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General discussion
The present thesis highlights the relevance and usefulness of taxonomic literature 

(old and new) and exemplifies the benefits of adopting an integral approach to the de-
scription of new taxa. As mentioned in Chapter 1, taxonomy as a science has accumu-
lated data and knowledge for more than 250 years. The quality and usefulness of the 
facts recorded in taxonomic literature have greatly improved from the early (purely) 
descriptive texts to the modern works that are rich in detailed and integrated data. These 
developments have improved the rigor of phylogenetic inference, documented distribu-
tion patterns of taxa through time and space, and revealed broad evolutionary patterns 
and other interesting phenomena. My work illustrates some applications of legacy data 
contained in literature (Chapters 2 and 3), and also explores an integrative perspective 
that involves new taxonomic descriptions and generation of phylogenetic hypotheses 
integrating molecular and morphological data (Chapters 4 and 5). 

Taxonomy has provided a system under which groups of natural entities can be cat-
alogued and biological data can be aggregated by the use of a taxonomic name (e.g. 
genus or species). Nevertheless, slow pace of identification, description, and categori-
zation, plus the huge number of unknown species and human impact on natural habitats 
and biodiversity have made traditional taxonomy obsolete and partially unreliable. As 
a response to this, several authors have made patent the urgent need for taxonomy to 
accelerate its description and knowledge accumulation process by the change of some 
practices and use of new technologies [1–9]. One of the main drivers of this change 
involves the access to primary taxonomic literature and specimen information [1, 6]. 
My thesis heavily relies on the utilization of some of these “e-taxonomic” products, 
like the BHL [10], WSC [11], Plazi [12], and GBIF [13]; and also helps to test and col-
laborates on the improvement of the program Golden Gate Imagine, the software used 
for data mining in Chapter 2. Electronic access to literature is one of the primary tools 
in my dissertation, being fundamental for acquiring primary taxonomic data used in 
Chapter 2 to analyze the distribution of the Teutamus group; observing the patterns and 
formulating an evolutionary hypotheses for the origin of genital asymmetry in spiders 
(Chapter 3); and gathering taxonomic information that helped us identify and eventu-
ally describe new species and test the phylogenies of the the spider families Hahniidae 
(Chapter 4) and the Symphytognathidae (Chapter 5).

The approach used in my thesis for mining and gathering specimen data from taxo-
nomic literature —used in Chapter 2— proved to be a powerful tool for analyzing spe-
cies distributions. Here, I applied this knowledge to plan our fieldwork targeting adult 
specimens of one particular group of ground dwelling spiders; however, there are many 
other possible uses that remain to be explored in the future. Some examples of these ap-
plications include species estimations, catalog building and taxonomic inconsistencies 
identification, inclusion of underrepresented taxa in global datasets, species distribution 
patterns detection, among other applications. This potent tool has been gaining trac-
tion among taxonomic journals and publishers (like Pensoft, Zootaxa, Zookeys, among 
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others) in its prospective approach [14, 15]; and is also being used in projects similar 
to the one presented here that have extracted data and analyzed the legacy taxonomic 
literature of groups as diverse as on damselflies [16] and Tyrannosaurus rex [17, 18].

Besides the aforementioned specimen data, taxonomic literature has also linked other 
types of information like illustrations, photographs, and molecular data to taxonomic 
names. In this way, I think of taxonomic literature as a massive (yet largely unstruc-
tured) data repository. This repository has accumulated biological data in the form of 
text called treatments [19–21]. The quality and usefulness of some of these data greatly 
varies depending on the time, author and even taxonomic group, and has —without any 
doubt — improved with utilization of modern techniques and technologies [22]. Spi-
der taxonomy — probably one of the best curated bodies of taxonomic literature (see 
Chapter 1) — has accumulated and made available thousands of taxonomic documents 
that represent a huge collection of species, facts, and images. Similar to other arthropod 
groups, spider species delimitation greatly relies on the comparative morphology of the 
genital characters; therefore, it does not come as a surprise that sexual characters are 
some of the best studied and understood, having detailed images and descriptions that 
might allow for the detection of interesting phenomena and broad evolutionary patterns. 
One example of this is the evolution of asymmetry in spider genitalia [23, 24]. For 
Chapter 3, I conducted a casual but taxonomically broad study of the evolution of this 
character in spiders, assigning the identified cases to traditional categories of asymme-
try [23–26] and suggested the evolutionary patterns and causes behind the development 
of this morphological character. Moreover, I attempted to test some of these hypotheses 
by examining the behavioral implications of the evolution of genital asymmetry in the 
species Teutamus politus; although I collected a fair number of live specimens during 
our fieldwork in an attempt to observe courtship and mating, the behavioral experiments 
were unsuccessful. Nevertheless, ours was the most comprehensive study of asymmetry 
in spiders encountering dozens of species in several families that show some kind of 
asymmetry and had been overlooked in the scarce previous reviews on the topic.

The sampling methods I used during our fieldwork — although intended for the col-
lection of Teutamus group spiders — also captured much more material. Some of these 
specimens were used in this thesis for Chapters 3, 4 and 5; but considerably more mate-
rial remains to be studied. Our sampling collected thousands of specimens from several 
arthropod groups including insects, millipedes, mites, Opiliones, among many others. 
Together with my supervisor Jeremy Miller and our collaborator Booppa Petcharad, I 
collected more than 4,600 spider specimens of which 1,454 were adults representing 35 
spider families. Only the families Liocranidae, Hahniidae and Symphytognathidae (the 
latter two both new records for Thailand) were identified to species level. Still, from this 
relatively small selection of taxa, I described a total of five new species following the 
integrative approach I mentioned in the introduction and including morphological and 
molecular data. All of the specimens collected for the present project are now deposited 
in the collection of Naturalis Biodiversity Center, where they can be archived and even-
tually contribute to other taxonomic, systematic, ecological and evolutionary studies. 
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In this context, Chapters 4 and 5 focused on the generation of new taxonomic con-
tent using the integrative approach [27–33]. In these two chapters I described five new 
species and made the first reports of two families for Thailand. Both families — as in 
the aforementioned Teutamus group — are ground dwelling, mostly inhabiting leaf 
litter. They are relatively small to tiny, ranging from less than 1 cm down to less than 
0.5 mm! In fact, one of the newly described species, Anapistula choojaiae n. sp., could 
be considered among the smallest spiders ever discovered together with a couple other 
species in the genus Patu [34, 35]. Both chapters are examples of the integration of new 
taxonomic descriptions with high resolution photographs, molecular data and character 
evolution, similar to what has been done previously in other spider studies [27, 29, 31, 
33]. In the case of the Hahniidae (Chapter 4) by reviewing what is known about the eye 
size reduction and eventual eye loss within this family; and for the Symphytognathidae 
(Chapter 5) by using 3D modeling to accurately document and compare the genital 
morphology allowing us to better circumscribe the genus Crassignatha, and transfer-
ring there some species previously misplaced in the genus Patu. 

I consider that this thesis demonstrates the use of many of the new taxonomic e-tools 
like specimen information databases (e.g. GBIF) and literature repositories, and data 
mining and management resources (e.g. BHL, WSC, PLAZI). In this way, the present 
work illustrates the re-use and re-analysis of specimen data and morphological images 
contained in literature, and also features the use of an integrative taxonomic approach 
for new descriptions that allow for species documentation, as well as the inference of 
evolutionary hypotheses. I feel that the common use of these tools will, without any 
doubt, help overcome the taxonomic impediment while collaborating on the effort of 
describing and understanding our (greatly endangered) biodiversity.
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