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Detection of Fragmented Rectangular Enclosures in
Very High Resolution Remote Sensing Images

Igor Zingman, Dietmar Saupe, Otávio A. B. Penatti, and Karsten Lambers

Abstract—We develop an approach for the detection of ruins
of livestock enclosures (LEs) in alpine areas captured by high-
resolution remotely sensed images. These structures are usually of
approximately rectangular shape and appear in images as faint
fragmented contours in complex background. We address this
problem by introducing a rectangularity feature that quantifies
the degree of alignment of an optimal subset of extracted linear
segments with a contour of rectangular shape. The rectangularity
feature has high values not only for perfectly regular enclosures
but also for ruined ones with distorted angles, fragmented walls,
or even a completely missing wall. Furthermore, it has a zero value
for spurious structures with less than three sides of a perceiv-
able rectangle. We show how the detection performance can be
improved by learning a linear combination of the rectangularity
and size features from just a few available representative examples
and a large number of negatives. Our approach allowed detection
of enclosures in the Silvretta Alps that were previously unknown.
A comparative performance analysis is provided. Among other
features, our comparison includes the state-of-the-art features that
were generated by pretrained deep convolutional neural networks
(CNNs). The deep CNN features, although learned from a very
different type of images, provided the basic ability to capture the vi-
sual concept of the LEs. However, our handcrafted rectangularity-
size features showed considerably higher performance.

Index Terms—Deep features, incomplete rectangles, man-made
structures, maximal cliques, object detection, rectangularity
feature.

I. INTRODUCTION

W E ADDRESS the problem of detecting remains of man-
made enclosures used to hold livestock in grassland

of mountainous regions. The livestock enclosures (LEs) are
of special archaeological interest because they offer important
insights into historical development of alpine pastoralism [1].
Their automated spotting is the goal of a recent archaeological
project [2]. Examples of such enclosures are shown in Fig. 1.
These structures are usually composed of linear walls that may
be heavily ruined. The most common shape of LE resembles
a rectangular contour with greatly varying size and aspect
ratio. Rectangle angles may deviate from right angles, and
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Fig. 1. (Above) LEs in alpine environment. (Below) 600 × 600 satellite
(GeoEye 2011) and aerial (SWISSTOPO) images of 0.5-m resolution with
structures corresponding to the aforementioned LEs.

rectangle sides may be fragmented. The angle between adjacent
fragments of the same side may deviate from 180◦. Moreover,
the rectangular contours are sometimes incomplete such that
even an entire side may be missing.

We use satellite and aerial images of 0.5-m resolution where
the width of linear walls does not exceed two pixels. The ruined
walls are of low height, which results in low-contrast linear
features in the images. The spectral properties of LEs are sim-
ilar to the spectral properties of the surrounding terrain, rocks,
and other irrelevant objects. The second row of Fig. 1 shows
a satellite and an aerial image with structures corresponding to
the LEs shown previously. Nearby irrelevant structures, such as
rivers, trails, or rocks, are often of similar or higher contrast
either due to larger size (e.g., big rocks) or distinctive spectral
properties (e.g., rivers). Detection of such faint enclosures in
a complex terrain is a challenging task. Even the detection
of easily modeled circular soil structures [3] had very limited
success due to their low contrast and complex terrain. Only
few examples of LE are available in our case, which presents
another difficulty making most approaches that learn from the
data inappropriate. Because of these difficulties, commonly
used methods for rectangle detection are hardly applicable.

In contrast to spectral properties, the geometrical properties
of LEs appear to be more distinctive and do not depend on
image modality and conditions under which an image was
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Fig. 2. Algorithmic steps for detection of approximately rectangular enclosures.

captured. We therefore develop a measure that quantifies the
distinctive geometry of approximately rectangular enclosures.
Our approach relies on a new rectangularity feature that dis-
criminates rectangular patterns from other structures in a com-
plex cluttered background. The feature is based on a prior
model of a fragmented rectangle, which is a convex polygon
with constrained angles.

A. Related Work

Detection of rectangular structures has previously been ad-
dressed in different contexts. Examples are detection of build-
ings in remotely sensed images [4]–[14], traffic signs [15]–[17],
and particles of a rectangular shape in cryo-electron microscopy
images [18], [19]. The methods used were based on Markov
random fields (MRFs) [9], [15], marked point processes (MPPs)
[10], [14], search on a graph [6], [20], Hough transform and
other voting schemes [7], [8], [16]–[18], template matching
[21], aggregation of local features [10], [11], [13], and heuristic
rules [5].

Most techniques for detection of rectangular structures dealt
with buildings in remotely sensed images. For example, in the
graph-based approach in [6], a search for cycles was used to
generate building hypotheses. The search was accompanied
by an extensive set of rules and thresholds, which limits the
robustness of the approach. MRFs were used in [9] to delineate
buildings. More recently, a similar approach has been used in
[15] for detection of traffic signs in color images. The approach
is sensitive to inaccuracy of extracted edges and cannot detect
incomplete rectangles, as it requires the presence of all four
sides of a rectangular structure. The MPPs [22] have recently
become popular for extraction of various structures in remotely
sensed images, including buildings (e.g., in [10] and [14]). The
MPP proved to be very powerful when applied to real data.
However, these stochastic methods are still computationally
expensive. Similarly to the MRF, they may not converge to a
globally optimal solution and usually need careful tuning of
a large number of parameters. Attempts have recently been
made to address some of these problems, which are crucial for
the analysis of large images. In [23], substantial improvements
in performance have been achieved for the extraction of line
networks (roads and rivers). In this paper, also the potential of
GPUs was efficiently exploited.

An approach for the detection of rectangular contours based
on the Hough transform was developed in [8]. The approach
relies on certain strict geometrical rules, making it not suitable
for detection of fragmented or incomplete structures. It may
also result in detection of rectilinear configurations that cannot
form a rectangular contour. Detection of such configurations is
prevented in our approach by adding a convexity constraint.

In [11], a set of local features that carried local corner
information was used to produce a probability map of building

rooftops. Unfortunately, in the case of fragmented enclosures,
corners are not reliable features. Moreover, local features, in
general, do not suffice in the case of faint contours appearing
in a cluttered background. A more global description that takes
into account spatial relations between local features is neces-
sary. For example, in [10] and [13], the gradient orientation
density function (GODF) was computed from image gradients.
A correlation of this function with a mixture of two Gaussians
having mean values separated by 90◦ served as a GODF-based
feature indicating the presence of buildings.

Although there is a variety of methods developed for building
detection, they are not applicable to our task because build-
ings are much more salient structures. In contrast to building
rooftops, walls of ruined LEs are narrow and are of low height
(low-contrast features), may be highly fragmented, or are even
completely missing. Higher contrast irrelevant structures may
appear inside or outside of rectangular structures in the im-
mediate neighborhood. Various cues (rooftop color, shadows,
3-D cues, etc.) usually employed in building detection algo-
rithms are not available.

B. Overview of Our Approach

Our approach follows the diagram in Fig. 2, which is briefly
described as follows. A binary map of bar edges accompanied
by angle information is computed first. The junction points of
the medial axis of an inverted binary edge map are detected as
candidate points (Section II), and a region within an analysis
window centered at each candidate point is inspected. A win-
dowed Hough transform is used to find linear segments and
model them with a few parameters (Section III-A). An undi-
rected graph is then constructed, the nodes of which correspond
to linear segments, and graph edges encode spatial relations
between linear segments. In particular, we use angle and con-
vexity properties to encode spatial relations (Section III-B).
Due to the construction of the graph, its maximal cliques
correspond to valid configurations of linear segments. The
valid configurations are then ranked by a new rectangularity
measure that encodes the goodness of grouping the segments
into a rectangular structure (Section III-C). In contrast to [20],
the new rectangularity measure does not rely on a heuristic
partitioning of the set of linear segments into four subsets.
Hard decisions are softened. Configurations better matching a
rectangular structure result in a higher rectangularity measure.
The rectangularity feature is introduced in Section III-D. It
is defined as the maximal rectangularity measure of all valid
configurations. In practice, the low number of corresponding
maximal cliques within the analysis window allows exact max-
imization, which can efficiently be computed. The resulting
rectangularity feature captures the presence of Π-like structures
and is robust to their fragmentation. In Section IV, we show
how to improve the detection performance based solely on
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the rectangularity feature by introducing an additional feature
proportional to enclosure size and learning the optimal feature
combination from a large number of negative examples and just
few positives. In our application, we complete the core algo-
rithmic steps summarized in Fig. 2 with a preprocessing stage
in the beginning that filters out irrelevant regions (Section V),
e.g., texture regions, and with a final detector at the end, e.g., a
simple thresholding (Section IV).

This paper follows our work presented in [24]. Here, we give
a more detailed description of the methods, design a more effi-
cient detector of initial candidate locations (Section II), report
on the results of application of our approach to a large region
in the Silvretta Alps (Section V), and extend our experimental
part (Section VI) by comparing the discrimination ability of the
introduced and alternative features for our task. In particular,
we evaluate the performance of the features generated by
several pretrained deep convolutional networks [25]–[29], the
histogram of oriented gradients (HOG) [30], as well as 1-D
features, such as the GODF-based feature [10] designed for
building detection, and the normalized maximal rectangularity
(NMR) measure [20] that we developed earlier for the detection
of the LEs. We conclude in Section VIII with the discussion
on shortcomings and advantages of the rectangularity and deep
features for our problem.

II. DETECTION OF CANDIDATE LOCATIONS

As in [20], we detect candidate locations from a map of
bar edges (ridges and valleys) that were extracted using the
morphological feature contrast (MFC) line detector [31], [32].
This technique extracts linear features while suppressing tex-
ture elements of cluttered background. We also experimented
with other approaches [33]–[35], but these are either not sen-
sitive enough to extract faint edges of enclosures or generate
lots of clutter edges depending on the parameters used. The
parameterless line segment detector of [36], which is known to
provide robust results for a large range of images, misses faint
edges of ruined enclosures.

In [20], the candidate points were obtained by sampling the
medial axis of an inverted binary edge map. The medial axis
was obtained by thinning the inverted edge map. The number of
candidates was determined by the choice of the sampling rate.
Decreasing the sampling rate reduces the number of candidates,
which speeds up further validation. However, this may result
in the loss of promising candidates. Instead, we suggest here
to look for medial axis junction points only, which are yielded
by at least three sides of an enclosure structure. This greatly
reduces the number of candidates without the risk of losing
enclosures with at least three remaining sides.

In [37]–[39], the medial axis of a shape was extracted
by thresholding the average flux of the gradient field of the
Euclidean distance function D to the boundary of the shape.
The average flux of the gradient field through the boundary ∂N
of a region is defined as the corresponding flux normalized by
the length of the boundary

F (∇D) =

∮
∂N ∇D · n dL∮

∂N dL
(1)

Fig. 3. Average flux of the gradient field of the distance function computed for
the edge maps of the images in Fig. 1. The medial axis coincides with positive
singularities of the flux (white), while edges coincide with negative singularities
(black). Local maxima (red points) are used as candidate locations. Best viewed
in digital version.

where n denotes the inward normal1 to the boundary ∂N and
dL is the boundary element. As the region N shrinks to a point,
the average flux F approaches zero at nonmedial points and
nonzero values at the medial axis of the shape.

We detect candidate points by finding the local maxima of
a discrete approximation of the average flux F (∇D) through
the boundary of a small disk N , where D is the distance
function of the binary edge map. These local maximum points
usually correspond to the junction points of the medial axis
of the inverted binary edge map. Only the local maxima with
the average flux greater than 0.5 were taken into account.
Fig. 3 shows the examples of detections (in red) overlaid on
the average flux, which has positive extrema on the medial axis
(white) and negative extrema on the bar edges (black).2

In a related approach [40], nonmaxima suppression was
applied to the average flux of the normalized gradient vector
flow (GVF) [41], [42] in order to detect medial feature points.
Using the GVF instead of the gradient field of the distance
transform of the edge map allowed detection of medial feature
points directly from the grayscale image without the need of
edge extraction. However, GVF may ignore weak gradients of
low-contrast structures of our interest. In addition, computing
GVF might be too slow on large images, depending on the
number of predefined iterations.

We combine candidate points separately obtained from the
binary maps of ridge and valley edges. The structures that are
within a window around the candidate points p are further
analyzed. The size of the analysis window can be determined
adaptively, based on the value of the distance transform D(p),
i.e., the distance of p to a candidate structure. Similarly to [20],
we use the circular analysis window of radius D(p)

√
a2 + 1

centered at p that circumscribes a rectangle centered at p with
(small) side length 2D(p) and aspect ratio a. In our exper-
iments, a was set to 1.4. We discarded all candidate points
having a distanceD less than 15 or greater than 90 pixels, which
limits the distances between opposite walls of the structures to
be in between 7.5 and 45 m.

1In [37]–[39], the outward normal was used.
2We used valley edges for the left figure and ridge edges for the right figure.
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Fig. 4. Fraction of points p of Sj that violates the convexity constraint relative
to Sk and p0 is given by τ̃k,j . Note that linear segments can be fragmented,
having small gaps as in Sj .

III. MEASURING STRUCTURE RECTANGULARITY

We introduce a rectangularity feature fR computed from
a set of linear segments W = {Si, i = 1, . . . ,m} that were
extracted from a grayscale image.

A. Grouping Edge Points Into Linear Segments

Given a candidate location and edge points accompanied
by estimated orientations, we extract and parameterize linear
segments, each of which is a group of aligned edge points.
Linear segments are represented by a triple of parameters
(θ, r, l) found by the use of a local Hough transform centered at
the candidate points. We use the Hough transform in the form
introduced in [43], where a line is defined by the orientation θ
of the normal and a distance r from the origin

r = x cos θ + y sin θ. (2)

The spatial coordinates of an edge point are x, y. We use the
parameterization θ ∈ [0, 360) and r ∈ (0,∞) of a Hough plane.
A peak at (θ, r) in the Hough plane corresponds to a line. The
peaks are detected as regional maxima in the Hough plane that
was discretized with Δθ = 3◦ and Δr = 1 pixel. The detected
line corresponds to either a single connected linear segment S
or to several aligned connected components. In the latter case,
the connected components with gaps smaller than a predefined
threshold (3 pixels in our experiments) are considered as a
single linear segment (see the segment Sj in Fig. 4); otherwise,
they are considered as separate linear segments. The parameter
l in the triple (θ, r, l) is the number of points that belong to the
linear segment. To better relate the parameter l to the length and
avoid its dependence on the width of the extracted edges, we
perform their thinning [44] prior to clustering in a Hough plane.

Since edges were extracted together with their orientations,
r can be directly computed for each edge point (x, y) using (2).
Thus, each edge point votes for a single point in the (θ, r) plane
instead of voting for a curve as suggested in [43]. This idea,
which was used already in [45] for clustering of short ridge
features, considerably eases extraction of meaningful peaks in
the Hough plane.

B. Valid Configurations of Linear Segments

In the following, we define a valid configuration of linear
segments C ⊆ W that can be a part of a rectangular structure.

We require angles βk,j between linear segments Sk,Sj ∈ C to
be close to either zero, 180◦, or right angles. An angle tolerance
α will be set to control the strictness of the angle constraint. We
define βk,j as

βk,j = min
(∣∣θSk

− θSj

∣∣ , 360− ∣∣θSk
− θSj

∣∣) . (3)

Note that βj,k = βk,j and β ∈ [0, 180], since θ ∈ [0, 360).
The angle constraint alone does not suffice to restrict config-

urations to be perceptually close to rectangles or rectangle parts.
We therefore define a second constraint that requires the valid
configuration to be nearly convex in the sense that extension
of all linear segments of the configuration can form a nearly
convex contour. The convexity tolerance t will be defined to
control the strictness of the convexity constraint. For a convex
configuration of linear segments, it is required that a half plane
generated by each segment includes all other segments of the
configuration. Additionally, we require all of these half planes
to contain the candidate point around which we search for a
rectangular structure. Pairwise convexity constraints suffice to
verify the convexity of a configuration containing the given
candidate point. We define the pairwise convexity measure τ
for a pair of linear segments Sk,Sj , each with corresponding
attributes of size lS , orientation θS , and distance rS to the
candidate point p0, as

τk,j = max(τ̃k,j , τ̃j,k) (4)

τ̃k,j =
1

lj

∑
p∈Sj

H
(
(p− p0)

T · nk − rk
)

(5)

where nk = (cos θk, sin θk)
T is the unit normal of Sk andH(u)

is an indicator function equal to 1 for u > 0 and 0 otherwise.
τ̃k,j measures the relative number of points in the segment Sj

that are behind the segment Sk, relative to the given candidate
point p0 as illustrated in Fig. 4. Note that τ ∈ [0, 1], and τk,j =
τj,k, while τ̃k,j �= τ̃j,k.

Definition 1: Let α ∈ [0, 45], t ∈ [0, 1], a candidate point p0,
and a configuration C of linear segments be given. If for all
pairs Sk,Sj ∈ C, j �= k, one of the inequalities of the angle
constraint

βk,j ≤ α or |90− βk,j | ≤ α or 180− βk,j ≤ α (6)

and the convexity constraint

τk,j ≤ t (7)

both hold, then C is called a (t, α)-valid configuration located
around p0 and denoted by Ct,α

p0
.

For the sake of brevity, we usually omit the indices t,
α and the reference point p0, mentioning that C is a valid
configuration. Valid configurations include not only perfect
rectangles but also convex polygons or their parts with angles
around either 90◦ or 180◦. This is important in practice since
approximately rectangular structures are better modeled by
such polygons rather than by perfect rectangles.
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C. Rectangularity Measure of a Valid Configuration

A couple of poorly aligned short segments can be a valid
configuration as far as the tolerances t, α allow. There is a
need to rank valid configurations according to their similarity
to a canonical rectangle. To find and rank valid configurations,
we construct an undirected graph Gw from the given set W
of linear segments in a window centered at a candidate point
p0. The graph Gw has nodes j = 1, . . . ,m corresponding to
the segments S1, . . . ,Sm ∈ W. Each node j is attributed by
a triple of parameters (θj , rj , lj), i.e., orientation, distance to
the reference point p0, and size of the linear segment. An
edge {k, j} is attributed with the angle βk,j and the pairwise
convexity τk,j of the corresponding pair of segments Sk,Sj .
An edge {k, j} is included in the graph Gw if βk,j and τk,j
satisfy the constraints in (6) and (7). This attributed graph
encodes the properties of the linear segments and their spatial
relationships. Due to the graph construction and Definition 1,
valid configurationsC correspond to fully connected subgraphs
Gc, also called cliques, of the graph Gw.

In the following, we introduce the new rectangularity mea-
sure ρ(Gc) that ranks a clique Gc corresponding to a valid
configuration C ⊆ W. We define the measure with the follow-
ing properties in mind. The rectangularity measure shall yield
higher values for configurations with

1) higher degree of convexity given by lower values of the
convexity measure τ ;

2) higher degree of angle alignments given by angles β;
3) longer linear segments given by larger l.

In addition, the proposed rectangularity measure shall

4) have the increasing property ρ(Gc
1) ≤ ρ(Gc

2) for Gc
1 ⊆

Gc
2. Thus, the rectangularity measure of a larger encom-

passing clique has a higher value.
5) yield a zero value for configurations of linear segments

with less than three sides of a rectangle.

We define the rectangularity measure of a graph clique Gc in
terms of sums over its undirected edges {k, j} ∈ Ec

ρ(Gc) =

⎛
⎝
⎛
⎝ ∑

{k,j}∈Ec

lkljf90(βk,j)fcv(τk,j)

⎞
⎠

×

⎛
⎝ ∑

{k,j}∈Ec

lkljf180(βk,j)fcv(τk,j)

⎞
⎠
⎞
⎠

1
4

(8)

where f90, f180, and fcv are mode functions depicted in Fig. 5.
f90 and f180 are equal to zero for angles β that deviate from
the mode center larger than the angle tolerance α. fcv is equal
to zero for the convexity measure τ larger than the convexity
tolerance t. In our experiments, we used α = 35◦ and t = 0.3.
The exact definition of the mode function is not critical and is
not given here due to space considerations.

The first factor of ρ(Gc) in (8) yields a nonzero value
only if the valid configuration C contains at least one pair
of approximately perpendicular linear segments that fulfill the
convexity constraint in (7). The second factor is nonzero only

Fig. 5. Functions f90 (left figure, solid blue curve), f180 (left figure, dashed
red curve), and fcv (right figure) used in the rectangularity measure in (8).

if the valid configuration contains at least one pair of approx-
imately parallel linear segments.3 The product of these two
factors is nonzero only if the valid configuration C contains
at least one pair of parallel and one pair of perpendicular linear
segments. The angles between linear segments of these parallel
and perpendicular pairs are restricted to be approximately 0◦,
180◦, or 90◦ since C is a valid configuration with linear
segments constrained by (6). Thus, a nonzero rectangularity
measure ensures a valid configuration C containing at least one
triple of segments arranged in a Π-like structure, as stated in
property 5 previously. This property allows suppression of a
large number of configurations originating from clutter (e.g.,
lines, corners, junctions, etc.). It is easy to verify that the
other four aforementioned properties are also satisfied by the
rectangularity measure in (8). Also note that the rectangularity
measure scales linearly with the spatial size of rectangles.

D. Rectangularity Feature

Given a set of linear segments W in an analysis window,
we define the rectangularity feature fR of the corresponding
graph Gw. We denote the set of cliques of Gw as K(Gw). The
rectangularity feature of Gw is defined as

fR(G
w) = max

Gc∈K(Gw)
ρ(Gc). (9)

The corresponding optimal clique is

Gc
opt = argmax

Gc∈K(Gw)

ρ(Gc). (10)

Due to the increasing property of ρ (the fourth property of the
rectangularity measure stated in Section III-C), the maximum
can be searched over the set of maximal cliques4 only, denoted
here by M(Gw). That is

fR(G
w) = ρ

(
Gc

opt

)
= max

Gc∈M(Gw)
ρ(Gc). (11)

Since the set of maximal cliques M(Gw) ⊆ K(Gw) is much
smaller than the set of graph cliques K(Gw), the number of
times the rectangularity measure ρ needs to be evaluated in (11)
is considerably reduced in comparison to (9). Since, in addition,

3fcv in the second term has only a small impact on results. It reduces the
rectangularity measure for configurations with badly aligned opposite sides
with a nonzero convexity measure.

4Maximal cliques are cliques that are not contained in larger cliques.
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Fig. 6. (Left) Set W = {S1,S2, . . . ,S6} of linear segments around a candi-
date point p0. (Right) Graph Gw for the set of linear segments. We assume
an angle tolerance α such that all angle constraints are satisfied. Several node
pairs of the graph are not connected by an edge due to the convexity constraint,
which is not satisfied for an assumed convexity tolerance t. The red nodes of the
graph are the nodes of the optimal maximal clique Gc

opt. The corresponding
valid configuration Copt is marked in red on the left figure.

Fig. 7. (First row) Bar edges (black) and candidate points (red) generated from
the images in Fig. 1. (Second row) The rectangularity feature computed at each
candidate point and visualized by a colored disk. Color saturation increases,
and hue is changing from yellow to red for growing values of the features in
accordance with the color bar at the bottom.

there are efficient algorithms for finding maximal cliques, e.g.,
[46], we compute the rectangularity feature by an exhaustive
search for the maximum in (11).

Fig. 6 (left) shows an example of a given set W = {S1,S2,
. . . ,S6} of linear segments and the optimal configuration
Copt = {S1,S2,S3,S5} in red, while Fig. 6 (right) shows the
corresponding graph Gw and the optimal maximal clique Gc

opt

in red. There are two additional maximal cliques Gc
1 and Gc

2

and corresponding valid configurations C1 = {S2,S3,S4,S6}
and C2 = {S1,S2,S3,S4}. They, however, have lower rectan-
gularity values ρ(Gc

1)<ρ(Gc
opt), ρ(G

c
2) < ρ(Gc

opt).
Fig. 7 shows a couple of examples of the rectangularity

feature computed for the real satellite and areal images. The

first row shows detected bar edges and candidate points5

(Section II). The rectangularity feature fR computed at the
candidate points is visualized by colored disks in the second
row. As expected, high values were obtained at positions of
LE, while zero or low values were obtained at most other
candidate positions. One can see that the rectangularity feature
map is quite sparse. This is partially because the rectangularity
feature has a zero value for spurious structures with less than
three sides.

IV. LEARNING IN THE RECTANGULARITY-SIZE

FEATURE SPACE

The rectangularity feature scales with the structure size hav-
ing lower values for small structures. A detector based on such a
feature is prone to dismiss small rectangles. On the other hand,
false structures of a small size are more frequent. We therefore
introduce an additional feature fS proportional to the structure
size and learn a classifier from the available data in the 2-D
rectangularity-size feature space. This may improve the tradeoff
between the sensitivity and the number of false detections in
comparison to the 1-D case. We define the size of the structure,
represented by the optimal clique Gc

opt ⊆ Gw, as

fS(G
w) =

∑
j ljrj∑
j lj

(12)

where the sums are over all nodes of the optimal clique Gc
opt.

fS is computed as the weighted distance of the linear segments
of Copt from the corresponding candidate point, where the
weights are segment sizes.

Since only a few positive examples are available in our case,
a classification approach should be carefully chosen. The linear
classifiers are favorable when there is a danger of overfitting
the data due to a limited number of available examples. They
also are not computationally demanding. The normal w of the
separating hyperplane of a linear classifier can be found by
means of the Fisher linear discriminant analysis (FLD). In this
approach, the optimal direction is determined such that the data
from two classes projected on w are maximally separated. The
separation is measured by the squared distance between class
means normalized by the sum of their variances [45], [47]. This
approach results in a simple solution represented in terms of
class means and covariance matrices. In our case, however, the
number of positive examples is very limited, and the covariance
matrix cannot reliably be estimated.

We optimize the normal direction w based on the large num-
ber of available samples from the dominant class of negatives
and just a few examples from the class of positives. Let us
define the expected signed distance between a deterministic
point y (positive example) and the distribution X of negatives,

5Note that not all of the candidate points are the same as in Fig. 3. In contrast
to Fig. 3, the map of candidate points in Fig. 7 resulted from the union of points
coming from both valley and ridge edges. On the other hand, candidate points
that are too distant or too close to the edges were removed (see Section II), and
they do not appear in Fig. 7.
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both projected to the direction w and normalized by the stan-
dard deviation of the projected distribution

Dw(y,X) ≡ Ex[w
T y − wTx]√

Ex [(wT x− wTμx)2]
=

wT (y − μx)√
wTCxw

(13)

where μx and Cx are the mean and the covariance matrix of
the distribution X , respectively. Next, we define the average
signed distance between a set of deterministic points {yi, i =
1, . . . , n} and the distribution X

D̄w ({yi}, X) ≡ 1

n

n∑
i=1

Dw(yi, X) =
wT (ȳ − μx)√

wTCxw
(14)

where ȳ = (1/n)
∑n

i=1 yi. We now define the optimal direction
w as the direction that maximizes the absolute value of the
average signed distance between a set of points corresponding
to positive examples and the distribution of the dominant class
of negatives X , i.e.,

wopt ≡ argmax
w

∣∣D̄w ({yi}, X)
∣∣ . (15)

From (14) and (15), we obtain

wopt = argmax
w

∣∣wT (ȳ − μx)
∣∣√

wTCxw
. (16)

It can be shown that

wopt = C−1
x (ȳ − μx) (17)

is a solution of (16). The obtained direction wopt is similar
to the one in the FLD analysis [45]. In contrast to the FLD
solution, (17) includes the covariance matrix of the class of
negatives only, preferring the solution in the direction of the
small variance of negatives. Negatives are well sampled in our
problem, and their covariance matrix can be robustly estimated.
The positives are treated as deterministic points in the fea-
ture space and influence the solution only via their average.
Literally, the average only weakly guides the solution pointing
to the relevant location in the feature space. Note that the
signed distance in (14) for wopt given in (17) yields a positive
value equal to the Mahalanobis distance D̄wopt

({yi}, X) =√
(ȳ − μx)TC−1

x (ȳ − μx) with the metric Cx.
The samples of X may include outliers. Therefore, in (17),

we use the robust multivariate trimming (MVT) estimates of the
mean and the covariance matrix [48]. The MVT is an iterative
technique with mean and covariance matrices recomputed at
each iteration. Given the current estimates of μx and Cx, the
Mahalanobis distance is computed for all of the data points.
A specified percentage of the observations with the largest
Mahalanobis distance is discarded, and the remaining data are
used to recompute the estimates of μx and Cx. The technique
is initialized with the sample mean and covariance matrix
computed from the whole data. The samples with zero rectan-
gularity fR, which correspond to nonvalid configurations, were
excluded from such a training procedure. In our experiments,
we used three iterations and discarded 10% of observations in
each iteration.

We will refer to

fRS =

(
fS
fR

)

as the rectangularity-size features. Given the optimal direction
wopt, the LE structures are detected by

fT
RSwopt > b (18)

where b is a threshold to be set. It determines the tradeoff
between the sensitivity and the rate of false detections. The
optimal linear feature combination fT

RSwopt, which is com-
puted at candidate points, can be seen as a confidence measure
of an enclosure structure being present in the area around
the candidate point. Note that learning the optimal feature
combination wopt as shown previously is not limited to 2-D
feature spaces but directly extends to higher dimensions. This
will be used in our experiments in Section VI in order to
compare the developed features with high-dimensional generic
features.

Somewhat similar ideas of using linear discriminant analysis
(LDA) adapted to a small number of positives within the context
of pedestrian detection appeared in [49]. Relying on the high-
dimensional HOG features [30] and LDA, the authors modeled
the background class with the mean and covariance matrix
learned from unlabeled image patches. Their model trained on
a few positives was highly competitive. In contrast to [49], our
model was explicitly derived from the optimization of (15) that
was defined as a way to cope with the settings of the highly
unbalanced problem at hand.

V. DETECTION OF ENCLOSURES: THE

SILVRETTA ALPS CASE STUDY

We built a user interface that allows a user to explore large
images, shows detections and their confidence, and allows us to
quickly examine and reject falsely detected sites. We determine
a threshold parameter b for the LE detector in (18) based on the
number of allowed false detections. The user interface allows
choosing the number of false detections to be generated for an
analyzed image.

We applied our detector to the region of the Silvretta Alps
[50] of about 550 km2 size. We used panchromatic images at
0.5-m resolution captured by the GeoEye-1 satellite. The data
stem from a recent archaeological project in the Silvretta Alps
[2]. We also repeated our experiments using the red channel of
SWISSTOPO aerial images of 0.5-m resolution that covered
a slightly larger area of the same Silvretta region. However,
the following technical details refer to the case of the satellite
imagery.

The rectangularity feature may result in a large number of
false detections in textured regions (e.g., forests). Since we are
only interested in LEs that sparsely appear in grassland areas,
high-contrast texture regions were filtered out using the mor-
phological texture contrast (MTC) descriptor [31], [32], [51]
thresholded with the Otsu method [52]. The size parameters r1
and r2 in the MTC were set to 30 and 60 pixels, respectively.
This filters out urban areas, forests, rocky mountains, and
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Fig. 8. (Left) Example of a previously unknown enclosure that was detected
using the proposed rectangularity-size feature. (Right) Typical false detection.

other high-contrast texture regions, while preserving individual
structures.

For learning the optimal direction wopt, we used the
9 available examples of LEs and 49584 negative examples of
structures around candidate points (see Section II) extracted
from an 11000 × 17000 pixel satellite image. The detection
threshold b in (18) was set such that the number of generated
detections was 5000 in the analyzed 550 km2 area. After visual
inspection of detected sites with our user interface, we found
13 structures resembling LEs. Some of these detections were
found to be LEs that were hitherto unknown. An example of
such an enclosure is shown in Fig. 8 on the left. Fig. 8 on
the right shows a typical false detection. False detections are
usually caused by streams and roads. The use of 3-D data
(e.g., LiDAR or based on stereo image pairs) would allow the
discrimination of such false detections.

In our experiments, we used a MATLAB software. The
satellite imagery that covers 550 km2 was divided into 17
partially overlapping images. Processing of all of the images
(including all of the stages), which is equivalent to processing
of a single 53000 × 53000 pixel image, took 3 h and 40 min on
a machine with an Intel Core i5 3.3-GHz Quad-Core processor
and 32-GB RAM.

VI. COMPARATIVE EXPERIMENTS

A. Features for Comparison

We evaluated the discrimination ability of the introduced
rectangularity feature fR and provided a comparison with the
NMR measure fNMR that we developed earlier in [20] and
the GODF-based feature fGODF in [10] recently proposed for
building detection. The GODF, denoted λ(θ), is a weighted
gradient orientation histogram with gradient magnitudes as
weights and discrete orientation θ ∈ [0, 180). The correlation
of λ(θ) with a function having two modes separated by 90◦

served as a GODF-based feature fGODF indicating the presence
of rectilinear structures. The normalization constant was set
such that λ(θ) is a unit vector, which gave us better results than
for the normalization constant equal to the sum of the weights
used in [10]. More implementation details can be found in [24].
Note that we did not compare the rectangularity feature with
the whole approach developed in [10] because it is based on
additional features not appropriate in the case of enclosures.

We have also tested other methods for building detection (e.g.,
[8] and [11]) applied to detection of LEs. Unfortunately, these
methods completely failed to detect enclosures. Thus, a corre-
sponding quantitative comparison cannot be made.

We used the learning framework described in Section IV in
order to evaluate and compare the developed rectangularity-
size features fRS, high-dimensional HOG feature vectors fHOG

[30], and deep convolutional neural networks (CNNs) [53],
[54] generating the so-called deep features, denoted fCNN with
CNN substituted by the name of a particular CNN architecture.
These deep features are neural activations generated by pre-
trained CNNs at some intermediate layer of the deep network.
Usually, these features are extracted either from the last con-
volutional layer or from one of the following fully connected
layers but before the final one. There is mounting evidence
that such features generated by CNNs pretrained on a very
large data set of labeled images have a sufficient representation
power to perform recognition tasks on completely different
types of target images. Several recent works successfully used
deep features in conjunction with either a fully connected
neural network [55] or even a simple linear classifier [56]–[58]
trained on a relatively small target set of images. Moreover,
deep features were also shown to be useful for classification of
remotely sensed images [59]. Such an approach allows us to use
CNNs even though we have a very limited amount of positive
examples to learn from.

We generated deep features using several CNN models pre-
trained on the subsets of the ImageNet database [60]. Deep
features fVgg−f , fVgg−m, fVgg−m−2048, fVgg−s

6 were extracted
from the CNN architectures described in [27]. fVgg−deep−16,
fOverFeat, and fGoogLeNet were extracted from the networks
described in [26], [28], and [29], respectively. fAlexNet fea-
tures were extracted from the network described in [25], while
fCaffeNet features were generated by an independently trained
variation of that network as mentioned in [61] and [62].
All deep features, except OverFeat, were computed using the
MATLAB toolbox MatConvNet [63] using the pretrained mod-
els taken from the webpage [64] accompanying the toolbox.
The OverFeat pretrained model was taken from the webpage
[65], which has the source code implementing the deep network
presented in [28]. The “fast” network was used. Following
recommendations of the authors of the CNN models, except for
OverFeat, we subtracted the mean image of the training data
set from each image presented to the CNNs. Since we detect
structures in grayscale images, while the CNN models require
RGB channels as an input, we set each channel equal to the
given grayscale image.

The HOG features were computed for 14 × 14 pixels cell
size (with 7 pixels of overlap from one cell to the next)
and 9 orientation bins, which gave us the best results among
all configurations with which we experimented. We used the
C source code of the HOG implementation available in the
VLFeat package [66].

6We have also experimented with Vgg-m-1024 and Vgg-m-128 CNNs that
have a smaller last hidden layer (1024 and 128 versus 4096 neurons in Vgg-m),
but they gave worse results compared to Vgg-m. Therefore, we did not consider
these features in our comparative experiments.
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All of the features were computed for image regions around
the candidate points p. The size of these candidate regions
was taken proportionally to the distance transform D(p) (see
Section II). To keep the size of HOG feature vectors constant,
we resized the candidate regions to 160 × 160 pixel patches.
Deep features were computed for the candidate regions resized
to the size required by a particular CNN architecture.

B. Measuring Discrimination Power of the Features

Using a particular type of features f , LEs can be detected
with f > b for 1-D features (fR, fNMR, fGODF) and with
fTwopt> b for multidimensional features (fRS, fHOG, fCNN),
where b is an appropriate threshold to be set. Setting a par-
ticular threshold defines the true positive rate (TPR) and the
false positive rate (FPR) or correspondingly the number of
detected true and false positives (TP and FP). In our case,
the effectiveness of the features is their ability to discriminate
LEs from irrelevant structures and clutter. A possible measure
of this ability is the minimal number of FP detected with the
threshold that ensures TPR ≥ ξ, where ξ is the predefined rate
of true positives.7 We computed FP for ξ = 1, denoted in the
following by FP100. This was done by setting the detection
threshold b to the minimum value of f for 1-D features and
fTwopt for multidimensional features computed for all positive
examples. Obviously, the threshold used to obtain the detection
rate TPR = 1 on a small number of available examples does
not ensure a detector with 100% detection rate. However, it
allows us to measure and compare the discrimination ability
of the features. FP100 is related to the spread of the class of
positives toward the samples of the class of negatives, similarly
to the Fisher criterion of discrimination ability [47]. However,
FP100 also gives a rough estimate of the minimal number of
false detections per area size that should be allowed in order
to have a reasonable detection rate. Unfortunately, the actual
detection rate cannot be reliably estimated due to a very small
number of positive examples.

We also used an alternative measure of the discrimination
ability that is the area under the receiver operating charac-
teristic (ROC) curve. It is especially useful in the presence
of unbalanced classes [68], [69]. In contrast to FP100, the
area under ROC (AUC) does not rely on a particular thresh-
old and a corresponding operating point on the ROC curve
but instead summarizes the detection performance for dif-
ferent values of the threshold. We estimated AUC using the
Wilcoxon–Mann–Whitney statistic [69], [70].

C. Evaluation Procedure

In our experiments here, we used panchromatic satellite
images at 0.5-m resolution that cover mountainous regions of
the Silvretta Alps. Similarly to Section V, high-contrast texture
regions were filtered out using the MTC descriptor [31], [32],
[51]. We generated 49584 negative samples for training. The
samples were taken around candidate points in a 11 000 ×
17 000 pixel satellite image. For testing, we used 57 504 negative

7This corresponds to the so-called Neyman–Pearson task [67].

TABLE I
COMPARISON OF DISCRIMINATION MEASURES FOR THE FEATURES

fNMR, fGODF AND THE PROPOSED FEATURES fR, fRS

samples taken from a different satellite image of 10 000 ×
17 000 pixel size that covers about 42.5 km2. Overall, only
nine examples of enclosures (positives) taken from aerial and
satellite images were available to us. We augmented these data
with additional 135 rotated versions of the same enclosures.
Here, 16 rotation angles were taken uniformly in the interval
[0, 360) degrees. This results in 144 positive examples, which
is hardly enough for training and evaluation on separate train
and test subsets as we have done with negative samples. In the
case of high-dimensional feature vectors, the learned classifier
parameters wopt and the estimated performance may largely
vary, depending on the selected subset of positives. In order to
use most of the positives for training and also make reliable
evaluation of the classier performance based on the data not
used for training, we perform ninefold cross validation. Note
that we do not have hyperparameters associated with the classi-
fier that need to be set a priori or optimized on spare data. On
each fold, we use 16 examples of the same enclosure at different
angles for testing and other 128 positives for training.

In the following, we report the average value of the perfor-
mance measures and the standard deviation over the nine folds
of cross validation. In addition, we compare the sensitivity of
FP100 to the reduction in the number of positives used for
training. To do so, we compute the “inverted” ninefold cross
validation where, on each fold, we use only 16 examples of a
single enclosure at different angles for training. For testing, we
use all 144 positives on each fold. Thus, the results may vary
only due to the used training data, since the same data set is
used for the performance evaluation. Note that, for the case of
FP100 measure, using all of the positives for testing including
a single training example can yield only higher (worse) FP100

because the worst positive sample defines FP100.

D. Results

The quantitative measures of the discrimination performance
of the rectangularity fR and the rectangularity-size features fRS

are summarized in Table I. The performance measures FP100

and AUC evaluate the discrimination ability of the features for
our task. The FP100 (see Section VI-B) measures the number of
false detections obtained in an area of approximately 42.5 km2,
when all available positives are detected. This measure is par-
ticularly useful as it helps to decide how many false detections
should be allowed in order to have a high detection rate, i.e.,
the rate that ensures detection of at least all available positive
examples. The AUC measure yields a performance ranking of
different feature types similar to that of FP100. On the other
hand, unlike FP100, the absolute values of AUC are quite
close to each other, giving the wrong impression of similar
performance. The high and close values of AUC are due to the
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TABLE II
COMPARISON OF DISCRIMINATION MEASURES FOR MULTIDIMENSIONAL CNN, HOG, AND THE PROPOSED RECTANGULARITY-SIZE FEATURES fRS .

NINEFOLD CROSS VALIDATION WAS PERFORMED ON 144 (AUGMENTED) POSITIVES WITH EITHER 128 OR 16 SAMPLES (Npos)
USED FOR TRAINING. LARGE SEPARATE DATA SETS OF NEGATIVES WERE USED FOR TRAINING AND TESTING.

“fc” ADJACENT TO THE LAYER NUMBER IN THE TABLE STANDS FOR “FULLY CONNECTED”

ability of the detectors to reject most negatives while detecting
a modest number of all available positives. The corresponding
ROCs saturate at the maximum detection rate already for small
values of FPR and differ only for lower FPRs. Nevertheless,
along with the FP100, which is more intuitive and useful for
our application, we also provide AUC because it is commonly
used for evaluation of detector performance. The last column in
Table I indicates the dimensionality of the features.

Table I shows that the discrimination ability of the
rectangularity-size features fRS is superior to the others. It
allowed reduction of false positives by 31% relative to fR,
which is, in turn, considerably better than the NMR measure.
Although effective for building detection, the GODF-based
feature turned out to be far worse for detecting faint enclosures
in cluttered background. This feature is not useful when com-
puted over large windows, where the relative number of points
belonging to an enclosure is small.

To compute the rectangularity-size features fRS, we learned
wopt from the separate training data set of 49584 negative ex-
amples (see Section VI-C). The set of 144 augmented positives
used for testing of all of the feature types was also used for
training the linear classifier. Learning the 2-D wopt involves
positives only via their average ȳ [see (17)] and uses separate
large data sets of negatives; therefore, it is unlikely that the
data are overfitted. Nevertheless, in the following, we carried
out another set of experiments, where we avoid the use of the
same positives for training and testing by means of the cross
validation procedure (see Section VI-C for details). Using cross
validation also allowed us comparison with high-dimensional
HOG and deep-CNN-based features (deep features), which are
much harder to keep from overfitting.

Table II shows the discrimination performance of the
rectangularity-size features fRS, high-dimensional HOG fHOG,
and deep features fCNN generated by several pretrained CNNs.
For all CNN architectures, the table gives the layer used to
extract features that produced the best result. Given a par-
ticular set of features, we use the methodology described in
Section IV based on training the linear classifier (learning the

hyperplane wopt). The table shows the mean values, standard
deviation, and worse values (max or min) for the discrimination
measures FP100 and AUC over nine folds of cross validation.
On each fold of cross validation, 128 positives (augmented from
8 real examples) were used for training, and the remaining
16 positives (augmented from the ninth remaining example)
were used for testing (see Section VI-C for details). The mean
values of FP100 show that the rectangularity-size features
fRS outperform all of the other features by a large margin.
Surprisingly, however, two architectures of CNN, AlexNet [25]
and Vgg-f [27], provided us with deep features that showed
relatively high performance. This is a remarkable result because
the CNNs were trained on a completely different image data set,
while the linear classifier wopt was trained on 128 examples
augmented from just 8 real enclosures. Note that no fine-
tuning of the pretrained CNN was performed. These results
also indicate that the simple methodology that we developed
in Section IV for learning from a few positive and a large
number of negative examples is useful even for the case of high-
dimensional features, although, as we show in the following,
the performance of such features is much more sensitive to the
number of positives used for training the linear classifier.

We experimented with CNNs with one or two final fully
connected layers or the softmax function of the last layer
removed. The table shows the layer that yields the best perform-
ing features. For AlexNet, the best result was obtained when
two final fully connected layers were kept. For all of the other
CNNs, the best results were obtained when features were taken
from the first layer that generates data reduced to 1 × 1 spatial
dimension, which is an average pooling for the GoogLeNet and
a fully connected layer for all of the other CNNs. Our results
support the hypothesis that convolutional layers of pretrained
CNNs generate generic features that might be useful for various
tasks. In contrast, the final fully connected layers generate task-
specific features.

Table II also shows how the performance for all features
dropped when only 16 augmented samples were used for
training (see Section VI-C for details) within each fold of
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Fig. 9. Candidate patches generating the highest responses by AlexNet
(top row) and Vgg-f (bottom row) architectures of pretrained CNNs followed
by a linear classifier trained on 8 real examples (128 augmented examples) of
rectangular enclosures and large number of negatives. Note that these patches
contain structures that are conceptually close to rectangles.

cross validation. However, in contrast to the other features,
the rectangularity-size fRS still yielded relatively high per-
formance, while all of the other high-dimensional features
became not useful. This experiment showed high sensitivity
of the performance to the number of training examples for the
case of high-dimensional features. This also suggests that col-
lecting additional examples might substantially improve their
performance.

We also notice that the deeper architectures (Vgg-deep-16,
Vgg-deep-19, and GoogLeNet) did not have superior perfor-
mance for our task. The architecture of CNNs was more
important than just their depth, which is in line with a recent ob-
servation in [71]. Note that the best performing CNNs AlexNet
and Vgg-f have similar architectures [27]. The importance
of the particular architecture is also evident from the large
variability of the performance of the different CNNs in Table II.
Moreover, although CaffeNet and AlexNet are supposed to
perform similarly (the first network is a minor variation of
the second [62]), they produce substantially different results.
The differences in particular training procedures may be re-
sponsible for such a discrepancy. The choice of the CNN
architecture and training procedure was crucial for our task and
seems likely to be critical for other applications. However, it
seems that currently there is no established alternative to the
trial-and-error based choice of the most suitable architecture for
the task at hand.

In Fig. 9, we show candidate patches seen by AlexNet and
Vgg-f CNNs that generate top responses of the linear classifier
fT
CNNwopt. The patches were taken out of 57 504 negative

samples used for testing. These top response patches resemble
the structures of our interest, indicating that corresponding deep
features might be powerful enough to capture the concept of the
rectangular enclosures.

For reference purposes, in Table II, we also evaluate the
performance of random feature vectors fRand using the same
evaluation strategy. The random feature vectors with 2 and
4096 entries of independently identically distributed variables
were drawn from the standard normal distribution. As expected,
such features give average AUC values close to 0.5. The result-
ing mean values for false positives FP100 are not far from the
overall number of samples used for testing (57 504).

VII. APPLICATION TO DETECTION OF BUILDINGS

Although the rectangularity feature was developed for a
particular task of detecting ruined LEs, it can also be used
for other tasks. Here, we illustrate its application to building
detection. Since the MFC-based line detector extracts bar edges
only, we replaced it with the line segment detector of [36] that
also extracts step edges that are more appropriate for detection
of buildings. In the case of strong object contrasts (unlike
the case of LEs), it reliably detects object borders and yields
relatively small number of edges caused by clutter.

Once the edges were extracted, we used the same algorithms
as described in Sections II and III in order to generate the
rectangularity feature fR. Since we do not have a labeled
training data set for buildings, we did not experiment here with
the rectangularity-size features fRS. We also do not expect that
it can essentially be better than fR because the variability of
building sizes is much smaller than that for the case of the
enclosures. Nevertheless, we still took into account the depen-
dence of the fR on the size of the structure by normalizing the
rectangularity feature as fR/fS . Fig. 10 illustrates ln(fR/fS)
computed for a SWISSTOPO 4000 × 4000 aerial image of
0.25-m resolution taken over the Bernese Alps. The logarithm
was taken in order to make weak detections better visible.
We used the same parameters as before for 0.5-m resolution
images, except for the maximal size of building structures. The
maximal size was reduced to 65 pixels, while the minimal size
was kept to 15 pixels. One can see that most of the buildings
were detected. On the other hand, there are false detections
mostly caused by occasional configurations of forest and field
edges or roads. In urban areas, our detector may produce many
false detections in between adjacent buildings or other man-
made structures. Therefore, in the original form, the detector
might be more appropriate for rural or mountainous areas when
high sensitivity is needed for detection of possibly occluded
individual rare structures. For better performance, it can be
adapted to detect buildings (instead of enclosures) by, for exam-
ple, incorporating region and/or corner cues. Such adaptations,
however, are out of the scope of this paper, as is the quantitative
evaluation of performance for building detection tasks.

VIII. CONCLUSION

We have introduced the scalar rectangularity feature fR
for detection of approximately rectangular livestock enclosure
structures in remotely sensed imagery. It has shown high per-
formance in discriminating ruined enclosures from irrelevant
structures and clutter. Due to the inherent difficulties of our
problem, such a performance is hardly achievable with other
approaches for detection of rectangular contours, nor with
related approaches, e.g., for detection of buildings. Note that,
while the building detection problem can be addressed using
the enclosure detector (see Section VII for example), detection
of enclosures cannot be approached using building detectors.
In general, methods for building detection are not suitable for
our case because of considerably lower heights (resulting in low
feature contrasts) and feature sizes (ruined walls versus building
rooftops) and due to the absence of various cues (roof colors,
roof homogeneity, shadows, 3-D cues, etc.). Some walls or parts



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 10. (Left) Building detections in a 4000 × 4000 aerial (SWISSTOPO) image of 0.25-m resolution visualized by colored disks. (Right) Enlarged bottom right
part of the image in the left. Color saturation increases, and hue is changing from yellow to red for growing values of ln(fR/fS) in accordance with the color bar
at the bottom.

of them may be missing or may also be missed in the edge
extraction (the width of linear features does not exceed two
pixels in images of 0.5-m resolution). Various irrelevant struc-
tures (trails, streams, rocks, etc.) with sizes or/and reflectance
properties similar to those of enclosure walls may occasion-
ally form rectilinear configurations. In contrast to enclosures,
building rooftops are much more distinctive structures. As an
example, we have shown that the GODF-based feature used for
detection of buildings reveals a poor discrimination ability for
our task.

We have also designed a size feature and introduced a
methodology used for learning a linear classifier in the 2-D
rectangularity-size feature space that improves over the de-
tector based solely on the rectangularity feature. The same
methodology in high-dimensional feature space was used to
learn the classifier based on HOG feature vectors and feature
vectors generated by pretrained deep CNNs (deep features).
Quantitative comparison has shown that the rectangularity-size
features fRS clearly outperform these state-of-the-art features
for our task.

However, we have found that several pretrained deep CNN
architectures (that yield generic deep features) along with the
linear classifier trained using our methodology from just a few
positive samples (augmented using rotations) and a large num-
ber of negatives may still result in a well-performing detector.
Although these CNN-based features did not perform as well as
the rectangularity-size features fRS, they may still be useful for
detection of the LEs of very low contrasts. Contrary to fRS,
they do not require a separate stage of extracting bar edges,
which may fail in the cases of very low contrasts (e.g., due
to low heights of ruined walls). Moreover, given examples of
enclosures of nonrectangular shape, we could easily retrain
our linear classifier using the same generic deep features. The
resulting performance is likely to be improved by learning from

more augmented examples using additional transformations,
e.g., scaling, flipping, brightness transformations, etc. Avail-
ability of additional (real) positive examples is certainly critical
for improving performance of the deep-CNN-based detector
and may also enable performing fine-tuning of the CNN itself
for further gain in performance. The aforementioned issues are
interesting for future research.

We have reported that, by using our algorithms (detec-
tion of bar edges, candidate generation, computation of the
rectangularity-size features, and linear classification), we have
detected LEs in the Silvretta Alps that were hitherto unknown.
We have also discussed a different application of the rectangu-
larity feature for detection of buildings in rural or mountainous
areas. For better performance in such an application, the rect-
angularity feature should be accompanied by other features
capturing additional properties of buildings.
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