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Taxonomy: what it is, what are its problems and the 
proposed solutions

Taxonomy is the science and practice of the classification and description of things; 
in biology, it encompasses the description, identification, nomenclature, and classifica-
tion of organisms based on their inferred relationships [1–3]; this is the general notion 
of what taxonomy is and what a taxonomist does. However, in the context of biology, 
taxonomy has a much broader background that involves all sort of biological knowl-
edge, from the formal naming of groups of organisms (e.g. species) to the temporal and 
spatial distributions of those groups, their morphology, anatomy, behavior, molecular 
information, among many other data. The science of taxonomy is currently in a state of 
transition, where content within publications is being digitally mobilized and incorpo-
rated into an interconnected knowledge network. 

Throughout its more than two centuries of existence, taxonomy has provided a no-
menclatural and relational framework to all the biological disciplines setting the foun-
dations for discovering and understanding biodiversity. Nevertheless, this foundational 
role can often be confounded with a trivial and expendable one, or even be considered 
as a mere “service provider” [4, 5] to other fields of science. This perception of sim-
plicity in the taxonomic endeavor, together with the realization of the massive number 
of undescribed —and unknown— taxa [6–12] and the human impact imposed on eco-
systems lead to a crisis commonly known as the taxonomic impediment [6, 8, 13–15].

This taxonomic impediment (or impediments?) has become symptomatic in many 
ways, namely: the reduction of the taxonomic workforce and university curricula; the 
reduction of funding and economic support; and the view of taxonomy as an obsolete 
science [4, 9, 14–22]. An unintended consequence has also been the reduction in the 
literature outlets, leaving fewer venues for the publication of fundamental science. This 
problem has been highlighted by the recent decision to exclude the taxonomic mega-
journal Zootaxa from widely used science evaluation metrics (although this decision 
was subsequently reversed in the wake of reactions from the taxonomic community) 
[23–25].

This taxonomic impediment was noted by governments during the late 1990’s and 
some agencies like the American National Science Foundation (NSF) created programs 
to enhance taxonomic training and research for future generations. That was the case 
of the Partnership for Enhancing Expertise in Taxonomy (PEET) [14, 26–28]. Similar 
projects were created in other countries like a federal directive for training specialists 
in cladistics in Brazil [19] and the Darwin Initiative in the UK. These programs looked 
to revive taxonomy, increase the workforce (especially in little known and neglected 
taxa), and stimulate the production and sharing of information on the internet, making 
taxonomic knowledge more accessible. A survey of the PEET impact in the creation of 



10

Chapter ● 1

Figure 1.1.-“Linnaeus in the information age”. a) The tenth edition of Carl Linnaeus’ Systema 
Naturae published in 1758. Modified from Pyle [43]. b) Depicts an anachronistic portrait of Lin-
naeus —considered the father of Taxonomy— as a techie, using modern technology to develop 
his science. Modified from Godfray [5].

taxonomic careers showed that although PEET trainees greatly impacted scientific pro-
duction in their respective fields, there were common concerns about funding continuity 
and the opportunity of finding steady jobs in taxonomy [28]. This same work empha-
sized the need for multidisciplinary training that, in addition to traditional taxonomic 
skills, also developed competence in the use of molecular techniques, data manage-
ment, information dissemination, etc., as well as capabilities for integrating taxonomy 
with biogeography, ecology, ethology, etc. 

It is clear then that taxonomy needs to change to improve taxonomy-based prod-
ucts and keep up with modern, faster data-driven science. Essential elements for 21st 
century taxonomy include universal access to primary source information [29–31] and 
the incorporation of new technologies to facilitate better description, analysis, under-
standing and conservation of biodiversity (Fig. 1.1). In this context, Godfray and Knapp 
[17] summarized the major changes that taxonomy has gone through in recent decades, 
transforming from a purely descriptive discipline to a hypothesis-driven science. This 
transition has been driven by a “philosophical makeover” that incorporated phylogenet-
ic systematic ideas to test relationships between taxa, along with advances in DNA se-
quencing that have made vast amounts of molecular data available. Similarly, Godfray 
[5, 30] and Wheeler et al. [15] have articulated the need to build a more robust online 
taxonomic infrastructure to overcome some common problems in taxonomy, such as 
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the publication of isolated descriptions, and limitations in data and image sharing and 
publication. The first decade of this century saw a healthy and necessary debate con-
cerning the significance of taxonomy, its role among the modern biological science, and 
the epistemological, philosophical and technical reforms needed for taxonomy to stay 
relevant in the future [5, 8, 9, 15, 17, 18, 20, 21, 29, 30, 32–42] 

“Taxonomy as a team sport”
Taxonomy is often understood as the individual efforts of taxonomists working in 

isolation; however, the current state of taxonomic science and the pace of the loss of 
biodiversity demand taxonomy become a group effort that greatly takes advantage of 
the internet and its capabilities to accelerate the rate and quality of its production and 
distribution [35]. The taxonomy of a group of organisms typically arises from the grow-
ing collection of publications in the primary taxonomic literature of that taxon, and does 
not reside in a single publication or institution. As such, it tends to be scattered among 
multiple journals, with contributions by various authors; this has made taxonomic lit-
erature a (usually) poorly defined integral of the accumulation of literature [30] with a 
tendency to be unorganized and fragmentary. Godfray [30] suggested the implementa-
tion of a unitary model of taxonomy where one group or institution would be in charge 
of the administration of current taxonomy for a given group. Spider taxonomy, together 
with a few other examples like ants [44, 45], lepidopterans [46], dipterans [47], ortho-
pterans [48] and fishes [49], are probably the finest working examples of this authorita-
tive “unitary taxonomy” [30, 31, 50] model. 

The taxonomy of spiders is probably one of the best curated and polished, being 
under constant revision since the mid-20th century, and currently being administered 
by the World Spider Catalog [51]. The indexation and scrutiny of spider taxonomic 
literature began in the 1940’s by Pierre Bonnet (University of Toulouse, France) and 
Carl Friedrich Roewer (Bremen, Germany). Afterwards, the Italian arachnologist Paolo 
M. Brignoli (University of Aquila, Italy) started filling the gaps in the aforementioned 
works and publishing periodic catalog supplements. This idea was subsequently picked 
up by the American arachnologist Norman I. Platnick (American Museum of Natural 
History, New York) who published three catalog supplements between 1989 and 1998 
[52–54]. After this, the online version of the World Spider Catalog (WSC) was estab-
lished and handled by Platnick from 2000 to 2014 [55]. In 2014, the WSC was trans-
formed into a relational database administered by the Natural History Museum Bern 
(Switzerland) [51]. This catalog provides a fully searchable database that grants access 
to information on the more than 48,700 currently valid spider species and their syn-
onyms. The WSC website also keeps a fully accessible library with more than 15,400 
documents on spider taxonomy that dates back from the current year to Carl Clerck’s 
species descriptions from 1757, the only accepted spider descriptions previous to the 
Linnean era (ICZN: Article 3.1) [56, 57]. 
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Improving access, dissemination and usability of infor-
mation

Economics is the study of the production, distribution, and consumption of goods 
and services. If the scientific community is working to modernize the production, dis-
tribution, and consumption of taxonomic information, then perhaps we should look to 
economics for guidance. But economics is dominated by the study of physical goods, 
whose value is largely driven by their scarcity: rare things tend to be more valuable 
than common things. In contrast to physical goods information becomes more valuable 
as it becomes more accessible. So to increase the value of taxonomy, we should work 
to increase accessibility to biodiversity knowledge [58]. Current technologies allow 
storing and sharing data at an unprecedented pace, which in turn, allows the transfor-
mation of old printed literature (e. g. the Biodiversity Heritage Library [59]), and direct 
publication of new literature in electronic PDF format. This permits world-wide access 
to an amount of knowledge that was previously reserved to a few great libraries [15], 
recovering centuries of aggregated data that might otherwise just be forsaken on a li-
brary book shelf or at the back of a researcher’s drawer. Nevertheless, it is not the best 
format for exchanging and querying data generating what has been dubbed the “ PDF 
Black Box” [60]. In this context, the Swiss organization Plazi [61] has created software 
that semiautomatically detects and extracts taxonomic treatments, pieces of text that 
link specimen data (e.g. collection locality and date, collector, number of specimens, 
developmental stage, among others) to a taxon name [62–64]. 

The Plazi initiative [65–67] has greatly benefited from electronic access to taxonom-
ic literature in PDF format and has focused on mining and mobilizing biodiversity and 
taxonomic data contained in legacy and newly produced taxonomic literature. This can 
be done in two ways: a retrospective approach that transforms a taxonomic document in 
PDF format into a sematically categorized document in XML format that allows spec-
imen data to be extracted; and a prospective approach where data is directly produced 
in XML format as has been implemented by some journals (e. g. Pensoft’s ZooKeys 
and Biodiversity Data Journal, the European Journal of Taxonomy, among others) [58] 
(Fig. 1.2). These taxonomic treatments are then stored and available in Plazi’s Treat-
ment Bank where the specimen data can be directly gathered and analyzed [68]. Also, a 
main characteristic of this repository is that these specimen records are also contributed 
to the Global Biodiversity Information Facility [69], where they are aggregated with 
other sources of data such as collection specimen records and observations networks 
(among other sources), forming an unparalleled resource for discovering, analyzing and 
explaining broad biodiversity patterns [63–65, 68]. 

In this thesis, we explored the application of these principals in Chapter 2, focusing on 
the extraction of data from legacy taxonomic literature and its application for inferring 
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Figure 1.2.-The “Plazi approach”. Schematic view of the retrospective (green) and prospective 
(red) data mining from taxonomic literature. Extracted data can then be displayed and analyzed 
in specialized repositories [61, 70] and databases [61, 69, 71].

phenological patterns that allow optimizing specimen sampling in the field (see also the 
fieldwork section below). Also, we used taxonomic literature obtained from the WSC 
to assess the rare phenomenon of genital asymmetry (GA) in spiders (Chapter 3, see 
the Teutamus politus section below). This chapter used taxonomic literature as an image 
repository observing and comparing the incidence and biological background of GA, 
giving a hypothetical classification based on previous work in spiders and insects GA 
[72–80] and drawing a preliminary evolutionary scenario for each type of asymmetry 
we observed [81].

The integrative taxonomy
Integrative Taxonomy was defined by Dayrat [4] as the complementary delimitation 

of species based on their phylogeography, morphology, genetics, ecology, behavior, etc. 
Although the term, as minted by Dayrat [4] failed to be the proposed “new paradigm” 
in the exercise and understanding of the taxonomic science and was even dubbed as 
potentially misleading and detrimental by Valdecasas et al. [82] due to its guidelines 
on the taxonomic nomenclature, there are some concepts that are worth recovering 
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Figure 1.3.- The integrative taxonomic pipeline. Schematic workflow of the taxonomic process 
used in this thesis. It includes the use of the WSC [51] as a taxonomic library; the extraction of 
data from taxonomic literature [65, 66]; the use of these and other specimen data for biodiversity 
analyses; the use of molecular data (some of it from Genbank [71]) for building the phylogenies 
and a thorough documentation with different imaging techniques of the specimens’ morphology. 

and incorporating, whenever possible, in the common practice of taxonomy. Taxonomy 
has generally entrusted this species delimitation on morphology due to both practical 
and historical reasons. Nevertheless, as mentioned before, the current taxonomic crisis 
requires the inclusion of new technologies and techniques that favor faster and more 
reliable taxa descriptions; integration means multidisciplinarity [4, 83].

This multidisciplinarity has become more and more common in some fields by the 
integration of: morphological data (e.g. photographs, SEM, 3D imaging, CT-scans, geo-
metric morphometrics, among others), molecular data, geographical information (e.g. 
collection localities and the use of GIS), and other specimen based data (e.g. number 
and sex of specimens, collection dates, etc.) that allow testing the species hypotheses in 
different and more robust approaches [4, 82, 84–86]. Pyle [43] visually exemplifies the 
enormous advances on species documentation by using these modern technologies. The 
integrative perspective, besides generating pure taxonomic information —hypotheses 
of classification and relations—, also contributes with molecular data, high resolution 
images of specimens and their relevant characters, and other kinds of data to global 
databases [86–92]. This accessible data can be downloaded and tested independently or 
incorporated to new taxonomic and systematic studies in an easy and flexible way; this 
can help to expedite the testing of phylogenetic hypotheses and rapidly generate new 
datasets and inferences with more explanatory power.
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In this context, Chapters 4 and 5 are examples of the implementation of this in-
tegrative taxonomy (Fig. 1.3). Both chapters involve the description of new taxa and 
also, first reports of these families for Thailand. Chapter 4 describes two new species 
and one new genus of the family Hahniidae based on molecular and morphological 
evidence; Chapter 5 describes three new species of the family Symphytognathidae, 
employing molecular and morphological evidence; and making use of micro CT-scans 
and 3D modeling to circumscribe the genus Crassignatha and clearly illustrate and 
discuss the genital characters of the males of this and other related symphytognathid 
genera. Although 3D modeling had been used before to study spider genitalia [93–95], 
ours are, to the best of our knowledge, the smallest spider palps that have ever been 3D 
modeled, being only 0.2 mm in width. 

Fieldwork
The process of how we selected the locations where fieldwork was conducted is 

explained in detail in Chapter 2. Here we cover some generalities of the new specimen 
collection, where and how it was conducted. Southeast Asia (SEA) is one of the most 
diverse areas on the planet being represented by several conservation hotspots, of which 
the Indo-Burma and the Sundaland Hotspots are the most extensive and diverse [96, 
97] (Fig. 1.4). The Indo-Burma hotspot is largely distributed over continental SEA; 
this region is characterized by socio-political instability, high population density and a 
fragmentary nature of its territory. This, in turn, generates a scattered taxonomy of most 
groups that makes it difficult to describe and assess its biodiversity [96, 98, 99]. Still, 
studies on vascular plants and terrestrial vertebrates show the Indo-Burma hotspot to be 
one of the richest and highest in endemism, but also one of the most threatened hotspots 
[96, 100].

This uniqueness and magnitude of its biodiversity is also reflected, albeit understud-
ied, in invertebrates. The arachnofauna is mostly known from isolated species descrip-
tions, although a few genus, family and broader revisions have been published [101–103]. 
Especially interesting to us was the case of the liocranid spiders, and from this family, 
the species Teutamus politus Thorell, 1890 (see T. politus section below, and Chapters 
2 and 3) and its close relatives in the so called Teutamus group (TG). While planning 
our fieldwork, we wanted to improve the probabilities of capturing adult specimens of 
T. politus while also sampling other relatives of the TG. Due to the lack of data on these 
spiders’ phenology, we used data from taxonomic literature to select the localities and 
times with a higher incidence of liocranid spiders based on the number of adults reported 
in taxonomic literature. Taking into account this information we decided to collect from 
July to August 2018 in the three provinces with most specimens reported in Thailand. We 
covered a variety of habitats in each place (Fig. 1.5) ranging from  cloud forests at the top 
of the highest mountain in the country, to temperate pine, oak and Dipterocarpus forests 
down to tropical vegetations. We also sampled in secondary forests and rubber and oil 
palm plantation to observe the anthropogenic impact on the populations of these spiders.



16

Chapter ● 1

Figure 1.4.-Map of the Southeast Asian Hotspots. Modified from Mittermeier et al. [96].

Figure 1.5.- Some of the localities sampled in Thailand. a, b) Chiang Mai: a- bamboo forest in 
the Pha Daeng National Park. b- Cloud forest in Doi Inthanon National Park, the highest moun-
tain in the country. c, d) Phuket and Krabi: c- a patch of Kerrodoxia elegans palm tree in Ton Sai. 
d. Secondary forest near Than Bok Khorani National Park. (Next page, top) ►

Figure 1.6.- Collecting methods. a) Winkler traps hung outside Doi Suthep National Park head-
quarters. b, c) Pitfall traps at a Dipterocarpus sp. forest near Pha Daeng National Park. d) Active 
search in sifted leaf litter at Doi Suthep National Park. e) Active search in cryptic habitats (i. e. 
under rocks, logs, bark, among leaf litter, etc) near Than Bok Khorani National Park. (Next page, 
bottom) ►

Also, we knew based on literature that most liocranid adult specimens were col-
lected using pitfall traps and leaf litter sifting [101, 103–105]. Therefore, we used a 
combination of collecting methods (Fig. 1.6) that target ground spiders [106–108]. This 
allowed us to have a better representation of the liocranid species present in each site 
and also to capture a wide array of ground dwelling arthropods, including several fam-
ilies of spiders. While referring to records in taxonomic literature when planning field 
work is a common practice, very few have made such records persistently available to 
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all using FAIR [67, 109] standards in the way we did for the present work. More infor-
mation about this fieldwork, data extraction and applications can be found in Chapter 
2 of this thesis. Specimens collected during this field trip were used to observe and doc-
ument the genital asymmetries in T. politus (Chapter 3), and to describe new species 
and build molecular phylogenies of the families Hahniidae and Symphytognathidae 
(Chapters 4 and 5).

Teutamus politus
Fig. 1.7

This species is a central part of this thesis, together with other related taxa of the 
Teutamus group, of the Chapters 2 and 3.Very little is known about the biology of 
this interesting species. It was first described in 1890 as the type species for the genus 
Teutamus. Its description was based on one female specimen from “Pulo Pinang”, now-
adays Malaysia [110]. But it wasn’t until 2001 that their name resurfaced among many 
others in an impressive piece of taxonomic literature on South East Asian ground spi-
ders by the Dutch arachnologist Christa Deeleman-Reinhold [101]. This seminal work 
encouraged research on this and other related spider groups in the region [103–105, 
111–113]. Deeleman-Reinhold [101] described six new species of this genus, observ-
ing relevant information about the habitat and distribution of these species. She made 
the first description of the male of T. politus and noted the asymmetric genital opening 
in the female. Dankittipakul et al. [104] significantly increased the knowledge of the 
genus Teutamus by describing 17 new species. They reported many new specimens 
of T. politus increasing the available information about their geographic and temporal 
distribution. These studies greatly advanced knowledge about the taxonomy, and geo-
graphical distribution of T. politus and other related spiders. However, their biology is 
still a mystery. 

Teutamus species are known to inhabit the leaf litter of dark humid undisturbed 
rainforests, but have also been reported wandering on the forest floor in daytime. Most 
species were found to have limited distribution ranges, being sampled in just one local-
ity without known overlapping distributions [101]. T. politus is the notable exception 
by having a relatively wider distribution that extends from Malaysia to the south of 
Thailand [101, 104].This species became interesting to us due to the clearly asymmetric 
female genitalia. This character had been noted and illustrated before (Fig. 1.7d) in the 
female and had even been used as a diagnostic character of the species but correlations 
to changes in male morphology and other implications like courtship and mating behav-
ior (Fig. 1.1c) had never been studied. More information about this can be found in the 
third chapter of this thesis. While sampling specimens of this species our attention was 
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Figure 1.7.- Teutamus politus. a, b) Comparision of an ant Odontomachus sp. and a female of 
T. politus; exemplifies the phenomenon of ant mimicry in this spider species. Our sampling also 
showed them to be myrmecophylic, living on top or close to the Odontomachus sp. nests. c) Size 
comparison of male and female during the behavioral experiments. d) Taxonomic illustrations of 
the genitalia of this species (female epigynum —left—, and male pedipalp —right—). Modified 
from Deeleman-Reinhold [101]; and Dankittipakul et al. [104].

drawn to the relation they had with ants of the genus Odontomachus (Fig 7a). Most 
of the T. politus specimens we caught were close to or on top of these ant nests. T. 
politus bears some morphological similarities to the ants (Figs. 1.7a, b). Although they 
had been mentioned to be “vaguely ant-mimicking” before [101], this is the first time 
that this kind of spider-ant relationship has been observed in this genus. Unfortunately 
we were not able to make more detailed observations of the nature of the relationship. 
Nevertheless, similar interactions have been well documented in other spiders ranging 
from myrmecophyly —living in close relation to ants— to myrmecomorphy —morpho-
logically mimicking the ants— [114–118].

The present thesis aims to show the value of generating new taxonomic content in a 
way that allows for rigorous testing of phylogenetic hypotheses, and boosts the impact 
and relevance of taxonomic work by incorporating high resolution images, molecules 
and specimen data. Although taxonomy is a venerable science, it holds large quantities 
of useful data that can help elucidate broad patterns in biological evolution, biogeog-
raphy, and ecology, among other disciplines. All of these might eventually help under-
standing, protecting and preserving our endangered biodiversity. We are sitting on a 
mine whose precious data patiently awaits to be extracted.
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Thesis outline

Legacy literature data extraction and application 

Chapter 2: Mining data from legacy taxonomic literature and 
application for sampling spiders of the Teutamus group (Arane-
ae; Liocranidae) in Southeast Asia. Scientific Reports 10, 15787. 
doi:10.1038/s41598-020-72549-8.

The use of taxonomic literature to infer evolutionary pat-
terns

Chapter 3: Imperfect and askew: A review of asymmetric genitalia 
in araneomorph spiders (Araneae: Araneomorphae). PLoS One 15:6, 
e0220354: 1-26. doi:10.1371/journal.pone.0220354.

New taxa description in an integrative approach

Chapter 4: First records and a new genus of Comb-tailed spiders 
(Araneae: Hahniidae) from Thailand with comments on the six-eyed 
species of this family. European Journal of Taxonomy 724, 51-69. 
doi: 10.5852/ejt.2020.724.1157

Chapter 5: First records and three new species of the family Sym-
phytognathidae (Arachnida: Araneae) from Thailand, and the cir-
cumscription of the genus Crassignatha Wunderlich, 1995. ZooKeys  
1012, 21–53. doi.org/10.3897/zookeys.1012.57047
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