipose tissue and myocardial contractility
In-vitro studies of EAT derived from guinea pigs fed a high fat diet 38 and diabetic patients 
undergoing coronary bypass surgery 39 showed that unlike subcutaneous adipose tissue, 
EAT have altered secretory profiles that directly contribute to cardiomyocyte contractile 
dysfunction. Mediated through adipokines including activin A and angiopoietin-2, they 
adversely affect cytosolic Ca2+ metabolism and reduce sarcomere shortening in a dose 
dependent manner.38, 39 We have previously shown increased EAT volume was associ-
ated with myocardial systolic contractile dysfunction.5 The present study extends these 
findings by showing that the observed myocardial contractile dysfunction often seen in 
obese and diabetic patients is likely secondary to functional (i.e. direct cardio-depres-
sant effects of adipokines) and structural changes (i.e. increased myocardial interstitial 
fibrosis from inflammation secondary to adipokines) in the myocardium mediated by an 
increased EAT volume.



Chapter 6 153

EAT volume on myocardial fat, interstitial fibrosis and myocardial contractility

Clinical implications
The present findings suggest that EAT is a marker of visceral adiposity with direct 
adverse effects on myocardial structure and function. Therefore, it may be a target for 
pharmacological therapy and serve as a prognostic indicator. Previous small studies us-
ing hydroxymethyl glutaryl-CoAreductase inhibitors (i.e. statins) 40, dipeptidyl peptidase 
4 inhibitors (e.g. sitagliptin) 41 and glucagon-like peptide-1 (e.g. liraglutide) 42 have been 
shown to reduce EAT volume. The effects of EAT volume reduction on myocardial struc-
tural and functional changes need to be assessed in future studies.

Study limitations
While the present study provides new and novel findings on myocardial structural and 
functional changes associated with EAT, the study only recruited volunteers of varying 
BMI but without diabetes or hypertension. This was to avoid potential confounding 
influences of diabetes and hypertension on myocardial interstitial fibrosis and altered 
myocardial contractile function. Therefore, the present results serve as a pilot for fu-
ture studies in diabetic patients. Secondly, although the present study demonstrated 
significant independent associations between increased EAT volume index, increased 
LV-myoFat, increased interstitial fibrosis and LV myocardial contractile dysfunction, it 
does not equate to causality in humans despite various published in-vitro basic science 
as well as animal studies.

CONCLUSIONS

The current findings demonstrate that increased EAT was associated with LV myocardial 
fat accumulation and increased interstitial fibrosis. Both increased EAT and increased 
interstitial fibrosis were independently associated with myocardial contractile function. 
Therefore, therapeutic interventions targeting EAT may serve to modulate the detrimen-
tal effects of metabolic heart disease.
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