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SUPERCONDUCTIVITY

Carriers that count
An exactly solvable model for superconductivity includes two crucial features of the cuprates and sheds light on 
unexplained experiments.

Jan Zaanen

The Bardeen–Cooper–Schrieffer (BCS) 
theory of superconductivity1 was a 
landmark achievement of quantum 

many-body physics in the 1950s. For 
some time, the community thought that 
superconductivity was understood, but 
the subject was revived in the late 1980s 
with the discovery of a different form 
of superconductivity with high critical 
temperature in copper oxides. Since then, 
high-temperature superconductivity has 
earned the reputation of being the biggest 
conundrum of condensed matter physics2, in 
part because the non-superconducting state 
from which the superconductivity appears 
is very different from the BCS paradigm. 
Writing in Nature Physics, Philip Phillips 
and collaborators now take a conceptual 
step forward by finding an exactly-solvable 
model that captures important features 
of the normal state and can allow 
superconductivity3.

The main focus of theoretical work 
in this field is to explain why the critical 
temperature is high, but over time it turned 
into a treasure trove for intriguing — if  
poorly understood — physics. The late 
Philip Anderson deserves credit for 
explaining the origin of this ‘strangeness’. 
It arises from the fact that the basic 
materials from which high-temperature 
superconductors are made are Mott 
insulators: the electrons in the copper oxide 
repel each other very strongly and when 
there are an integer number of electrons 
per unit cell the electronic equivalent of a 
traffic jam is formed. This is turned into a 
superconducting metal by chemical doping, 
which is like electronic ‘stop-and-go’ traffic: 
the ‘Mottness’ condition4. This forms a 
fundamental obstruction for the system 
to renormalize into a Fermi-liquid-based 
BCS superconductor5, leaving room for the 
strange stuff to take over.

In contrast, the regular BCS 
superconductivity appears as an instability 
of the Fermi surface in a normal metal. This 
means that the BCS superconductor submits 
to the Luttinger and Leggett counting 
theorems. The Luttinger counting theorem 
states that the volume enclosed by the 

Fermi surface in momentum space equals 
the density of electrons, while the Leggett 
one says that in the effective Galilean 
continuum the zero-temperature superfluid 
density has to be equal to the normal-state 
density. These imply together that the 
Fermi surface determines the superfluid 
density6. Both theorems are rooted in the 
concept of adiabatic continuity: these 
counting theorems are not only true for a 
non-interacting Fermi gas, but continue 
to be valid regardless of the strength of the 
interactions as long as the overlap of the 
states characterizing the Fermi gas and 
interacting ground state is finite.

However, for the cuprates (the typical 
phase diagram of which is shown in Fig. 1a),  
the situation is more murky. The critical 
temperature of the superconducting phase 
has a dome shape, and the doping level 
at which the maximum occurs marks the 
crossover from the underdoped to the 
overdoped regime1,2. These have quite 
different properties, and on the overdoped 

side, ARPES experiments have shown 
sharp normal-state quasiparticles that 
form a genuine Fermi surface7. But a 
surprising experimental result interfered 
with this picture of the overdoped regime 
as a well-behaved Fermi liquid. In a 
Fermi-liquid-based BCS superconductor, the 
superfluid density (the density of carriers 
in the supercurrent) has to be of the order 
of the large microscopic electron density — 
according to the Legget theorem — which 
is in turn roughly independent of the 
doping. This superfluid density was directly 
measured by magnetization experiments 
over the whole overdoped regime, revealing 
that it is much smaller than the BCS 
expectation8. This is the apparent paradox6: 
how to reconcile the good Fermi surface 
revealed by the ARPES and the violation of 
the counting theorems as revealed by the 
superfluid density.

The solution departs from a model9 that 
has been lying dormant for 23 years, where 
a metal is characterized by a Fermi surface 
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Fig. 1 | Phase diagram and superfluid density. a, Schematic phase diagram of the cuprates. The vertical 
dotted line indicates the doping at which the critical temperature, Tc, is the highest2. The low doping 
phase is a Mott antiferromagnet (AFM), from which superconductivity emerges with increasing doping. 
The inset shows an example Fermi surface from ARPES measurements10. b, Schematic of the prediction 
for the superfluid density as a function of electron density from Phillips and collaborators’ model3  
(blue line) and for a non-interacting theory (black dotted line).
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but simultaneously exploits a mathematical 
loophole to embed the essence of Mottness, 
the fact that the metal is a doped Mott 
insulator. The model appears to resolve the 
conundrum of being a non-Fermi liquid 
with a Fermi surface in a seemingly unique 
way. It is very simple: the Pauli-principle 
counting of the Fermi gas that mandates one 
electron per spin and site, and the Mottness 
counting of only one electron per site, can 
be reconciled by a large contact (Hubbard) 
interaction that acts only between electrons 
that have the same momentum. This 
interaction is microscopically unphysical — 
it is highly non-local in real space — but it 
does quite well in capturing the qualitative 
effects of the Mottness, for example in 
the form of representing upper and lower 
Hubbard bands in spectral functions3,9.

Phillips and collaborators take this a step 
further by adding a BCS-style attractive 
interaction to the model. The result is 
that it shares qualitative features with 
BCS3: superconductivity sets in by Cooper 
instability at a thermal transition that opens 
a superconducting gap. By construction, 
the model has a Fermi surface, but this will 

enclose a different volume in momentum 
space violating the Luttinger theorem: the 
Hubbard interaction forces doubly occupied 
momentum space states into two singly 
occupied ones in parts of momentum 
space. Similar logic applies to the Leggett 
theorem and gives a relation between the 
normal electron density and superfluid 
density (shown in Fig. 1b) that is completely 
different from BCS, showing a very strong 
suppression of the superfluid density near 
the density of one electron per site where the 
Mott insulator appears, reminiscent of the 
experimental observations.

This construction has at the least the 
merit of teaching us how to think outside the 
box of BCS theory, which is much desired 
given the apparent paradox of the superfluid 
density6. But perhaps we should actually take 
it more literally. Adiabatic continuity has a 
remarkable capacity to connect seemingly 
unrelated entities — for instance, in the 3He 
liquid the macroscopic free Fermi-gas fixed 
point is adiabatically continued to the dense 
van der Waals liquid on the microscopic 
scale. The barely explored phenomenology 
of Phillips and collaborators’ model may 

well have more surprises in store3 that — by 
confrontation with reality — may eventually 
decide if there is a similar continuity between 
the microscopic Mottness and this non-Fermi 
liquid with Fermi-surface fixed point. ❐
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QUANTUM MECHANICS

Facts are relative
The discussion of the quantum mechanical Wigner’s friend thought experiment has regained intensity. Recent 
theoretical results and experimental tests restrict the possibility of maintaining an observer-independent notion of 
measurement outcomes.

Časlav Brukner

In 1983, Daniel Patrick Moynihan, an 
American politician, sociologist and 
diplomat, wrote that “Everyone is  

entitled to his own opinion, but not his 
own facts”. As much as this may be applied 
to politics, in quantum mechanics, the 
objectivity of facts or ‘observed events’ in 
the sense that they exist absolutely — and 
not relative to a particular observer — has 
recently been challenged in a series of 
works1–4 that build on the Wigner’s friend 
thought experiment5. First conceived by 
physicist Eugene Wigner in 1961, the 
scenario results in a situation where two 
observers seem to experience different facts. 
Writing in Nature Physics, Kok-Wei Bong 
and co-workers6 have now rigorously  
proved and experimentally demonstrated 

that a set of plausible assumptions,  
together with the assumption that an 
observed event is objective and not  
relative to anything or anyone, contradicts 
quantum mechanical predictions and 
experimental data. The result can be 
interpreted to imply that in quantum 
physics, observers are indeed entitled to 
their own facts.

In the original Wigner’s friend thought 
experiment, an observer in an isolated 
laboratory — the friend — performs a 
measurement on a quantum system in 
an equal superposition of two states. She 
randomly obtains one of two possible 
outcomes and updates her system’s state to 
match the observed outcome. The updated 
state can be verified by repeating the 

measurement. Meanwhile, a ‘superobserver’ 
outside the laboratory — Wigner — 
describes his friend, the laboratory and 
her system as a large, composite quantum 
system. He is equipped with instruments 
of unprecedented precision, which enable 
him to ascertain the quantum state for 
the whole laboratory. Most importantly, 
his measurement that confirms the state 
does not assign a well-defined value to the 
outcome of the friend’s observation. From 
Wigner’s point of view, his friend exists 
in a coherent superposition, entangled 
with the outcome of her measurement. 
This apparently contradicts the friend’s 
description. Reconciling these two 
perspectives is at the core of the Wigner’s 
friend paradox.
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